2022 |EEE International Symposium on Phased Array Systems & Technology (PAST) | 978-1-6654-4166-7/22/531.00 ©2022 IEEE | DOI: 10.1109/PAST49659.2022,9975068

Data-Driven Covariance Estimation

John T. Rogers II
Department of Electrical and
Computer Engineering
Mississippi State University
Starkville, MS 39762
Email: jtr242@msstate.edu

Abstract—Array processing algorithms commonly use covari-
ance matrices as inputs. Improved performance compared to
the sample covariance matrix can be achieved using knowledge
of the array configuration. We present an analysis of Con-
volutional Neural Network (CNN) architectures for covariance
matrix estimation for a simulated Uniform Linear Array (ULA).
Additionally, a novel neural network configuration is presented
which demonstrates reduced error and more resilience to lower
Signal-to-Noise Ratio (SNR) levels when compared to the sample
covariance matrix.

Index Terms—Covariance Matrix, Data-Driven, Convolutional
Neural Network

I. INTRODUCTION

Covariance matrices have many desirable properties which
has led to their use as inputs for many signal processing
algorithms. A covariance matrix consists of the pairwise
covariances between two sets of random variables. An auto-
covariance matrix is the covariance matrix of a set of random
variables with itself and it is highly used in many communica-
tions, radar, and array signal processing applications. Herein,
all covariance matrices used are auto-correlation matrices and
the terms will be used interchangeably. The auto-covariance
matrix is defined in (1), where p1,, is a vector of the means for
each random variable in the set of random variables X. When
the random variables are zero mean, this equation simplifies
to equation for the auto-correlation matrix.

K=EX -y, |EX — p,)" = EXX"] -y, (1)

As the true covariance matrix is often not known in practice,
the sample covariance matrix is generally used as an approx-
imation.

The sample auto-covariance matrix is commonly used in
Direction of Arrival (DOA) estimation and related array pro-
cessing algorithms. Beamforming techniques such as the Min-
imum Variance Distortionless Response (MVDR) [1] apply
steering vectors to the covariance matrix of a signal to project
the signal power across an angular spectrum. Other algorithms
exploit the desirable properties of the eigen-decomposition of
the covariance matrix as the signals and noise are separated
into orthogonal subspaces. The MUlItiple Slgnal Classification
(MUSIC) algorithm [2] applies beamforming to eigen-vectors
corresponding to the noise sub-space. Number of Sources

John E. Ball
Department of Electrical and
Computer Engineering
Mississippi State University
Starkville, MS 39762
Email: jeball @ece.msstate.edu

Ali C. Gurbuz
Department of Electrical and
Computer Engineering
Mississippi State University
Starkville, MS 39762
Email: gurbuz@ece.msstate.edu

estimation, which is required for algorithms like MUSIC, com-
monly investigate the eigen-values of the covariance matrix.
For a signal with multiple signal sources, the signal power of
each source is constrained to a single eigen-value whereas the
remaining eigen-values are equal to the noise power. As the
sample covariance matrix is an approximation, tests such as the
Akaike Information Criterion [3] and Minimum Description
Length [4] are applied to the eigen-values to obtain an estimate
of the number of sources.

Improved estimation of the auto-covariance matrix is an
open area in signal processing with many recent developments.
Knowledge of the application scenario, such as the array
configuration, can be used to achieve improved covariance
matrix estimation. In [5], interference steering vectors are
used to reconstruct the interference plus noise covariance
matrix. Upadhya and Vorobyov [6] presented an algorithm
for covariance matrix estimation for Multiple-Input Multiple-
Output (MIMO) systems. Deep neural networks are used in
[7] for covariance matrix estimation in a computer vision
application. In [8], covariance matrix estimation is modeled
as an optimization problem using geometric considerations.

In this paper, we explore the use of Convolutional Neural
Networks (CNNs) for covariance estimation. We present a
comparison of four simple CNN architectures representing
common network topologies. Additionally, we present a novel
neural network configuration to estimate the covariance matrix
from the array snapshot observations. The proposed learning-
based covariance matrix estimation approach has the following
properties:

« Significantly improved estimation performance compared

to the sample covariance matrix.

« A constrained network size allowing for efficient compu-

tation.

A. Nomenclature
A summary of variables used herein and their definitions is
shown in table L
II. METHODOLOGY

Herein, we define the signal model and present multiple Ar-
tificial Neural Network (ANN) topologies and configurations
that are trained and tested to estimate the covariance matrices
of signals from a simulated Uniform Linear Array (ULA).

Authonized licensed use limited to: Mississippi State University Libraries. Downloaded on March 01,2023 at 01:12:29 UTC from IEEE Xplore. Restrictions apply.



TABLE I
VARIABLE DEFINITIONS

Definitions

Simulated RADAR Measurement containing P snapshots
Single element of X

Noiseless Simulated RADAR Measurement

True Covariance Matrix

Sample Covariance Matrix

Estimated Covariance Matrix

True Covariance Matrix Sorted Eigenvalue Vector
Estimated Covariance Matrix Sorted Eigenvalue Vector
Number of Receiver Array Elements and Indexing Variable
Number of Snapshots and Indexing Variable

Number of Signal Sources and Indexing Variable
Amplitude of Signal Source

RADAR Operating Frequency

Speed of Light in a Vacuum, 3 - 10%

Receiver Array Element Spacing

Angle of Signal Source

Complex i.i.d. White Gaussian Noise Sample

SeLU Constants

Name

o o | 1| b

w

S g > =
3

Ealk=!

[ 0 || &
]

> 32|

®

A. Signal Model

The synthetic data set used simulates the measurements of
a ULA using the following equation:

T
Im = Eak exp (—jQﬂ%Aa:msin (qbk)) +nm  (2)

where z, is the power measured by the m-th receive array
element, ay is the amplitude of the k-th signal source, T is
the true number of sources, j = /—1, f is the operating
frequency, ¢ is the speed of the wave, Az is the spacing
between array elements, m is the array element index, ¢y is
the angle of the kK — th signal source, and n,, is independent
and identically distributed (i.i.d) complex white Gaussian
noise observed by the m — th array element. A single array
measurement is simulated by arranging z,, measurements for
all M receive elements as a vector with randomly generated
complex noise. The final signal is constructed by arranging P
snapshots of the array measurement into a [M x P] matrix X.

These simulated signal matrices are further processed to
obtain the sample and true covariance matrices. As the signal
is sinusoidal and the noise is white, the simulated signal
matrices have a true mean of 0, thus the covariance matrix is
equal to the correlation matrix. Therefore, we can calculate
the sample covariance matrix, K; using the approximated
correlation matrix defined as follows:

1

K, =—=

£ P

Likewise the true covariance matrix is equal to the true
correlation matrix given by:

0. ¢l (3)

K = E[XX"] @)

As the noise is independent for each receiver array element,
the true covariance between different elements is unaffected by
noise. As the covariance matrix diagonal contains the variance

for each element, these values are effected by noise . The
diagonal terms are equal to the diagonal terms of the corre-
sponding noiseless covariance matrix plus the noise variance.
Therefore, the true covariance matrix can be found using (3)
where s is a vector containing a noiseless measurement of the
signal constructed using only the bracketed portion of (2), o2
is the noise power, and I is the identity matrix.

K, =ss + 021 (5)

B. Simulation Data

The data used herein simulates an 11 element ULA RADAR
operating at 5GHz and 32 snapshots are simulated for each
set of signal sources. The receive array element spacing is
set to one-half of the wavelength. Signal sources are ran-
domly distributed within a 180° Field of View (FOV) with
a minimum spacing of 20°. The simulated signals contain 0
to 4 signal sources with per source SNR values ranging from
—10dB to 20d B measured at the receiver. The training dataset
contains 10, 000 signals for each number of sources providing
a total of 50, 000 signals. Likewise, the testing dataset contains
1,000 signals for each number of sources. Additional testing
datasets are used for assessing performance relative to SNR
and the number of snapshots. The dataset for the former
contains 100 signals for each number of sources and each
integer SNR value between —10dB and 20dB resulting in a
total of 15, 500 signals. The range of snapshots tested includes
the first 8 powers of 2, ranging from 1 to 128. 1000 signals
are generated for each value of the number of sources and
snapshots resulting in 40, 000 signals.

Within these datasets the signals are processed into input-
label pairs. The inputs are the sample covariance matrices
of the signals computed according to equation 3. Likewise,
the labels are the true covariance matrix computed according
to equation 5. To mitigate the effect of the SNR range the
network inputs and labels are normalized. As the norm of the
true covariance matrix would not be available in any practical
application, the Frobenius norm of the sample covariance
matrix is used for all normalization. As shown in Figure 1,
the input sample covariance matrix is normalized using its
Frobenius norm for each input. The same factor is used to
normalize the true covariance matrix, which serves as the data
label. Finally this factor is multiplied by the network output
to return it to the appropriate scale. The normalized form
of the input and labels are pre-computed before training the
networks.

As support for complex-value neural networks is not yet
widespread, the real and imaginary components of these ma-
trices are separated to form two [M x P x 2] multidimensional
arrays.

C. Utilized Neural Network Structures

The evaluated network architectures are all Convolutional
Neural Networks (CNNs) utilizing of two dimensional convo-
lution layers. These layers can vary in number of convolutional

Authonized licensed use limited to: Mississippi State University Libraries. Downloaded on March 01,2023 at 01:12:29 UTC from IEEE Xplore. Restrictions apply.



1Kl e
Ks CNN —l—’é-' K
MSE K
1/1Ksllp |
1/11Ks I

Fig. 1. Normalization Flowchart

masks, mask size, and mask stride. Additionally, a convolu-
tional layer can employ zero-padding. Convolutional transpose
layers also utilize a set of masks with the same parameters to
expand the input size by multiplying all values of the mask
by a single sample from the input.

Fully Connected layers are also utilized. These layers con-
sists of an arrangement of multiple linear perceptrons. These
layers can vary in the number of perceptrons used.

The Scaled Exponential Linear Unit (SELU) [9] is the
sole activation function used in these networks. The SELU
is defined in (6) where A and « are predefined constants
set to 1.05070098 and 1.67326324 respectively. This acti-
vation function is self-normalizing eliminating the need for
batch normalization layers. Additionally, the SELU, unlike
the more commonly used Rectified Linear Unit (ReLU), can
return negative values which are necessitated by the Hermitian
nature of the estimated matrices. A SELU function follows all
convolutional layers and fully connect layers in the evaluated
networks except for the output layers.

T x>0

7
ae® —a <0

SELU(z) =X { (6)
All networks are trained using batch processing. The Mean
Square Error (MSE) with a learning rate of 0.001 is used as

the loss function. All networks are trained for 100 epochs with
a batch size of 100.

D. Error Metrics

Each network topology is assessed using the Normalized
Mean Square Error (NMSE). Because the scale of the covari-
ance matrix is influenced by the signal power, noise power,
and number of signal sources, normalized error metrics are
required. The NMSE utilizes the Frobenius Norm of the true
covariance matrix to normalize thq error as shown in (7) where
K is the true covariance matrix, K is an estimated covariance

matrix, and || - || is the Frobenius norm.
NMSE[K] = IK = Kflr )
|IK]|

ITI. RESULTS

All network’s performance were assessed by taking the av-
erage NMSE for 5 training instances. Outlying error values for

individual networks were observed, but only for larger-than-
average errors which indicates inconsistent training conver-
gence. These outliers were not observed for results presented
in this section.

A. Evaluated Architectures

Four major networks architectures were evaluated. The first
network utilized two convolutional layers followed by two
matching convolutional transpose layers to produce a sym-
metric structure which constricts the size of the intermediate
data structures. The second network uses four convolutional
layers with zero-padding to maintain the same size for first
two dimensions for each intermediate data structure. The third
network expands the size of the intermediate data structures
by utilize two convolutional transpose layers, followed by
two symmetric convolutional layers. The final network uses
a traditional CNN structure with two convolutional layers and
terminates with two fully connected layers.

Table II shows the layers and relevant parameters for each
network. Layers are indicated using the following notation:
Convolutional layers are denoted as Conv(Number of Masks,
Mask Size), Convolutional Transpose as ConvT(Number of
Masks, Mask Size), Fully Connected as FC(Number of Per-
ceptrons), Batch Normalization as BN, and Scaled Linear Unit
as SeLU. The layer parameters presented in table Il were
selected to allow a fair comparison between the 4 proposed
architectures.

TABLE IT
NETWORK ARCHITECTURES
Network 1 Network 2 Network 3 Network 4
Conv(32,5) Conv(32,5) | ConvT(32,3) | Conv(32,3)
SeL.U SeLU SeLU SeLU
Conv(32,3) Conv(32,5) | ConvT(32,5) | Conv(32,3)
SeL.U SeLU SeLU SeLU
ConvT(32,3) | Conv(32,3) Conv(32,5) FC(242)
SeL.U SeLU SeLU SeLU
ConvT(2,5) Conv(2,3) Conv(2,3) FC(242)
Number of Learned Parameters
21922 | 37282 | 52642 | 264140

The results for the four tested architectures are given in table
II as well as the performance using the sample covariance
matrix. All four networks demonstrated improved performance
compared to the sample covariance matrix with network 4
demonstrating the best overall performance.

TABLE III
NETWORK ARCHITECTURES RESULTS

Average NMSE
Training | Testing
Ks 0.1048 0.1041
Network 1 0.0238 0.0237
Network 2 0.0119 0.0119
Network 3 0.0140 0.0140
Network 4 0.0060 0.0062

As the fourth network contained significantly more learned
parameters than the other three, a second experiment was

Authonized licensed use limited to: Mississippi State University Libraries. Downloaded on March 01,2023 at 01:12:29 UTC from IEEE Xplore. Restrictions apply.



performed after balancing the number of learned parameters.
The modified parameters include the number of neurons in per-
ceptron layers and the number of masks in the convolutional
and convolutional transpose layers. The balanced networks are
shown in table IV.

TABLE VII
FINAL RESULTS

TABLE IV
BALANCED NETWORK ARCHITECTURES

Network 1 Network 2 Network 3 Network 4
Conv(64,5) Conv(48,5) | ConvT(40,3) | Conv(64d,3)

SeL.U SeLU SeLU SeLU
Conv(64,3) Conv(48,5) | ConvT(40,5) | Conv(ed,3)

SeL.U SeLU SeLU SeLU
ConvT(64,3) | Conv(48,3) Conv(40,5) FC(22)

SeL.U SeLU SeLU SeLU
ConvT(2,5) Conv(2,3) Conv(2,3) FC(242)

Number of Learned Parameters
80706 | 82034 | 81802 | 81280

The results for the adjusted networks are shown in table V.
Network 4 still exhibits the best performance and was selected
for further improvement.

TABLE V
BALANCED NETWORK ARCHITECTURES RESULTS

Average NMSE
Training | Testing
Ks 0.1048 0.1041
Network 1 0.0167 0.0167
Network 2 0.0108 0.0108
Network 3 0.0120 0.0120
Network 4 0.0071 0.0073

B. Final Network Results

The final network architecture is shown in Table VI. After
selecting from the four proposed networks, each parameter
was modified and tested one at a time to improve the networks
performance. The network utilizes zero-padding as this allows
for an increased variety in convolutional mask arrangements
as well as a decrease in error. The remaining parameters
were modified in the following order: convolutional mask
size, number of convolutional layers, number of convolutional
masks, number of perceptrons in the third layer, number of
fully connected layers, batch size, and learning rate.

TABLE VI
FINALIZED NETWORK ARCHITECTURE

Conv(2,3)
SeLU
Conv(2,3)
SeLU
FC(88)
SeLU
FC(242)

The final results this network are shown in table VIL. The
final network’s error is approximately 1/20th of the error
when using the sample covariance matrix.

The performance of the network relative to SNR is shown in
figure 2. The final network demonstrates robust performance

Average NMSE
Training | Testing
Ks 0.1048 0.1041
Mean 0.0055 0.0056
Minimum 0.0053 0.0053
Maximum 0.0058 0.0059
NMSE vs SNR
0.3
\\ Estimated
028 . = = :Sample
\
\
A
0z2r \
.
u A}
3 o8 \\
hY
Y
01 F ~
A Y
005 -—\‘h T
& 1 j ; -
-0 5 0 5 10 15 20
SNR (dB)

Fig. 2. Performance vs SNR for Network Results and Sample Covariance
Matrix

relative to SNR as the performance for all tested SNR levels is
superior to the sample covariance matrix at high SNR levels.

The performance relative to the number of snapshots used
when constructing the input sample covariance matrices is
shown in figure 3 with the exact values given in table VIIL
For all number of snapshots tested, the proposed method
demonstrates lower error than the sample covariance matrix.
Additionally, the error decreases monotonically as the number
of snapshots increases demonstrating the networks ability to
generalize despite being trained on a dataset with inputs
containing 32 snapshots exclusively.

To demonstrate the benefit of improved estimation of the

Mumber of Snapshots vs NMSE

a5

Estimated
= = :Sample

25

NMSE

20 40 B0 a0 100 120
Mumber of Snapshots

Fig. 3. Performance vs Number of Snapshots for Network Results and Sample
Covariance Matrix

Authonized licensed use limited to: Mississippi State University Libraries. Downloaded on March 01,2023 at 01:12:29 UTC from IEEE Xplore. Restrictions apply.



TABLE VIIL
RESULTS WITH VARIED NUMBER OF SNAPSHOTS USING PROPOSED
NETWORK ESTIMATES AND SAMPLE COVARIANCE MATRICES

Snapshots | Estimate | Sample
1 0.5547 3.3872
2 0.2553 1.6747
4 0.1104 0.8388
8 0.0451 0.4254
16 0.0151 0.2057
32 0.0063 0.1045
64 0.0043 0.0524
128 0.0036 0.0262
100 MUSIC Example
Metwork
HH = = :True Angle
10 A Sample
E
gm'z
oW
0 . |
T I
= |
B 1
2 I
10" I
I
1
108 1

-28 26 -24 22 -20 -18
Angles (degrees)

-3z 30

Fig. 4. Normalized MUSIC Spectrum using the Network Results and Sample
Covariance Matrix

signal covariance matrix, the MUSIC spectrum of a single
target case is shown in figure 4. This case was randomly
selected from the testing dataset. The target is located at
—23.5° with an SNR of 15dB.

IV. CONCLUSION

Herein, we show a comparison of simple neural networks
representative of common CNN configurations. The traditional
architecture of using convolutional layers followed by fully
connected perceptron layers demonstrated the universal best
performance. This network was further optimized and demon-
strated improved performance compared to the sample co-
variance matrix optimization. The proposed network exhibited
reduced error and significantly improved resilience to lower
SNR levels.

Future work in this area includes: using the proposed
network as the foundation for deep learning networks created
using hierarchical network design and the investigation of
custom optimization functions.

ACKNOWLEDGEMENTS

This work was sponsored by National Science Foundation
under Grant No. 2047771.

REFERENCES

[1] 1. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, 1969.

[2] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276
280, 1986.

[3] H. Akaike, “A new look at the statistical model identification,” IEEE
transactions on automatic control, vol. 19, no. 6, pp. 716-723, 1974.

[4] 1. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14,
no. 5, pp. 465-471, 1978.

[5] Z. Zheng, Y. Zheng, W.-Q. Wang, and H. Zhang, “Covariance matrix
reconstruction with interference steering vector and power estimation for
robust adaptive beamforming,” IEEE Transactions on Vehicular Technol-
ogy, vol. 67, no. 9, pp. 84958503, 2018.

[6] K. Upadhya and S. A. Vorobyov, “Covariance matrix estimation for

massive mimo,” IEEE Signal Processing Letters, vol. 25, no. 4, pp. 546—

550, 2018.

K. Liu, K. Ok, W. Vega-Brown, and N. Roy, “Deep inference for covari-

ance estimation: Learning gaussian noise models for state estimation,” in

2018 IEEE International Conference on Robotics and Automation (ICRA),

2018, pp. 1436-1443.

[8] A. Aubry, A. De Maio, and L. Pallotta, “A geometric approach to
covariance matrix estimation and its applications to radar problems,” JEEE
Transactions on Signal Processing, vol. 66, no. 4, pp. 907-922, 2018.

[9] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS'17.
Red Hook, NY, USA: Curran Associates Inc., 2017, p. 972-981.

[7

Authonized licensed use limited to: Mississippi State University Libraries. Downloaded on March 01,2023 at 01:12:29 UTC from IEEE Xplore. Restrictions apply.



