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Abstract—National Aeronautics and Space Administration’s Cy-
clone Global Navigation Satellite System (CYGNSS) mission has
gained significant attention within the land remote sensing com-
munity for estimating soil moisture (SM) by using the Global
Navigation System Reflectometry (GNSS-R) technique. CYGNSS
constellation generates Delay-Doppler Maps (DDMs), containing
important Earth surface information from GNSS reflection mea-
surements. Previous studies considered only designed features from
CYGNSS DDM, whereas the whole DDM image is affected by SM,
inundation, and vegetation. This paper presents a deep learning
(DL) based framework for estimating SM in the Continental United
States by leveraging spaceborne GNSS-R DDM observations pro-
vided by the CYGNSS constellation along with remotely sensed geo-
physical data. A data-driven approach utilizing convolutional neu-
ral networks (CNNs) is developed to determine complex relation-
ships between the reflected measurements and surface parameters
which can provide improved SM estimation. The model is trained
jointly with three types of processed DDM images of analog power,
effective scattering area, and bistatic radar cross-section with other
auxiliary geophysical information such as elevation, soil properties,
and vegetation water content (VWC). The model is trained and
evaluated using the Soil Moisture Active Passive (SMAP) mission’s
enhanced SM products at a 9 km resolution with VWC less than
5kg/m2. The mean unbiased root-mean-square difference between
concurrent CYGNSS and SMAP SM retrievals from 2017 to 2020
is 0.0366 m3/m3with a correlation coefficient of 0.93 over fivefold
cross-validation and 0.0333 m3/m3with a correlation coefficient of
0.94 over year-based cross-validation at spatial resolution of 9 km
and temporal resolution similar to CYGNSS mission.

Index Terms—Convolutional neural network (CNN), Cyclone
Global Navigation Satellite System (CYGNSS), deep learning (DL),
Global Navigation Satellite System (GNSS)-reflectometry, Soil
Moisture Active Passive (SMAP), soil moisture (SM) retrieval.

I. INTRODUCTION

SOIL moisture (SM) is essential for crop harvesting, rain
forecasting, hydrology, meteorology, and different Earth
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science applications [1], [2], [3]. High-resolution and precise SM
estimation is required for many application for forecasting floods
and agriculture yields [4], [5]. Remote sensing techniques have
been used widely for SM retrieval [6]. There are some dedicated
satellites that have been used in order to retrieve SM from the
Earth’s surface with different spatial and temporal resolutions.
The National Aeronautics and Space Administration’s (NASA)
Soil Moisture Active Passive (SMAP) [7], and the European
Space Agency’s (ESA) Soil Moisture and Ocean Salinity [8]
are two satellite missions that are operated withL-band passive
radiometers and provide SM approximately 36-km spatial res-
olution and 2–3 days temporal coverage. Another ESA mission
called Sentinel-1 is a synthetic aperture radar operated atC-band,
and it can generate SM with 1-km spatial resolution and 6–12
days global coverage [9].

Global Navigation Satellite System-Reflectometry (GNSS-R)
has become popular with the scientific community as it has
great potential by providing higher spatio-temporal coverage
measurements over the traditional remote microwave remote
sensing techniques. GNSS-R receives the reflected signals from
the Earth’s surface through bistatic scattering covering the
space-time gap of conventional monostatic active or passive
satellite missions. By cross-correlating a measured GNSS signal
reflected from a scattering surface with either a received direct
signal or a GNSS signal replica, the GNSS-R approach deter-
mines geophysical parameters of the observed surface area [10].
It becomes an effective approach for monitoring sea surface
roughness and wind vectors using space-borne and airborne
systems [11], [12], [13]. Extensive research is ongoing using
GNSS-R for biomass retrieval [14], sea ice monitoring [15],
ocean altimetry [16], and SM estimation [17], [18], [19], [20],
[21], [22], [23].

NASA launched a mission in December 2016 called Cyclone
Global Navigation Satellite System (CYGNSS). CYGNSS re-
ceives GNSS-R measurements from 32 channels with eight
small microsatellites and four channels during the 95-min orbital
period of each satellite. Its mean revisit time can be as small as
seven hours with a 25-km spatial resolution across the ocean
under dominantly diffuse scattering conditions. The mission’s
primary purpose is to enhance hurricane forecasting by better
understanding the interactions between the air near the core of a
storm and the sea. It covers from38◦north to38◦south latitudes
over both land and ocean providing very useful observations
over land as well.
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Many recent analyses show improved models and algorithms
to estimate SM by taking advantage of the large amount of
CYGNSS measurements at different spatial and temporal cov-
erage [17], [20], [21], [23], [24], [25], [26], [27]. Despite being
designed to estimate ocean wind vectors, CYGNSS has also
shown a significant sensitivity to SM variation and a high cor-
relation with SMAP SM data products [17], [18], [22], [24].
The majority of the previous studies used designed features
such as effective reflectivity obtained from peak reflected power,
leading edge slope, and trailing edge slope in a delay–Doppler
map (DDM) [21], [28]. These approaches utilize their designed
features computed from a DDM image as the main information
DDM brings into the SM estimation problem. However, besides
the SM content, vegetation and topographical properties also
affect entire DDMs, and DDMs carry much more information
than just their peak power value. While ancillary information
from other sources can provide additional information, this
article aims to develop approaches that learn the relevant fea-
tures directly from the entire DDM images for the SM esti-
mation problem and, by this way, to increase SM estimation
accuracy.

Different processed DDM products are available from
CYGNSS, including analog power, effective scattering area,
and bistatic radar cross-section (BRCS). Our proposed approach
utilizes these processed DDMs jointly as inputs, together with
ancillary data, within a deep learning (DL) architecture to es-
timate the SM value. A recent study showed a DDM could be
used for SM estimation using the DL method [29]. However,
the approach used only one type of DDM (power analog) and
no quantitative performance metrics for the SM retrieval model
was presented. The contributions of this article are as follows.

1) A new DL framework with convolutional and fully con-
nected neural network layers for enhanced SM estimation
is developed that can utilize multiple DDMs jointly to-
gether with physical ancillary data relevant to SM estima-
tion.

2) The proposed DL architecture is assessed under differ-
ent train/test scenarios (spatial and year-based) using the
SMAP mission’s enhanced SM products at a 9 km×9km
resolution over Continental United States (CONUS).

3) Training models for various size regions are studied and
results for optimal region size and model complexity are
presented.

4) Proposed DL-based SM approach using CYGNSS data
and SMAP SM are compared to observations to Interna-
tional Soil Moisture Network (ISMN) locations and it is
shown that proposed approach has a good dynamic range
and produces similar characteristics to SMAP.

5) The mean unbiased root-mean-square difference
(ubRMSD) between concurrent SM retrievals of the
proposed approach and SMAP from 2017 to 2020 is
0.0333 m3/m3 with a correlation coefficient of 0.94
over fivefold cross validation and 0.0366 m3/m3 with
a correlation coefficient of 0.93 over year-based cross
validation. These results indicate an enhanced SM
estimation performance compared to DL-based SM
estimation techniques using CYGNSS data.

The rest of this article is organized as follows. Section II
summarizes datasets used. Details on our approach and method-
ologies are provided in Section III. Results and discussions are
presented in Sections IV and V. Finally, Section VI concludes
this article.

II. DATASET

In order to effectively develop a DL-based retrieval algorithm
for surface SM using CYGNSS observations, several datasets are
utilized. The input selection for the retrieval process and each
input’s physical relationship to SM and GNSS-R sensitivity are
described in the following sections. Different quality control ap-
proaches and multiresolution dataset combinations are explored
to ensure consistent and accurate SM estimation.

A. Cyclone Global Navigation Satellite System

In this study, the CYGNSS Level-1 (L1) version 2.1 product
is used, available at the NASA Physical Oceanography Dis-
tributed Active Archive Center (PO.DAAC).1The CYGNSS
mission can record the reflected Global Positioning System
(GPS) signals through a four-channel GNSS-R bistatic radar re-
ceiver using the eight microsatellites constellations. In CYGNSS
L1 data, the DDM is one of the key measurements that rep-
resent the received surface power over a range of time de-
lays and Doppler frequencies (bin-by-bin) for each observation
frame [30]. DDMs are processed for nonsurface-related param-
eters through inverting the CYGNSS forward-scattering model
in the L1 dataset and obtaining the surface’s effective scattering
area as well as BRCS images. The bin-by-bin measurements give
17× 11 arrays of delay and Doppler spread in L1 data. In
addition to DDMs, geometric and instrumental variables are also
incorporated to provide complete acquisition information for
each specular point, including features like incidence angle and
distances between the GPS transmitter, CYGNSS receiver, and
the specular point. The reflectivity can also be derived using L1
data through various methodologies based on some coherence
and incoherence assumptions [18], [20], [31].

The approach of [28] is used for computing peak reflectivity
Γrl

, which is the peak value of each DDM corrected for gain,
range, and incidence angle effects.Pris called the uncorrected
peak value of each DDM product, which is corrected for an-
tenna gain, range, and GPS transmit power assuming a coherent
reflection:

Pr=
PtGt

4π(R2
ts+R2

sr)

Grλ2

4π
Γrl

(1)

wherePtrepresents the transmitted right-hand circular polarized
power,Gtis the gain of the transmitting antenna,Rtsis the
distance between the transmitter and the specular reflection
point,Rsris the distance between the specular reflection point
and the receiver,Gris the gain of the receiving antenna, andλ
is the GPS wavelength (0.19 m).

1) Delay–Doppler Maps (DDMs):One of the vital measure-
ment of the CYGNSS mission is DDMs, which are mapping of

1[Online]. Available: https://podaac.jpl.nasa.gov/

https://podaac.jpl.nasa.gov/
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Fig. 1. Standard processed DDMs. (a) Analog power image. (b) Eff. scattering
area image. (c) BRCS image.

received power caused from the observed surface to a delay–
Doppler space. Delay is caused by the varied paths received
signals taken from the scattering surface, whereas Doppler
diversity is caused by the relative motions of the CYGNSS
receiver, GPS transmitter, and Earth’s surface. L1 DDMs are
cropped from a larger “full” DDM using on board the CYGNSS
delay–Doppler Mapping Instrument (DDMI) and have an 11-bin
extent in Doppler at approximately 500-Hz reporting interval
and a 17-bin extent in delay at approximately 0.25-μs reporting
interval [32]. Thermal noise typically comes from the first three
to four delay rows, resulting in an L1 DDM with a 3.5 chip delay
extent on average, allowing each measurement to span an ap-
proximate surface area ranging from70×70km2to100×100
km2depending on incidence angle [33]. Downlinked L1 DDMs
are “raw counts” from uncalibrated instruments that go through
two layers of calibration [34]. The raw counts are converted
into power in watts and later processed to BRCS images by
correcting the thermal noise effects, antenna patterns, instrument
gain, and propagation losses [30]. Same as “raw counts” DDMs,
the effective scattering area consist of a17×11element array of
calibrated scattering area. Effective scattering area is an estimate
of the actual surface scattering area that contributes power to
each DDM bin after accounting for the GPS signal spreading
function. It is calculated by convolving the GPS ambiguity
function with the surface area that contributes power to a given
DDM bin as determined by its delay–Doppler values, and the
measurement geometry. The specular point bin location matches
the specular point bin location in BRCS images. Each CYGNSS
spacecraft generates DDMs’ reflections simultaneously from
four different transmitters at a 1-Hz rate. If the surface is rough
(incoherent scattering), the power contributing to a given DDM
can come from a location as large as 100 km or as small as a
subkilometer body of water if the surface is smooth (coherent
scattering) [33]. These processed DDMs are found as a form of
NetCDF format along with “raw counts” DDMs on the CYGNSS
website.

Fig. 1 shows processed DDMs product before normalizing
each image. In addition, there could be some problematic DDMs
in the dataset. We applied standard CYGNSS flags to remove
these problematic DDMs. In addition, some images provide no
value for effective scattering area. This is caused when specular
point bin zero-based Doppler column is less than 4 or greater
than 6. As part of data-quality control, such DDM images are

eliminated from the dataset before the training and testing of
models.

2) Spacecraft Ancillary Data:Besides DDMs, each
CYGNSS L1 measurement contains an array of information
regarding the spacecraft configurations, antenna factors, and
geometry essential for reflection patterns [35]. The transmitter
and receiver gain of the antenna is included as auxiliary input
in each sample because the power gathered by the antenna is
a function of the receiver/transmitter separation. The location
of the measurements (latitude and longitude) is also included
as ancillary spacecraft data. This feature allows a model
to learn regionally particular SM behaviors, similar to how
empirical relationships are developed when other SM products
are generated. This feature is necessary for spatial comparison
with other SM products, but it is not included in training our
model. Some of the parameters from the spacecraft ancillary
data such as transmitter and receiver ranges from specular
point, receiver antenna gain, peak value of the DDM of the
analog scattered power, and transmitter equivalent isotopically
radiated power [36] are used to calculate the peak reflectivity
via (1).

B. SMAP Radiometer SM Data

The SMAP Enhanced L3 Radiometer Global Daily 9-km
EASE-Grid SM product is used to train and evaluate the pro-
posed DL-based SM retrieval methodology. SMAP uses the
L-band microwave radiometer to collect brightness temperature
data and produces SM estimates. Though the SMAP SM product
is generated at 36-km resolution, it has also a 9-km enhanced grid
product by using Backus–Gilbert optimal interpolation tech-
niques [37]. SMAP datasets containing the associated coordi-
nates for the descending (A.M.) and ascending (P.M.) overpasses
are combined to obtain daily SM results. With the help of a
1000-km swath width, a daily SMAP product can cover about
70% of all land areas within the CYGNSS coverage (±38◦

latitudes). The SMAP product also contains SM retrieval quality
flags that indicate whether the SM retrieval is recommended or
not. SMAP SM estimations can have an uncertain quality for
several reasons: water body fraction, coastal proximity, urban
area, precipitation, slope, and vegetation water content. The data
are freely available through the National Snow and Ice Data
Center website.2

In this study, SMAP SM with a 9-km EASE-Grid product is
used where the network intends to predict single-valued SM.
CYGNSS specular point location is used to obtain the SM value
from the SMAP data over the CONUS regions. We consider the
closest SMAP points from CYGNSS data within the 9-km grid
and use the SMAP SM moisture as a label for those CYGNSS
specular points. It is worth mentioning that we also consider the
same day when the SMAP value is available.

C. International Soil Moisture Network

ISMN is used as ground truth information for additional evalu-
ation of the developed DL model. Some previous studies showed

2[Online]. Available: https://nsidc.org/data/SPL3SMP_E/versions/3
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different models that are trained using these SM stations [20],
[21], [28]. Daily averaged in situ SM data of 170 sites selected
from the ISMN dataset are used in order to compare our DL
model performance. A uniform data format with preprocessing
quality flags can be found in the ISMN global in situ SM
database. A few sites in Asia, Australia, and Europe give both
temporally and spatially collocated observations with CYGNSS
data. The majority of these sites belong to North America. This
study considers all available ISMN SM stations over CONUS
within the CYGNSS spatial regions. ISMN sites that belong
to the 2000-m altitude are not considered for comparison as
CYGNSS measurements for high altitudes are unreliable. De-
tailed information about the ISMN is reported in [38] and [39].
The ISMN dataset is publicly accessible.3

D. Ancillary Data

Different geophysical parameters play essential roles in ac-
curately predicting SM in conjunction with CYGNSS measure-
ments. Vegetation density, surface roughness, soil topography,
and soil texture are important geophysical parameters. We use
some ancillary datasets as secondary features in our learning
model:

1) Vegetation Water Content (VWC);
2) Normalized Difference Vegetation Index (NDVI);
3) elevation;
4) soil clay ratio;
5) water percentage;
6) slope;
7) soil silt ratio.
In order to characterize vegetation conditions, the 16-day

composite NDVI is utilized from Moderate Resolution Imaging
Spectroradiometer (MODIS) data. The NDVI data are spatially
averaged to 3 km from its original 500-m resolution. This dataset
is available in NASA Land Processes Distributed Active Archive
Center.4The VWC is calculated using the NDVI and Land Cover
Type (MCD12Q1) products using the same lookup table method
as the SMAP VWC product [40].

The Digital Elevation Model GTOPO30 product (1-km reso-
lution) is used to provide surface elevation information from the
United States Geological Survey Earth Resources Observation
and Science archive. The elevation data are also spatially aver-
aged from 1 to 3 km. Topography is regridded spatially for each
3-km grid centered at the specular point, and averages of eleva-
tion and slope are utilized to reflect the underlying topographic
complexities. Soil clay and silt ratios can be obtained from the
Global Gridded Soil Information (SoilGrids) [41]. Soil profiles
are discretized into several levels in the SoilGrids product, and
the top layer data (5-cm depth from surface) is utilized for
uniformity with theL-band signal penetration depth. For this
investigation, the product is available at 250 m and is spatially
aggregated onto 3 km.

A 30-m Global Surface Water Dataset from the Joint Research
Centre [42] is used to identify the presence of a surface inland

3[Online]. Available: http://ismn.geo.tuwien.ac.at
4[Online]. Available: https://lpdaac.usgs.gov/products/myd13a1v006/

water body. The percentage of 30-m grids within each 3-km grid
showing the existence of either permanent or seasonal water is
calculated, and this number is employed throughout the retrieval
algorithm’s quality control phase. Table I shows all the auxiliary
features that will be used for proposed model.

E. Quality Control Mechanisms

This analysis considers CYGNSS observations from March
2017 to November 2020 available in the CONUS region. Be-
fore performing SM retrieval, it is essential to conduct critical
screening for the quality of CYGNSS data in underlying land
surface conditions. Several quality control criteria need to be
applied to CYGNSS observations and auxiliary data. The spe-
cific flags (S-band powered up, substantial spacecraft attitude
error, blackbody DDM, DDM test pattern, poor confidence GPS
EIRP estimate) are maintained in this study [17], [31]. Observa-
tions with an incidence angle higher than±65◦are eliminated
in order to avoid noisy DDMs [24]. To prevent high-altitude
measurements, observations with a DDM peak value outside of
5–11 delay bins are excluded from the dataset. For SM retrieval
products, open water near the specular point is a critical source
of inaccuracy. Due to the highly strong coherency over water
surfaces, the power of a forward-scattered signal radiating from
a water’s surface is usually several orders of magnitude higher
than a signal scattered from soil [43]. SM recovery close to the
water bodies becomes infeasible if the surface water within the
CYGNSS region is sufficiently large. As a result, a CYGNSS
observation is removed if more than 2% of the 9-km grid cen-
tered on a specular point is covered with permanent or seasonal
water. Additionally, CYGNSS readings that fall over forested
areas with VWC>5 kg/m2(dense vegetation canopy) are also
eliminated [44]. CYGNSS observations before December 2017
that are above 600 m from the surface are masked out due to the
altitude limitation of CYGNSS L1 data for the specified time
period [26]. After applying all the quality control masks, we have
more than 18 million specular samples over CONUS regions. It
is essential to mention that each specular points generate three
different types of DDM. So, we will have a total of three times
of 18 million DDM images for our DL model for training and
testing.

III. METHODOLOGY

Convolutional neural networks (CNN) have been extensively
utilized in computer vision applications and are shown to learn
relevant features for the classification/regression tasks directly
from the images. The application of CNN to DDMs is par-
ticularly fascinating since it provides ability to learn directly
from the DDM itself. Currently, some existing machine learning
(ML) models have been developed using designed features
computed from DDM [20], [25] and estimate SM. Although
these ML-based models provide promising results, in this study,
we hypothesize that a CNN-based model can extract further
features that will enhance SM estimation leading to a higher
quality CYGNSS-based SM product. The complex information
included in the entire 2-D DDM will be helpful under various

http://ismn.geo.tuwien.ac.at
https://lpdaac.usgs.gov/products/myd13a1v006/
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TABLE I
PHYSICALFEATURESCONSIDERED FOR THEDL-BASEDSM RETRIEVALMODEL

conditions, and the DL-techniques are the state-of-the-art ap-
proach to retrieve from DDMs. We explored the CNNs and
fully connected neural layers to determine the complex rela-
tions between DDMs, ancillary data, surface attributes, and
the SM.

We consider CNN as our core DL model, where the primary
inputs come from multiple types of CYGNSS DDM images and
ancillary data. We develop a supervised learning framework,
where the model maps a set of input features to an SM value,
which is the final output of the proposed architecture. The dataset
utilized to train and test the developed model is constructed using
the CYGNSS, SMAP, and ancillary data sources from CONUS
during April 2017 to December 2020 as detailed in Section II.

A. Data Normalization

The analog power DDM image pixel values range from 10−16

to 10−18W roughly, and then, the images are normalized for
numeric stability. Normalization is performed by calculating the
mean and standard deviation for the entire pixels and standard-
izing these values to achieve zero mean/unit variance. Effective
scattering area, BRCS images, and the other ancillary inputs are
normalized in the same way.

B. Design of the DL Architecture

The proposed DL architecture consists of three major parts;
the convolutional layers, the concatenation layers, and the
densely connected layers. Convolutional layers are used to ex-
tract the features from multiple DDM images. At the end of
the convolutional layers, features are flattened and concatenated
with other auxiliary feature inputs. A two-layer fully connected
network is used to map the concatenated features to an SM value.

The three normalized processed DDMs are the primary input
of the convolutional network. Each image type is given in a dif-
ferent channel. DDMs are of size17×11and combining three
types of DDM images makes an input of17×11×3. Three
convolutional layers are used, followed by a max pool layer. Each
convolutional layer consists of3×3kernel with no paddings
and stride of 1. The number of filters for the convolutional layers
are 32, 64, and 128 respectively. After each convolutional layer,
we have used a batch normalization layer followed by a ReLU
activation layer. After the convolutional layers, a max-pooling
layer with a kernel size of5×11is applied. A flattening layer is
used to flatten the extracted image features into the vector format.
The total number of extracted features from the DDM images is
128. After extracting the feature from the DDM images, we have

concatenated the nine auxiliary features with that 128 extracted
features. The combined vector of 137 total features are then fed
into a neural network with two layered neural networks having
two dense layers with 50 neurons with clipped ReLU activation
in each layer. The final layer of this network is a regression layer
with a sigmoid activation function before the final output. Fig. 2
illustrates the overall architecture of the proposed CNN network
from the input DDMs to the output SM with details on different
layers.

C. Training the CNN

This section will discuss how our model is trained based on
the input and the label data. Our model has two main categories
of input data. The primary inputs are the three different types
of processed DDMs, being analog power, effective scattering
area, and BRCS images, with a size of17×11each. The
second category of inputs are the nine different types of ancillary
data that are based on CYGNSS, topography, MODIS, and soil
texture data. The list of these features are provided in Table I.
After the dataset for DDM images and ancillary features are
constructed as detailed in Section II and the quality control
mechanisms are applied, the DL architecture is ready to be
trained.

Fig. 3 shows the overall training process of the proposed DL
model. The model maps the input DDMs and ancillary data
to an SM value. In order to update the parameters of the DL
model in the training phase, labeled SM values are needed for the
corresponding inputs. SMAP SM data are used as the labels, as
detailed in Section II-B. The model parameters are determined in
order to minimize the root-mean-square loss between predicted
and label SM values. During the training of the proposed model,
a version of gradient descent based backpropagation approach,
root-mean-square propagation (RMSprop), is used as the main
model optimizer. RMSprop uses a decaying average of partial
gradients in the adaptation of the step size for each parameter
and it helps to accelerate the optimization process by decreasing
the number of function evaluations required to reach the optimal
point. A piece-wise learning rate schedule is used, which helps
to decay the schedule constantly. We set the initial learning rate
at 0.01 and gradually decreased the learning rate (10-times) after
every 50 epochs. A total of 250 epochs are used for the training
process. The epoch number is selected based on the convergence
pattern of our model.

In order to speed up the training process, we have chosen a
mini-batch size of 50 000. This big batch size is used to load
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Fig. 2. Network overview of DL-CYGNSS SM estimation using DDMs and ancillary features.

Fig. 3. Overall DL-CYGNSS training process.

the data in the memory and process it at a time. We have done
different analysis depending on the training/testing scenarios
and depending upon the model used, the mini-batch can be
varied. More detail is discussed in Section III-D. All the required
computations are carried out using the DL toolbox of MATLAB
R2021a software over a machine with Intel(R) Xeon(R) CPU
E5-2643 with three NVIDIA Titan RTX GPUs and 128-GB
memory.

D. Training Models for Different Size Regions

The generic approach in a DL model could be to train a single
model that will predict SM at any given location, given the
related inputs. Such a model can be learned using all the available
training data. Since a single model predicts SM everywhere,
memory requirements are low. However, the model should be
able to address the whole complexity and variations over the
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world and training a model with huge size of dataset is highly
computationally complex. Another possibility we propose and
test here is to divide the region into smaller clusters and learn
a different DL model for each cluster using the data from that
cluster region [22]. In this case, since variations within smaller
regions are less, it is easier for DL models to learn the DDM–SM
relation but creating clusters increases the number of models
to be stored and each model should be learned over a smaller
dataset corresponding to the cluster region. Hence, there is
a tradeoff between SM prediction performance, memory, and
training requirements for DL models for different size regions.
To analyze this tradeoff, in addition to learning a single model for
the CONUS region, we have constructed different clusters with
36, 72, and 144 km grid sizes. We divided the CONUS region
into contiguous geographical grids with the specified grid sizes
and used the CYGNSS observations belonging to that grid to
train and evaluate the performance metrics. For example, for the
36-km cluster case, for each 36×36 km grid all 9-km cells
falling within this grid are gathered, and one single model is
learned with all the training data samples within that grid. When
a prediction is made, the DL model for this grid is used to the
prediction. One SM value is predicted for each 9-km cell and
the same DL-model is used to predict SM for each cell in that
cluster. In the extreme case, one can also learn DL models for
each 9-km grid; however, the average number of data samples
for each 9-km grid is not high enough to facilitate learning of
a DL model with many model parameters currently. This is the
reason we tested a minimum cluster size of 36 km. Even with
the current cluster sizes, we set a threshold sample number of
300 and if any grid has less than 300 samples, we skip that grid
for training and testing. In addition, a mini-batch size of 5000 is
used in training of clustered models, while single cluster model
uses mini-batch size of 50 000 samples.

IV. RESULTS ANDDISCUSSION

In this section, we provide and discuss quantitative perfor-
mance of the proposed model under different validation strate-
gies. TheK-fold and year-based cross validation is used to evalu-
ate the DL model performance against the SMAP SM within the
CYGNSS coverage over CONUS. SMAP SM observations are
also remotely sensed estimates like CYGNSS, and they have
their own error uncertainties. Besides calculating the model
performance, we also compare our predicted result with the SM
station (ISMN sites) and present the temporal variation of dif-
ferent SM products. The error and correlation coefficient maps
are generated that evaluates the model and its improvement. We
further analyze the performance metrics for different land cover
types to better understand learning performance of the proposed
model for different land covers.

A. Evaluation Metrics and Validation Strategy

Several evaluation metrics are used to assess the model perfor-
mance quantitatively. The trained DL model from Section III-B
is tested within the CYGNSS coverage, and its performance
are evaluated using SMAP SM predictions. The performance
metrics used in this evaluation are the root-mean-square error

(RMSE), unbiased RMSE (ubRMSE), and correlation coeffi-
cient (R-value). In addition, the root-mean-square difference
(RMSD) is also computed for the proposed DL-CYGNSS and
the SMAP SM product comparison as the label SMAP SM data
might contain errors that cannot be considered as the “True”
SM values [45]. The “RMSE” term is basically used for in
situ evaluation as those measurements are considered ground
truth data for SM. In our case, we compare our results also
with the ISMN sites and provide RMSE and ubRMSE metrics
in that case. We have evaluated our models usingK-fold cross
validation withK =5folds. TheK-fold approach is a highly
popular and common type of validation technique in order to
evaluate the performance of a model. InK-fold cross validation,
the total data are divided intoKnumber of folds, and then,
the model is trained using (K−1) folds and tested over the
unused fold. This approach guarantees separation of training
and test data and tests every fold. After the predictions of the
DL-CYGNSS is obtained, different metrics are computed in
order to evaluate the model performance.

B. Performance Analysis of Different Clusters

In this section, we discuss the performance of different cluster-
ing sizes. Table II shows the overall SM prediction performance
derived via the proposed DL-CYGNSS approach for different
cluster sizes together with the number of DL models and average
number of samples for each model. We have evaluated DL
models over the CONUS region, where the model is trained
and validated using a fivefold cross validation. While for the
one-cluster case, we learn a single model for the CONUS region
with 18.6 million data samples, as the clusters get smaller the
learned number of models increases and average number of
data samples for each model decreases. For the 36-km cluster
case, we learn a total of 3190 different DL models, where
each model is trained/tested over an average of 5800 data
samples.

It can be seen in Table II that the SM performance increases
for smaller clusters leading to lower SM estimation errors and
higher correlations. While the 36-km cluster case provides the
best SM estimation performance of compared cases with a mean
ubRMSD value of 0.0362 m3/m3and a correlation coefficient
of 0.93, its results are close to the results obtained from 72-km
clusters. A significant increase in SM estimation performance
is observed from one cluster to 144-km cluster case, where
the mean ubRMSD is reduced to 0.0417 from 0.0482 m3/m3,
and theR-value is increased to 0.90 from 0.85. A smaller but
still important level of performance increase is also observed
in transition from 144- to 72-km clusters. The performance
change between 72- and 36-km clusters are minor, indicating a
convergence of performance for tested cluster sizes. Our obser-
vation is that proposed DL model can learn the characteristics of
smaller cluster regions better and clusters with 36- or 72-km grid
sizes offer a good tradeoff between performance and number of
models learned.

C. Year-Based Cross-Validation Performance

In addition to the presented fivefold cross validation, it is
important to assess the performance of the proposed method
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TABLE II
PERFORMANCEMETRICS FORDIFFERENTDL-CYGNSS MODELSUSINGFIVEFOLDCROSSVALIDATION

TABLE III
PERFORMANCEMETRICSGRID-WISEDL-CYGNSS MODELUSINGYEAR-BASEDCROSSVALIDATION

under a year-based cross-validation scenario. We have a total of
four years of data from 2017 to 2020 and for the year-based cross
validation, we have trained the model using three-year data (such
as 2017, 2018, and 2019) and tested the model over all data from
another year (such as 2020). This way, we have tested each year
and calculated the performance metrics of RMSD, ubRMSD,
andR-value. This analysis is also applied for 36-, 72-, and
144-km grid-wise models. The observed performance for each
validation year and cluster size are presented in Table III. It can
be observed that DL models trained over 2017–2019 and tested
on all 2020 data can provide an SM estimation performance
of mean ubRMSD 0.033 m3/m3with a correlation coefficient
of 0.94 under 36-km clusters. While this is the best obtained
result under year-based cross validation, testing with other years
of data show only slightly higher levels of estimation error
with the exception of testing on 2017 data. Different cluster
sizes provide a similar trend of performance as discussed in the
previous section. We consider that the more refined CYGNSS
data products in the recent years being one possible reason for
increased performance for the 2020 performance. We think that
year-based cross-validation approach is a more practical, since
DL models can always be trained on previous years of data and
those models can be used to provide SM predictions all over
the next year. Obtaining an ubRMSE of 0.033 m3/m3against
SMAP under this practical training/testing scenario shows the
high potential of CYGNSS measurements for SM estimation.

D. Performance Comparison via ISMN Sites

In order to additionally evaluate the performance of our
proposed model, we have compared SM predictions of the pro-
posed DL-CYGNSS and the SMAP with the SM observations
at ISMN sites. The DL-CYGNSS model is trained using SMAP
SM labels and evaluated against SMAP in previous sections
under different cross-validation approaches. Here, we compare
SMAP versus ISMN sites as well as DL-CYGNSS versus ISMN
sites. This provides an evaluation of both SMAP and proposed
DL-CYGNSS against an independent SM observation source,
the ISMN sites’ reference SM. Table IV shows the mean RMSE,
ubRMSE andR-values when ISMN observations are compared

to SMAP and DL-CYGNSS predictions, respectively. All the
metrics are evaluated at each individual site and averages out
of all sites are reported The comparisons were made with the
ISMN sites that belong to a 9×9 km SMAP grid. Proposed
DL-CYGNSS provides SM estimations on the same SMAP grid
locations. We consider the SM predictions on the same day
and same grid location to compare the results. In the CONUS
region where we predict SM values, we have 89 ISMN sites
to compare, and the average number of samples per site is
approximately 207. It can be seen from Table IV that both
SMAP and DL-CYGNSS predictions have similar RMSE and
ubRMSE results when compared to ISMN observations, while
SMAP is slightly outperforming DL-CYGNSS. This is expected
considering that the DL-CYGNSS is trained using SMAP data.
SMAP also produces a betterR-value. Due to small number
of samples per site, the bias is comparably higher and lower
R-values for both SMAP and DL-CYGNSS are observed.

In addition to calculating the overall performance metrics,
it is essential to understand the performance of DL-CYGNSS
on following temporal SM variations. Here, three representative
ISMN sites have been selected and SM observations recorded
at these sites from 2017 to 2020 are shown in Fig. 4. All these
sites belongs to Soil Climate Analysis Network (SCAN) and
Hydraphobe Digital Sdi-12 (2.5 V) is used as an SM sensor,
These sites generally provide soil temperature, precipitation, air
temperature, and SM. The proposed DL-CYGNSS and SMAP
SM predictions for the same time period are also illustrated on
the same figure. In addition, the SM predictions of a recent esti-
mation approach called Mississippi State University’s Geosys-
tems Research Institute (MSU-GRI) CYGNSS SM product [22]
are also compared. The product uses ML with handcrafted
features within a random forest framework to map quasi-global
SM from CYGNSS measurements, and is publicly available.5

Two versions of the product are available, i.e., v1.0a and v1.0b.
For v1.0a, the ML model is trained using ISMN sites and for
v1.0b, the model is trained and tested using SMAP. We consider
the MSU-GRI v1.0b SM product for this temporal performance
comparison as both algorithms are trained using SMAP data.

5[Online]. Available: https://www.gri.msstate.edu/research/ssm/

https://www.gri.msstate.edu/research/ssm/
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TABLE IV
DL-CYGNSSANDSMAP SM COMPARISONWITHISMN SITES

Fig. 4. Time-series examples of daily averaged SMAP, DL-CYGNSS, and MSU-GRI V1.0B SM predictions against selected ISMN sites with a moderate
performance. (a) MonoclineRidge. (b) CochoraRanch. (c) KnoxCity. The summary table of results from all compared sites are provided for the same timeperiod.
(a) Site Name: MonoclineRidge, ubRMSE:0.0633, R: 0.80 (CYGNSS vs (ISMN). (b) Site Name: CochoraRanch, ubRMSE:0.0352, R: 0.83 (CYGNSS vs ISMN).
(c) Site Name: KnoxCity, ubRMSE:0.0404, R: 0.80 (CYGNSS vs ISMN).

For these representative sites, the DL-CYGNSS predicted SM
closely follows the temporal trend of the ISMN SM observations
and closely describes the precipitation events and the dry-down
process.

Fig. 4(a) shows the time-series analysis for site “MonoclineR-
idge” over the period from 2017 to 2020. As mentioned earlier,
this site is in the SCAN network and located in the western part
of the CONUS region. It started to give SM data since 2014
on a daily basis. This site gives us a high dynamic SM range,
so we can compare the ability of our approach with a varied
SM range. In the figure, the blue line shows the ISMN SM, the
red line shows our CYGNSS DL SM and gives an ubRMSE

0.0632 m3/m3and the correlation coefficient is 0.80 between
these two SM. The black and green lines show the SMAP SM
and MSU-GRI SM product, respectively. From this time-series
analysis (site—MonoclineRidge), we can observe that the SM
value is higher during the beginning of the year and stays high
over May. For 2019 and 2020, we have seen that all the SM
value increases starting from the beginning of December and
staying high to the end of May. It shows a good agreement
over the observation period. Though both our proposed DL
model and publicly available MSU-GRI product are trained and
tested using enhanced SMAP SM products, the proposed DL
approach demonstrated improvements against the MSU-GRI
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Fig. 5. Scatter plots of DL-CYGNSSS SM retrievals for different types of land cover. (a) Land Cover: Shrub. (b) Land Cover: Woody. (c) Land Cover: Savanna.
(d) Land Cover: Grass. (e) Land Cover: Crop. (f) Land Cover: Barren.

product that uses designed features only (given in Table I) using
the random forest model. The site “CochoraRanch” is also in the
SCAN network and located in the western part of the CONUS.
It has been producing SM data since 2012. In Fig. 4(b), the
ubRMSE andR-value for the site “CochoraRanch” is 0.0352
m3/m3 and 0.83, respectively, comparing the CYGNSS SM
with ISMN SM. We have seen similar SM patterns for this
site during different periods. Though the SM value is below
0.1 m3/m3most of the time, it gets as high as 0.3 m3/m3at
the beginning of each year. The soil is relatively dry (SM<
0.3 m3/m3) for the growing season (from May to September).
The “KnoxCity” [see Fig. 4(c)] provides a little different SM
pattern during the whole observation period. The “KnoxCity”
site is located in the northern part of the Texas area and it has
been producing SM since 2013. Comparing with previous two
sites, it is giving low dynamic SM value all the year around.
Both SMAP and CYGNSS follow the similar pattern with the
ISMN site. The ubRMSE and correlation coefficient between
CYGNSS SM and ISMN SM are 0.0404 m3/m3 and 0.80,
respectively. There are some number of sites that give relatively
high ubRMSE and low correlation coefficient value. In order to
check the both space-borne mission’s performance with ISMN
SM, we compare the average site results side by side, which is
demonstrated in Table IV. As we have already mentioned, we
have considered total 89 ISMN sites that belong to the specific
SMAP grid and also we consider the same day and same grid
SM predicted using the DL model.

E. Performance Comparison for Different Land Covers

It is essential to quantify the impact of diverse land cover
conditions on proposed DL-CYGNSS SM prediction model

performance, because land cover type is a critical parameters
affecting both GNSS-R observation and SM retrieval perfor-
mance. The SM predictions are evaluated under various land
cover categories. Fig. 5 shows the scatter plots between the
predicted and labeled SM data for different land cover types.

Fig. 5(a) shows the scatter plot between predicted and labeled
SMAP SM in shrub-land cover area. This land cover region
provides ubRMSD 0.039 m3/m3, and correlation coefficient
0.72, where most of the points are below the 0.30 m3/m3

SM. Woody land plot shown in Fig. 5(b) gives slightly higher
ubRMSD of 0.046 m3/m3but provides a comparatively better
R-value of 0.82. This land cover has a higher label SM value
(SM>0.25 m3/m3) indicating good prediction performance for
a wide range of SM for the proposed approach. The Savanna land
cover shown in Fig. 5(c) gives an overall ubRMSD andR-value
0.045 m3/m3 and 0.89, respectively. The lowest estimation
error is achieved in the grassland cover with an ubRMSD of
0.034 m3/m3, as shown in Fig. 5(d). The highestR-value is
achieved on crop land cover with 0.91, while barren results in
the lowestR-value with 0.55. The number of data points for
different land covers vary and comparably lowerR-values in
barren and shrub land covers are partially due to lower number
of data for those types.

F. Results Over CONUS and Comparisons

In this section, the overall performance of our proposed
model over CONUS is illustrated. From the presented results
using fivefold and year-based cross validation, the 36-km cluster
model outperforms the other models. Fig. 6 shows the maps of
ubRMSD and correlation coefficient over CONUS on averaged
9-km grids using the DL-CYGNSS model using 36-km clusters.
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Fig. 6. (a) ubRMSD and (b) correlation coefficient map for 36-km DL-
CYGNSS model test result (4-years averaged) and (c) reference land cover map
in the CONUS region.

From the ubRMSD map in Fig. 6(a), it can be seen that the SM
predictions are more accurate for the low vegetated regions, but
the error is higher for the relatively more vegetated eastern part
of the CONUS. The correlation coefficient map in Fig. 6(b)
shows that proposed approach provides highly correlated SM
predictions with SMAP over important part of CONUS aligned
with the land cover types shown in Fig. 6(c) and the analysis from
Section IV-E. The scatter plot for all DL-CYGNSS predictions
over CONUS using the fivefold cross validation and 36-km
cluster model is shown in Fig. 7. It can be seen that the overall
results show a very good correlation with SMAP with anR-value
of 0.93.

We have already demonstrated the performance comparison
with MSU-GRI product in terms of their temporal variation.
The quantitative performance comparison between proposed
DL-CYGNSS and the MSU-GRI SM [22] is given in Table V.
This comparison is made over the CONUS region. The
DL-CYGNSS model outperforms the compared ML model in
all compared metrics including RMSD variants andR-value.
MSU-GRI product uses handcrafted CYGNSS and ancillary
features with a random forest ML model; however, our approach
utilizes full DDM images and directly learns from them using
a CNN structure. It is clear that learning from entire DDMs for
SM estimation helps to reduce SM prediction errors.

G. Performance Using Different Inputs Strategies

In order to validate the idea of bringing the DDMs for estimat-
ing the SM, we have examined scenarios where we learn from
different set of inputs. Table VI shows the performance of all
tested input scenarios. First, we consider only using the nine fea-
tures in our DL-CYGNSS model without the CYGNSS DDMs.
This input set uses a classical neural network that contains

Fig. 7. Scatter plot of the predicted SM versus targeted SM for the 36-km
cluster DL-CYGNSS model.

two fully connected layers with 50 hidden units in each layer.
The mean ubRMSE reached 0.0447 m3/m3, and correlation
coefficients reached 0.73 for this input set. Compared to using
all three DDMs jointly together with the nine features, which
provide an ubRMSE of 0.0362 m3/m3, and correlation coeffi-
cient of 0.93, we observe that learning from DDMs provides
a significant performance enhancement. Then, we test using
a single DDM in our model instead of using all three DDMs
jointly. Here, we would like to test the most effective single DDM
and performance change between using a single DDM versus all
DDMs jointly. All DL-based results are for models trained on
36-km cluster regions. We train and test our model using a single
DDM image inputs of analog power, effective scattering area,
and BRCS images. For the single DDM image cases, the analog
power DDM case results the best overall performance with
mean ubRMSE of 0.0372 m3/m3, and correlation coefficient
reaching 0.93. While BRCS or effective scattering area DDMs
provide closer and highR-values of 0.92, they provide slightly
worse mean ubRMSE values of 0.039 m3/m3. While using all
three DDMs provide the best overall results, using analog power
DDM as a single image with DL provides slightly lower results,
which could provide a tradeoff between performance and data
storage/memory requirements. In addition, we see low bias if we
consider DDMs instead of using only the features. Single DDM
or multi-DDMs with ancillary features provide bias values very
close to each other, but the nine features model provides a high
bias value.

V. DISCUSSION

The space-borne GNSS-R observations for SM retrievals
have become popular with the hydrology community. This in-
terest becomes particularly accelerated when the space-borne
GNSS-R are available such as CYGNSS and TechDemoSat-1
(TDS 1) [46]. The main advantage of using this is the high spatial
coverage over the Earth’s surface, having sufficient measure-
ment capabilities. Fig. 8 shows the spatial performance of DL
CYGNSS SM compared to SMAP and MSU-GRI SM products.
The results are averaged over the month of January 2020 in
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TABLE V
PERFORMANCECOMPARISON OFDIFFERENTSM PRODUCTOVER THECONUS REGIONS(72-KMCLUSTER)

Fig. 8. Monthly averaged SM predictions. (a) DL CYGNSS SM—9 km, (b) SMAP SM—9 km, and (c) MSU-GRI V1.0B—9 km for the month of January 2020
with the 9×9 km spatial resolution using 36-km cluster in CONUS. Temporal comparison of data products over different selected (225×225 km) regions (d) for
location-(1) and (e) for location-(2).
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TABLE VI
PERFORMANCEMETRICS FORDIFFERENTINPUTSSTRATEGIESUSINGFIVEFOLDCROSSVALIDATION FOR36-KMCLUSTER

TABLE VII
TIMECOMPLEXITYANALYSIS OFDIFFERENTCLUSTERMODELSCALCULATED

OVERFIVEFOLDCROSSVALIDATION

order to compare spatially. Fig. 8(a) and (b) shows a better
spatial correlation between DL-CYGNSS and SMAP predic-
tions, while the MSU-GRI product in Fig. 8(c) shows under
estimates specifically for high SM regions. It can be seen that the
proposed DL-based approach can generate SM that is spatially
more close to the SMAP SM. Besides the spatial assessment,
we also present the temporal variations of compared products.
Fig. 8(d) and (e) shows the temporal comparison among the
three SM products from July 2019 to December 2020. For this
analysis, we consider two different areas of size 225×225 km
as shown in Fig. 8(a)–(c). Fig. 8(d) shows the temporal variation
of the average SM in location-(1), and it shows our DL approach
closely follows the SMAP SM. We see almost the same pattern
for location-(2) in Fig. 8(e). The location-(1) is mostly arid, so
it is easy for the model to learn the pattern easily. In both cases,
the MSU-GRI product is sometimes unable to follow the label
SM value.

The primary purpose of this study is to use CYGNSS data for
high spatio-temporal resolution over the different heterogeneous
areas utilizing the power of a DL model that has better function
approximation as well as the capability to find complex non-
linearity. Proper utilization of a DL algorithm for SM retrievals
needs a well-organized dataset that is reliable and labeled accu-
rately before the training process. Our analysis shows that entire
DDMs contribute more than only using generated features from
DDMs. The main challenge to using the DL over the DDMs is
computational power and processing time. In this study, we have
used different clustering models for estimation SM. Table VII
describes the model corresponding to their training and testing
time for a fivefold cross-validation strategy. The 36-km clusters
have more models for training and testing and take more time
(154.68 h) than the other two cluster models. The 72-km cluster
takes 137.68 h, where training time is 137.20 and 1.95 h for
testing as the 144-km cluster has less number of the model, so
it takes less training (116.00 h) and testing (4.6 h) time than the
other two models.

It is imperative to note that the actual spatial resolution of
CYGNSS data is subject to interpretation. The surface condi-
tions dictate what the actual spatial resolutions are as the in-
strument DDM can spread nonuniformly for given observation.

In our results, we refer posted resolution (9 km), which does
not necessarily represent a CYNGSS native resolution as it can
vary from a few kilometers to tens of kilometers depending on
the degree of coherence. In fact, ancillary information around
specular point (within 3 km) is used to train the model. The full
DDM provides additional features that potentially learn about
degree of the spread of the signal. The use of full DDM seems
to help to replicate SMAP better than using designed features
from DDM (e.g., peak power) as DDM can cover SMAP’s native
resolution (33 km). However, this assertion requires further
investigation.

This study demonstrates the potential improvement over the
existing ML-based approaches by utilizing DDMs for SM re-
trievals using the DL algorithms for over various land surface
conditions at high spatio-temporal resolutions. The performance
across different land covers yields promising results with higher
accuracy. In addition, year-based cross validation is used to
assess the generalized methodology over time. The DL-based
technique captures temporal variation with varying biases, and
the results show the importance of prior information on the
DL-based model’s prediction capabilities. The proposed method
is limited to a reference label with its own uncertainty, and it can
be further analyzed by using in situ data as labeled SM.

VI. CONCLUSION

In this article, a DL-based framework has been demonstrated
for estimating SM using the CYGNSS DDMs along with an-
cillary geophysical data in the CONUS region. One of the
most widely used DL methods (e.g., CNN) is utilized. Four
different models are trained and validated using SMAP SM
values. Models are validated using the fivefold cross validation
as well as year-based cross validation using 4-years data between
2017 and 2020. We have developed and tested models learned
from different size regions. Results show that errors are reduced,
and correlations are improved with the increased number of
DL models. Among different clustering approaches, the best
ubRMSD and correlation coefficient is achieved using the 36-km
clusters with a mean ubRMSD of 0.0362 m3/m3andR-value
of 0.93 using the fivefold cross-validation technique. More
importantly, sufficient accuracy can be obtained via year-based
cross validation as well. The year-wise cross validation shows
a performance of mean ubRMSD of 0.033 m3/m3andR-value
of 0.94 for 36-km clusters, when models are learned using data
from 2017 to 2019 and tested on all data from 2020. We have also
compared our predictions result with ISMN SM stations, and
it provides good agreement with SM station observations and
SMAP data, which suggests that the proposed DL model can
be generalized in space and time with promising confidence.
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Meanwhile, the proposed DL-CYGNSS approach is analyzed
regarding the temporal variation and different land cover condi-
tions. Particularly, this model predicted SM with higher accuracy
for grassland, croplands, and savanna compared to other land
covers. The proposed DL-CYGNSS model can be extended to
global scale with similar train/test scenarios as a future study.
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