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ABSTRACT Over a century ago, physicists started broadly relying on theoretical models to guide new experiments. Soon
thereafter, chemists began doing the same. Now, biological research enters a new era when experiment and theory walk
hand in hand. Novel software and specialized hardware became essential to understand experimental data and propose
new models. In fact, current petascale computing resources already allow researchers to reach unprecedented levels of
simulation throughput to connect in silico and in vitro experiments. The reduction in cost and improved access allowed a
large number of research groups to adopt supercomputing resources and techniques. Here, we outline how large-scale
computing has evolved to expand decades-old research, spark new research efforts, and continuously connect simulation
and observation. For instance, multiple publicly and privately funded groups have dedicated extensive resources to develop
artificial intelligence tools for computational biophysics, from accelerating quantum chemistry calculations to proposing
protein structure models. Moreover, advances in computer hardware have accelerated data processing from single-molecule
experimental observations, and simulations of chemical reactions occurring throughout entire cells. The combination
of software and hardware have opened the way for exascale computing and the production of the first public exascale
supercomputer, Frontier, inaugurated by the Oak Ridge National Laboratory in 2022. Ultimately, the popularization and
development of computational techniques and the training of researchers to use them will only accelerate the diversification
of tools and learning resources for future generations.

SIGNIFICANCE From the integration of artificial intelligence (Al) tools to the development of specialized hardware,
computational biophysics has evolved to encompass state-of-the-art technologies in every stage of its scientific
research efforts. The development of new computational tools had implications across all fields, leading public funding
agencies to support the creation and use of supercomputers for biological research, and private sector investments to
support numerous in silico drug development start ups. The next-generation of exascale supercomputers are already
creating new opportunities for integrating computational modeling and experiments, pushing computational biophysics
beyond explaining experimental results, fostering discoveries with an unprecedented level of detail.

INTRODUCTION

The history of Biophysics is paved by cross-disciplinary inno-
vation. From Erwin Schrodinger’s take on genetics using an
information transfer perspective (1) to Hodgkin and Huxley’s
description of electric currents in cells (2), biology and math-
ematics, physiology and physics, have continuously worked
together. With the advent of computers, new opportunities
emerged for combining disciplines, as exemplified by the 2013
Nobel Prize awarded ten years ago to Karplus, Levitt, and
Warshel for their contributions to theoretical chemistry. Soft-

biophysical phenomena. While we attempt to cover important
computational techniques, detailing their many differences
would be outside the scope of this Perspective. To the readers
that are interested in details of the computational techniques,
we suggest recent reviews in quantum-mechanics/molecular-
mechanics, coarse-grained simulations, Brownian dynamics,
among other techniques that benefit from exascale comput-
ing (3-8). Here, we will focus on the interplay between
methodological advances and biological breakthroughs.

ware and hardware have become essential to many aspects of
biophysical research, not only to make sense of experimental
data but to propose and validate new models.

In this perspective, we will outline how large-scale com-
puting has provided novel insights to classic research efforts
and can continue to open new roads for the exploration of

FROM MOLECULES TO CELLS

Protein structure prediction, one of the oldest biochemistry
challenges tackled by computational biophysics, was also
the focus of recent broad spread media attention due to
the performance of Artificial Intelligence (Al)-based algo-



rithms. The notion that a primary sequence of amino acid
residues contained all the necessary information to determine
a protein’s three-dimensional structure captivated researchers
for decades. Many attempted to use computers to impose
physical and chemical laws onto unsuspecting bits repre-
senting atoms and bonds, and despite documented examples
of sequence-similar, structure-dissimilar proteins in public
databases (9), homology-based protein structure prediction
enjoyed continuous successes over the years, with prominent
examples being Modeller (10), Rosetta (11), and SWISS-
MODEL (12). The new Al-era models such as AlphaFold (13),
RoseTTAFold (14), and more recently, OmegaFold (15), also
rely heavily on previously determined primary and tertiary
structures of known proteins, either explicitly using sequence
alignments or implicitly storing that information on millions
of neural network parameters. They have now reached the
point where almost 200 million structures, including the entire
human proteome, have been computationally predicted (16).
The unifying thread in this diverse set of approaches is the
extensive use of state-of-the-art computer hardware and soft-
ware to optimize models, execute algorithms, and analyze
results. Specifically, the development of new graphic process-
ing units (GPUs) and tensor processing units (TPUs) over
the past decade, along with specialized machine learning
packages such as Keras, TensorFlow, PyTorch, among others,
now provides unprecedented training potential for new neural
network models and applications.

Beyond predicting structures, the study of protein dynam-
ics and properties has benefited from large-scale computing in
many ways. Dedicated hardware built exclusively for molecu-
lar dynamics (MD) simulations has allowed unprecedented
insight into small protein’s folding pathways (17). With the
advance of GPUs and TPUs, training neural networks has is
becoming faster and easier, opening new doors for academic
research. For example, Al models trained on protein sequences
to produce learned representations can now be used to predict
features such as fold stability and mutation impact on protein
function (18). The same infrastructure powers efforts to inte-
grate Al into analysis of protein dynamics (19), such as the
dimensionality reduction of an MD trajectory using autoen-
coders (20). These and other developments were only possible
due to the creation of advanced neural network architectures,
including case-specific autoencoders and recurrent neural
networks. This type of novel insight into protein sequence
and dynamics can significantly help Al-based drug develop-
ment pipelines (21) and computer-aided protein design and
evolution efforts (22).

A particularly interesting research endeavour where com-
putational power has bridged the gap between theory and
experiments is single-molecule force spectroscopy (SMFS),
where unbinding or unfolding forces are used as probes for
molecular interactions and energy landscapes (25, 26). The
computational study of mechanostable molecular interactions
started decades ago. The streptavidin:biotin complex, for
example, widely used in experimental research, was simu-
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Figure 1: Modern supercomputers are powering discoveries
with an in silico SMFS approach. Staphylococcus aureus is
a pathogen that can form biofilms on implants and medical
devices. A critical step to biofilm formation is the formation of
a tight interaction between microbial surface proteins called
adhesins and components of the extracellular matrix of the
host. A combination of in silico and in vitro single-molecule
techniques has revealed how the bond between staphylococcal
adhesins and their human targets can withstand forces in the
same order of that of covalent bonds (23, 24).

lated 25 years ago (27) using the most advanced hardware
available at the time to achieve picosecond-level sampling of
eight replicas per system. Almost twenty years later, the same
molecular complex was revisited to elucidate the origins of
conflicting experimental observations: In 2018 (28), a mono-
valent streptavidin tetramer was simulated to reveal different
unbinding pathways for biotin when pulling the complex from
C- or N-terminus; In 2020 (29), in a study that demanded
400 80-ns long replicas for a total of 32 us of simulation
time, the four-subunit streptavidin complex bound to a single
biotin molecule was simulated to reveal how the tethering
geometry affects experimental measurements. Exploring more
complicated interfaces, in silico SMFS reached hundreds of
replicas totaling dozens of us of MD simulated time when
modeling protein complexes, providing an unprecedented level
of detail and explaining the origins of mechanostability in
protein:protein interactions (23, 30-32). More recently, com-
bining this in silico SMFS approach with Al-based structure



prediction has allowed for the first screening of mechanical
properties of dozens of Staphylococcus’ adhesins during ini-
tial steps of infection (24) (see Fig.1). These efforts were made
possible largely by the use of National Science Foundation
(NSF)-funded supercomputers, which allowed parallel broad
sampling of in silico SMFS experiments at multiple pulling
speeds, tethering geometries, and interface variants. Despite
technological advances, there is still a large gap between time
scales accessible through experimental and in silico SMFS.
While state-of-the-art resources have significantly broadened
researcher’s access to all-atom MD simulations that span mil-
lisecond time scales, few groups can reliably obtain enough
replicas of independent simulations as to fit the models used
to explain experimental observations. A recent example of
this limitation was explored by using coarse-grained MD
simulations to connect all-atom and experimental SMFS data
for Staphylococcus’ adhesins (33).

In recent decades, supercomputers have been used to simu-
late increasingly complicated molecular complexes (34). The
first all-atom simulation of the entire HIV-1 viral capsid (35),
for example, relied on cryo-electron-microscopy (Cryo-EM)
data to build a 64 million atom system. In 2013, simulating this
system required 128 thousand cores of the NSF-funded Blue
Waters supercomputer to achieve 200ns of total simulation
time for the entire capsid. Almost ten years later, the SARS-
CoV-2 viral envelope was simulated using a combination of
Al-powered methods and high-performance computing (HPC)
resources from the Department of Energy-funded Summit su-
percomputer. This research led to the creation of a 305 million
atom simulation that elucidated how elements of the SARS-
CoV-2 viral envelope interact (36), which still achieved 68
nanoseconds-per-day of simulation performance. Large-scale
simulation efforts have also targeted realistic compositions
of cell membranes (37), and the electron transfer process in
mitochondrial complexes (38).

More than broadening the reach of simulations to increas-
ingly larger systems, high-performance computing has also
been used to extend the range of enhanced sampling and free
energy calculation in MD simulations (39). Many macromolec-
ular complexes would require seconds of simulated time in
order to spontaneously visit relevant biological states multiple
times. That is why the continuous improvement of enhanced
sampling methods is crucial for computational biophysics. For
example, researchers used a weighted ensemble strategy to
simulate the spike protein trimer of SARS-CoV-2 in over 130
us of trajectories, obtaining hundreds of spontaneous opening
and closing events (40) that showed how glycans control
the motion of this macromolecular complex. One particular
challenge for the exascale era that is already being addressed
today is the integration of quantum-mechanical/molecular-
mechanical (QM/MM) calculations to classical simulations,
which will require efficient communication as both simu-
lation size and computer clusters grow over time(41, 42).
QM/MM simulations have been used to investigate not only
chemical reactions in biological molecules (43), but also to

understand how these molecules behave in highly polarizable
environments, such as biological membranes (44). In a hybrid
QM/MM approach, the charging of a tRNA molecule was
examined using a massively parallel computation strategy that
included a string method with swarms of trajectories to en-
hance the sampling of possible chemical reactions paths (45).

While exascale computing achieved by large supercom-
puter clusters will revolutionize computational biophysics
research in the coming years, petascale research is already
accessible today. The combination of drastic increase in com-
puting power within similar price ranges for CPUs, the devel-
opment of new architectures for GPUs, and improvements in
supercomputer infrastructure and usability allows researchers
to reach unprecedented levels of simulation throughput to
connect in silico and in vitro experiments.

Improvements made to speed up MD software pack-
ages (46, 47), coupled with novel hardware, allowed re-
searchers to accumulate collections of simulation data of
unprecedented size. In fact, the development of specialized
GPU kernels and the accelerated rate of inter GPU com-
munication have greatly accelerated MD packages, both in
small and large systems. Now, a major part of computa-
tional biophysics efforts are focused on the development of
analysis methods that can accelerate data processing and
extraction of information from simulations. Researchers are
engaging this analysis challenge on many fronts, from graphi-
cal user interface(GUI)-based packages like QwikMD (48, 49),
to coding-oriented packages such as MDAnalysis (50), Py-
Traj (51, 52), MDtraj (53), and Bio3D (54). Specialized analy-
sis methods have also been developed to detect large-scale low
frequency movements in macromolecular complexes (55, 56),
or to represent biomolecules as a graph and detect cooperative
motions (57, 58). The common theme among these and other
methods is their ability to represent macromolecular dynamics
in low-dimensional spaces that are amenable to both visual-
ization and analysis. Thankfully, the origin of this problem
also provides solutions. Computer clusters are regularly used
to accelerate the analysis of results they created, and can
even help visualizing systems too large to leave their massive
storage devices (59, 60).

Experimental biology advances have been equally impor-
tant in pushing the boundaries of computational biophysics
research. Cryo-EM has occupied a prominent role in such
studies given its ability to provide large-scale architectures
for macromolecular complexes, and even detailed structures
for their building blocks. From the structure of the eukaryotic
translational initiation complex (61) to the structure of the
mitochondrial complex 1(62, 63) or the organization of the
entire nuclear pore complex of Saccharomyces cerevisiae (64),
Cryo-EM has continued to provide a macroscopic view for
many research efforts, opening the doors for the detailed exam-
ination of dynamics that all-atom simulations can provide. A
notable example was the determination of the water-mediated
proton transport through the Vj proton channel of a yeast
ATPase (65), which revealed how the transport mechanism



relies on specific protonation states of amino acid side chains
throughout the channel. The CryoEM and MD techniques
outlined here can be combined for even more synergistic
research, providing hybrid approaches for structure deter-
mination (66, 67), such as MD Flexible Fitting (68) and
Damped-Dynamics Flexible Fitting (69). The exploration of
macromolecular dynamics can also be accelerated by combin-
ing experiments and simulations(70), including methods such
as CryoFold(71) and Metainference(72), where short-lived in-
termediate states can be computationally inferred to describe
large-scale molecular rearrangements.

Moving towards cell-scale models, different simulation
and analysis techniques are combined to reach length-scales
and time-scales that would be impossible to achieve only a
few years before. Already in 2008 researchers were exploring
how crowding in the Escherichia coli cytoplasm affected
molecular diffusion and bimolecular association reactions
using coarse grained reaction diffusion simulations (73). In
2010, a landmark study used the same biological target, the E.
coli cytoplasm, and its 50 most abundant macromolecules, to
perform a Brownian dynamics (BD) simulation that assessed
crowding effects on protein folding, molecular association,
and thermodynamic properties in the cytoplasm (74). Recently,
another group used an all-atom approach to build a model
of the E. coli cytoplasm composed of 1.5 million atoms
and submitted it to a total of 3 us of molecular dynamics
simulation (75), focusing on the technical aspects of preparing
and validating all-atom models for future larger-scale models
of bacterial cytoplasm.

A tour de force that exemplifies the union of experi-
mental and computational biophysics was the exploration
of principles of cellular energy metabolism in Rhodobacter
sphaeroides (76) ( see Fig. 2). While all individual molecules
and protein complexes involved in the photosynthetic energy
conversion mechanism of the bacteria’s chromatophore were
previously resolved, their structure and pairwise interactions
are not sufficient to provide a unified model for this mecha-
nism. It was necessary to combine atomic-force microscopy,
electron microscopy, crystallography, mass spectrometry, pro-
teomics, and optical spectroscopy data to build the model for
the chromatophore. Beyond protein structures and the lipid
composition of the membrane in which proteins were im-
mersed, the very arrangement of all components was mapped
to build a 100 million atom model for the organelle. With all
this information, researchers could explore multiple aspects
of the photosynthetic energy conversion mechanism. Simu-
lations ranged from QM/MM, to obtain excitation energies
of pigments, to all-atom, coarse grained, and BD, reaching
hundreds of microseconds of sampling to track the internal
movements of the electron carrier Cytochrome c;. Evidently,
the effort relied on supercomputing resources and a variety of
specialized algorithms and software packages made available
to the community.

Much of the work described so far focuses on studying a
protein or complex within its local biological environment.

Figure 2: Model of an 100 million atom chromatophore,
an organelle resposible for light-harvesting in Rhodobacter
sphaeroides. The model was built using state-of-the-art su-
percomputers to combine atomic-force microscopy, electron
microscopy, crystallography, mass spectrometry, proteomics,
and optical spectroscopy data. Figure adapted from Singharoy
et. al., 2019 (76).

Similarly, the study of chemical reactions can benefit from
contextualizing them within the greater network to which they
belong. The field of chemical kinetics, and in particular the
discreteness and stochasticity inherent to chemical reactions
within living cells, has seen great advances with the develop-
ment of theory and computational methods for time-resolved
simulations of reaction networks (77). Such simulations allow
researchers to explore a variety of behaviors observed during
cell growth, proliferation, and differentiation, for example
with the modeling of self-regulated feedback loops in gene
expression circuits (78).

While many reactions in a cell can be approximated using
deterministic models, such as ordinary differential equations
(ODE) or flux balance analysis, in order to reach whole-cell
coverage one must integrate biochemical systems that rely
on species with low copy numbers, such as mRNAs or tran-
scriptions factors. In such cases, stochasticity is unavoidable,
and researchers have developed software packages to describe
reactions kinetics that can even incorporate spacial inhomo-
geneity. A prominent example was the recent whole-cell model
of the model organism JCVI-syn3A, a minimal cell with an
artificially reduced genome that allowed for unprecedented
model coverage of a living organism (79). This effort counted
with a variety of modeling approaches, and integrated ODEs
with reaction diffusion master equation (RDME) models to
describe an entire cell cycle of this cell, including energy
metabolism, DNA replication, and gene expression. The same
research also counted with an extensive array of experimental
input, from qPCR to Cryo-electron tomograms.

In the context of whole-cell modeling, the development of



large-scale computing resources was doubly important. First,
it allowed for rare events to be extensively sampled, which is
essential for the study of stochastic systems and for validating
models using experimental observations. Second, it allowed
researchers to meet the parameter optimization demands from
numeric approximations of complex reaction networks. Cell-
scale models are inevitably underinformed, and researchers
depend on parameter estimation and careful sensitivity anal-
ysis to properly analyze model results. StochSS (80), for
example, is a stochastic simulation package already integrated
into cloud computing environments, allowing researchers to
access extensive computational power with ease. Lattice Mi-
crobes (81), on the other hand, focused on GPU-specialized
code to extend the reach of RDME simulations into larger
spacial coverage of a cell and longer simulation times, lever-
aging the impressive advances seen in GPU hardware over
the past decade.

CONCLUSION

Since all software packages described here are freely available
for academic use, and many are easily accessible through web
interfaces, it is easy to forget about the costs associated with
creating and providing such services. AlphaFold, for example,
reportedly took many days of training using the most advanced
hardware to reach the published model, and is distributed with
over two terabytes of databases. Training the final version
of this model (and ignoring intermediate versions) was esti-
mated to require dozens of thousands of dollars in computing
costs, resources largely unavailable to the vast majority of
academic researchers in the world. Thinking about the big
picture, the need for extensive computing resources in many
fields justifies investments of hundreds of millions of dollars
made by governments to build the fastest supercomputers in
the world. Universities also recognize the need for compu-
tational infrastructure by funding new computing-oriented
faculty with larger startup packages that approach the ones
offered to experimental counterparts. This hidden cost of
large-scale computing comes with an environmental impact:
Australian astronomers estimated that their supercomputer
usage is responsible for emitting the equivalent of approxi-
mately 15 kilotons of CO, per year (82). This is prompting
supercomputing centers and cloud computing providers to
be more transparent about energy expenditure, helping re-
searchers to balance computational power and environmental
impact (83). Hopefully, a combination of more efficient soft-
ware and renewable energy sources will soon power all our
research needs.

Between state-of-the-art HPC infrastructure easily acces-
sible through cloud instances and breakthroughs in quan-
tum computing already being used in drug development ef-
forts (84), computational biophysics continues to benefit from
private sector investments. NVIDIA routinely makes their
hardware available for universities, so academic researchers
can develop new algorithms using the latest advances in GPU

architectures, and AMD’s GPUs currently power some of the
largest supercomputers in the world. Microsoft, Amazon, and
other cloud service providers offer free resources for students
and academic rates for laboratories, not to mention the tech
giants such as Google and Facebook who are continuously
funding algorithmic developments in their Al-specialized
divisions. In fact, both basic and applied research in computa-
tional biophysics now enjoy the neural network architectures
originally designed for computer vision or text processing.
While there are notable case-specific developments, such as
AlphaFold, recurrent neural networks originally designed for
language processing now power DNA sequence analysis, and
facial recognition algorithms now process microscopy images.

While computational research in biophysics has always
been driven by improvements in experimental methodologies,
much of the past research has focused on establishing compu-
tational methods themselves. Now, with the advances made in
computer hardware, in silico models can capitalize on the algo-
rithms and theories developed over the past decades to literally
reach the time- and length-scales observed experimentally. As
a result, computational research can routinely and accurately
create new proteins, propose atomic-level modifications to
small molecules, and design regulatory circuits using molecu-
lar biology building blocks. More than simply recapitulating
experimental observations, the current range of possibilities in
computational biophysics allows us bring detail and provide
missing information that is our of reach for in vitro models.
Due to these and other advances, in silico research has gained
both the attention and trust of experimentalists, which is re-
flected in major combined computational-experimental efforts
now frequently seen in high-impact publications. Our path
forward will include new combinations of computational and
experimental efforts, with unprecedented precision and reach,
ultimately allowing us to challenge biological assumptions
and propose new models for biophysical phenomena.
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