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Glass materials integrated with advanced functions, such as anti-fogging and self-cleaning functions, are urgently
demanded in applications such as vehicle windshields, eyeglasses, goggles, electronic device screens, and win-
dows. Inspired by nature, researchers have found multiscale surface structures to be a crucial factor in deter-
mining a material's surface wettability. The ultrafast pulsed laser is a promising tool to induce such surface
structures and subsequently control the surface functionalities on different materials. The behavior of surface
wettability with different micro/nano-scale surface structures created by femtosecond laser irradiation on fused
silica is investigated in this research. The effects of laser fluence, overlapping ratio, and repetition rate on the
structure morphology are studied. Seven different sorts of structures can be created by manipulating these pa-
rameters: (S1) micro-dots array, (S2) micro-dots array covered with laser-induced periodic surface structures
(LIPSSs), (S3) LIPSSs, (S4) microgrooves covered with LIPSSs, (S5) microgrooves covered with irregular nano-
structures, (S6) micro-channels and (S7) micro-channels covered with LIPSSs. Investigations into the static
contact angle show that hydrophilic and superhydrophilic surfaces can be generated through the introduction of
these laser-induced hierarchical structures. The relationship between laser parameters, surface structures, surface
roughness, and surface wettability is established. Different distinctive mean static contact angle values are

identified for different surface structures.

1. Introduction

The demands of anti-fogging and self-cleaning glass for applications
such as eyeglasses, glass panels, and glass windows are rapidly
increasing. To achieve such surface wettability-controlled functional-
ities, modifications on surface morphology/roughness [1] and chemical
properties are required. Through applying additive coating [2-5] to
change surface chemical properties, researchers have successfully pre-
pared such surface functions on glass. However, such coating film is
delicate and easy to be damaged in daily use. Fabricating multiscale
structures on desired surfaces, inspired by functioning biological sur-
faces in nature such as lotus leaves [6], fly eyes [7], and fish skins [8],
provides a robust alternative option for researchers.

In recent decades, ultrafast laser micromachining has become a
research area of intense focus due to its ability to process practically any
solid material such as metals, semiconductors, and dielectrics in a single
step with extreme precision and great efficiency [9-13]. Ultrafast laser
fabrication processes have been shown to generate a variety of surface

morphologies with multiscale surface structures, which present unique
surface functionalities without the requirement of post-process treat-
ments [14-16]. Of particular interest of these surface morphologies are
laser-induced periodic surface structures (LIPSSs), which are self-
organized regularly recurring nanoripples formed on surfaces irradi-
ated by linearly polarized radiation [16,17]. LIPSSs have emerged as an
attractive phenomenon due to their ability to create functionalized
surfaces for use in a variety of industrial, commercial, and military ap-
plications [18]. LIPSSs can be constructed to mimic a series of functional
surfaces observed in nature including those with altered wettability
[19-26], optical [26-29], and tribological [30-36] properties which
result from the combination of micro/nanoscale surface structures.

So far, some experimental efforts have demonstrated the attain-
ability of these wettability-controlled glass surfaces on fused silica
[37-43], soda-lime glass [44,45], Borosilicate glass [46-48], and Zr-
based bulk metallic glass [16] processed by ultrafast lasers. The ma-
jority of ultrafast laser processed glass surfaces display hydrophilicity
and superhydrophilicity. By combining with post-processing like
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chemical processing, superhydrophobic surfaces can be achieved. For
instance, He et al. [37] fabricated hexagonal micro-dots array through
femtosecond laser irradiation and achieved superhydrophobic surface
with silanization process. Dinh et al. [44] proposed one direct laser
patterning technique to obtain a superhydrophobic surface with good
transparency through the post-heating process. However, the relation-
ship between ultrafast laser-induced surface structures, surface rough-
ness, and surface wettability on fused silica has gotten little attention
and is not well understood. A better understanding of the one-step ul-
trafast laser surface structuring technique on controlling the surface
wettability of fused silica is needed. This study investigates the effects of
laser fluence, overlapping ratio, repetition rate, and scanning strategy
on the generated multiscale structural morphology and resultant
wettability behaviors of fused silica. Wettability behavior can be readily
understood by checking the surface roughness variation of created sur-
face structures. The relationship between processing conditions, surface
structures, surface roughness, and surface wettability will be
established.

2. Experimental setup
2.1. Materials

All fused silica samples used in this study are Corning 7980, which is
a typical high purity non-crystalline silica glass with excellent optical
properties. Sample surfaces were well polished (60-40 scratch-dig based
on MIL-PRF-13830B) and then subject to laser scanning. Before laser
irradiation and characterization, all samples were cleaned in an ultra-
sonic washer for 5 min with isopropyl alcohol (99.9% purity).

2.2. Laser scanning and characterization

Laser scanning was conducted by a Yb: KGW femtosecond laser
system (PHAROS by Light Conversion). The experiment setup is shown
in Fig. 1. A linearly polarized Gaussian-shaped laser beam with a pulse
duration of 190 fs was focused on the sample surface by a laser scan head
(intelliSCAN by SCANLAB) for the two-dimensional surface scanning.
The laser central wavelength is 1030 nm, and the beam diameters wg (at
1/e? of the peak intensity) are 5 mm and 34 um before and after
focusing, respectively. The single-pulse ablation threshold fluence of
fused silica is 3.72 J/cm? determined through Liu's method [49]. Areas
of 8x8 mm were patterned on sample surfaces with the scanning
strategy shown in Fig. 2. The values of pulse distance (d,) and line dis-
tance (d)) were set to be equal to achieve uniform scanning. For some
cases, line distance was set to be larger than pulse distance to fabricate
micro-channels. In addition, a second scan with the low laser fluence
and high overlapping ratio was applied to create LIPSSs over micro-
channels. Peak laser fluence (Fy), repetition rate (f), overlapping ratio
(¢), and line distance (d;) were varied in a wide range to study their
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Fig. 1. Experimental setup.
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Fig. 2. Scanning strategy.

effects on surface structure formation and corresponding surface
wettability variation, as summarized in Table 1. All experiments were
conducted in an ambient atmosphere. The peak laser fluence F is
calculated as:

8B

Fo = 7 @
VON)

where Epy. is the pulse energy. The overlapping ratio describes the ratio
between the overlapped length of two consecutive pulses and spot di-
ameters, which is defined as:

v
= (1 W X
where v is the scanning velocity.

After laser irradiation, the surface morphology of the processed
sample was characterized through a scanning electron microscope
(SEM) (Hitachi Regulus 8230). A 3D laser scanning microscope
(Olympus LEXT OLS4100) was used to measure the roughness factor (r),

which is defined as the ratio of the real surface area (A;) over the pro-
jected surface area (Ap):

f) % 100%. @)

AV
r= AT,' (3)

The static contact angle was captured through a home-developed
camera-based optical contact angle measurement system (shown in
Fig. 3) at a constant room temperature around 25 °C and a constant
humidity level of around 35%. The performance validation of this sys-
tem has been conducted through a static contact angle measurement
comparison with a commercial droplet shape analyzer (KRUSS DSA10).
The tested liquid was distilled water. The images of the water droplets
were captured by the camera, and contact angles were measured by the
ImageJ software [50].

Table 1
Laser parameters.
Uniform Repetition rate 1,10, 100
scanning (kHz)
Laser fluence (J/ 5,10, 15, 20, 25, 30
cm?)
Scanning Speed (@10 kHz) 0.306, 0.272, 0.238, 0.204, 0.17,
(m/s) 0.136, 0.102, 0.068, 0.034, 0.017
Line distance (@10 kHz) 30.6, 27.2, 23.8, 20.4, 17, 13.6,
(pm) 10.2, 6.8, 3.4, 1.7
Micro- Repetition rate 10
channel (kHz)
Laser fluence (J/ (First scan) 30; (second scan) 10
cm?)
Scanning speed (First scan) 0.017; (second scan) 0.102
(m/s)
Line distance (First scan) 35, 45, 60, 75, 90; (second scan)
(um) 10.2
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Fig. 3. Setup of the contact angle measurement system.
3. Results and discussions
3.1. Surface morphology

By varying laser fluence and overlapping ratio, five different types of
surface structures were successfully obtained by uniform scanning,
including: (a) micro-dots array, (b) micro-dots array with LIPSSs, (c)
LIPSSs, (d) microgrooves with LIPSSs, and (f) microgrooves with irreg-
ular nanostructures (see Fig. 4). Higher magnification views of micro-
grooves with LIPSSs and microgrooves with irregular nanostructures are
shown in Fig. 4(e) and (f). In Fig. 4(e), LIPSSs are observed on the sur-
face of microgrooves generated. But for Fig. 4(f), as more energy is
deposited at the same spot, microgrooves are split and scappled while
LIPSSs are damaged and replaced by irregular nanostructures.

Fig. 5 summarizes the formation conditions of different surface
structures through uniform scanning strategy, where S1-5 refer to
micro-dots array, micro-dots array with LIPSSs, LIPSSs, microgrooves
with LIPSSs, microgrooves with irregular nanostructures, respectively.
Micro-channels (S6) and micro-channels with LIPSSs (S7) will be dis-
cussed later in this section. Different structures are observed in different
overlapping ratio ranges. For micro-dots array (S1) (Fig. 4(a)), due to the
low overlapping ratio, consecutive laser pulses do not overlap. There-
fore, each micro-dot represents a single laser pulse ablation crater. When
the scanning speed is reduced and the overlapping ratio is increased,
these laser pulse ablation sites tend to partially overlap, triggering the
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Fig. 5. Formation conditions for different types of surface structures. The
repetition rate is 10 kHz. S1: micro-dots array, S2: micro-dots array with LIPSSs,
S3: LIPSSs, S4: microgrooves with LIPSSs, and S5: microgrooves with irregular
nanostructures.

formation of LIPSSs on top of the micro-dots, and the surface
morphology is switched to micro-dots array with LIPSSs (S2) (Fig. 4(b)).
Here, LIPSSs (S3) (Fig. 4(c)) are generated at the periphery areas of laser
beam ablation sites. With an even higher overlapping ratio, LIPSSs
expand towards the center of the laser ablation site, eventually
encompassing the entire treated surface. No single laser ablation crater
can be recognized due to the high overlapping ratio, and the third type
of surface morphology, LIPSSs, is formed. LIPSSs on fused silica are
parallel to the laser polarization direction, which is consistent with
previous findings [51]. More energy is deposited to the same spot when
the overlapping ratio is increased, stimulating the formation of micro-
grooves (S4). These microgrooves are covered by LIPSSs due to the
scanning effect (Fig. 4(d) and (e)). When the overlapping ratio becomes
extremely high (over 90%), microgrooves tend to split, and LIPSSs are
replaced by irregular nanostructures (Fig. 4(f)).

Laser fluence has a significant impact on the creation of surface
structures as well. The micro-dots array (with/without LIPSSs) is more
likely to be created in low laser fluence circumstances due to the narrow
beam diameter. At higher laser fluences with the same overlapping ratio,

Fig. 4. SEM images of different obtained surface structures. (a): Micro-dots array, (b): micro-dots array with LIPSSs, (c): LIPSSs, (d): microgrooves with LIPSSs, (e):
high magnification view of microgrooves with LIPSSs and (f): high magnification view of microgrooves with irregular nanostructures. The repetition rate is 10 kHz,
and the laser fluence is 25 J/cm? The white double arrow indicates laser polarization direction.
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the beam diameter becomes larger to induce large overlaps between
consecutive pulses. Single craters will be eliminated and uniform LIPSSs
will be created. With a 10% overlapping ratio, micro-dots array with
LIPSSs could be obtained at the laser fluence of 30 J/cm?. These micro-
dots cannot be formed for the 5 J/cm? instance due to the low laser
energy density, even with the greatest overlapping ratio (95%).

In addition to the structures mentioned above, micro-channels and
micro-channels covered with LIPSSs were also successfully fabricated, as
shown in Fig. 6. By applying a strong laser fluence of 30 J/cm? and
various line distances described in Table 1, multiple parallel micro-
channels were scribed on sample surfaces (Fig. 6(a) and (b)). To
induce LIPSSs on their surfaces, these scribed microchannels were then
subjected to a second cycle of laser scanning with a fluence of 10 J/cm?
and an overlapping ratio of 70%. Micro-channels with LIPSSs were
successfully obtained by this double scanning method (Fig. 6(c) and (d)).

Fig. 6(a) and (c) shows low magnification SEM images of micro-
channels with and without LIPSSs, respectively. Without the second
scanning, the area between micro-channels is flat and smooth. By
introducing the second uniform scanning, LIPSSs are generated in the
whole processed area and visible in the space between those micro-
channels. In Fig. 6(b) and (d) which display high magnification views
of micro-channels and micro-channels with LIPSSs, LIPSSs are clearly
found to be formed on the bottom of micro-channels (Fig. 6(b)) and the
blank area between micro-channels (Fig. 6(d)).

3.2. Surface wettability

The static contact angle is a widely used parameter indicating the
performance of surface wettability which is captured when liquid
droplet is in a static stable state. In this paper, surface wettability was
mainly identified and analyzed by this contact angle. The unprocessed
fused silica sample (Fig. 7(a)) is hydrophilic, with a contact angle of
around 47°. Fig. 7(b-d) shows the wettability transition behavior of
laser processed fused silica from hydrophilicity to superhydrophilicity
with the generation of the micro-dots array, LIPSSs, and microgrooves
with LIPSSs. Fig. 8(a) summarizes the relationship between the contact
angle, laser fluence, and overlapping ratio. It is observed that all surface
structures help reduce contact angle, and at some conditions, the surface
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wettability can be changed from hydrophilicity to superhydrophilicity.
For example, the contact angle is reduced to below 2° by inducing mi-
crogrooves, which satisfies the anti-fogging requirement (<5°). Such
behavior could be explained through Wenzel's model [52,53]. In this
model, a liquid droplet is regarded as fully attached to the processed
surface and no space left between the liquid and surface. The contact
angle of the roughened surface (6,) is described by:

cos(0,) = rcos(6y), @
where r is the roughness factor which is the ratio between the real
surface area and projected surface area, and 6y is the intrinsic contact
angle on the original flat surface. Since the fused silica is intrinsically
hydrophilic to water (§p ~ 47°) the surface roughness will always
decrease the contact angle as r is always larger than 1. Changing surface
chemical characteristics, such as providing a hydrophobic coating, could
be one method for reversing the trend.

The effects of laser fluence and overlapping ratio can be clearly
revealed by Fig. 8(a). To better understand the mechanism, the corre-
sponding surface roughness factors at different conditions are summa-
rized in Fig. 8(b). Note that the contact angle and surface roughness of
untreated fused silica are shown as the case with a 0 overlapping ratio in
Fig. 8(a) and (b), respectively. It is found that at the same laser fluence,
the contact angle decreases with the increase of the overlapping ratio. As
the overlapping ratio increases, the created surface structures could
switch from micro-dots array to LIPSSs, and finally to microgrooves, as
illustrated in Fig. 5. This surface structure transition results in an in-
crease of surface roughness factor, as shown in Fig. 8(b) and hence a
lower contact angle.

The surface wettability is also influenced by the laser fluence. As the
laser fluence increases, the contact angle generally decreases with the
same overlapping ratio. This phenomenon is also attributed to the
transition of created surface structures and the resultant roughness
factor increase. As shown in Fig. 5, it is easier to produce surface
structures with higher roughness factors, like microgrooves, with a
higher laser fluence. Therefore, a higher laser fluence usually leads to a
lower contact angle, supported by the surface roughness factor results in
Fig. 8(b). However, the case with the laser fluence of 30 J/cm? is an

~

Fig. 6. Surface morphology of (a) micro-channels with (b) its high magnification view and (c) micro-channels with LIPSSs with (d) its higher magnification view. The

repetition rate is 10 kHz.

180



K. Li et al.

()

&

©

Journal of Manufacturing Processes 79 (2022) 177-184

@)

Fig. 7. Surface wettability of (a) unprocessed surface, (b) micro-dots array, (c) LIPSSs and (d) microgrooves with LIPSSs. The length of the scale bar corresponds to

2 mm.
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Fig. 8. (a) Static contact angle results and (b) roughness factor results obtained with different laser fluences and overlapping ratios. The repetition rate is 10 kHz.

exception. The contact angle for this instance is much higher than that
for the case of 20 J/cm?, although its roughness factor is still slightly
higher. It is hypothesized that this phenomenon might be caused by the
surface chemistry change during the intense laser ablation at a high laser
fluence, which should be further studied by the future research.

Laser pulse repetition rate is another important factor in ultrafast
laser processing. The contact angles achieved at different repetition
rates (1 kHz, 10 kHz, and 100 kHz) and overlapping ratios at the same
laser fluence are summarized in Fig. 9. Statistically, the contact angle is
less sensitive to the repetition rate. This observation is consistent with
the finding in [54] that the repetition rate has a minor influence on
surface morphology.
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Fig. 9. Static contact angle results obtained with different repetition rates.
Laser fluence is 10 J/cm?
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Apart from uniform scanning results, measurement of static contact
angle on samples containing micro-channels was also carried out and
shown in Fig. 10(a). When the line distance between micro-channels is
increased to 75 pm, the static contact angle stays less than 19°, and the
surface has excellent water affinity. In addition, a V-shape tendency is
noted, with the lowest contact angle value at 45 pm. When the line
distance increases from 45 to 90 pm, the performance of super-
hydrophilicity diminishes slightly. Such unusual behavior could be
attributed to the reduction of surface roughness. As the line distance
increases, the actual processed area within the whole laser projected
area decreases, which helps reduce the overall surface roughness and
drive surface wettability back towards the pristine state. Furthermore,
the case with a line distance equal to 45 pm exhibits the lowest mean
contact angle value which can be explained through roughness factor
measurement shown in Fig. 10(b). Because the 45 pm case has the
highest roughness factor, the contact angle tested is expected to be the
lowest compared with the other cases. When the line distance rises, with
decreasing roughness factor, the contact angle increases according to Eq.
(4). In addition, the introduction of LIPSSs generally shows an
enhancing effect on superhydrophilicity. By applying the second scan
with a lower laser fluence and scanning speed to create LIPSSs, the
contact angle is smaller than that obtained from a single scan due to the
enhancement of surface roughness observed in Fig. 10(b).

To further elucidate the relationship between surface wettability and
surface structures, contact angle results of each surface structure
including all corresponding processing parameters are summarized in
Fig. 11(a). Here, surface structures number was assigned to each surface
morphology: (S1) micro-dots array, (S2) micro-dots array with LIPSSs,
(S3) LIPSSs, (S4) microgrooves with LIPSSs, (S5) microgrooves with
irregular nanostructures, (S6) micro-channels and (S7) micro-channels
with LIPSSs. Although there is overlapping in contact angle values
among generated surface structures, each surface structure has its own
characteristic (mean) contact angle range. Microgrooves (S4, S5) offer
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Fig. 11. (a) Static contact angle results of different surface morphologies and (b) experimentally measured and theoretically calculated roughness factors of different

surface structures.

the lowest static contact angle in general. The effect of LIPSSs (S3) on
surface wettability is discernible and confirmed again. By adding LIPSSs
on other structures (micro-dots and micro-channels), the contact angle
decreases.

Fig. 11(b) summarizes the measured roughness factor of various
surface structures. The theoretically calculated values based on Eq. (4)
are also displayed as a comparison. These theoretical roughness factors
are calculated based on the mean contact angle values shown in Fig. 11
(a). In general, measurements and calculations correspond well,
demonstrating that Wenzel's model can adequately explain the wetta-
bility variation caused by varied surface structures. Larger disparities
are seen in the situations of micro-dots array and micro-dots array with
LIPSSs, and the real surface roughness is smaller than the theoretical
value to generate such low contact angle. There might be another phe-
nomenon such as surface chemical property changes involved during the
laser scanning process.

4. Conclusion

Ultrafast laser-induced micro-/nano-surface structure formation and
corresponding surface wettability are studied in the paper. The effects of
laser fluence, overlapping ratio, repetition rate, and scanning strategies
are investigated on fused silica. Seven types of surface structures are
obtained: (S1) micro-dots array, (S2) micro-dots array with LIPSSs, (S3)
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LIPSSs, (S4) microgrooves with LIPSSs, (S5) microgrooves with irregular
nanostructures, (S6) micro-channels, and (S7) micro-channels with
LIPSSs. It is found that surface structuring could reduce the water con-
tact angle on fused silica surfaces. They could be changed from hydro-
philic to superhydrophilic surfaces by forming microgrooves. The
addition of surface roughness by adding LIPSSs has also been proven to
assist the reduction of the contact angle. The static contact angle de-
creases with increased laser fluence and overlapping ratio, due to the
surface structure transition and the resultant surface roughness increase,
which is consistent with the Wenzel's model. The clear relationship
among laser processing parameters, surface morphology, surface
roughness, and surface wettability for fused silica, which was missed, is
established. The revealed relationship provides a guideline for wetta-
bility control of fused silica using ultrafast laser surface structuring and
could enable its applications in microfluidics, windows, electronics,
automobiles, safety goggles, etc.
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