
CostCO: An automatic cost modeling framework for secure multi-party
computation

Vivian Fang
UC Berkeley

vivian@eecs.berkeley.edu

Wenting Zheng
CMU

wenting@cmu.edu

Lloyd Brown
UC Berkeley

lloydbrown@berkeley.edu

Aurojit Panda
NYU

apanda@cs.nyu.edu

William Lin
UC Berkeley

will.lin@berkeley.edu

Raluca Ada Popa
UC Berkeley

raluca@eecs.berkeley.edu

Abstract—The last decade has seen an explosion in the num-
ber of new secure multi-party computation (MPC) protocols
that enable collaborative computation on sensitive data. No
single MPC protocol is optimal for all types of computation.
As a result, researchers have created hybrid-protocol com-
pilers that translate a program into a hybrid protocol that
mixes different MPC protocols. Hybrid-protocol compilers
crucially rely on accurate cost models, which are hand-
written by the compilers’ developers, to choose the correct
schedule of protocols.

In this paper, we propose CostCO, the first automatic
MPC cost modeling framework. CostCO develops a novel
API to interface with a variety of MPC protocols, and
leverages domain-specific properties of MPC in order to
enable efficient and automatic cost-model generation for a
wide range of MPC protocols. CostCO employs a two-phase
experiment design to efficiently synthesize cost models of the
MPC protocol’s runtime as well as its memory and network
usage. We verify CostCO’s modeling accuracy for several
full circuits, characterize the engineering effort required to
port existing MPC protocols, and demonstrate how hybrid-
protocol compilers can leverage CostCO’s cost models.

1. Introduction

Secure collaborative computation [12], [17], [32],
[45], [47], [59], [62], is an increasingly popular paradigm
where multiple organizations with sensitive data run an
analysis over their aggregate data, without revealing their
individual sensitive data to each other. Computing on
multiple parties’ data is both advantageous and necessary
in many cases ranging from finance to healthcare. For
example, money laundering—where criminals transfer as-
sets across financial institutions to mask their activities—
is illegal in most jurisdictions and banks are required
to detect and report such activity. However, detecting
money-laundering is challenging because it requires banks
to share sensitive customer transaction data with each
other [57], and they are unwilling to do so because of
business competition.

Over the past three decades, researchers have made
impressive progress towards a cryptographic approach to
this problem: secure multi-party computation (MPC) [4],
[14], [30], [35], [36], [39], [48], [64], [66]. At a high

level, MPC allows n parties p1, . . . , pn with corresponding
inputs x1, . . . , xn to learn the output of a public function
f(x1, . . . , xn) without revealing each party’s xi to other
parties. Due to these efforts, MPC is now efficient enough
for several real-world use cases [12], [17], [32], [45], [47],
[59], [62]. Because there is no single MPC protocol that
wins for all workloads, researchers have begun to design
a number of hybrid protocols [7], [21], [23], [25], [34],
[41], [43], [54] that combine different MPC protocols to
bring orders of magnitude performance improvement over
using just one MPC protocol to run the entire workload.

Consequently, hybrid-protocol compilers [11], [13],
[33], [50] emerged in an effort to automate the manual
process of optimally combining different MPC protocols
for a given application. Fig. 1 depicts the standard work-
flow of a hybrid-protocol compiler. In order to construct
a hybrid protocol for a given program, the compiler parti-
tions the program and uses a cost model to select the MPC
protocol to run on each partition. The resulting hybrid
protocol can then be executed by the parties who want to
securely compute the program.

A hybrid-protocol compiler crucially depends on its
cost model, which it queries to determine the concrete
costs of different options for protocol assignment. The
main problem with existing cost models is the manual
effort needed to derive them. Multiple issues arise as a
result:

– Burdensome effort. Deriving a cost model for a spe-
cific MPC protocol requires a deep understanding
of its runtime complexity. For example, EzPC [13]
relies on distilling the properties of ABY [15] into
hard coded heuristics specialized to a deployment
and Kerschbaum, et. al [37], [56] manually derive
cost models for every building block in their two
supported MPC protocols. Others [11], [33], [50] set
up experiments by hand and fix parameters like the
data size.

– Lack of extensibility. Existing compilers base their
cost models on certain assumptions about the deploy-
ment environment and the supported MPC protocols.
EzPC [13] relies on rigid heuristics while newer
compilers [11], [33], [50] use a cost model specific
to the set of protocols they initially support. Both
approaches make it difficult to integrate new MPC
protocols into the compiler; new heuristics need to

140

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

© 2022, Vivian Fang. Under license to IEEE.
DOI 10.1109/EuroSP53844.2022.00017

20
22

 IE
EE

 7
th

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

16
14

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

53
84

4.
20

22
.0

00
17

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

Figure 1. The standard workflow of hybrid-protocol compilers is drawn
on the bottom (orange box). As shown on the top (green box), CostCO
generates cost models that the hybrid-protocol compiler queries during
protocol selection.

be manually found and MPC protocols with cost
functions that differ from ABY (e.g., [10], [20], [64])
require nontrivial effort to support. Furthermore, ex-
isting MPC protocols are actively developed on and
frequently branch into different versions, e.g., ABY
[15], [44], [49] and SPDZ [14], [35], [36]. Adapting
existing cost models to account for new versions
of protocols necessitates human effort, impeding the
wider adoption and availability of MPC.

– Limited decision-making capabilities. In addition to
being unable to support more MPC protocols, ex-
isting compilers are limited by their cost models
which predict only one type of cost (runtime). As a
result, they cannot make more sophisticated decisions
like choosing between an MPC protocol [31] and its
memory-optimized version [27].

In this work, we present CostCO, a cost modeling
framework for MPC capable of automatically deriving
an accurate cost model for a given MPC protocol. At
a high level, CostCO takes as input an MPC protocol
with a specification, builds a statistical model indicating
which programs to test on the MPC protocol, measures the
protocol running on these samples, and uses the results to
compute a cost model. The computation of cost models
in CostCO leverage the common properties of a class
of MPC protocols. Specifically, security requirements of
MPC imply that computation time and execution are
deterministic and input-data independent, which in turn
means that all branch arms are evaluated during execution
(we refer to this property as non-branching). Additionally,

many recent MPC protocols [3], [4], [14], [15], [18], [36],
[64], [66] have quadratic communication, computation and
memory complexity. In combination these insights allow
CostCO to efficiently generate cost models without requir-
ing additional user input such as representative workloads,
etc. In contrast to prior cost modeling works [11], [33],
[50], CostCO is:

– Automatic. A protocol provider supplies an MPC
protocol implementation together with a short spec-
ification, and CostCO automatically infers a cost
model, both in terms of a symbolic equation and an
empirical cost for each metric. Subsequent versions
of MPC protocols require less effort to generate cost
models and integrate into the hybrid protocol com-
piler. CostCO can also automatically generate cost
models for different deployment settings the secure
computation takes place on, which frees the compiler
from deployment assumptions (e.g., network condi-
tions) imposed by hard-coded heuristics.

– Extensible. CostCO’s API (§3) is rich enough to
allow it to be used with a range of different MPC pro-
tocols, running in a wide variety of different deploy-
ment settings. We have successfully used CostCO to
generate cost models for 7 different MPC protocols
which run the gamut from ones that use arithmetic
and Boolean secret sharing [15] to ones based on gar-
bled circuits [64] and homomorphic encryption [18].
Using CostCO in each of these cases required less
than 200 lines of code, demonstrating CostCO’s ex-
pressivity.

– Versatile. In addition to generating cost models that
predict an MPC protocol’s runtime, CostCO also
generates cost models that predict network com-
munication and peak memory consumption, which
enables compilers to additionally consider memory-
optimized MPC protocols.

Improving existing compilers. We build a compiler that
uses cost models generated by CostCO in order to re-
duce the effort that is otherwise required for manually
developing cost models for an MPC protocol. At the
same time, when compared to existing frameworks and
their benchmarks, our compiler still produces comparable
protocol assignments. By considering the different types
of costs CostCO models, our compiler is also able to
make more sophisticated decisions, e.g., taking into ac-
count performance degradation from memory pressure.
We believe that the research on hybrid-protocol compilers
can now focus on the problem of effectively searching
the complex space of combinations of MPC protocols,
without expending effort on cost modeling. We open-
sourced CostCO [1] to bolster this research agenda.

1.1. Techniques summary

In order to generate cost models for a variety of MPC
protocols, CostCO first needs a way to interface with
each protocol. Such a task is challenging because different
MPC protocol implementations have widely varying APIs.
CostCO manages to provide a common interface in a
simple API that is still rich enough to express different
MPC protocols (described in §3).

141

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

Once CostCO is able to interface with a given MPC
protocol, the main challenge lies in working out the
relations between the primitives for the total cost. MPC
protocols typically publish their asymptotic complexity,
which do not contain lower-order terms. CostCO needs
to first recover lower-order terms that influence the real
cost to obtain the set of primitive features that influence
performance. Requiring users to derive the correct set of
features is both burdensome, and error prone since feature
importance might itself depend on factors such as the
deployment scenario. Instead, CostCO automatically iden-
tifies the set of important features by leveraging techniques
from response-surface methodology [28] so the user only
need provide the set of features that potentially influence
performance (described in §4).

Next, CostCO uses the observation that the perfor-
mance and resource requirements for MPC protocols
are independent of input data in order to automatically
generate an empirical cost model. Determining the set
of important features, and generating an empirical cost
model requires empirical experiments, however running
an MPC circuit can be expensive in terms of runtime and
resource costs. Therefore, CostCO draws techniques from
the experiment design literature [8], [28], [38] and runs
in two stages to reduce the overall number of empirical
observations required.

Evaluation summary. We implement and port 7 MPC
protocols to CostCO (§5). Each protocol takes less than
200 LOC to use CostCO (§6.1) and CostCO generates cost
models with greater accuracy than prior cost modeling
approaches [11], [33], [50] (§6.2). In order to demonstrate
the utility of the cost models generated by CostCO, we
implement a hybrid-protocol compiler along with 6 ap-
plications and find that our compiler makes comparable,
if not better (up to 41% faster) protocol assignments than
the current state-of-the-art hybrid-protocol compiler which
uses manually derived cost models (§6.3).

2. CostCO Overview

CostCO is designed to automatically generate cost
models that provide an estimate of the execution time
of running a given computation using a specific MPC
protocol.

2.1. CostCO Architecture

CostCO’s system architecture consists of a pipeline
that automatically synthesizes a cost model from a list
of user-provided features for a given MPC protocol exe-
cuted in a fixed deployment environment. Fig. 2 depicts
CostCO’s workflow. At a high level, � CostCO receives
a protocol specification for the MPC protocol and uses it
to generate the exact computation experiments to run. �
CostCO then runs the experiments on the MPC protocol’s
implementation and � determines the next set of exper-
iments to run. � CostCO uses the experiment results to
infer the lower order asymptotic terms and finally output
an empirical cost model.

CostCO is run on the deployment environment which
consists of the machine or cluster at each party where

C
rt =0.004|input|+ 0.113|AND|

log |C| + . . .

Figure 2. CostCO’s workflow. CostCO is run on the deployment envi-
ronment where the secure computation is planned to be executed.

the secure computation will be run and the network en-
vironment among them. For example, some banks who
wish to collaborate on anti-money laundering [57] can run
CostCO on their setups. For some, this means their on-
premise cloud, while for others, a major cloud provider.
This is the same deployment on which hybrid-protocol
compilers [11], [33] are designed to run on. CostCO also
computes cost models for fixed field sizes and security
parameters, i.e., CostCO should be rerun if the field sizes
or the security parameters change.

Similar to existing MPC literature [11], [15], [55],
[64], we expect that MPC computations are expressed as
circuits, a directed acyclic graph (DAG) where vertices
represent an MPC protocol’s primitive operations, also
known as gates (e.g., AND/XOR in garbled circuits [64]
and sum/product in arithmetic circuits [15]). The edges
of the DAG represent dataflow between the gates. The
depth of a circuit is the path length from the computation’s
start to end, where edges are weighted by the number
of communication rounds the edge’s source vertex (cor-
responding to a gate) requires. For example, consider a
circuit for a round-based arithmetic MPC protocol [15]
that consists of an addition followed by a product. In this
case, the addition requires no rounds while the product
requires 1 round and thus the depth of the circuit is 1.

To compute the cost model of a protocol π, CostCO
requires the following inputs:

1) Protocol specification Sπ. In order to be able to in-
terface with π, CostCO requires a short specification
for π. At a high level, a specification consists of
the units of computation and parameters of π that
CostCO needs in order to derive π’s cost model. We
describe the specification in more detail in §3.

2) Protocol implementation. This is a specific imple-
mentation of π, which implements the interface de-
scribed in §4.2. CostCO uses this implementation to
synthesize empirical cost models.

Note that, unlike prior work [11], [33], [50], CostCO
only requires a list of parameters that the cost model
depends upon. The list may include parameters that do not
appear in the final cost model as CostCO can automati-
cally perform parameter selection and filter out extraneous

142

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

parameters. Crucially, CostCO can derive a detailed cost
model from shallow parameters, that is, parameters that
can be easily identified without a deep understanding of
the protocol. For example, in order to generate the detailed
cost model for AG-MPC [64], a Boolean-circuit MPC
protocol, the user inputs:{

|AND|, |XOR|, |input|, |output|, depth, |C|, 1

log(|C|)
}
,

where |C| = |AND|+|XOR| is the total number of gates in
the circuit, and depth is circuit depth as described earlier.
Of these terms {|input|, |XOR|, |AND|, depth, |output|}
come from how computation in AG-MPC is represented
(as a Boolean circuit) and the terms {|C|, 1/ log(|C|)} ap-
pear in the asymptotic O(·) complexity reported in Table
1 of the original paper [64]. From the list of parameters,
CostCO automatically generates the following empirical
cost model for execution time in milliseconds:

ĈRT
AGMPC = .004|input|+ .033|AND|+ .113|AND|

log |C| + 56.3

(1)
The protocol specification also only needs to be written
once for an MPC protocol and can be reused for different
deployment settings. The party who writes this specifica-
tion can be the designer of the MPC protocol or the devel-
oper who wants to use the protocol in a hybrid-protocol
compiler. We further elaborate on the shallow parameters
the protocol specification writer needs to provide in §3.

After the inputs are specified, CostCO can use these
inputs to generate the appropriate cost models. At a high
level, CostCO’s cost modeling workflow is as follows:

1) (§4.1) CostCO first carefully chooses a set of profil-
ing experiments using experiment design. The user
may optionally provide CostCO with a maximum
experiment size (213 operations by default) if they
want to control CostCO’s total execution time.

2) (§4.2) Generates computations for the profiling ex-
periments, executes them on the implementation Iπ,
and collects performance measurements.

3) (§4.3) Automatically synthesizes and outputs both
the abstract and empirical cost models, denoted as
Cπ and Ĉπ, respectively. Cπ and Ĉπ each contain
cost models for computation, memory, and network
consumption.

Compared to plaintext cost modeling systems, MPC
cost modeling does not require knowledge of the input
data. This is because, MPC’s privacy properties mean that
a program’s performance cannot depend on data content –
and generally, the overhead depends only on computation
size and the input data size(s). As a result, executions are
deterministic and non-branching, making cost modeling
CostCO feasible with only a few additional assumptions.
We elaborate on the assumptions CostCO makes and their
limitations in §2.3 and §2.4.

2.2. Usage in a Hybrid-Protocol Compiler

As previously explained in §1 and Fig. 1, a hybrid-
protocol compiler mixes MPC protocols π1, . . . , πn. Par-
ties invoke a hybrid-protocol compiler on the same de-
ployment where they plan to run their secure computation.
Since transitioning from a protocol πi to πj needs a

special MPC conversion in order to maintain security, the
compiler also needs to support conversion protocols πi→j ,
which CostCO can automatically generate cost models for.

At a high level, the hybrid-protocol compiler divides
the user program into pieces and tries to determine the
most cost effective way of dividing and assigning pieces
of computation to MPC protocols. The exponential search
space makes it impractical to directly run and measure
the cost of every possible protocol assignment. Instead,
the compiler infers the runtime, memory, and network
requirements of each assignment by querying each of the
cost models returned by CostCO.

Each empirical cost model Ĉπ = (ĈRT
π , ĈMEM

π , ĈNW
π)

takes as input a circuit file representing a computation
to be run (described in §4.2), and outputs the inferred
execution time, peak memory usage, or network cost of
executing the computation using π on the parties’ deploy-
ment environment. The cost for executing any program
can be computed by summing up the cost of executing
each piece as well as the cost of conversions, which
is given by plugging the data size to be converted into
the cost model for the relevant conversion Ĉπi→πj

. We
describe the integration of CostCO in a compiler in §5.

2.3. System Assumptions

The security properties of MPC lend themselves to ap-
pealing computational properties, namely, the execution is
non-branching (all branch arms are evaluated), input-data
independent, and deterministic. This means CostCO does
not require additional inputs that are normally required by
generic cost modelers, e.g., representative workloads to
run [24], [63], [65]. CostCO also makes domain-specific
assumptions that let it support automatically cost modeling
many MPC protocols.

2.3.1. Quadratic approximation. As mentioned in §1,
CostCO approximates a cost model as polynomial with
monomials of maximum degree = 2. For many MPC
protocols’ cost models [3], [4], [14]–[16], [18], [36],
[46], [58], [66], a quadratic approximation is sufficient.
This is due to the computation time and the number
of communication rounds of an MPC circuit normally
being bounded by the size of the circuit (|C|), and in
the worst case no gate requires more than a constant
number of all-to-all communication rounds, bounding the
number of messages and hence bandwidth requirements to
|C|2. While CostCO can approximate non-polynomial cost
terms as second degree polynomials, for some protocols
such as AG-MPC [64] explicitly specifying the asymptotic
terms can improve accuracy, especially when they contain
non-polynomial factors (e.g., 1/ log |C|). As a result, for
such protocols, CostCO allows users to provide non-
polynomial terms appearing in a protocol’s asymptotic
complexity as input and uses this information to improve
cost model accuracy by including them in the set of
features considered when synthesizing cost models.

This assumption also implies that the cost model is
smooth (differentiable everywhere). That is to say, the
protocol’s empirical cost model is not piecewise; the
constant factors are expected to not arbitrarily change with
respect to computation size. However, CostCO can still
enable the compiler to make decisions on piecewise costs.

143

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

For example, CostCO can extrapolate the performance
degradation from running out of memory by artificially
limiting the system’s memory and measuring the differ-
ence in runtime of a circuit. By using the memory model
generated by CostCO in tandem with the performance
under memory pressure, our compiler can account for a
protocol assignment’s performance degradation when its
peak memory usage exceeds the available system memory
(§5).

2.3.2. Fixed parameters. CostCO runs on the deploy-
ment that the users plan to run their secure computation
on, which is the same deployment existing hybrid com-
pilers [11], [33] run on. Cost models are created for fixed
field sizes and security parameters, which allows the cost
models to be viewed as a function of computation size
and input data size. CostCO should be rerun if the field
sizes or security parameters change.

2.4. Limitations

2.4.1. Circuit structure. CostCO only considers the num-
ber of gates in the circuit and its depth. For the MPC
protocols we consider, circuit depth corresponds to the
number of communication rounds required when evaluat-
ing the computation. We show in §6 that considering these
factors is sufficient for producing relatively accurate cost
models, despite not considering round-level parallelism in
protocols with non-constant communication rounds.

2.4.2. Circuit optimization. The cost models generated
by CostCO are derived from mapping several unmodified
circuits (§4.2) to the costs experienced during their exe-
cution. In practice, some protocols [36] can reorder the
evaluation order of the units comprising the circuit to im-
prove performance. Significant modifications could render
analysis on the unmodified circuit useless to extrapolate to
the modified circuit which the protocol actually evaluates.
In order to produce accurate models for these protocols,
CostCO would need a way to execute a circuit without
optimizations from the protocol. The protocol would need
to implement an interface that takes the computation and
outputs the optimized circuit that can be used as input to
the cost model.

2.4.3. Scheduling. MPC protocols may use multiple
threads throughout their execution. The runtime of these
threads is at the mercy of the scheduler while CostCO
is profiling costs. Scheduling decisions may influence the
overall runtime performance of the protocol, but CostCO
makes no attempt to understand such scheduling decisions.

3. CostCO Specification

The first challenge that CostCO needs to address is
how to interface with a given MPC framework. MPC
frameworks differ significantly from each other both in
how computation is expressed and in how it is executed.
CostCO manages to provide a common interface using
a simple API. We observe that many MPC protocols
express computation as a sequence of primitive opera-
tions, also known as gates. A primitive operation is either
a computational gate or a data gate. For example, the

primitive operations of AG-MPC are the AND and XOR
gates (computational units), and the input and output
gates (data units). CostCO assumes the cost model can
be computed as a function of the MPC protocol’s com-
putational primitive operations. Intuitively, because MPC
requires the execution to be non branching, deterministic,
and input-data independent, the cost of an MPC protocol
can be viewed in terms of the computation itself. The
specification for an MPC protocol π captures the primitive
operations in π.

Given the specification, CostCO will automatically
generate experiments to evaluate the MPC framework, col-
lect the results, and derive the abstract and the empirical
cost models.

A protocol specification Sπ for protocol π is a file that
details the following:

1) A set of gates, each of which is a computational
gate or data gate and has the form gn = (in, on, dn),
where n is the name of the gate, in is the number
of inputs, on is the number of outputs, and dn is the
depth. Depth here indicates the number of commu-
nication rounds required to run this computational
unit. We define G to be the entire set of π’s gates.
Inputs and outputs are assumed to be gates, i.e.,
Gio = input, output and Gio ⊂ G. For a given
computation, we define S = {sg} to be the counts
of every gate g ∈ G in that computation.

2) A set of asymptotic terms, each of which is some
function h : R|S| → R that expresses parameters
in the cost model as a function of some subset of S
and appears as a term in the worst-case asymptotic
complexity bound O(·) of π. We define H to be
the entire set of π’s asymptotic terms. The counts
of gates S and the asymptotic terms H evaluated on
S make up the set of features F = {f1, . . . , f|F|} =
S ∪{h(S)|h ∈ H} that CostCO uses to derive a cost
model. The cost model is expected to have the form:

Cπ(f1, . . . , f|F|) = r�

⎡
⎢⎢⎣

f0
f1
...

f|F|

⎤
⎥⎥⎦+ s�

⎡
⎢⎢⎣

f0f0
f0f1

...
f|F|f|F|

⎤
⎥⎥⎦ ,

where ri, si ∈ R+.

Example. To make the specification writing process more
concrete, we will elaborate on the specification for AG-
MPC [64] introduced in §2.1. Boolean MPC requires the
computation to be specified as a Boolean circuit composed
of XOR and AND operations. Note that since CostCO
assumes that the deployment is fixed, variables such as
the number of parties and network bandwidth are also
fixed and thus integrated into the empirical constants of
the cost model. Both operations have two inputs and one
output. AG-MPC is a constant-round protocol, thus both
operations have a depth of 0. Therefore, AG-MPC has the
following gates:

G = {(XOR, 2, 1, 0), (AND, 2, 1, 0)} ∪ Gio.

Table 1 of AG-MPC’s original publication [64] lists
an asymptotic complexity of O(|C|/ log |C|). Because

144

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Cost model synthesis.

Input: F ,H, d
Output: a cost model (F∗, β∗) for π

1 begin
2 F̃ ←− ∅
3 X1 ←− PBD(|F|)
4 Y1 ←− RunCircuitFiles(X1)
5 β ←− LeastSquares(X1, Y1)
6 for fi ∈ F do
7 if 0 /∈ ConfInterval(βi) then
8 F̃ = F̃ ∪ {fi}
9 end

10 end
11 X2 ←− CCD(|F̃ |)
12 Y2 ←− RunCircuitFiles(X2)

13 G = F̃ ∪ H, G2 = {gi · gj | gi, gj ∈ G}
14 F∗, β∗ ←− FoBa(X2, Y2,G ∪ G2)
15 end

CostCO is capable of automatically inferring quadratic
parameters (monomial degree = 2),

H =

{
|C|, 1

log |C|
}
.

4. Synthesizing Cost Models

Given an MPC protocol specification and implementa-
tion (§3), the goal of CostCO is to compute a cost model
for that protocol. When designing CostCO’s cost model-
ing algorithm (Algorithm 1), we initially considered using
techniques from optimal experiment design (OED) [33],
which provides a methodology for choosing samples while
minimizing some desired metric (e.g., metrics related to
expected error of the estimator). Existing cost modelers
like Ernest [63] leverage OED to predict the performance
of large-scale data analytics workloads. However, OED
requires a known model which, in the case of AG-MPC
above, would require knowing the abstract cost model a
priori:

Crt
AGMPC = x0 + x1|input|+ x2|AND|+ x3

|AND|
log |C| (2)

Generating such a model is challenging for a user
because it requires a non-trivial understanding of the
protocol and in some cases might rely on implicit as-
sumptions about the deployment (e.g., network latency).
While it is hard for the user to specify the exact abstract
cost model equation, it is easier for the user to come
up with factors that affect performance. For example, as
previously mentioned in §2.1, MPC protocols commonly
report their asymptotic O(·) complexity. Thus, CostCO
asks the user to only specify such factors (the user can
also provide more than is necessary) and does not require
the user to figure out how to combine the factors. CostCO
blends techniques from experiment design and statistics
to cull important features (§4.1), generate and run a set
of experiments (§4.2), and perform regression analysis to
construct the abstract and empirical cost models (§4.3).

Features
Experiment f1 f2 f3

1 1 1 1
2 1 0 0
3 0 1 0
4 0 0 1

Figure 3. PBD for three features and two levels. After running every
experiment in PBD, CostCO can analyze which features fi to drop before
the second phase of more intensive experiments.

4.1. Design of Experiments

Given a set of potential features, CostCO still needs to
figure out which experiments to run. As mentioned in §4,
we cannot use OED because we do not know the abstract
cost model (e.g., Equation 2) a priori. Other techniques
that predict execution time using random sampling [29],
[60] do not provide a principled rule on the amount of
samples to collect and ended up needing hundreds of
samples to train a model. CostCO’s approach is inspired
by ideas from response-surface methodology (RSM) [28],
a technique used in several disciplines to explain how
different features influence an observed value. We remain
sample efficient by leveraging two techniques in the ex-
periment design literature used in tandem with RSM.

CostCO initially starts with a set of user-provided
potential features F . In our running AG-MPC example,

F = {|AND|, |XOR|, |input|,
|output|, depth, |C|, 1/ log(|C|)}.

In this subsection, we will be working on FM , the mono-
mial subset of F . That is,

FM = {|AND|, |XOR|, |input|, |output|, depth} .
In order to identify the important features F̃ , CostCO
carries out a screening step (Lines 3–10), that generates
a set of experiments used to compute the importance of
each potential feature. A naı̈ve way to find F̃ is via a
full factorial experiment [22], which is a design of size
2|FM | that enumerates all permutations where each feature
is either at its highest value or lowest value. Instead,
CostCO uses Placket-Burman design (PBD) [51] for this
step because it produces a set of experiments that is small
but still capable of finding features that have a significant
effect on the runtime. PBD is a fractional factorial design
requiring only 4�(n+1)/4	 ≈ n+1 measurements for n
features, under the assumption that interactions between
features (second-order) are confounded with main (first-
order) effects. A PBD for n = 3 is shown in Fig. 3.
The samples collected from PBD are fit and features are
filtered according to the confidence intervals computed
with Equation 3. After the screening step in our running
example,

F̃ = {|AND|, |input|} .
The screening step using PBD indicates that depth does
not have a statistically significant impact on performance,
and we drop that from the list of features. This is because
AG-MPC is a constant-round protocol, and circuit depth
does not impact runtime. |XOR| is dropped because XOR
requires no additional communication to compute and

145

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

𝛂

f
3

f
1

f
2

Figure 4. CCD for three features. Star points (unshaded points) are α
away from the center of the factorial design (shaded points). Note that
α can be a different maximum value for each feature.

|output| is dropped because its effect is both small and
limited by the circuit size.

CostCO then carries out a more intensive experiment
step using the culled set of features (Lines 11-12). CostCO
uses central composite design (CCD) [8], an experiment
design methodology that is more expensive than PBD but
capable of capturing interactions between features in F̃
(second-order effects). A CCD is composed of a factorial
design augmented with star points that are a distance α
from the center [8]. Fig. 4 shows a CCD for |F̃ | = 3. The
extra sampling points help build a second-order model
for the features without having to carry out a complete

three-level factorial experiment (3|F̃| samples). CostCO
is also able to reuse data from the PBD experiments (e.g.,
PBD forms a subset of the cube’s vertices in Fig. 4)
instead of re-running those experiments. CostCO then runs
these experiments (§4.2) to obtain data for computing the
abstract and empirical cost models (§4.3).

4.2. Generating and Running Experiments

In the previous section, we explained CostCO’s two-
phase experiment design procedure. Given the set of fea-
tures and their values each experiment, CostCO still needs
to use the user-provided protocol specification (described
in §3) and the implementation to run one or more profiling
experiment instances. In order to do so, given a profiling
experiment CostCO synthesizes and runs computational
circuits with the required features (Lines 3-4 and 11-12).

4.2.1. Circuits. Similar to many MPC frameworks,
CostCO represents computation as a circuit. Each circuit
is a DAG, where the vertices, which we call gates, corre-
spond to the π primitive operations; and edges represent
data flow between gates. An edge gi → gj means that the
output from gate gi is used as an input to gj . In addition,
CostCO needs to ensure that generated circuits can capture
properties like network round-trips, etc. Protocols that are
not constant-round, e.g., arithmetic and Boolean ABY
[15], have performance that can depend on the sequence of
operations that are run. CostCO models this dependency
in the circuit as the depth dn of a primitive operation;
this information is supplied as a part of the protocol

specification. If gi represents a gate with depth di, then all
outgoing edges from gi are assigned the weight di. The
depth of the entire circuit is the number of round trips
needed to run the computation, which is the equivalent to
the length of the longest path in the circuit.

4.2.2. Generating circuits. CostCO generates represen-
tative computation in the form of a circuit. The circuit
generation component needs to take as input the number
of each gate (computational gates and input gates) and
the desired circuit depth. Given these parameters, CostCO
constructs the circuit by first putting in input gate accord-
ing to the input size. While building the circuit, CostCO
keeps track of: (1) gates that still need to be realized on
the circuit and (2) gates with available outputs that can be
used as an input to another gate. CostCO selects a gate
from the first list and places it on the circuit. Using the
second list, inputs are selected for the new gate. CostCO
repeats this process until all gates have been realized in
the circuit. CostCO achieves the desired circuit depth by
keeping track of path lengths and preventing edges that
would result in a path length exceeding the desired depth.
Finally, CostCO ensures that the output of every gate is
either fed into another gate as input or is evaluated as an
output.

Note that the input to CostCO’s circuit generation
component (number of gates and desired circuit depth) are
not specified by the user but are automatically generated
and varied by CostCO’s experiment design component
(§4.1).

4.2.3. Running circuits. CostCO assumes that the MPC
framework can accept inputs in the circuit format de-
scribed above. CostCO therefore expects that the protocol
provider implements the following function:

RunCircuit(CircuitFile cf) Execute the circuit
represented by cf with the protocol π and report the
total execution time and network communication.

CostCO generates circuits and calls the protocol’s im-
plementation of RunCircuit to profile its performance
with circuits generated from the methodology described
above. Empirically, implementing RunCircuit took less
than 200 LOC for every MPC protocol we evaluated.

4.2.4. Types of cost measured. CostCO generates cost
models for three types of execution costs: runtime, peak
memory usage, and network communication. CostCO opts
to measure memory in addition to runtime and network
communication because π can experience a significant
performance degradation if the peak memory of an ex-
ecution exceeds available memory. Recent protocols have
started trading off more communication rounds for using
less memory [70].

4.3. Deriving Cost Models

After choosing and running profiling experiments,
CostCO selects terms from the monomial culled features
F̃ , asymptotic terms H, and their pairwise products in
order to form the final abstract cost model (Lines 13–14).
In our running example,

G = F̃ ∪ H = {|AND|, |input|, |C|, 1/log(|C|)}

146

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

G2 =

{
|AND|2, |AND||input|, |AND||C|, |AND|

log(|C|) , . . .
}
.

We make the observation that only a handful of the terms
in G and G2 contribute significantly to the cost. Intuitively,
this is because many of the pairwise products do not
appear in the asymptotic O(·) cost. Thus, the problem
becomes one of selecting a sparse polynomial out of
G∪G2. CostCO uses ordinary least squares regression and
leverages the adaptive forward-backward (FoBa) greedy
algorithm described in [68] to select a sparse polynomial.
FoBa first greedily adds terms to the candidate polyno-
mial in the forward step, halting when the reduction in
mean error of adding a feature is less than ε. To correct
for incorrect features added in the forward step, FoBa’s
backward step removes a feature if the increase in mean
error is less than a factor δ than the last decrease in mean
error.

To test how well the polynomial produced by FoBa
generalizes, CostCO runs cross-validation on the out-
putted model. Specifically, CostCO uses leave-one-out-
cross-validation where one data point is left out and the
leftover data is re-fit to the polynomial. This is repeated
for all points in the data. Since FoBa is parameterized
by the stopping threshold ε, CostCO uses the mean error
from the cross-validation runs as a metric when binary
searching for the optimal ε.

In order to further prevent selecting a polynomial that
overfits the data, we only consider a model (polynomial
outputted by FoBa) if all of its features have regression
coefficients with a positive 95% confidence interval. Un-
der the least squares assumption that observation errors
are normally distributed, i.e., ε ∼ N (0, σ2), the estimated

coefficients β̂i from samples X have a 100(1 − α)%
confidence interval of:

β̂i ± tα/2,n−(d+1)

√
σ̂2[(X�X)−1]i,i, (3)

where σ̂2 is the mean squared error (estimate of σ2), t is
the Student’s t-distribution, and n−(d+1) is the degree of
freedom. Note that we make the least squares assumption
because MPC protocols are usually deterministic in their
execution—dependence on data content would otherwise
cause privacy leakage—so errors stem from the execution
environment.

5. Implementation

We implemented a prototype of CostCO and a hybrid-
protocol compiler that uses the generated cost models
in ≈5000 lines of code (LOC) of Python. Porting MPC
protocols to CostCO took less than 200 LOC per protocol
(§6.1). Lines of code were counted with cloc. Similar
to the SPDZ [36] compiler, our compiler takes programs
written in a subset of Python. It currently supports six
MPC protocols: Arithmetic, Boolean, Yao (and their share
conversion protocols) [15]; FastGC [31]; AG-MPC [64];
and SPDZ [14].

We use a program decomposition approach and a pro-
tocol conversion assignment approach based on OPA [33].
However, instead of treating the optimal protocol assign-
ment problem as a linear program, we use a randomized
greedy algorithm that reduces the search space by avoid-
ing conversions with some probability p if the cost of

converting shares to a different protocol outweighs the
immediate cost reduction from using a different protocol.
This allows us to mix all three protocols (Arithmetic,
Boolean, and Yao) whereas the linear program relaxation,
though integral, only allows two protocols to be mixed at
a time [33]. We leave finding better search algorithms for
the optimal program assignment problem for future work.

The cost models provided by CostCO also enable our
compiler to consider peak memory consumption when
assigning protocols for a program and select between
variants of an MPC protocol like FastGC [31], which is
a memory-optimized version of Yao [15].

6. Evaluation

We evaluate CostCO on 7 MPC protocols. We first
report on the ease of porting MPC protocols to CostCO
(§6.1). We then evaluate the accuracy of our generated
models (§6.2.1) and how they compare to current work in
cost modeling (§6.2.2). We conclude with results on the
cost of running CostCO (§6.2.3).

We ran all evaluations on AWS c5.4xlarge instances
(16 vCPUs and 32GB RAM) in the same region. All pro-
tocols used a deployment with 2 parties except AG-MPC,
which used 3 parties. All protocols, when applicable, had
their field sizes set to 32 bits. We set the maximum number
of a feature per experiment to be the default value of
213. This value determines the concrete value to set for a
feature at the “high” point in a factorial design (described
in §4.1).

Additionally, we implemented our own hybrid-
protocol compiler for ABY based off the techniques in
[33]. We replace the cost models used by [33] with the
cost models automatically generated by CostCO and find
that it arrives at the same hybrid protocol assignments
for the applications we tested (GCD, biometric matching,
and non-parallelized k-means). In all cases we found that
the automatic models generated by CostCO allowed the
compiler to perform as well as a compiler that uses hand-
tuned, human generated cost models.

6.1. Ease of Use

We integrated the following MPC protocols to work
with CostCO: the three in ABY [15] (Arithmetic (A),
Boolean (B), and Yao (Y)), their conversions (A→Y,
B→Y, B→A, Y→A, A→B, Y→B), FastGC [27], AG-
MPC [64], SPDZ [36], and BFV homomorphic encryption
[18]. Fig. 5 shows the lines of code needed to implement
the required functionality for the protocol using CostCO
(§3), as well as the (existing) lines of code in the proto-
col’s implementation.

Running circuits. In order to interface with CostCO, the
MPC protocol needs to implement the RunCircuit API
described in §4.2. Implementing RunCircuit took about
1-2% of a protocol’s implementation size.

Protocol spec. The gates for these protocols were simple
to enumerate (Boolean vs. arithmetic operations), resulting
in a compact specification of 20 lines or less. The degree
bounds on runtime and communication complexity were

147

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

Existing Using CostCO
Protocol Implementation RunCircuit Spec

ABY [15] 13722 161 62

A — 141 14
B — 4 14
Y — 4 14

A→Y, B→Y,
B→A, Y→A,
A→B, Y→B — 12 20

FastGC [31] 9905 139 14

AG-MPC [64] 7269 100 14

SPDZ [14] 39511 185 166

BFV [58] 8854 164 14

Figure 5. Lines of code to generate cost models using CostCO for each
MPC protocol, split between implementing RunCircuit and writing the
MPC protocol specification. Using CostCO requires additional code that
is 1-2% of the existing MPC protocol’s implementation size.

straightforward to compute from the asymptotic complex-
ity results published for each protocol. The only protocol
with a non-polynomial asymptotic term in its cost model
was AG-MPC, and its term |C|/ log |C|, which appears in
its reported asymptotic complexity (see Table 1 of [64]),
can be input into CostCO in a straightforward manner
(|C| and 1/ log |C|). In contrast, we found that manually
deriving the cost model to be demanding and error-prone
due to requiring further analysis of the protocol. While
the term |C|/ log |C| is readily available in the reported
asymptotic complexity, users cannot uncover additional
terms in its cost model (such as |AND|/ log |C|) without
more detailed analysis of the protocol.

6.2. Microbenchmarks

6.2.1. Model Accuracy. To evaluate how well the models
produced by CostCO extrapolate, we generate cost models
for runtime, network usage, and peak memory usage; and
determine their accuracy in predicting each metric on a set
of 100 circuits with features of size up to 8× larger (216)
than the largest feature size in the samples used to build
the cost model. We sample the test circuits randomly with
a fixed seed.

The Root Mean Squared Error (RMSE) as well as the
5th, 50th, and 95th percentile of the relative error of the
runtime cost models produced by CostCO for the 3 MPC
protocols in ABY [15] are reported in Fig. 6. The relative
error as a percent value is calculated as:∣∣∣∣actual− predicted

actual

∣∣∣∣× 100.

6.2.2. Comparison to Existing Cost Models. Cheap-
SMC [50]. CheapSMC computes cost models by con-
structing a separate circuit with 1000 operations for every
operation in ABY. CheapSMC then records the runtime of
each circuit and divides the average over 10 runs by 1000
to get the average per-operation cost. The cost of running
a circuit becomes the sum of its individual operation

costs. This approach, while efficient and easy to reason
about, sacrifices model accuracy because the structure of
the circuit is ignored. This can be seen in Fig. 6, where
the median accuracy of Yao is 28% because while the
circuits are evaluated in topological order, the depth of
the circuit does not affect the number of communication
rounds. In Arithmetic and Boolean, however, the median
relative error degrades to 388% due to the circuit depth
affecting the number of communication rounds.

Optimal Mixing (OPA) [33] & HyCC [11]. The
cost model used by OPA builds on the methodol-
ogy of CheapSMC by also considering circuit struc-
ture. This is accomplished by running circuits of
each gate with different levels of parallelism (n ∈
{1, 2, 5, 10, 25, 50, 100, 200, 300, 500, 800}). The cost of
a circuit is calculated by finding the number of gates
running at each level and taking the appropriate per-
gate cost at that level of parallelism. This method suffers
from compounding errors introduced from the overhead
of executing an actual circuit, e.g., to run a circuit with
one gate, the circuit also needs two inputs and one output.
HyCC uses a similar cost modeling approach, except with
only 4 levels of parallelism.

Note that relative accuracy matters for protocol selec-
tion, which we further investigate in §6.3.

6.2.3. Cost of Model Generation. We now characterize
the economic cost of generating our cost models. Our
average runtime to generate the cost models (displayed
in Fig. 7) for our set of circuits for each of our profiled
protocols was in general less than two and a half minutes
with an approximate worst-case addition of one minute to
profile the memory usage. This leads to a total cost (in our
r5.xlarge deployment) of model generation of less than
$0.005 for each protocol. Although other hybrid-protocol
compilers are comparatively cheaper, CostCO is able to
automatically generate the experiments to run, saving on
manual effort.

6.3. Application Benchmarks

6.3.1. Comparison to Related Work. In order to demon-
strate the utility of the cost models automatically gen-
erated by CostCO, we compared our compiler to prior
benchmarks from HyCC and ABY. Below, we describe
and discuss each application. The assignments made by
each compiler are summarized in Fig. 8 and the runtimes
of each application are illustrated in Fig. 9.

Modular exponentiation. Two parties want to compute
xy mod m, where one party holds x and the other holds
y (all values are 32-bit integers). CostCO computes an
assignment similar to the manual ABY [49] assignment.

Biometric matching. One party holds a list L contain-
ing m n-dimensional vectors and the other holds an n-
dimensional query vector q. The two parties come together
to compute the vector l ∈ L with the shortest Euclidean
distance from q. For (m = 256, n = 4), CostCO com-
putes an assignment that is in total ≈ 40ms slower than
HyCC. This difference is due to HyCC’s implementation
of biometric matching, which structures the computation

148

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

CostCO CheapSMC [50] Opt. Mix [33]
Protocol p5 p50 p95 RMSE p5 p50 p95 RMSE p5 p50 p95 RMSE

A 1.01 15.0 31.1 37.5 224.7 1163.2 1559.6 2952.4 84.3 238.4 408.8 549.8

B 0.6 10.6 33.5 150.6 19.0 387.8 566.7 4771.5 71.1 314.7 612.8 3632.1

Y 1.2 5.3 13.5 172.9 2.1 28.0 62.9 394.4 313.4 495.2 719.7 5732.3

Figure 6. Comparison of each cost modeling framework’s runtime prediction error (%) and
√
MSE (ms) on ABY [15]. The percentiles are computed

from prediction errors of a set of 100 randomly generated circuits.

CostCO CheapSMC [50] Opt. Mix [33] HyCC [11]
Runtime Memory Runtime Runtime Runtime

Protocol (#) (sec) (sec) (#) (sec) (#) (sec) (#) (sec)

A 34 143.1 62.9 2 14.7 20 35.1 1 0.16

B 34 120.2 69.1 2 8.8 20 80.0 1 0.16

Y 27 111.4 51.0 2 7.6 20 82.1 1 0.16

Figure 7. Number of experiments (#) and total time (sec) taken by each cost modeling framework to collect samples.

Benchmark (LAN) Best Known CostCO HyCC* HyCC† ABY (Manual)

Modular exponentiation A+B+Y A+B+Y — — A+B+Y
Biometric matching A+Y A+Y A+B A+Y A+Y

Private set intersection Y Y B Y —
k-means A+Y A+Y A+B A+Y —

DB-Merge A+Y A+Y A+B A+Y —
MiniONN MNIST A+Y A+B+Y * A+Y —

Figure 8. Benchmark comparisons with HyCC [11] (automatically generated) and ABY [15] (manually written). HyCC* uses their cost model and
protocol selection algorithm, which did not finish running after 2 weeks for MiniONN. HyCC† uses their heuristic approach, which selects the best
out of 5 default protocol assignments. The “Best Known” assignment is determined by measuring the runtimes of each assignment and taking the
assignment with the minimum runtime.

of the minimum as a tree, minimizing the depth of the
computation.

Private set intersection. One party holds a set S1 and
the other holds a set S2. The two parties want to compute
the intersection of S1 and S2 using the standard O(n2)
algorithm. CostCO outperforms the automatic protocol
selection of HyCC by 84ms but is 595ms slower than
the hand-selected HyCC protocol. This is due to HyCC
running a circuit-level minimization tool which CostCO
does not run, which results in a circuit that is 41% smaller.

Database merge. Both parties hold a database with two
columns and want to compute the aggregate mean and
variance of their merged databases. CostCO outperforms
both the automatic HyCC assignment (by 1.28 s) and
hand-picked HyCC assignment (by 560ms). This is due
to CostCO also assigning the arithmetic MPC protocol
when computing the squares of differences needed to
calculate the variance. HyCC only assigns the arithmetic
MPC protocol for addition operations when computing the
mean and variance.

k-means. Both parties hold datapoints and want to iden-
tify centroids in their data using a textbook k-means
algorithm [42]. CostCO outperforms the automatic HyCC
assignment (by 3.1 s) and hand-picked HyCC assignment
(by 2.5 s). Note that the implementation of k-means in

CostCO is more straightforward than HyCC’s implemen-
tation, which decomposes into multiple inner and outer
loops.

Secure prediction. The last application is a machine
learning (secure prediction) workload where one party
holds the model and the other party holds an input for the
model. The two parties want to compute the input’s corre-
sponding prediction from the model. We implemented the
convolutional neural network described in MiniONN [41]
which performs a secure prediction with a neural network
trained on the MNIST dataset. HyCC’s performance is
affected by a bug where certain repetitive calls to a
function result in empty circuits (i.e., less work and lower
runtime compared to CostCO’s debugged assignment). We
accounted for this by removing the computations that
were removed by HyCC. In this context, HyCC’s solver
did not finish running and CostCO was able to produce
an assignment that was 41% faster than HyCC’s hand-
selected assignment. The rightmost bar in Fig. 9 shows
the runtime of debugged MiniONN (it does not lose any
work), which has a runtime 40% higher than HyCC’s
buggy MiniONN.

6.3.2. Memory. The cost models produced by CostCO
enable our compiler to make more sophisticated deci-
sions by considering each MPC protocol’s peak memory
usage. To emulate a resource-constrained device, we set

149

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

Biometric
Matching

PSI DB-Merge k-means MiniONN
(buggy)

MiniONN
(debugged)

0

2

4

6

8

R
u

n
ti

m
e

(s
)

D
id

n
o

t
fi

n
is

h
ru

n
n

in
g

N
/A

N
/A

CostCO Setup

CostCO Online

HyCC (Chosen) Setup

HyCC (Chosen) Online

HyCC (Best) Setup

HyCC (Best) Online

Figure 9. Runtime breakdown and comparison of hybrid protocols generated by CostCO and HyCC [11] for various applications. Each bar is broken
up into Setup (shaded) and Online runtimes.

MPC Protocol CostC
O
HyCC [11]

OPA [33]

ABY [15] � � �
FastGC [31] � � �

FastGC-Mem [27] � � �
AG-MPC [64] � � �
SPDZ 2.0 [36] � � �

Figure 10. MPC protocol support across hybrid-protocol compilers.

an artificial memory budget of 200MB using cgroupv2
and informed the compiler of the memory limit. This
caused CostCO to choose the memory-optimized version
of FastGC for our DB merge application. Note that other
compilers like HyCC do not model memory consumption,
and hence cannot make the correct decision in choosing
between an MPC protocol implementation [31] and its
memory-optimized version [27].

6.3.3. Extensibility. The most recent hybrid-protocol
compilers only support the 3 protocols in ABY [49],
which provides MPC for 2 parties and semi-honest secu-
rity (no party deviates from the protocol). Our compiler is
able to use CostCO’s cost models to incorporate additional
MPC frameworks (SPDZ, AG-MPC, FastGC), which lets
it choose MPC protocols for a variety of usage settings,
e.g., more than 2 parties and malicious security. Fig. 10
lists the MPC protocol support across hybrid-protocol
compilers.

7. Related Work

7.1. MPC compilers

MPC compilers originated as a means to enhance
the accessibility of secure computation outside of expert
users. Developers often lack the domain-specific knowl-
edge required to employ MPC. These compilers allow

developers to describe secure computation through high-
level languages, obfuscating the underlying details of the
protocols. Fairplay [5] represented the first attempt at
compilation, proposing a domain specific language that
compiles to a garbled circuit. This work launched the com-
piler space leading to a wealth of future work. Subsequent
single protocol compilers have focused on optimizing
performance or scalability (e.g. Sepia [9], Sharemind [6],
TinyGarble[61] FastGC [2]), and improvements upon the
high-level abstraction (e.g. Picco [69], CMBC-GC [19],
Obliv-c [67], ObliVM [40], Wysteria [53]).

As MPC protocols began to specialize, performing
especially well for a single type of computation, the need
arose for hybrid compilers that leverage each of these
categories of protocol. These hybrid protocol compilers
have the additional task of partitioning the program and
choosing the optimal MPC protocol for each piece of the
computation. As a result, each compiler either relies on
hard-coded heuristics or on cost models to guide their
decision. Tasty [26] was the first such hybrid protocol
compiler and allowed the generation of secure protocols
combining homomorphic encryption and garbled circuits.
In this framework, the developer hard-codes the protocol
to be used for each operation. After Tasty, there have been
a number of different approaches to protocol selection.
Some frameworks, such as EZPC [13] include hard-coded
heuristics for their currently supported protocols and re-
quire coming up with new heuristics when integrating new
protocols. Other recent works profile the cost of the gates
and model the total circuit cost as a sum of the gates
(HyCC [11], CheapSMC [50], OPA [33]).

7.2. Cost Modeling

There have been a number of works on cost modeling
outside of secure computation that still hold parallels to
the MPC environment. Recently, with the increasing dis-
tributed nature of computation, many works have tried to
quantify the performance of jobs as a function of a cloud

150

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

configuration while minimizing the individual experiments
required. Ernest [63] aims to enable efficient performance
prediction based on the assumption that the related jobs
have a predictable structure. The system leverages opti-
mal experiment design [52] to minimize the number of
samples required to develop such a predictor. Generic em-
pirical cost modeling frameworks like trend-prof [24]
receive a representative workload as input from the user
and fit to a pre-determined type of model (linear or
powerlaw). CostCO leverages the security properties of
MPC to produce cost models that are independent of data
content.

7.3. Statistics

Experiment design [38] is a widely applicable statisti-
cal tool to determine the features responsible for a value.
It allows the user to maximize the understanding gained
per-experiment of the relationship between the response
variable and different features. Optimal experiment design
[52] allows a value to be estimated with minimum vari-
ance and bias. In a multi-parameter setting the variance of
the parameter estimator is a matrix. Its inverse is denoted
as the information matrix. There are different categoriza-
tions of optimality based upon minimizing different values
related to the information matrix.

There are several instantiations of optimal experiment
design. One such category of implementations is iter-
ative experimentation which concerns the development
of sequential experiments. Response-surface methodology
[28] is an iterative experimentation used to optimize the
response by exploring the surface of the response curve.
First, in order to explore the curve when far from the opti-
mum, the experimenter uses the method of steepest ascent
on a first order model to find the most efficient direction
to move. When closer to the optimum, the experimenter
switches to a second order model that is more expensive to
compute (because more factors equates to more runs), but
more accurate. In order to minimize the number of runs
required to fit the second-order model, RSM employs the
uses of factorial designs such as CCD [8]. A factorial
design is a design that enumerates all permutations of
feature settings where each feature is either at its highest
value or lowest value. An example of a fractional factorial
design is Plackett-Burman design (PBD) [51], which has
been shown to be particularly useful in unconstrained
configuration spaces [60].

Sparse representations in functional relationships pre-
vent overfitting to the dataset. Traditionally, sparse learn-
ing has been performed by using one of three approaches:
lasso regularization; forward greedy algorithms, which
choose a feature to add to maximize the reduction in
the cost function; and backward greedy algorithms, which
choose features to minimize the increase in the cost
function. FoBa [68] employs the uses of both greedy
algorithms showing reduced training error to the three
classic choices making sure backward steps don’t erase
the gain made in forward steps. They ensure that backward
steps are only taken when the cost functions increase is
less than or equal to half of the decrease of the cost
function in earlier forward steps.

8. Conclusion

The recent growth in the development of MPC pro-
tocols has significantly improved the performance and
feasibility of MPC. However, it has led to a zoo of MPC
protocols that a prospective user must reason about when
choosing a protocol for their workload. CostCO helps
compute accurate cost models for different protocols and
does so in an automated way. Accurate cost models can
aid in the synthesis of efficient hybrid MPC protocols,
which could enable the realization of significantly in-
creased employment of practical secure computation.

References

[1] CostCO repository. https://github.com/ucbrise/costco.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael
Zohner. More efficient oblivious transfer and extensions for faster
secure computation. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2013.

[3] Donald Beaver. Efficient multiparty protocols using circuit ran-
domization. In Proceedings of the Annual International Cryptology
Conference (CRYPTO), 1991.

[4] Donald Beaver, Shafi Micali, and Phillip Rogaway. The round
complexity of secure protocols. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 1990.

[5] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp:
A system for secure multi-party computation. In Proceedings of
the ACM Conference on Computer and Communications Security
(CCS), 2008.

[6] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A
framework for fast privacy-preserving computations. In Proceed-
ings of the European Symposium on Research in Computer Security
(ESORICS), 2008.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron
Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS), 2017.

[8] George EP Box and Kenneth B Wilson. On the experimental
attainment of optimum conditions. Journal of the royal statistical
society: Series b (Methodological), 1951.

[9] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dim-
itropoulos. Sepia: Privacy-preserving aggregation of multi-domain
network events and statistics. In Proceedings of the USENIX
Security Symposium, 2010.

[10] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Pe-
ter Sebastian Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter
Scholl, and Nigel P. Smart. High performance multi-party compu-
tation for binary circuits based on oblivious transfer. Cryptology
ePrint Archive, Report 2015/472, 2015. https://ia.cr/2015/472.

[11] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David
Kretzmer, and Thomas Schneider. HyCC: Compilation of hybrid
protocols for practical secure computation. In Proceedings of
the ACM Conference on Computer and Communications Security
(CCS), 2018.

[12] Cape privacy: Privacy & trust management for machine learning.
https://capeprivacy.com/.

[13] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma,
and Shardul Tripathi. EzPC: programmable, efficient, and scalable
secure two-party computation for machine learning. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

[14] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Proceedings of the Annual Cryptology Conference (CRYPTO),
2012.

151

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

[15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY
- a framework for efficient mixed-protocol secure two-party com-
putation. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2015.

[16] Yevgeniy Dodis, Shai Halevi, Ron D Rothblum, and Daniel Wichs.
Spooky encryption and its applications. In Proceedings of the
Annual International Cryptology Conference (CRYPTO), 2016.

[17] DualityTechnologies: Data encryption technology and secure col-
laboration. https://dualitytech.com/.

[18] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, Report
2012/144, 2012. https://ia.cr/2012/144.

[19] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian
Schallhart, and Helmut Veith. CBMC-GC: An ANSI C compiler
for secure two-party computations. In Proceedings of the Interna-
tional Conference on Compiler Construction (CC), 2014.

[20] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and
Peter Scholl. A unified approach to MPC with preprocessing
using OT. In Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security
(ASIACRYPT), 2015.

[21] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana
Raykova, Jack Doerner, Samee Zahur, and David Evans. Privacy-
preserving distributed linear regression on high-dimensional data.
Proceedings on Privacy Enhancing Technologies (PETS), 2017.

[22] EP George, J Stuart Hunter, William Gordon Hunter, Roma Bins,
Kay Kirlin IV, and Destiny Carroll. Statistics for experimenters:
design, innovation, and discovery. Wiley New York, NY, USA:,
2005.

[23] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Proceedings of the International Conference on Machine Learning
(ICML), 2016.

[24] Simon F Goldsmith, Alex S Aiken, and Daniel S Wilkerson.
Measuring empirical computational complexity. In Proceedings
of the Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), 2007.

[25] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scal-
able multi-party private set-intersection. In Proceedings of the
IACR International Workshop on Public Key Cryptography (PKC),
2017.

[26] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas
Schneider, and Immo Wehrenberg. Tasty: tool for automating
secure two-party computations. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS), 2010.

[27] Wilko Henecka and Thomas Schneider. Faster secure two-party
computation with less memory. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
2013.

[28] William J Hill and William G Hunter. A review of response surface
methodology: a literature survey. Technometrics, 1966.

[29] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Ma-
niatis, and Mayur Naik. Predicting execution time of computer
programs using sparse polynomial regression. In Advances in
Neural Information Processing Systems (NeurIPS), 2010.

[30] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster
secure two-party computation using garbled circuits. In Proceed-
ings of the USENIX Security Symposium, 2011.

[31] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster
secure two-party computation using garbled circuits. In Proceed-
ings of the USENIX Security Symposium, 2011.

[32] Inpher: Secret computing and privacy-preserving analytics. https:
//www.inpher.io/.

[33] Muhammad Ishaq, Ana Milanova, and Vassilis Zikas. Efficient
mpc via program analysis: A framework for efficient optimal
mixing. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2019.

[34] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. Gazelle: A low latency framework for secure neural
network inference. In Proceedings of the USENIX Security Sym-
posium, 2018.

[35] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster
malicious arithmetic secure computation with oblivious transfer. In
Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS), 2016.

[36] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
making spdz great again. In Proceedings of the Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 2018.

[37] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. Au-
tomatic protocol selection in secure two-party computations. In
Proceedings of the International Conference on Applied Cryptog-
raphy and Network Security (ACNS), 2014.

[38] Robert O Kuehl and RO Kuehl. Design of experiments: statistical
principles of research design and analysis. 2000.

[39] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai.
Efficient constant-round multi-party computation combining BMR
and SPDZ. Journal of Cryptology, 2019.

[40] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and
Elaine Shi. ObliVM: A programming framework for secure com-
putation. In Proceedings of the IEEE Symposium on Security and
Privacy (IEEE S&P), 2015.

[41] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivi-
ous neural network predictions via minionn transformations. In
Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS), 2017.

[42] Stuart Lloyd. Least squares quantization in pcm. IEEE Transac-
tions on Information Theory, 1982.

[43] P. Mohassel and Y. Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In Proceedings of the IEEE
Symposium on Security and Privacy (IEEE S&P), 2017.

[44] Payman Mohassel and Peter Rindal. ABY3: a mixed protocol
framework for machine learning. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
2018.

[45] MPC alliance. https://www.mpcalliance.org/.

[46] Pratyay Mukherjee and Daniel Wichs. Two round multiparty
computation via multi-key FHE. In Proceedings of the Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT), 2016.

[47] Multi-party computation ceremonies in Zcash. https://z.cash/
technology/paramgen/.

[48] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi,
and Sai Sheshank Burra. A new approach to practical active-secure
two-party computation. In Proceedings of the Annual Cryptology
Conference (CRYPTO), 2012.

[49] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. ABY2.0: Improved mixed-protocol secure two-party
computation. Cryptology ePrint Archive, Report 2020/1225, 2020.
https://eprint.iacr.org/2020/1225.

[50] Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, and Bradley
Malin. Cheapsmc: A framework to minimize secure multiparty
computation cost in the cloud. In Proceedings of the IFIP An-
nual Conference on Data and Applications Security and Privacy
(DBSec), 2016.

[51] Robin L Plackett and J Peter Burman. The design of optimum
multifactorial experiments. Biometrika, 1946.

[52] Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

[53] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Knowl-
edge inference for optimizing secure multi-party computation. In
Proceedings of the IEEE Symposium on Security and Privacy
(IEEE S&P), 2014.

[54] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M Songhori, Thomas Schneider, and Farinaz Koushanfar.
Chameleon: A hybrid secure computation framework for machine
learning applications. In Proceedings of the Asia Conference on
Computer and Communications Security (ASIACCS), 2018.

152

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

[55] SCALE-MAMBA. https://github.com/KULeuven-COSIC/
SCALE-MAMBA.

[56] Axel Schroepfer and Florian Kerschbaum. Forecasting run-times of
secure two-party computation. In Proceedings of the International
Conference on Quantitative Evaluation of Systems (QEST), 2011.

[57] Scotiabank’s chief risk officer on the state of anti–money launder-
ing. https://mck.co/2ATh2IU, October 2019.

[58] Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL,
2019.

[59] Shared machine learning: Ant financial’s solution for data privacy.
https://link.medium.com/CgDVD0mtbab.

[60] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Kästner. Performance-influence models for highly configurable
systems. In Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), 2015.

[61] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar. TinyGarble: Highly compressed and scalable se-
quential garbled circuits. In Proceedings of the IEEE Symposium
on Security and Privacy (IEEE S&P), 2015.

[62] Unbound tech. https://www.unboundtech.com/.

[63] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Ben-
jamin Recht, and Ion Stoica. Ernest: Efficient performance pre-
diction for large-scale advanced analytics. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2016.

[64] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale
secure multiparty computation. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS), 2017.

[65] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez,
Burton Smith, and Randy H Katz. Selecting the best vm across
multiple public clouds: A data-driven performance modeling ap-
proach. In Proceedings of the Symposium on Cloud Computing
(SoCC), 2017.

[66] Andrew Chi-Chih Yao. How to generate and exchange secrets.
In Proceedings of the Symposium on Foundations of Computer
Science (SFCS), 1986.

[67] Samee Zahur and David Evans. Obliv-C: A language for extensible
data-oblivious computation. Cryptology ePrint Archive, Report
2015/1153, 2015. https://ia.cr/2015/1153.

[68] Tong Zhang. Adaptive forward-backward greedy algorithm for
learning sparse representations. IEEE Transactions on Information
Theory, 2011.

[69] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: A general-
purpose compiler for private distributed computation. In Proceed-
ings of the ACM Conference on Computer and Communications
Security (CCS), 2013.

[70] Ruiyu Zhu, Darion Cassel, Amr Sabry, and Yan Huang. Nanopi:
extreme-scale actively-secure multi-party computation. In Proceed-
ings of the ACM Conference on Computer and Communications
Security (CCS), 2018.

153

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 01,2023 at 01:18:21 UTC from IEEE Xplore. Restrictions apply.

