10

11

12

13

14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

Title: Uncovering structural ensembles from single particle cryo-EM data using cryoDRGN

Authors: Laurel F. Kinman'*, Barrett M. Powell', Ellen D. Zhong'23**, Bonnie Berger?34*,
Joseph H. Davis"?*

Author information: 'Department of Biology, 2Computational and Systems Biology, *Computer
Science and Attificial Intelligence Laboratory, “Department of Mathematics, Massachusetts

Institute of Technology, Cambridge, MA 02139.

*Equal contribution

*Correspondence: zhonge@mit.edu, bab@mit.edu, jhdavis@mit.edu

Key papers: 1) Zhong et al. Nature Methods 2021 [doi: 10.1038/s41592-020-01049-4]; 2)
Schoppe et al. Journal of Biological Chemistry 2021 [doi: 10.1016/j.jbc.2021.101334]; 3) Gui et
al. Nature Structural and Molecular Biology 2021 doi: 10.1038/s41594-020-00530-0].

Running Title: Single particle cryo-EM data analysis with cryoDRGN.

mailto:zhonge@mit.edu
mailto:bab@mit.edu
mailto:jhdavis@mit.edu

O NO O WN -

[N | W G
abr, WON-~ 00O

Abstract

CryoDRGN is a machine learning system for heterogenous cryo-EM reconstruction of proteins
and protein complexes from single particle cryo-EM data. Central to this approach is a deep
generative model for heterogeneous cryo-EM density maps, which we empirically find effectively
models both discrete and continuous forms of structural variability. Once trained, cryoDRGN is
capable of generating an arbitrary number of 3D density maps, and thus interpreting the resulting
ensemble is a challenge. Here, we showcase interactive and automated processing approaches
for analyzing cryoDRGN results. Specifically, we detail a step-by-step protocol for analysis of the
assembling 50S ribosome dataset (Davis et al., EMPIAR-10076), including preparation of inputs,
network training, and visualization of the resulting ensemble of density maps. Additionally, we
describe and implement methods to comprehensively analyze and interpret the distribution of
volumes with the assistance of an associated atomic model. This protocol is appropriate for
structural biologists familiar with processing single particle cryo-EM datasets and with moderate
experience navigating Python and Jupyter notebooks. It requires 3-4 days to complete.

0O ~NOoO O WN -

A2 A D DDOWOWWWWWWWWWNDNDNDNDNNNDNNMNDN=_2=22 "2 A A A
A WON-_2 000N PRPWOWCN-_2~0000NOCDAOAOPRRON_00O00O0NOOOGPA,WN-0O©

Introduction

Proteins and their complexes exist in dynamic equilibria: assembling, disassembling, and
undergoing conformational changes. Many of these dynamics are intrinsically linked to function,
yet, often, they are poorly understood on a structural level. In recent years, cryo-EM has emerged
as a powerful tool for studying protein structure’® and the single-molecule nature of cryo-EM
makes it an appealing choice for studying protein motions, as millions of individual particles
sampled from an underlying energy landscape can be visualized on a single grid*®. However,
studying highly heterogeneous cryo-EM datasets has proved to be a challenging computational
problem, as most traditional approaches rely on extensive classification and particle averaging'®
2 to produce approximately static structures, thereby gaining resolution while obscuring or
blurring underlying structural variation®*:13,

We have developed an approach that leverages machine learning models capable of embedding
heterogeneous single particle cryo-EM images within a low-dimensional latent space and
generating 3D volumes as a function of that latent embedding®. Our approach, named cryoDRGN,
takes as inputs a particle stack and poses from a consensus 3D refinement, and uses these data
to train a neural network architecture based on the variational autoencoder (VAE)'*'°. The overall
architecture consists of two neural networks: an image encoder network, which assigns a latent
embedding z; to each particle i, and a volume decoder network, which reconstructs a 3D density
map V; given z. The development, theoretical foundations, and limitations of this work have been
described previously®'®. We have applied this approach to a number of publicly-available
datasets, and found that cryoDRGN can uncover rare structural states in assembling bacterial
ribosomes and help visualize continuous conformational changes in spliceosome complexes®.
CryoDRGN has also recently been applied to visualize a tilting motion of radial spike proteins
important in dynein motors and ciliary motility”.

To illustrate the process of training a cryoDRGN model on a cryo-EM dataset and interpreting the
resulting outputs, we present a full protocol and pipeline to analyze an assembling large ribosomal
subunit dataset'® (EMPIAR-10076) that exhibits rich compositional and conformational
heterogeneity and has been previously characterized®®'”. The presented pipeline details: 1) the
preparation of inputs for cryoDRGN given a particle stack and corresponding consensus
reconstruction; 2) training of an initial low-resolution cryoDRGN model; 3) filtering the input
particle stack based on the results of low-resolution training; 4) high-resolution cryoDRGN
training; and 5) analysis, visualization, and interpretation of the resulting structural ensembles
with the assistance of an atomic model (Figure 1).

Comparison with other methods

Traditional approaches to handle heterogeneity rely on successive rounds of user-driven discrete
2D- and 3D-classification, which separate particles into a few independent underlying structures?.
Success of these approaches is strongly dependent on selection of the appropriate number of
classes, which is unknown a priori, and initial models used for refinement, which can be a
significant source of bias. Moreover, this strategy relies on a fundamental assumption that the
data are well-described by a finite and identifiable number of true volumes. For datasets

O ~NOoO O WN -

A2 PA D DDOOWOWWWWWWWWNDNDNDNDNDNNNMNDN=_2=22 a2 A A
A WON -2 000N PN~ 000N OWON_O0CO0OONOOOOGPA,WON-OO©

displaying conformational heterogeneity, in which particles exist in states sampled along one or
more continuous trajectories, this assumption does not hold. Even for datasets that show large
degrees of discrete compositional heterogeneity, questions still remain about how and when to
stop classifying, and how robust results are to classification parameters’”.

More recently, alternatives to traditional global 3D classification, including multi-body refinement'3
and focused classification'®, have been developed. However, these approaches are inherently
limited by the assumption that the structural heterogeneity can be decomposed into a small
number of rigid bodies and that the user can identify and define these rigid bodies using masks.
In contrast, a number of tools for modeling continuous heterogeneity have also emerged,
including principal component analysis based approaches such as cryoSPARC’s 3D variability
analysis®, neural network based approaches like cryoDRGNS8, 3DFlex'®, and e2gmm?® aimed at
generating heterogeneous ensembles of 3D-density maps, and analogous methods for directly
inferring ensembles of atomic models?'?2. 3DVA models heterogeneity as a linear combination of
eigenvolumes, and is thus limited in its ability to model complex, nonlinear motions, whereas
3DFlex learns a single underlying structure and a set of continuous deformations of this structure
and may therefore be challenged by discrete heterogeneity caused by either large cooperative
movements, or by compositional variation within a complex.

CryoDRGN has broad applicability for modeling complex ensembles containing both continuous
and discrete heterogeneity, with the ability to generate an arbitrary number of maps from the
imaged ensemble. We have found that cryoDRGN is sufficiently powerful to model non-linear
continuous motions and discrete changes in complex composition, yet, unlike many of the
aforementioned methods, does not require strong structural priors like the number of expected
classes or specification of rigid domains that are expected to undergo conformational changes.
Here we provide a protocol detailing how cryoDRGN can be applied to an exemplary
heterogeneous dataset and describe additional recently developed tools to aid in analyzing and
interpreting the resulting structural ensembles.

Overview of the procedure

This protocol was developed through comprehensive experimentation and analyses of a variety
of cryo-EM datasets across a wide variety of systems. The presented protocol encodes our
current best practices in real application settings.

Preparing cryoDRGN inputs

Within the cryo-EM single particle reconstruction pipeline, cryoDRGN is applied between the
steps of traditional 3D reconstruction and model-building (Figure 1). As inputs, cryoDRGN
requires a stack of extracted single particles and their corresponding poses and CTF parameters,
which are derived from a traditional consensus 3D reconstruction in which the heterogeneous
particles are aligned in the same reference frame to a single volume. In general, one should
observe well-defined secondary structure in portions of the refined volume as indicative of
accurately posed images before initiating cryoDRGN training. Notably, we have found forgoing
stringent particle filtering at this stage often expands the range of heterogeneity cryoDRGN learns.

O ~NO O WN -

A2 PR, DDDWOWWWWWWWWWNDNDNDNDDNDNDNDNDNDDNNDN=_2=2-2AA O O A A A
A OWON-_2 000N PRPWON-_00D00O0NOOODAOPR, WN-O0CO0OONOOOGPA,WN-~OO©

To improve resolution, poses and per-particle CTF parameters should be optimized, optionally
through the use of non-uniform refinement? or Bayesian polishing?*.

CryoDRGN’s required inputs can be generated by many single particle reconstruction packages,
and we provide preprocessing tools to convert from cryoSPARC"? and RELION? output formats.
During this preprocessing stage we recommend users downsample the particle stack to a lower
resolution to facilitate rapid initial network training for dataset filtering. Finally, we back-project the
downsampled particle stack using the cryoDRGN-parsed inputs and compare with the refined
volume to confirm that the inputs have been correctly prepared (Extended Data Figure 1).

Training cryoDRGN networks

A cryoDRGN model is trained by iterating through the dataset of particle images and updating
neural network parameters with stochastic gradient descent on the loss function described below.
One epoch of such training entails passing all particles through the encoder and decoder networks
once. The mean squared error between each input image and the corresponding image
reconstructed by the decoder network is used to estimate a ‘reconstruction loss’ that is used in
conjunction with a ‘regularization loss’ on the latent embeddings to iteratively update the network
parameters (Figure 2A). At the end of every iteration the updated parameters and latent space
embedding for each particle are saved as weights. [epoch] .pkl and z. [epoch].pkl,
respectively. Thus, the output directory following 50 epochs of training will contain 50 network
weights files, 50 per-particle latent embedding z files, a config.pkl file containing the input
parameters and settings used, and a run. 1og file containing information about the run.

Training a neural network can be computationally expensive. We have recently implemented GPU
parallelization and accelerated mixed-precision training which can lead to considerably faster
network training, particularly for large network architectures and image sizes. However, care must
be taken to ensure that training has converged as training dynamics are altered when using GPU
parallelization. In this protocol, we use a single GPU and mixed-precision training.

We also describe intuitive heuristics to judge when neural network training has converged and is
unlikely to benefit from additional epochs of training (Box 1, Figure 2, Extended Data Figures
2,4,5). For simplicity, we independently assess the convergence of the encoder and decoder
networks and focus our assessment on particles likely to be of interest. Here, we define particles
of interest as those in well-populated neighborhoods of latent space, as these neighborhoods are,
by definition, well supported by the data. First, we examine encoder convergence as the training
epoch after which particles of interest only minimally change their relative positions in latent
space. Convergence is monitored epoch-to-epoch by visual comparison of UMAP embeddings
(Figure 2B), and by characterizing particle movement in latent space during training (Figure 2C).
Second, we note decoder convergence as the training epoch after which density maps
corresponding to particles of interest no longer change. Here, convergence is monitored by
generating volumes from a consistent set of particles of interest and comparing map-to-map
correlation coefficients and FSC curves between epochs (Figure 2D-G, Extended Data Figures
2,4,5). We provide a dedicated script within cryoDRGN that automatically calculates and plots

5

NOoO O WON -~

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40

these criteria. Once training of the encoder and decoder networks has converged, a subsequent
epoch can be used for filtering or analysis, with the caveat that we occasionally observe overfitting
to noise. Thus, we recommend examining volumes for signs of increased noise, streaking
artifacts, or other pathologies in the density maps. If such pathologies are observed, an earlier
epoch should be analyzed.

Particle filtering

Image heterogeneity within a given cryo-EM dataset can result from true structural heterogeneity
of the particle of interest or from the presence of contaminants such as ice or edge artifacts. To
achieve high-quality reconstructions in traditional cryo-EM processing workflows, these
contaminants are often removed by iterative rounds of 2D- or 3D-classification®. We have
observed that the latent embeddings produced by cryoDRGN can distinguish between true
particles and contaminants, and thus represent a powerful alternative method to filter particle
stacks®. Because training time scales with both the number of particles and the box size, and
because the presence of contaminants consumes representation capacity in the neural networks,
we recommend using an initial round of low-resolution training to eliminate contaminants before
proceeding to high-resolution training. Here, we describe one round of particle filtering (Figure 3,
Extended Data Figure 3); however, when working with other datasets, users may find it useful
to iterate through multiple rounds of particle filtering.

To facilitate this process, we provide a Jupyter notebook, cryoDRGN filtering.ipynb, that
allows users to filter particles interactively or by using automated selections based on features
(e.g. clusters or z-scores) of the particle embeddings (Box 2). The choice of particle filtering
method is dataset-specific; datasets with highly featured latent representations may be more
amenable to filtering by clustering or interactive selection, whereas datasets with less featured
latent representations may require filtering based on z-score outliers. Particle images selected by
any of these approaches can be visualized within the notebook, enabling users to examine these
particles manually and adjust their selections (Extended Data Figure 3). We also provide tools
to export the selected particles to cryoSPARC or RELION to further assess particle subsets by
2D-classification or traditional 3D-reconstruction. Lastly, this notebook allows users to save a
.pk1 file that records which particles have been retained (or excluded) in the filtering process.
This file can be directly passed to cryodrgn train vae for additional rounds of training.

Interactively exploring cryoDRGN models

Generally, analysis of a cryoDRGN model involves both visualizing the latent embeddings of
particle images and generating volumes from the latent representation to understand the
structural heterogeneity within the dataset (Figure 4). The cryodrgn analyze command
automates these tasks by: 1) performing principal component analysis (PCA) and Uniform
Manifold Approximation and Projection?” (UMAP) on the latent embeddings to aid in visualization
of high (>2) dimensional latent spaces (see Glossary); 2) generating representative volumes from
different regions of the latent space; and 3) producing representative structural trajectories
through latent space.

o A WOWN -

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28
29

30

31
32
33
34
35
36
37
38
39
40

To visualize a representative set of volumes, cryodrgn analyze generates volumes after k-
means clustering of the latent embeddings — volumes are generated at the centroid location of
each k-means cluster. Importantly, the k-means algorithm is not used to identify clusters or assign
particles to classes, but, instead, is used to partition the latent space into k regions (by default,
k=20, and the number of sampled density maps may be modified by passing the --ksample
argument to cryodrgn analyze).

To visualize representative structural trajectories, cryodrgn analyze generates structures
along the first two principal component axes of the latent space, and trajectories along more latent
dimensions can be generated using the cryodrgn pc traversal tool. By default, the volumes
are generated at equally spaced points between the 15t and 99" percentile of the data distribution
projected onto each principal component. The PC trajectories can highlight major modes of the
variability in the structure, however, the principal components of cryoDRGN's latent space are not
equivalent to the principal components of the volumes due to the nonlinear nature of the decoder.
This contrasts with tools such as cryoSPARC’s 3DVA?®. Additionally, it is important to note that the
described PC trajectories do not necessarily reflect biologically meaningful paths, and that not all
volumes along these paths will originate from regions of the latent space that are equally well
supported by data.

In addition to visualizing structures present within their dataset, users may also wish to interpolate
between two or more such structures. The cryodrgn graph traversal command provides
a means of doing so by building a nearest-neighbor graph between all particles’ latent
embeddings, finding the shortest path on the graph between specified particles, and generating
volumes along the visited nodes. Unlike standard approaches that naively morph between end-
point volumes or interpolate along a principal component of variability independent of underlying
data support, all of the structures produced by this traversal approach are supported by data from
the input particle stack, and thus may represent a more probable structural trajectory.

The cryodrgn analyze command also produces a Jupyter notebook, cryoDRGN viz.ipynb,
for interactive analysis. This notebook can be used to analyze the latent space in greater detail,
to generate volumes at selected points of interest in the latent space, and to export subsets of
particles for traditional 3D reconstruction and model building using other tools.

Interpreting structural ensembles

While cryodrgn analyze provides an initial characterization of the heterogeneity present within
the dataset, a more systematic interrogation of the learned structures allows one to fully explore
and quantify the structural states present. There are several possible approaches to perform this
more systematic sampling and structural characterization, each leveraging cryoDRGN’s ability to
generate large numbers of data-supported density maps. We have found supervised “subunit
occupancy analysis”®3° to be particularly informative for compositionally heterogeneous
datasets. With this method, users designate structural elements of interest (e.g. RNA helices,
protein complex subunits, polypeptide chains, or elements of protein secondary structure) within
an aligned atomic model, and then quantify the presence or absence of each element across the
structural ensemble produced by cryoDRGN. Hierarchical clustering of the resulting structural

7

A WODN =

o0 N O O

11

element occupancy matrix creates a highly interpretable visualization of the overall compositional
heterogeneity across the structural ensemble, and reveals patterns in how these subunits are
occupied, including positive and negative cooperative occupancy between individual structural
elements.

We note that this subunit occupancy analysis is limited by the underlying assumption that an
appropriate atomic model exists and that subunits occupy their native conformation within a
complex. When complexes exhibit conformational heterogeneity, it may be necessary to fit
ensembles of atomic models using tools such as Molecular Dynamics-based Flexible Fitting®'.

In sum, this protocol provides users with a guided framework to analyze and interpret a richly
heterogeneous dataset, and we expect that the approaches and tools described herein will be
broadly applicable to the analysis of other datasets.

O NO O WN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Materials

EQUIPMENT

The minimal compute requirements for this protocol are as follows: a Linux workstation or
cluster equipped with at least one NVIDIA GPU (Pascal, Turing, Volta, and Ampere
architectures have been tested), 128 GB RAM, and 250 GB disk space for all raw data
and outputs. We note that these requirements are similar to those of traditional cryo-EM
reconstruction software.
Performance will vary based on system configuration. For compute-expensive steps of the
protocol, we provide approximate timings using a system equipped as follows:

o CPU: Dual Xeon Gold 6242R processors

o GPU: NVIDIA 3090 RTX (single GPU)

o RAM: 512 GB

REAGENTS - SOFTWARE

CryoDRGN installation: Updated installation instructions are maintained at
https://github.com/zhonge/cryodrgn. Installation instructions for cryoDRGN v0.3.5 which
is used in this paper can be found in Supplementary Protocol 1.

UCSF ChimeraX??: Installation instructions can be found at
https://www.cgl.ucsf.edu/chimera/download.html

RELION v3.1.1%: Installation instructions can be found at
https://relion.readthedocs.io/en/latest/Installation.html

cryoSPARC (optional)': Installation of version 2.4 from https://cryosparc.com/download
was used in this protocol.

Occupancy analysis: installation instructions, segmented .pdb files, Python and shell
scripts, and Jupyter notebook for analysis available at
https://github.com/lkinman/occupancy-analysis. Version 0.1.2 was used in this protocol.

REAGENTS - DATASETS

EMPIAR-10076 particle stack: Download from EMPIAR web interface
https://www.ebi.ac.uk/empiar/EMPIAR-10076/ or via

rsync -avzP empiar.pdbj.org::empiar/archive/10076 ./
EMPIAR-10076 reconstruction and reconstruction metadata: Download 00 inputs
from https://doi.org/10.5281/zenodo.5164127, or follow the cryoSPARC reconstruction
guide in Supplementary Protocol 2.
(Optional) all results from this protocol can be downloaded via a web browser from
https://doi.org/10.5281/zenodo.5164127. Files can alternatively be downloaded from the
command line:

pip install zenodo get

zenodo get --md5 -w urls.txt 5164127
wget -c -i urls.txt

mdSsum -c¢ mdSsums.txt

conda install zstd

https://github.com/zhonge/cryodrgn
https://www.cgl.ucsf.edu/chimera/download.html
https://relion.readthedocs.io/en/latest/Installation.html
https://cryosparc.com/download
https://github.com/lkinman/occupancy-analysis
https://www.ebi.ac.uk/empiar/EMPIAR-10076/
https://doi.org/10.5281/zenodo.5164127
https://doi.org/10.5281/zenodo.5164127

0O ~NO O WDN -

BB, DAD DWW WWWWWWWWNDNNDNDNDNDDNNDMNDN-=2=22AA A a A A A
A ON_2 OO0 NODOAOPRPWON 000N PRPRWON-_~OCCOONOOCO P, WOWDN -~ OO

for i in *.tar.zst; do tar --use-compress-program=unzstd -
xvEf ${i}; done

Procedure

[40 minutes] Prepare cryoDRGN inputs

1.

Connect to the workstation containing the cryoDRGN installation and all downloaded files.
We will assume that the base directory contains the downloaded EMPIAR-10076 particle
stack at ./10076/data/Ll7Combine weight local.mrc and the downloaded
reconstruction and reconstruction metadata at
./00_inputs/cryosparc P71 J21 004 volume map.mrc and ./00 inputs/
cryosparc P4 J33 004 particles.cs, respectively. The majority of the commands
in this protocol will be run within this base directory. Ensure the cryoDRGN conda
environment is activated, which is required for all cryodrgn commands. Enter the
following at the terminal.

cd /path/to/base/directory
conda activate cryodrgn
cryodrgn —--help

The last line provides a list of possible cryoDRGN commands. To learn more about a
particular cryoDRGN command, simply enter cryodrgn [command] --help.

Convert poses from the downloaded cryoSPARC refinement to cryoDRGN format as
poses.pkl, specifying the refinement box size of D=320px. Rename the particles.cs
file appropriately if you ran your own cryoSPARC refinement following Supplementary
Protocol 2.

cryodrgn parse pose csparc --help
cryodrgn parse_pose_csparc
00 inputs/cryosparc P4 J33 004 particles.cs -D 320 -o poses.pkl

CryoDRGN will report pose information for the first particle as well as the number of
particles parsed (131,889).

Equivalent commands exist for preprocessing poses and CTF from RELION outputs as
parse pose star and parse ctf star. If using a star file from RELION 3.1 or later,

include the --relion31 flag in this command.

Convert CTF parameters from the downloaded cryoSPARC refinement to cryoDRGN
format as ctf.pkl.

cryodrgn parse ctf csparc
00 inputs/cryosparc P4 J33 004 particles.cs -o ctf.pkl

10

O~N O O WN -

A DA DA DDA WOWWWWWWWWWNDNNDNDDNDNDNNNDNDN=_2=22 22 O A O A A A
A WON 20 00N PRWON 000N APRRWN-_~000NO0OGPA~,WN-OOO

CryoDRGN will report relevant imaging parameters including image size and pixel size.

Downsample the dataset to D=128px and D=256px, which we will use in the first and
second training rounds, respectively. Here we split the particle stacks into 50,000 particle
sub-stacks with --chunk to decrease the memory footprint. These chunked .mrcs files
are identified by an auto-generated particles. [px] .txt file.

cryodrgn downsample 10076/data/Ll7Combine weight local.mrc -D 128
-0 particles.128.mrcs --chunk 50000

cryodrgn downsample 10076/data/Ll7Combine weight local.mrc -D 256
-0 particles.256.mrcs --chunk 50000

Verify that all data was parsed correctly by back-projecting the first 10,000 particles and
comparing the resulting map (backproject.128.mrc) with the refined consensus map
cryosparc P71 J21 004 volume map.mrc using ChimeraX. Overall, the back-
projected map should match the refined map well, albeit at lower resolution and with more
noise (Extended Data Figure 1).

cryodrgn backproject voxel particles.l128.txt --uninvert-data -—-
poses poses.pkl —--ctf ctf.pkl -o backproject.128.mrc

[5 hours] Train cryoDRGN networks

6. Run the cryodrgn train vae command to begin training. To expedite this initial

training run, we use a small neural network architecture (256x3) on the 128px
downsampled particles. A description of all available training parameters can be displayed
with cryodrgn train vae --help. If memory utilization is limiting on the GPU,
decreasing the --batch-size parameter (see Glossary) from its default value of 8 may be
helpful. However, training dynamics will also be affected and additional training epochs
may be required. Note also that the AMP acceleration used here is most effective for large
network architectures and image sizes that are a power of 2.

cryodrgn train vae particles.128.txt --ctf ctf.pkl --poses
poses.pkl --zdim 8 -n 50 --batch-size 8 --amp --uninvert-data -o
01 128 8D 256 > 01 128 8D 256.log &

Pausepoint: the training command will take several hours to run, depending on your
computational hardware. You can follow training progress with tail -f
01 128 8D 256.1og. Ifyourjob is interrupted or you otherwise want to restart or extend
training, you can resume from any epoch by adding --load
01 128 8D 256/weights. [EPOCH#].pkl to the above train vae command
Alternatively, you can specify --1oad latest to avoid providing the specific path to the
weights .pkl file for the most recent epoch.

11

O NO OO, WON -

W WWWWWWWWWNDNDNDNDNDNDNDNNDNDN_22 =2 2 a a A aa aa
O oo NGO A OWN-_O0OO0OONOODAOPRRWN-AOOONOOOGOPR~,WDN-~OO©

40
41

42

7. After 50 epochs of training have completed, we check if the network has converged such

that additional training would not be beneficial.

python /path/to/cryodrgn/utils/analyze convergence.py --help
python /path/to/cryodrgn/utils/analyze convergence.py
01 128 8D 256 49 --flip

The --flip flag used here changes the handedness of the map and should be set
accordingly in all subsequent steps that generate volumes.

All outputs are saved to 01 128 8D 256/convergence.49, including plots of each
heuristic convergence metric (Figure 2 and Extended Data Figure 2). A description of
the purpose, implementation, and interpretation of all convergence heuristics is included
in “Box 1: Convergence Analysis”. For each of these heuristics, a plateau is consistent
with convergence and, although individual metrics can be noisy and vary in a dataset-
dependent manner, we define convergence as the epoch upon which most of these
metrics have plateaued. For this training job, we examine the output plots in
01 128 8D 256/convergence.49/plots and observe convergence between
epochs 29 and 39.

These plots also give insight into training dynamics and the distribution of latent variable
embeddings. For example, the latent embedding of this dataset is highly featured with
clearly visible clusters in the UMAP embedding plots. This will not be the case for all
datasets, and many datasets exhibit a less featured latent space, yet display significant
heterogeneity when volumes are visualized from distal points in the latent space. This is
also a point where it may be useful to examine the volumes in
convergence.49/vols.[EPOCH#] directly for evidence of “overtraining” pathologies such as
increased noise or streaking artifacts. If overtraining artifacts are observed, users should
examine earlier epochs, as these may lack such pathologies.

In the event that training had not converged, users should return to step 6 (cryodrgn
train vae), increase the number of epochs to -n 100, and load the epoch 49 weights
with --load 01 128 8D 256/weights.49.pkl to resume training. Users would then
reassess convergence as above before proceeding with particle filtering and model
analysis. In general, the number of epochs should be chosen with the dataset size and
suitable training time in mind.

[30 minutes] Filter particles

9. Runthe cryodrgn analyze command to perform an automated analysis of the trained

cryoDRGN model at epoch 49:

cryodrgn analyze 01 128 8D 256 49 --flip —--Apix 3.275

12

O ~NO O OWON -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

10.

11.

12.

13.

This command runs PCA and UMAP on the embedded latent space, generates volumes
at 20 k-means cluster centers, and creates interactive Jupyter notebooks for further
visualization and analysis. Note that the user should provide the pixel size in angstroms
after accounting for downsampling (--2Apix). If the user wishes to change the number of
k-means cluster center volumes generated, this can be accomplished using the --
ksample flag. The --f1ip flag is set to invert volume chirality, as described above. Note
that all volumes generated in this protocol are generated from “on-data” positions in latent
space (see Glossary).

A new directory named analyze.49 was created within 01 128 8D 256 by cryodrgn
analyze. The directory contains subdirectories pc1, pc2, and kmeans20, along with
plots of the latent space (umap.png and z_ pca.png) and the Jupyter notebook files
cryoDRGN filtering.ipynb and cryoDRGN viz.ipynb. View the contents of this
folder to verify that the analysis script ran correctly.

Before proceeding to high-resolution training, we will eliminate contaminating particles
including edge artifacts and ice. Here, we demonstrate one possible filtering approach
using a combination of k-means and Gaussian mixture model (GMM) clustering of latent
space. Additional approaches involving manual selection or filtering on outlying latent
values are implemented within the notebook, and may be more appropriate for other
datasets (Box 2: Particle filtering; Extended Data Figure 3).

Open the cryoDRGN filtering.ipynb notebook within Jupyter Lab. See
Supplementary Protocol 3 for notes on how to access this Jupyter notebook remotely if
you are running this protocol on a compute cluster.

Check that EPOCH=49 in the third cell is set and run all cells up to the “Filter by cluster”
header.

Examine the volumes generated by k=20 k-means clustering using ChimeraX®? by
opening all volumes in the 01 128 8D 256/analyze.49/kmeans20 directory.
Comparing the centroid locations of these clusters in UMAP space, as visualized within
the notebook, to their corresponding volumes suggests that for this dataset the central
teardrop-shaped UMAP cluster containing k-mean centers 11-19 contains primarily poor-
quality particles (Figure 3A-B). This conclusion is based on the appearance of the
volumes, with the volumes that fall within the “junk cluster” showing significant noise (11)
or much weaker density than the other volumes (12-19) at a uniform isosurface level. Note
that due to random initialization each time cryoDRGN and UMAP are run, users may find
this cluster differently shaped, comprised of different k-means classes, and in a different
area of their UMAP space. We note that the number and latent distribution of junk particles
is highly dataset-specific, and identification of which particles should be filtered often
requires detailed inspection of the volumes by the users, and is typically verified by
subsequent inspection of representative particles and corresponding cryoDRGN volumes,
and by traditional 2D classification or 3D reconstructions using these particles stacks.

13

O ~NOoO O~ WN =

N NN DNDN DA A A A A A A A
A WON-_~OCOONOODOPS,WDN-~OO0O

25
26

27
28
29

30
31
32

33

34
35
36
37
38
39
40

14.

15.

16.

17.

To exclude these particles from further analysis, move to the GMM clustering section of
the notebook. Run GMM clustering with G=5 or G=6 such that the plot of UMAP space
colored by GMM cluster shows a clean separation of the junk cluster (here, the central
teardrop-shaped cluster) from the rest. Due to GMM'’s random initialization, this may take
several iterations and may separate as one or two GMM clusters (Figure 3C).
Alternatively, this cluster may be specified by the corresponding k-means clusters (here,
11-19), or by selection with a lasso tool in the interactive selection section of the filtering
notebook (Box 2).

In the subsequent cells, define ind selected as an array of GMM cluster labels which
exclude the junk particle cluster (for our initialization, cluster 3), such as ind selected
= [0, 1, 2, 4, 5].

Under the “Save selection” header, run all cells to save the filtered particle indices as a
.pkl file that can be fed directly to cryodrgn train vae. We expect to have included
~100,000 particles and excluded ~30,000. Alternatively, download the filtered particle
indices from precomputed-01_128 8D 256.tar.zst as described in Materials.

Optionally, a .star file corresponding to these filtered indices can be created at the
command line for import into traditional reconstruction software. For example, export both
good and bad particles to assess particle filtering by 2D-classification in cryoSPARC
(Extended Data Figure 3) using the write star.py script found within the cloned
cryoDRGN software directory:

mv 10076/data/Ll7Combine weight local.mrc
10076/data/Ll7Combine weight local.mrcs

cryodrgn write starfile 10076/data/Ll7Combine weight local.mrcs
ctf.pkl --poses poses.pkl --ind
01 128 8D 256/ind keep.96478 particles.pkl -o ind keep.star

cryodrgn write starfile 10076/data/Ll7Combine weight local.mrcs
ctf.pkl --poses poses.pkl --ind
01 128 8D 256/ind bad.35421 particles.pkl -o ind bad.star

[1 day] Train high-resolution cryoDRGN networks

18.

Train a new model using the particles selected above at higher resolution (D=256px) and
using a larger network architecture (1024x3). Training this model is the most
computationally expensive step in this protocol, and using —-amp decreases training
times. If your workstation is equipped with less than 128 GB RAM, you may encounter
out-of-memory errors. These errors can be circumvented by the addition of --1azy to the
following command, allowing on-the-fly image loading from disk at a significant cost of
performance.

14

OO~ WN -

(o]

10
11

12

13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

19.

cryodrgn train vae particles.256.txt --amp --ctf ctf.pkl --poses
poses.pkl --zdim 8 -n 50 --uninvert-data --enc-dim 1024 --enc-
layers 3 --dec-dim 1024 --dec-layers 3 -o 02 256 8D 1024 -ind
01 128 8D 256/ind keep.96478 particles.pkl > 02 256 8D 1024.log &

Pausepoint: as in step 6, this training step will require many hours to complete.
Verify that the new model has converged by running:

python /path/to/cryodrgn/utils/analyze convergence.py
02 256 8D 1024 49 --flip

We find that the network has satisfactorily converged by the end of training according to
the criteria described in step 7 above (Extended Data Figures 4,5).

[30 minutes] Interactively explore cryoDRGN models

20.

21.

22.

23.

Run cryodrgn analyze at the desired epoch. Here, we will analyze epoch 49 based
on the convergence criteria described above.

cryodrgn analyze 02 256 8D 1024 49 --Apix 1.6375 --flip

Launch Jupyter Lab to explore the cryoDRGN viz.ipynb file located in
02 256 8D 1024/analyze.49. Run the cells sequentially, verifying that epoch
number 49 is entered in the third cell. This notebook produces a series of figures, some
of which allow for interactive visualization of the distribution of poses, CTF parameters, or
defocus values in latent space. Comparing these distributions allows us to check if the
latent variable is capturing variation in non-structural heterogeneity, such as imaging
parameters or viewing direction. Other figures include global pose distribution within the
dataset and the latent space colored by k-means clusters with center points of clusters
annotated (Extended Data Figure 6).

Visualize the k-means cluster center volumes generated by cryodrgn analyze in
ChimeraX by opening all volumes in the 02 256 8D 1024/analyze.49/kmeans20
folder. Compare these volumes to the annotated k-means cluster centers in the latent
space graphs (umap.png and umap_hex.png in the same directory). The latent space
for this dataset is highly structured, with clusters visible by UMAP that correspond to
assembly states of the ribosomal large subunit originally identified by Davis et al'®.
Selected volumes and their corresponding particles are shown in Figure 4.

To help understand the major modes of motion within the dataset, visualize the volumes
generated along the first two principal components in ChimeraX (Supplementary Movies
1 and 2). These volumes are located in the 02 256 8D 1024/analyze.49/pcl and
02 256 8D 1024/analyze.49/pc2 subdirectories, respectively. Note that the first

15

O ~NO O OWN -

[I U G
A WODN -0 0

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43

principal component encodes variable density in the base of the ribosome, whereas the
second principal component encodes variable density in the central protuberance.

[2 hours] Interrogate structural ensembles using an atomic model

Now that we have a sense of the types of variability present in this dataset, we seek to more
systematically sample and analyze this structural heterogeneity. We use a supervised “subunit
occupancy analysis”, as we identified extensive compositional heterogeneity in the observed k-
means cluster center volumes. Here we will generate 500 volumes using k-means clustering and
interpret their structural heterogeneity using an aligned atomic model. These 500 volumes can be
generated directly by re-running the cryodrgn analyze command with the optional argument
--ksample 500, or through the cryoDRGN viz.ipynb interactive Jupyter notebook as
described in steps 24-25 below.

24.

25.

26.

To focus our subunit occupancy analysis on assembling large subunit particles, we first
filter the small number of contaminating 70S particles that appear as outliers in the latent
space (Figure 4). The criteria defining these particles may change from run-to-run; here,
we distinguish these particles as those with uMaP1 > 10. Create a new cell in the
cryoDRGN_viz.ipynb notebook and enter the following to perform k-means clustering
with 500 cluster centers on the remaining particles. Users may adjust the definition of the
sub dataframe in the first line to reflect their own criteria to exclude the 70S particles.

sub = df [df[UMAP1'] < 10]

sub z = z[sub.index]

K = 500

kmeans labels, centers = analysis.cluster kmeans(sub z, K)
centers, centers ind = analysis.get nearest point(sub z, centers)
centers ind df = sub.index[centers ind]

sub.loc[:, 'Kmeans500'] = kmeans labels

sub.to csv('kmeans500 df.csv'")
utils.save pkl (centers ind df, 'kmeans500 labels.pkl')

Note that the last three lines save the information about which particles belong to which
k-means cluster, and which particles within each cluster represent the cluster center. We
use this information below.

Navigate to the ‘Generate volumes’ section of the same Jupyter notebook and change the
vol ind definitionto vol ind = centers ind df. Additionally, several cells below
this, set Apix = 1.6375and set f1ip = True. After making these changes, run the
cells in this section in order, generating 500 volumes corresponding to the on-data centers
of the 500 k-means clusters identified in the previous step (Extended Data Figure 7).

Subunit occupancy analysis requires an aligned atomic model segmented into chains
indicating the structural elements of interest. The segmented PDB files for this dataset are

16

O ~NOoO O WN -

NN NN DA A
W N2 00 0Oo~NOOPWDN-~OOO

24
25
26
27
28
29
30
31
32

33
34
35
36

37
38

39

27.

28.

available at https://github.com/Ikinman/occupancy-analysis, in the protocol examples
folder (Materials), and Supplementary Protocol 4 details how to generate them. Chain
assignments for each residue are provided in Supplementary Table 1. Note that the
segmented PDB models must be aligned with an example cryoDRGN map prior to use;
while the PDB models included in protocol examples folder have been pre-aligned to
the consensus refinement at 00 inputs/cryosparc P4 J33 004 particles.cs,
instructions on how to align these models to an arbitrary volume in ChimeraX are provided
in Supplementary Protocol 5.

For the remaining workflow, we will assume you have stored all the downloaded
occupancy analysis scripts in a subdirectory of your base directory -called
03 occupancy analysis. This subdirectory will be your new working directory for
steps 27-33. We also assume that the aligned .pdb files, along with the
reconstruct_ 000000 folder containing all 500 volumes sampled from latent space, are
stored in /path/to/base/directory/03 occupancy analysis/00 aligned/.

Navigate to your working directory
(/path/to/base/directory/03 occupancy analysis). If the cryodrgn conda
environment is not already active, activate it as before and use the provided
gen_mrcs. sh shell script to convert the segmented and aligned PDB files into .mrc files
aligned to an example cryoDRGN map. This script is a wrapper for chimerax, thus
ChimeraX must be activated in your current environment (i.e. which chimerax should
return the path to the ChimeraX executable on your system).

conda activate cryodrgn
bash protocol examples/gen mrcs.sh

This shell script may be adapted to use for other datasets by changing the names of the
PDB files, the chains within each file, and the resolution, where the resolution used
should be approximately the global FSC= 0.143 resolution of the consensus
reconstruction. The output of this shell script is a directory called 01 PDB mrc
containing a separate converted .mrc file for each of the 136 chains defined in the
segmented PDB files.

Create masks from each of the .mrc files generated in the last step using RELION and the
gen_masks.py script. This script is a wrapper for relion mask create, thus RELION
must be activated in your current environment (i.e. which relion mask create
should return the path to the relion_mask_create executable on your system).

for i in 01 PDB mrc/*.mrc; do python gen masks.py --mrc $i --
outdir 02 mask; done

This script produces a pixel size warning that can be ignored.

17

https://github.com/lkinman/occupancy-analysis

—

()]

© 00 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

29.

30.

31.

32.

33.

Calculate the reference-normalized occupancies of each defined subunit in each of the
500 electron density maps sampled from latent space using the provided
calc_occupancy.py Script.

python calc occupancy.py --mapdir 00 aligned/reconstruct 000000 -
-maskdir 02 mask --refdir 01 PDB mrc

Launch Jupyter Lab and open the provided occupancy analysis.ipynb template
notebook. Change the occupancies variable in the second cell to indicate the location
of the occupancies.csv file generated in the ©previous step (e.g.
(' /path/to/base/directory/03 occupancy analysis/occupancies.csv').

If using this notebook on a different dataset or with different segmented atomic models,
change the num volumes variable and chains dictionary as necessary. The keys for
the chains dictionary should be the names of the atomic model files, and the
corresponding values should describe the identity of the chains in that file, in alphabetical
order of the chains.

After changing the necessary variables, run the cells in order through the ‘Normalization’
section. Here, we implement a normalization method in which the values are re-scaled to
span a range from the tenth to ninetieth percentiles of the original data. The most
appropriate normalization method may vary be dataset and users will likely need to try
several methods of normalizing data to determine which best facilitates visual analysis
interpretation of the resulting heatmap.

Hierarchical clustering allows us to group volumes that exhibit similar patterns of subunit
occupancy. We define density map classes by setting a threshold distance on the
dendrogram of the rows. In applying such a threshold to the dataset shown here, we
observe classes of particles at varying stages of assembly, as evidenced by the presence
and absence of various structural features in these different classes (Figure 5A,C).
Applying a threshold to the dendrogram of the columns identifies structural blocks
consisting of rRNA or protein elements that show similar occupancy patterns.

Coloring the atomic model by these structural blocks improves the interpretability of the
clustermap and assists in visualizing cooperative blocks that may be present (Figure
5A,B). Clustering can be performed within the provided Jupyter notebook by running the
‘Hierarchical clustering’ cells.

Run the ‘Extract classes from clustering’ section of the notebook to automatically extract
the volume classes and structural blocks at the thresholds you defined in step 32. The
subsequent two sections of the notebook, ‘Visualize volume classes in ChimeraX’ and
‘Visualize structural blocks in ChimeraX’, produce a series of .py scripts that can be
opened in ChimeraX for direct visualization of the subset of kmeans500 electron density
maps within each volume class, and the atomic model colored by the structural blocks,

18

15
16
17
18

19
20
21
22

23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

respectively.

[30 minutes] Visualize data-supported structural transitions

34.

35.

Return to the cryoDRGN viz.ipynb analysis notebook to generate on-data centroid
volumes for each class. Here, we provide the indices we define as the centroid of each of
our classes in Supplementary Table 2. See Supplementary Protocol 6 for detailed
instructions on how to define these indices independently.

Having identified representative centroid indices for the varying assembly states of the
50S ribosome (Extended Data Figure 8), we can generate an on-data graph traversal
using these points as anchors and the cryodrgn graph traversal command. The
graph traversal we highlight here showcases the B—D1-D2—D3—D4—E3—ES5
assembly pathway described in Davis et al.’® (Extended Data Figure 9, Supplementary
Movie 3). Note that the italicized anchor indices corresponding to the cluster centroids will
vary run-to-run and should be calculated using your data as described in step 34.

cryodrgn graph traversal 02 256 8D 1024/z.49.pkl --anchors 89122
37896 53298 81097 66910 95314 73537 51189 51011 -o

02 256 8D 1024/analyze.49/path0l.txt --out-z

02 256 8D 1024/analyze.49/z.pathOl.txt

cryodrgn eval vol 02 256 8D 1024/weights.49.pkl -c
02 256 8D 1024/config.pkl --flip --zfile

02 256 8D 1024/analyze.49/z.path0l.txt -o

02 256 8D 1024/analyze.49/pathO1

[1 hour] Validating minor states with traditional tools

36.

37.

While the coarse clustering described above is useful for surveying the broad landscape
of structural heterogeneity within the dataset, it may obscure interesting intra-class
variation. It is therefore useful to check each class individually for low-population states
that differ from the rest of the class. For example, in this dataset we observe a set of
volumes in class 11 with high H68 occupancy and low central protuberance occupancy.
These particles correspond to the C4 class of particles identified previously by our group
using cryoDRGN® but which were overlooked using traditional 3D classification
approaches’®.

Using the Jupyter notebook generated by cryodrgn analyze, you can extract particles
corresponding to structural states of interest to conduct homogeneous refinement with
tools such as cryoSPARC and RELION. Here, we select particles belonging to the C4
class k-means clusters, which are represented by maps 270, 283, 284, 285, and 286 in
our analysis (Extended Data Figure 10). The map indices will vary from run to run; users
should determine which particles belong to class C4 for their run by looking for maps with
high H68 occupancy and low occupancy of the central protuberance block.

19

WN -

0 NOo O b

11
12
13
14

15

df = pd.read csv('kmeans500 df.csv', index col = 0)
c4 = [270, 283, 284, 285, 286]
df c4 = df[df['Kmeans500'].isin(c4)]

Having defined our selection, we can now set ind selected = df c4.index in the
‘Save the index selection’ cell, and run this cell to save a .pkl file with the indices of these
particles. This .pkl file can be used to filter the original .star file for import into cryoSPARC
or RELION with the cryodrgn write star script, as described above during particle
filtering (Figure 5D).

This concludes a preliminary cryoDRGN analysis, however users are encouraged to continue
exploring their data using the tools we’ve described, and additional functionalities within these
notebooks that are beyond the scope of this protocol. We encourage users to embrace the
iterative, interactive approach to cryoDRGN analyses described herein, and hope users will find
these tools valuable as they develop testable hypotheses aimed at understanding dynamic
macromolecular complexes.

20

Glossary

Network architecture: the arrangement of hidden layers and nodes in each neural
network. For example, a 256x3 network architecture has 3 hidden layers each containing
256 nodes. These descriptions do not include the number of nodes in the input or output
layers, as these are determined by the image size and by the dimensionality of the latent
space.

Encoder network: the neural network that encodes each particle image in a low-
dimensional latent space. By default, we use an 8-dimensional latent space, though users
can specify higher or lower dimensions.

Decoder network: the neural network that generates a 3D density map, given a latent
embedding.

Epoch: the passage of an entire particle stack through the encoder and decoder networks.
The networks are iteratively trained through multiple epochs.

Minibatch: Particles are passed through the encoder and decoder networks in groups
called mini-batches of 8 images by default; changing the mini-batch size affects memory
utilization, training dynamics, and training speed.

PCA: a linear dimensionality technique used in this protocol to visualize the latent space.
Axes produced by PCA are orthogonal and ordered by maximum variance along each
axis, and we typically inspect the first 2-4 axes. In practice, we find that PCA is useful for
identifying outliers in the latent embedding distribution and summarizing major modes of
heterogeneity, however we find that useful local structure in the distribution is often lost
due to the linear projection.

UMAP: a non-linear dimensionality technique used in this protocol to embed the latent
space into an easily visualized 2D space. UMAP tends to highlight local neighborhood
structure at the expense of preserving global structure. As a result, distance metrics in
UMAP-space such as inter-cluster distance are not generally meaningful. We find that
UMAP embeddings are useful in segmenting structurally disparate groups of particles and
that high particle densities within a UMAP cluster meaningfully represent dense particle
neighborhoods in latent space.

Z-score: the number of standard deviations above the mean. Used during particle filtering
to identify particles with a z-score > 2 (by default), meaning a latent embedding whose
magnitude is 2 standard deviations above the mean magnitude across all particles.
On-data: volumes generated by the described cryoDRGN analysis scripts are always
generated from a position in the latent space directly corresponding to the latent
embedding of some particle within the input stack — i.e. “on-data”. Specifically, we always
generate a volume from the closest on-data point to a given query in latent space.

UMAP local maxima method: our approach to identify a set of latent coordinates
representing diverse particles in areas of latent space that are well-supported by data.
This method aims to automatically reproduce how a user might interactively select a
subset of dense clusters from a UMAP embedding. Briefly, latent values for all particles
from the final epoch of training are embedded in 2D UMAP space. This space is then
binned with 30 bins per axis and the resulting 2D histogram is smoothed with a gaussian
of width = 1 bin. All local maxima are identified, then greedily pruned such that the lower
amplitude maximum of two local maxima within a defined radius of each other is removed.

21

AL ON -

A final filtering step returns the 10 largest local maxima. Particles within a 3x3 grid of bins
centered on each local maximum are labelled as corresponding to local maxima A-J, and
their on-data median latent coordinate is returned for volume generation. Note that
maxima are labeled A-J in order of decreasing particle count.

22

0O NO O OWN -

Box 1: Convergence Analysis

Here, we include several heuristic metrics to assess convergence of cryoDRGN network
training. Each metric queries convergence of different elements of the network (i.e. the
encoder, the decoder, or the entire network). Although alternative heuristics exist, we have
found that these metrics are useful in judging when cryoDRGN networks have been
sufficiently trained across a variety of datasets. The motivation, implementation, and
example interpretation of each convergence metric are detailed below.

Total network loss: This metric is the loss function guiding network learning during
training®. Total loss per epoch is expected to decrease as the network trains. Smooth
asymptotic behavior is indicative of stable network training.

UMAP latent embeddings: In a converged network we expect the distribution of latent
embeddings to be insensitive to further training. To visualize high dimensional latent
distributions, we calculate UMAP embeddings of the latent at set intervals during training.
Note that UMAP is subject to artifacts like rotation, mirroring, or inconsistent mapping of
particles on cluster boundaries. For our application, the important criteria are that the
number, size, and relative distribution of clusters remains constant. For datasets with less
featured UMAP embeddings, locally monitoring dense regions within UMAP clusters or
relying on alternative metrics can be useful.

Latent embedding shifts: This metric examines the “movement” of particles through latent
space during training, with the expectation that converged networks will exhibit movement
that is small and randomly directed within local minima. Movement is monitored by the
size (magnitude) and consistency of direction (dot product and cosine distance) of a given
particle’s motion over epochs. Specifically, we consider the n-dimensional vectors
connecting its latent embedding in epoch;, to epochi+1, and in epochi+, to epochi:2. The
magnitude of each vector, as well as the dot product and cosine distance of this pair of
vectors, are calculated and the median values for these three parameters across all
particles are plotted per epoch. Similar to the total loss plot, an elbow and subsequent
stabilization in each of these plots is consistent with convergence. Less featured latent
spaces can result in more “noise” in these plots; in such cases, a rolling average of these
values can be used.

Correlation of generated volumes: This approach assesses the convergence of the
decoder by examining whether volumes sequentially generated from related positions in
latent space stabilize during training. These positions are calculated as the on-data
median latent values of particles in well-supported clusters identified using the UMAP local
maxima method (Glossary). The median latent encoding of each cluster’s particles is
updated, and a corresponding volume generated, every five epochs. Volumes generated
in this way should trend towards high correlation with the previously generated volume
during convergence, as particles map to increasingly consistent regions of latent space
and the decoder produces increasingly consistent corresponding volumes. Stabilization is
measured by map-to-map real-space correlation and map-to-map FSC. For this dataset,
which produces structures whose resolution are Nyquist-limited, we find in addition to
examining FSC at all spatial frequencies, specifically visualizing the increasing correlation
at the Nyquist limit is informative.

23

A WODN =

In general, strict cutoffs for convergence are difficult to identify. These heuristics are
intended to be used in a holistic fashion when assessing convergence. Typically,
additional training beyond convergence provides diminishing returns while increasing the
likelihood of overtraining artifacts as described above.

24

0O NO O~ WN =

A DR WWWWWWWWWWNDNDNDNDNNNNMNDN=_22=2 222 A a a a aa
. O OVWoONOOO PP WN 000NN 0CO0O0O0ONOOOOAAPRWOWDN-~~OO

Box 2: Particle Filtering

Several methods to filter particles are implemented in cryoDRGN. The optimal method for
particle filtering is dataset-specific, and users are encouraged to try several methods to
determine which is the best-suited for their particular data. We recommend that all particle
filtering pipelines, regardless of method employed, start with visually inspecting k-means
cluster center volumes generated automatically by cryodrgn analyze, and cross-
referencing these to the UMAP plots of the k-means clusters in the
cryoDRGN filtering.ipynb notebook. Volumes from within clusters containing
particle picking artifacts often appear noisy or have particularly weak density. When users
have determined which regions of latent space appear to represent such artifacts, they
can proceed to use any of the following methods in the Jupyter notebook to exclude
particles belonging to these regions:

Filtering by clustering: In cases where users are able to clearly identify undesired clusters
using the k-means cluster center volumes, they can directly select these clusters to be
filtered out within the cryoDRGN_filtering.ipynb notebook. Gaussian mixture model
(GMM) clustering can also be used, as described in this protocol.

Filtering by interactive selection: If there is a clearly-defined region of undesired particles
within latent space, users may find it easiest to use the interactive widget in the
cryoDRGN filtering.ipynb notebook to manually select this region of latent space
via a lasso tool and filter out all particles contained within it.

Filtering on magnitude of the latent embeddings: In some datasets, “junk” particles can be
easily distinguished by outlying latent embedding values. This may be particularly valuable
for datasets with less featured latent spaces, where the regions corresponding to particle
picking artifacts are less amenable to separation by clustering or interactive selection. With
the filtering notebook, users can compute the magnitude of the latent embedding and
eliminate particles for which the magnitude is more than a defined number of standard
deviations above the mean.

Particle filtering efficacy can be assessed by several metrics, including generating more
volumes from regions enriched of latent space enriched for retained or discarded particles
and confirming the presence of good volumes and poor volumes, respectively. Users can
also directly view particles in the cryoDRGN filtering.ipynb notebook to see if they
contain ice or edge artifacts, or other protein contaminants unrelated to the complex of
interest. Finally, retained and discarded particles can be exported and further inspected
via traditional 2D classification or 3D reconstruction in other processing software such as
cryoSPARC or RELION. See Extended Data Figure 3 for a comparison of these particle
filtering methods using the EMPIAR-10076 dataset; note that all three filtering methods
identify largely overlapping particle sets for this dataset.

25

1 Troubleshooting

Step | Problem Possible reason Possible solution

4 Out of memory error when The particle stack is too large to | Add the --chunk flag to the
running cryodrgn fit into memory cryodrgn downsample
downsample command

5 Back projection is noisy, Incorrect pose and CTF Verify that the correct pose
discontinuous, or does not metadata were supplied, or and CTF parameters were
resemble consensus pose and CTF parameters were | supplied during parsing and
refinement incorrectly mapped to particles. | that the particle stack

Noisy maps may also result originated from, and contains
from using a small number of the same particle index/order
particles used in the back as the pose and CTF
projection (default: 10,000). parameter metadata. If the
Users may also have not volume is very noisy, re-run
applied the correct -- cryodrgn
uninvert-data convention, backproject voxel with
which determines whether the | a larger number of particles
data is light-on-dark or dark-on- | using --first flag. Check
light whether the correct --
uninvert-data convention
for the dataset is followed by
running cryodrgn
backproject voxel with
and without --uninvert-
data

6, 18 | Out of memory error shortly The particle stack is too large to | Append --1azy to the
after starting cryodrgn preload into memory cryodrgn train vae
train vae command to allow on-the-fly

image loading, further
downsample particles, or
train on a subset of the
particle stack.

6, 18 | CUDA out of memory error Batch size may be set too large | Manually decrease batchsize
during cryodrgn for your GPU's memory with the --batchsize flag
train vae capacity in the cryodrgn

train vae command

6, 18 | Assertion error during Infrequent issues with numerical | Restart cryodrgn
cryodrgn train vae instability using ——amp may train vae without —-amp
similar to assert cause this assertion to fail
(coords[...,0:3].abs ()

- 0.5 < 1le-4).all ()

7, 9, | Volumes generated after Users failed to apply correct -- | Run cryoDRGN

19, training appear non- uninvert-data flag backproject voxel with

22- continuous or hollow in the and without the --

23 center of the box uninvert-data flag and

determine which convention
is applicable, then re-run

26

O ~NOoO O WON -

A A A A A A A A
O© O ~NOO O WN-~O0O 00

NN NN
WN -0

24
25
26
27
28

cryodrgn train vae as
necessary

7, 9, | Volumes generated after Volumes may be displayed at Increase the isosurface

19, training all resemble junk too permissive an isosurface. threshold for display. Run

22- Alternatively, data may have cryodrgn

23 been parsed incorrectly in the backproject voxel to

preprocessing steps. determine whether poses
and CTF parameters were
correctly parsed.

7, 9, | Volumes generated after For datasets other than Restart cryoDRGN training

19, training all appear EMPIAR-10076, this may be with an unfiltered dataset.

22- homogeneous caused by too much upstream

23 filtering prior to cryoDRGN

training.

All Jupyter notebooks aren’t Cells may have been run out of | Restart the kernel and run
behaving as described in the | order or may reference the notebook again in order
protocol outdated variables from top to bottom

Timin

The required time to run this protocol is dependent on the hardware users have available. We
provide approximate timings in each section of the protocol based on our hardware described in
Materials. For users who seek to employ this protocol on their own datasets, the primary
determinant of the timing will be how long the cryoDRGN model training steps require, as these
steps are the most expensive in terms of both time and computational resources. We generally
recommend training “high-resolution” cryoDRGN models at a boxsize of 256 pixels, as
computational time can become prohibitive with significantly larger boxes. For very large datasets
or datasets with large boxsizes, users may find it useful to employ the cryodrgn preprocess
command instead of cryodrgn downsample, as this command changes some of the
preprocessing steps to minimize downstream memory usage and obviates the need for using on-
the-fly image loading via the --1azy flag, which significantly increases training times. Instructions
for how to use cryodrgn preprocess are available at https://github.com/zhonge/cryodrgn.

Anticipated Results

This protocol describes the training of a cryoDRGN model on a highly heterogeneous exemplar
dataset (EMPIAR-10076), as well as the systematic characterization of the resulting structural
ensemble. Following the protocol, users produce the following principal outputs:

1. A latent embedding for each particle in the input stack.

2. A decoder network able to generate an arbitrary number of volumes from embeddings
across latent space. This decoder network can then be used, as shown in this protocol,
to explore the structural landscape of the dataset by sampling the 3D volumes found in
different positions of latent space.

27

https://github.com/zhonge/cryodrgn

O©CoONOOTPRWN -

3. A representative ensemble of volumes sampled from across latent space using the
decoder network, which can be directly visualized and used for downstream landscape
analysis.

4. A matrix of occupancy values for each structural element in each sampled volume, which
can be clustered and represented as a heatmap, and which can be used for quantitative
analysis of the sample’s structural heterogeneity.

Though the precise nature of the heterogeneity uncovered is dataset-dependent, and aspects of
the analysis — notably how clustered or featured the distribution of latent embeddings is — may
differ from the analysis of this example dataset, users should be able to follow this protocol on
their own datasets to produce a similar set of outputs.

Data Availability

All final and intermediate results presented in this protocol are available at
https://doi.org/10.5281/zenodo.5164127

Code Availability

The software and scripts used in these analyses are available at
https://github.com/zhonge/cryodrgn (version 0.3.5) and https://qgithub.com/Ikinman/occupancy-
analysis (version 0.1.2), as described in Materials. All code is available through the open source
GPL-3.0 License.

Author Contributions

Conceptualization - All; Funding acquisition - BB, JHD; Investigation - JHD, LK, BMP, EDZ;
Software - LK, BMP, EDZ; Supervision - BB, JHD; Visualization - LK, BMP; Writing - original draft
- LK, BMP, EDZ; Writing - review & editing — All.

Acknowledgements

We thank the MIT-IBM Satori team for GPU computing resources and support. This work was
funded by the NSF GRFP Fellowship to E.D. Z., NIH grant R01-GM081871 to B.B., NSFCAREER-
2046778 and NIH grant R01-GM144542 to J.H.D., and a grant from the MIT J-Clinic for Machine
Learning and Health to J.H.D. and B.B. Research in the Davis lab is supported by the Alfred P.
Sloan Foundation, the James H. Ferry Fund, and the Whitehead Family.

28

https://doi.org/10.5281/zenodo.5164127
https://github.com/zhonge/cryodrgn
https://github.com/lkinman/occupancy-analysis
https://github.com/lkinman/occupancy-analysis

—

0N OV A~ WDN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Supplementary protocol 1. Installing cryoDRGN version 0.3.5

1.

Instructions for installing the latest version of cryoDRGN are available at
https://github.com/zhonge/cryodrgn. For consistency with our results, we recommend

using version 0.3.5 that we employed in this protocol. It can be installed using github as
described below. To set up the conda environment, run the following commands:

conda create --name cryodrgn python=3.7

conda activate cryodrgn

conda install pytorch cudatoolkit=10.2 -c pytorch

conda install pandas seaborn scikit-learn

conda install umap-learn jupyterlab ipywidgets cufflinks-py
"nodejs>=15.12.0" -c conda-forge

conda update typing extensions -c conda-forge

jupyter labextension install @jupyter-widgets/jupyterlab-manager
--no-build

jupyter labextension install jupyterlab-plotly --no-build
jupyter labextension install plotlywidget --no-build
Jjupyter lab build

Critical step: Ensure that you install cudatoolkit and pytorch versions compatible with
your graphics card and drivers. For example, your CUDA version is returned by the
command nvidia-smi, and generally the latest pytorch version (built for your CUDA version
and python 3.7) will be appropriate. See pytorch.org for more details on how to install
pytorch.

Optionally install NVIDIA’s Apex library to enable --amp acceleration via the following
commands:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir ./

Optionally install the CUDA machine learning library for faster UMAP embeddings in
analyze_convergence.py.

conda install cuml -c¢ rapidsai-nightly -c¢ rapidsai -c nvidia -c
conda-forge

Clone version 0.3.5 from GitHub:

git clone https://github.com/zhonge/cryodrgn.git
cd cryodrgn

git checkout tags/0.3.5

python setup.py -g install

29

https://github.com/zhonge/cryodrgn

—

O NO O WODN

11
12
13
14

Supplementary protocol 2. Creating a consensus refinement in cryoSPARC

1.

Run an import particle stack job by specifying L17Combine weight local.mrcs as
the particle data path and Parameters.star as the particle meta path. Note that the
data sign needs to be flipped to dark-on-light.

Run an ab initio reconstruction job with default parameters.
Run a homogeneous refinement job with default parameters. Note that we generally
suggest performing reconstructions without imposed symmetry (i.e. C1) as it preserves

potentially interesting heterogeneity.

Copy the refined particles.cs file, whose name should resemble
cryosparc_ P4 J33 004 particles.cs, to the working cryoDRGN directory where
the full dataset is stored.

30

—

11
12
13
14

Supplementary protocol 3. Setting up port forwarding via SSH

1.

SSH port forwarding can be set up at the time of login using the following command and
replacing remote_username and remote_host_name with the appropriate values:

ssh -N -f -L localhost:8888:1localhost:8888
remote username@remote host name

If you are running your jupyter notebook on a worker node in a compute cluster, as
opposed to a local workstation, we suggest the following alternative port forwarding
command:

ssh -t -t username@cluster-head-node -L 8888:1localhost:8888 ssh
active-worker-node -L 8888:localhost:8888

To open Jupyter notebook, enter the command jupyter lab --no-browser --port
8888 into the terminal, and navigate to localhost:8888 in a web browser on your local
computer.

31

OOk~ WN -

~

10
11
12
13
14

15
16
17
18
19

20
21
22

Supplementary protocol 4. Generating segmented PDB chains for subunit occupancy analysis

1.

4.

Open PyMOL and use the command-line interface to retrieve an atomic model of the 70S
ribosome from the PDB: fetch 4ybb

Delete atoms outside the region of interest. For example, to generate the segmented .pdb
of the 5S rRNA, we use:

sele not 5s, not chain CB

Then select ‘Remove atoms’ from the drop-down ‘Action’ menu in the not_5s selection.
This will delete all non-5S atoms.

Segment the map into chains if necessary. If you want to do occupancy analysis on whole
protein subunits, this is likely unnecessary, as the chains are likely already defined in the
atomic model. If you want to define your own subunits for occupancy analysis as we do
here, you can do so using the alter command as shown below, again for the examples
of the 5S rRNA:

alter (resi 1-14,108-120), chain='A"
alter (resi 15-27,60-68), chain='B'
alter (resi 28-59), chain='C'

(resi 78-99), chain='D"

(

resi 69-77,100-107), chain='E"

alter
alter

After you have made all the chain alterations, save the .pdb file with a new name, e.g.
RNA_5S.pdb using the “Export Molecule” command. Note that to create more than 26
chains, you will need to use multiple .pdb files, each containing at most 26 chain IDs.

32

—

O ~NOoO OTh~ WN

11
12
13
14
15
16
17
18
19
20
21
22
23

24

Supplementary protocol 5. Aligning segmented PDB models for subunit occupancy analysis

1.

The .pdb files must now be aligned to your cryoDRGN sampled maps. Open one of the
generated 500 maps (e.g. vol 000 .mrc) in ChimeraX. Aim to select a map that has high
occupancy of most elements of your structure to ensure a good alignment. Because maps
with adjacent indices (e.g. vol_000 and vol_001) are often structurally similar as they are
sampled from proximal locations in latent space, users are advised to find a mature map
by downloading 20 random volumes from the set of 500.

Open all the .pdb files (protsl.pdb, prots2.pdb, RNA 5S.pdb, RNAL.pdb,
RNA2 . pdb, RNA3.pdb, RNA4 . pdb). These should now be models #2-8 in your ChimeraX
session.

Select models #2-8 with the command select #2-8. Provide a rough manual alignment
between the selected atoms and the example map, using the ‘Rotate model’ and ‘Move
model’ right mouse modes.

Having provided a rough manual alignment, use the Tools > Volume Data > Fit in Map
option to fit your .pdb files in the map. Choose to fit ‘selected atoms’ in your example map,
making sure that all the .pdb model files are still selected.

Save each of the .pdb files individually using File > Save, and selecting .pdb file type. Be

sure you have the correct .pdb model selected in the Models selection box, and that you
select the option to ‘Save relative to model:’, with the example map selected as the model.

33

—

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Supplementary protocol 6. Identifying centroid volumes for subunit occupancy volume classes

1.

Use pandas to load dataframe you saved with information about which k-means 500 class
each particle corresponds to.

df = pd.read csv('kmeans500 df.csv', index col = 0)

To save the volume classes defined by clustering in the occupancy analysis.ipynb
Jupyter notebook, run the cells in the ‘Extract classes from clustering’ section. This will
save the class assignments as a .pkl file that you can load into the
cryoDRGN_viz.ipynb notebook.

Open the volume class assignments .pkl file in the cryoDRGN viz.ipynb notebook,
changing the name or relative path of the .pkl file name as necessary in the code below.

classes = utils.load pkl('../../vol class.pkl"')

Identify the nearest on-data point to the median z-coordinates of each class. The resulting
variable nearest inds contains the indices in your dataframe of the centroid particles.
You can then generate volumes at these indices as before using the volume generation
cells of the Jupyter notebook.

median coords = np.empty([len(classes.keys()), z.shape[l]], dtype
= 'floato4d"')
z list = df.columns[df.columns.str.contains('z"')]

for i in classes.keys|():

df.loc[df[df['Kmeans500'] .isin(classes[i])].1index,
'volume class'] = 1

sub = df[df['volume class'] == i] [z list]

median coords[i, :] = np.array(sub.median(axis = 0))

df z = df[z list]
neighbor dists = pd.DataFrame (distance.cdist (median coords, df z,

'euclidean'))
nearest inds = neighbor dists.idxmin (axis = 1)

34

—

Inputs Prepare cryoDRGN
inputs (1-5)

® 09

l 5
o 08

: =07
Train cryoDRGN 5 “'|

networks R
(6-8, 18-19) = L

| 1

2.5
0 5 10
UMAP1
12 .ﬁ
§3 & . o Explore cryoDRGN
S 17 P * models (20-23)
> P

UMAP2

UMAP2

Figure 1. The cryoDRGN workflow. Steps (center) of the cryoDRGN analysis workflow are
noted, with typical inputs to each step (left) and insights gained (right) illustrated. Each noted step
corresponds to a subsection of the provided protocol, with numbered steps of the protocol listed.

35

0O NO O WN-

N | | NN
OOk WDN -~ O ©

epoch 19 epoch 24
a b 4 o A oo
1.020 ¢ g 5
R, Srd, q’ ™ z
§1.015 ~ 0 % i) @ % 2
o o ‘ 2
e 1.010 g epoch 29 epoch 34 epoch 39 epoch 44 epoch 49 10" g
£ 1.050 510 ’ (3 ;. = e 2
adl ko2 p o b
1.000 |t e T =
r v r r - v 0
0 10 20 30 40 50 J o i 10
epoch 0 10 0 10 0 10 0 10 0 10
UMAP 1
¢ 0.4
— 0 0]
° g 815 g'e
epoch,, /’époch‘+2 B 08 210 %
o;, 5 £ 514
5 08 [}
\ '8 E 0.5 %
1.2
~ -1.0 0.0+ ; . Q x
epoch, 0 20 40 0 20 40 c 0 20 40
! epoch epoch epoch
d epoch 49 umap 0 smoothed hist 0 local maxima sketched umap
10 e o~ ~)
- o o
- =30 ~
o =) o
el - =
1} 2 20 =
c c =)
£ c
a 530
0 10 20 30 0D 10 20 30
binned UMAP 1 binned UMAP 1 UMAP 1

fsc at nyquist

Figure 2. Training and assessing convergence of cryoDRGN networks. a) Representative
plot of total loss at each epoch. Decreasing loss reflects gains in neural network
performance. b) Representative density heatmaps of the particle embeddings at noted epochs of
training. In each density heatmap, UMAP?” was used to embed each 8-D latent distribution in a
2-D space. Note the shape of the resulting heatmap stabilizes in later epochs, consistent with
encoder network convergence. c) lllustration of a hypothetical particle’s embedding in successive
epochs of training. Difference vectors between successive epochs are colored blue (left). Such
vectors’ dot product, magnitude, and cosine distance are computed, and the median value at
each epoch is shown (right). The asymptotic behavior of these curves is consistent with encoder
network convergence. d) Identification of representative latent embeddings via the “UMAP local
maxima method”, (Glossary). e) Volumes generated by the decoder network at the local maxima
positions (A-J) defined ind. Note the diversity of low-resolution structures. f) Map-to-map
correlation and g) FSC at Nyquist frequency calculated between volumes generated from local
maxima identified as defined in d at five epoch intervals. Epochs for which the encoder network
was not assessed to have converged are noted with dotted lines.

36

—_—

2 0O WO NN WN-

a10.0- . C 10.0
11 ﬁ:g o

7.5- .19 75
N 186" 43 - ~
< . o o°l5 ey *
= 254 il - 09 = 25 e

0.0/ b ‘ 8 B

-2.54 2.5 . . '

0.0 5.0 10.0 00 £F T
UMAP1

Figure 3. Particle filtering. a) UMAP visualization of latent space embeddings at epoch 49,
colored by k-means clustering with k=20. Cluster centers are annotated. b) Volumes generated
at each k-means cluster center, rendered at an isosurface level of 0.25. Map colors correspond
to those in a. Note volumes generated from clusters 11-19, labeled in red, are poorly resolved,
consistent with the presence of poor-quality particles. ¢) UMAP embedding highlighting particles
selected for further training in orange. Poor-quality particles excluded from further training are
shown in grey.

37

0N OV WN-=-

a 140 8
12.0 . b
10.0 .6 708 particle

1

6.0 < g .
4.0 7 H
2.0 14

0 .

UMAP2

50 -25 0 25 50 75 100 125
UMAP1

erance
14 &

10.0
75

5.0 8 6 1
25 D *

PC2

25 + 9
-5.0 0
7.5

PC1

Figure 4. Analysis of a cryoDRGN model trained on high-resolution particle images. a) 8D
latent space visualized in 2D using UMAP (top) or PCA (bottom). K-means clustering of the latent
space embeddings with k=20 was applied, and notable clusters are colored and annotated. b)
Representative volumes generated by the decoder network from notable cluster centers, with
colors and annotation corresponding to those in a. Key structural elements of the bacterial
ribosome are noted.

38

O N O WN-

- A
N -~ O ©

sampled volumes

c =

Figure 5. Atomic model-based analysis of cryoDRGN-generated structural ensemble. a)
“Occupancy analysis” heatmap illustrating low (white) and high (blue) occupancy proteins or rRNA
helices (columns) in various cryoDRGN generated density maps (rows). Using a fixed threshold
linkage distance, dendrograms are colored according to structural blocks (top) and volume
classes (right). A red arrow indicates the position of H68 in the heatmap. b) Atomic model (4YBB)
colored by structural blocks as defined in a. ¢) Centroid volumes of the occupancy analysis
classes, generated at the closest on-data point to the median position in latent space for each
class. Volumes are outlined for comparison to the mature 50S ribosomal subunit (class 1, in red).
d) C4 class example volume generated by cryoDRGN (top) compared to the cryoSPARC
homogeneous refinement (bottom) using the 1,149 particles identified through occupancy
analysis. Particle group rows within class 11 and H68 column are noted with red arrows.

39

OO WN-

100 A

Extended Data Figure 1. Assessing cryoDRGN input parsing. Comparison of 10,000 back
projected cryoDRGN-parsed particles at D=128px (left) with the unsharpened map from
cryoSPARC’s homogeneous refinement (right).

40

-_—

O ©W 0O NO O~ WN-=-

epoch 14 epoch 19 epoch 24

epoch 29 10°

particle density

10°

max|mum A maximum B
o

-

L3
L3
& @
@& @@
¢ @
@ W
@ W
i%

__maximum C maximum D

v}

@% %%@
@@@ﬁ@@f

m

-

maximum F

o

A

maps generated from local maxima

I
map-map FSC

1,01 ymEXimum G . maximum H

[

i

—epoch 9 1.0
—epoch 14
—epoch 19 9
——epoch 24
—epoch 29 08
——epoch 34
—epoch 39 07
——epoch 44
epoch 49 06

"maximum | maximum J

0.0 0.2 04 00 0.2 04
frequency (1/px)

Extended Data Figure 2. Assessing convergence of representative cryoDRGN density
maps during network training. a) Particle sets of interest A-J identified in epoch 49 by the
“‘UMAP local maximum” method are mapped to prior epochs’ UMAP embeddings. The on-data
median latent value of each particle set is embedded into UMAP space and annotated for each
epoch. Note that each annotated point maps to the same high occupancy region of UMAP space
following convergence. b) Corresponding volumes generated from each on-data median latent
value at five epoch intervals as shown in panel a. Note that the volumes’ gross morphology
stabilizes by epoch 14-19, though some additional details in maxima | and J require 24-29 epochs.
c) FSC plots correlating each local maximum volume at epoch; and at epoch;.s.

41

0 ~NOoO O WN-

A A A A A
A WON-~ O ©

¢ GMM
3912 8201 k-means

281
20542
56
2766

7518

e z-norm

10
~N
&5 :
=
o]

0

5 10
UMAP 1

0 5 10 -5 0 5 -5 0 5
UMAP 1 PC 1 PC 1
10 P 10
il] 4
o5 @H
£ €« 2o
2
o =
0 5 10 5 0 5
UMAP 1 PC 1

Extended Data Figure 3. Visualizing particle filtering. a) Representative particles filtered by
ind keep.star, selected for further training, and corresponding 2D-classification using default
cryoSPARC parameters. b) Representative particles filtered by ind bad.star, excluded from
further training, and corresponding 2D-classification using default cryoSPARC parameters. c)
Three-way Venn diagram of “junk” particles identified by one of the following methods: two
classes from k=6 gaussian mixture model latent-space classification (red, 35,421 particles);
ten classes from k=20 k-means latent-space classification (green, 29,080 particles); or latent
encoding magnitude (z-norm) exceeding 0.5 standard deviations larger than the mean (blue,
30,879 particles). d) Corresponding CryoSPARC 2D-classification results using “junk”
particles identified through the GMM (top), k-means (middle), or z-norm (bottom) filtering
approaches. e) UMAP embedding or f) PCA projections highlighting location of junk particles
identified by GMM (red), k-means (green), or z-norm (blue) methods.

42

0N OV WN-=-

—_ A A
W N -~ O

a
1.0075 b 0
1.0050 B 4 816
@ S -2 8 8
©1.0025 3 2 ®
T 1.0000 g4 &2 o
5] 5 © c
+0.9975 S 6 £ @
0 (5]
0.9950 s —— 2080 80 180 0 50 160 0 50 160 0 50 100
epoc epoch epoch epoch
c epoch 99 umap smoothed hist local maxima sketched umap
10| P 10
™~ s o o~
o H o o
< 514 el < <? ¢
= > = "
) 0 o 2 0
0 10 0 10
d UMAP 1 e UMAP 1 UMAP 1
0.98 » 281, ot‘_ oL ,Av 08 1 > -f’.—*‘ﬁ
.0' i v/ A I rl AJ‘.A'\ y
o 097 SE g ¥
© e 1] -
o 096 AR = 0.6 1 F %
© > * =2 q "
E e LN 2 e 4 %
& 095 v . b Tk
© © g7
£ A E H o 044 1% A H
0.94 B F ool 2 e B Foom|
C G J c G J
0.93 | = D —
20 40 60 80 100 20 40 60 80 100
epoch epoch

Extended Data Figure 4. Training and assessing convergence of high-resolution training.
a) Representative plot of average total loss at each epoch. b) Median per-particle movement
through latent space, characterized by vectors connecting each particle’s latent embedding in
successive epochs. Resulting vector dot products (left), magnitude (center) and cosine distance
(right) are shown. c) Identification of representative latent embeddings via the “UMAP local
maxima method”. The UMAP embedding of epoch 99 is binned into a 2-D histogram, smoothed,
annotated with local maxima, and overlaid with the maxima. The on-data median UMAP location

of each maximum and its neighboring 8 bins is shown. Label order corresponds to decreasing

particle count in each local maximum. d) Map-map correlation and e) FSC at Nyquist frequency
calculated between representative volumes generated as defined in ¢ at five epoch intervals.
Epochs for which the encoder network has not converged are noted with dotted lines.

43

O NO O, WN-

a epoch 4 epoch 9 epoch 14 epoch 19 epoch 24

P &

epoch 39 epoch 44

.
3

102

q - ‘a,

2

o g
< epoch 54 epoch 59 epoch 64 epoch 69 10"
5 :
[

o

m§h§§@

epoch 79 epoch 84

@ .

epoch 94 epoch 99

ele

0 10 0 10

A @%@@%@%%%ﬁ@%@%%@ﬁ@%ﬁ
' o G e T ?h’“?% 3*“‘%%”@, ﬂ"%”‘%’ e %%@ %“-ﬂ@?‘%
B ﬁ%@ VEBDDBAEAEEBOBE
@@%%@%@@@@@@@%%%%%%%

@ 2ITTX TR L

m

m] Q

BB B
@

maps generated from local maxima

[

ﬁﬁ@@@%%

epochs

c 10 ma)umum A maximum B ma)umum C maximum D maximum E

09 e VA - —Epoch9 —Epoch 54

08 \\ —Epoch 14 —Epoch 59
O o7 \ —Epoch 19 —Epoch 64
E ’ . —Epoch 24 —Epoch 69
a 06 —Epoch 28 —Epoch 74
£ 10, MaximumF max|mum G maxnmum H “vr.‘_qa"imum | maximumJ —Epoch 34 —Epoch 79

T y

% 09 \\ 4 =~ N —Epoch 38 ——Epoch 84
£ b d \ N —Epoch 44 Epoch 89

0.8 Y W\ N

& = . —Epoch 48 Epoch 94
0.7 Epoch 99
0.6

0.0 02 04 0.0 02 04 0.0 Q2 0.4 00 02 0.4 00 0.2 04
frequency (1/px)
Extended Data Figure 5. Assessing convergence of representative cryoDRGN density
maps during high-resolution training. a) Particle sets A-J identified by the “UMAP local
maximum” method (Glossary) mapped to prior epochs as illustrated in Extended Data Figure 2.
b) Corresponding volumes generated from labeled positions in panel a. Note that the volumes’
gross morphology stabilizes by epoch 19-29, though maximum | stabilizes as a 70S ribosome
around epoch 39. ¢) FSC plots between volumes from each local maximum offset by 5 epochs of
training, as in Extended Data Figure 2. The map-to-map FSC stabilizes by epoch 39.

44

N O Ok WN=-

a df1 df2
40000
10+
20000
0.
dfang phi
10
H50
o~ 0 0
fal
% psi theta
)
10 4 100
0
o1 -100
tx ty
0.1
10 -
0
01 0.1
0 10 0 10
UMAP1
C
10
5 P
N 813 23,
8 0 12, 8111518015
9e J3,7e19
-5 .0 G4
5 0 5 10
PC1

40000

20000

150
100
50

100

-100

01

-0.1

180
160
140
120

‘= 100
80

60

40

20

-150 150

0
theta

10000
& 8000
o
S 6000
3 4000

£

2000

0
-150 0
psi

150

0.10

ty (fraction)
o

-0.10

-0.10 0
tx (fraction)

0.10

Extended Data Figure 6. Assessing results of high-resolution training. a) The UMAP
representation of the latent space resulting from 50 epochs of high-resolution training, colored by
indicated imaging parameters. b) Angular and translational pose distributions. ¢) PCA of the latent
space, colored by the 20 k-means cluster centers automatically generated by cryodrgn
analyze. Numbered black dots indicate the locations in latent space of each k-means cluster

center volume.

45

a b WON-

14.0 A
12.0 {
10.0 1
8.0 1
6.0 1
4.0 1
2.0 1

UMAP2

-2.0 1

Extended Data Figure 7. Sampled points from latent space used in subunit occupancy
analysis. UMAP representation of the latent space resulting from 50 epochs of high-resolution
training with contours colored with darker blues as particle density increases. Sampled points
correspond to the centers of 500 k-means clusters and are indicated with white circles.

46

0O NO O, WN-

-1.0

-0.8
(/)]
©
S -0.6
©
[0}
e
2 -04
e
-]
o
-0.2
F- 1 1 1 1 1 1 1 -0

12 3 456 7 8 910111213141

subunit occupancy class

Extended Data Figure 8. Confusion matrix of published class labels and classes assigned
by subunit occupancy analysis. K-means 500 cluster center maps were assigned to 15 classes
by subunit occupancy analysis. Particles within a given k-means 500 cluster are assigned to the
same subunit occupancy class as the center map. Published particle labels were drawn from
Davis et al.'® and the fractional correspondence is plotted as a heat map. Note that published
classes A and F corresponded to 70S and 30S particles, respectively.

47

_—

- O O 00N O P WN=-

14
10
N
o
< 6
=
2 2
_2 T T T T
-5 0 5 10
UMAP 1

Extended Data Figure 9. Graph traversal through Ilatent space for the
B—D1—-D2—-D3—-D4—E3—E5 assembly pathway. Centroid volumes from the subunit
occupancy classes were aligned and compared to the previously published assembly
intermediate structures'® to determine approximate equivalences between published classes and
subunit occupancy classes. The volumes corresponding to intermediates B, D1, D2, D3, D4, E3,
and E5 were provided to cryodrgn graph traversal as anchor points; the resulting path
through latent space is shown. Non-anchor points are indicated with white circles, whereas anchor
points and their corresponding class ID are shown with colored circles. Volumes resulting from
the complete graph traversal are shown in Supplementary Movie 3.

48

a b WON-

101

UMAP2

5 0 5 10
UMAP1
Extended Data Figure 10. Selection of particles corresponding to the C4 minor class.

Particles (1,149) in the C4 class were identified by subunit occupancy analysis and are
highlighted in orange.

49

Subunit | PDB ID | PDB Residues Segmented | Segmented
Chain file name file chain
H1 4YBB CA 1-12,2895-2904 RNA1.pdb A
H2 4YBB CA 13-30,510-531 RNA1.pdb B
H3 4YBB CA 31-32,473-474 RNA1.pdb C
H4 4YBB CA 33-47,431-451 RNA1.pdb D
H5 4YBB CA 48-56,114-120 RNA1.pdb E
H6 4YBB CA 57-74 RNA1.pdb F
H7 4YBB CA 75-113 RNA1.pdb G
H8 4YBB CA 121-130 RNA1.pdb H
H9 4YBB CA 131-148 RNA1.pdb I
H10 4YBB CA 147-177 RNA1.pdb J
H11 4YBB CA 178-218,319-323 RNA1.pdb K
H12 4YBB CA 219-232 RNA1.pdb L
H13 4YBB CA 233-262 RNA1.pdb M
H14 4YBB CA 263-269,424-430 RNA1.pdb N
H16 4YBB CA 269-280,360-370 RNA1.pdb @)
H18 4YBB CA 281-298,340-359 RNA1.pdb P
H19 4YBB CA 299-318 RNA1.pdb Q
H20 4YBB CA 324-339 RNA1.pdb R
H21 4YBB CA 371-404 RNA1.pdb S
H22 4YBB CA 405-423 RNA1.pdb T
H23 4YBB CA 452-472 RNA1.pdb U
H24 4YBB CA 475-509 RNA1.pdb Vv
H25 4YBB CA 532-561 RNA1.pdb w
H25a 4YBB CA 562-578 RNA1.pdb X
H26 4YBB CA 579-586,1251-1261 RNA1.pdb Y
H27 4YBB CA 587-602,655-670 RNA1.pdb V4
H28 4YBB CA 603-625 RNA2.pdb A
H29 4YBB CA 626-636 RNA2.pdb B
H31 4YBB CA 637-654 RNA2.pdb C
H32 4YBB CA 671-683,790-809 RNA2.pdb D
H33 4YBB CA 684-698,763-775 RNA2.pdb E
H34 4YBB CA 699-733 RNA2.pdb F
H35 4YBB CA 734-762 RNA2.pdb G
H35a 4YBB CA 776-789 RNA2.pdb H
H36 4YBB CA 810-821,1186-1195 RNA2.pdb I
H37 4YBB CA 822-835 RNA2.pdb J
H38 4YBB CA 836-942 RNA2.pdb K
H39 4YBB CA 943-973 RNA2.pdb L
H40 4YBB CA 974-990 RNA2.pdb M
H41 4YBB CA 991-1025,1133-1163 RNA2.pdb N
H42 4YBB CA 1026-1056,1103-1132 RNA2.pdb @)

50

H43 4YBB CA 1057-1081 RNA2.pdb P
H44 4YBB CA 1087-1102 RNA2.pdb Q
H45 4YBB CA 1164-1185 RNA2.pdb R
H46 4YBB CA 1196-1250 RNA2.pdb S
H26a 4YBB CA 1262-1270,2010-2017 RNA2.pdb T
H47 4YBB CA 1271-1294 RNA2.pdb U
H48 4YBB CA 1295-1302,1640-1647 RNA2.pdb \Y,
H49 4YBB CA 1303-1306,1622-1625 RNA2.pdb w
H49b 4YBB CA 1307-1313,1603-1608 RNA2.pdb X
H50 4YBB CA 1314-1338 RNA2.pdb Y
H51 4YBB CA 1339-1347,1599-1602 RNA2.pdb Y4
H52 4YBB CA 1348-1382 RNA3.pdb A
H53 4YBB CA 1383-1404 RNAS3.pdb B
H54 4YBB CA 1405-1417,1581-1598 RNA3.pdb C
H55 4YBB CA 1418-1428,1569-1580 RNAS3.pdb D
H49a 4YBB CA 1609-1621 RNA3.pdb E
H56 4YBB CA 1429-1444,1547-1564 RNAS3.pdb F
H57 4YBB CA 1445-1466 RNA3.pdb G
H58 4YBB CA 1467-1525 RNAS3.pdb H
H59 4YBB CA 1526-1546 RNA3.pdb I
H60 4YBB CA 1626-1639 RNAS3.pdb J
H61 4YBB CA 1648-1678,1990-2009 RNA3.pdb K
H62 4YBB CA 1679-1706 RNAS3.pdb L
H63 4YBB CA 1707-1751 RNA3.pdb M
H64 4YBB CA 1758-1773,1977-1989 RNAS3.pdb N
H65 4YBB CA 1774-1790 RNA3.pdb O
H66 4YBB CA 1791-1828 RNAS3.pdb P
H67 4YBB CA 1829-1834,1970-1976 RNA3.pdb Q
H68 4YBB CA 1835-1905 RNAS3.pdb R
H69 4YBB CA 1906-1924 RNA3.pdb S
H71 4YBB CA 1932-1969 RNAS3.pdb T
H72 4YBB CA 2018-2042 RNA3.pdb U
H73 4YBB CA 2043-2057,2611-2625 RNAS3.pdb \Y,
H74 4YBB CA 2058-2074,2430-2451 RNA3.pdb w
H75 4YBB CA 2075-2092,2226-2245 RNAS3.pdb X
H76 4YBB CA 2093-2114,2179-2196 RNA3.pdb Y
H77 4YBB CA 2115-2126,2169-2178 RNAS3.pdb Y4
H78 4YBB CA 2127-2168 RNA4.pdb A
H79 4YBB CA 2197-2225 RNA4.pdb B
H80 4YBB CA 2246-2258 RNA4.pdb C
H81 4YBB CA 2259-2281 RNA4.pdb D
H82 4YBB CA 2282-2286,2382-2390 RNA4.pdb E
H83 4YBB CA 2287-2296,2335-2344 RNA4.pdb F

51

H84 4YBB CA 2297-2321 RNA4.pdb G
H85 4YBB CA 2322-2334 RNA4.pdb H
H86 4YBB CA 2345-2371 RNA4.pdb I
H87 4YBB CA 2372-2381 RNA4.pdb J
H88 4YBB CA 2391-2429 RNA4.pdb K
H89 4YBB CA 2452-2504 RNA4.pdb L
H90 4YBB CA 2505-2517,2567-2586 RNA4.pdb M
H91 4YBB CA 2518-2546 RNA4.pdb N
H92 4YBB CA 2547-2561 RNA4.pdb O
H93 4YBB CA 2587-2610 RNA4.pdb P
H94 4YBB CA 2626-2643,2771-2788 RNA4.pdb Q
H95 4YBB CA 2644-2675 RNA4.pdb R
H96 4YBB CA 2676-2731 RNA4.pdb S
HI7 4YBB CA 2732-2770 RNA4.pdb T
H98 4YBB CA 2789-2805 RNA4.pdb U
H99 4YBB CA 2806-2814,2886-2894 RNA4.pdb Vv
H100 4YBB CA 2815-2831 RNA4.pdb w
H101 4YBB CA 2832-2885 RNA4.pdb X
H1_ 5S | 4YBB CB 1-14,108-120 RNA 5S.pdb | A
H2_5S | 4YBB CB 15-27,60-68 RNA_5S.pdb | B
H3 5S | 4YBB CB 28-59 RNA_5S.pdb | C
H4 5S | 4YBB CB 78-99 RNA_5S.pdb | D
H5 5S | 4YBB CB 69-77,100-107 RNA 5S.pdb | E
uL2 4YBB CcC all prots1.pdb A
uL3 4YBB CD all prots1.pdb B
uL4 4YBB CE all prots1.pdb C
uL5 4YBB CF all prots1.pdb D
uL6 4YBB CG all prots1.pdb E
bL9 4YBB CH all prots1.pdb F
uL11 4YBB CJ all prots1.pdb G
uL13 4YBB CK all prots1.pdb H
uL14 4YBB CL all prots1.pdb I
uL15 4YBB CM all prots1.pdb J
uL16 4YBB CN all prots1.pdb K
bL17 4YBB CO all prots1.pdb L
uL18 4YBB CP all prots1.pdb M
bL19 4YBB CQ all prots1.pdb N
bL20 4YBB CR all prots1.pdb 0]
bL21 4YBB CS all prots1.pdb P
uL22 4YBB CT all prots1.pdb Q
uL23 4YBB Cu all prots1.pdb R
uL24 4YBB cv all prots1.pdb S
bL25 4YBB Ccw all prots1.pdb T

52

1
2

bL27 4YBB CX all prots1.pdb U
bL28 4YBB CcY all prots1.pdb \%
uL29 4YBB Cz all prots1.pdb w
uL30 4YBB Co all prots1.pdb X
bL32 4YBB C1 all prots1.pdb Y
bL33 4YBB C2 all prots1.pdb Z
bL34 4YBB C3 all prots2.pdb A
bL35 4YBB C4 all prots2.pdb B
bL36 4YBB C5 all prots2.pdb C

Supplementary Table 1: Residue and chain assignment for subunit occupancy analysis.

Ribosomal RNA helices and ribosomal proteins are numbered as in Davis et al.

53

1
2
3

Class

Centroid index

51011

51189

80371

9177

74182

73537

95314

66910

OONOOPB|WIN| =

53298

81097

11144

71755

46961

37896

15

89122

Supplementary Table 2: Particle stack indices for the centroid volume of each subunit
occupancy class. Note that these indices are only relevant for the provided pre-computed results

and users should select alternative indices when training new cryoDRGN models.

54

0O NO O WN -

G N U N G
abrh WODN->O000

Supplementary Movie 1. PC1 trajectory from high resolution training. Density maps sampled
along PC1 were automatically generated by the cryodrgn analyze command. Volumes are
displayed at the same isosurface level, and the movie progresses from low to high PC1 value
strictly along the PC1 axis.

Supplementary Movie 2. PC2 trajectory from high resolution training. Density maps sampled
along PC2 were automatically generated by the cryodrgn analyze command. Volumes are
displayed at the same isosurface level, and the movie progresses from low to high PC2 value
strictly along the PC2 axis.

Supplementary Movie 3. Graph traversal showing the B—D1—-D2—D3—D4—E3—E5
assembly pathway. Graph traversal pathway was generated using the cryodrgn
graph traversal command as described in the protocol. The path taken by the traversal
through latent space is shown in Extended Data Figure 9. All volumes are displayed at the same
isosurface level.

55

O©CoONOOOAPRWN -

References

Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J Biol
Chem 294, 5181-5197, doi:10.1074/jbc.REV118.005602 (2019).

Wu, M. & Lander, G. C. Present and Emerging Methodologies in Cryo-EM Single-
Particle Analysis. Biophys J 119, 1281-1289, doi:10.1016/j.bpj.2020.08.027 (2020).
Serna, M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures
of Heterogeneous Macromolecular Complexes. Front Mol Biosci 6, 33,
doi:10.3389/fmolb.2019.00033 (2019).

Dashti, A. et al. Retrieving functional pathways of biomolecules from single-particle
snapshots. Nat Commun 11, 4734, doi:10.1038/s41467-020-18403-x (2020).

Dashti, A. et al. Trajectories of the ribosome as a Brownian nanomachine. Proc Nat/
Acad Sci U S A 111, 17492-17497, doi:10.1073/pnas.1419276111 (2014).

Haselbach, D. et al. Long-range allosteric regulation of the human 26S proteasome by
20S proteasome-targeting cancer drugs. Nat Commun 8, 15578,
doi:10.1038/ncomms 15578 (2017).

Gui, M. et al. Structures of radial spokes and associated complexes important for ciliary
motility. Nat Struct Mol Biol 28, 29-37, doi:10.1038/s41594-020-00530-0 (2021).
Zhong, E., Bepler, T., Berger, B. & Davis, J. CryoDRGN: Reconstruction of
Heterogeneous cryo-EM Structures Using Neural Networks. Nature Methods,
doi:10.1038/s41592-020-01049-4 (2020).

Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and
discrete heterogeneity from single particle cryo-EM. J Struct Biol 213, 107702,
doi:10.1016/j.jsb.2021.107702 (2021).

Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure
determination in RELION-3. Elife 7, doi:10.7554/eLife.42166 (2018).

Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle
image processing. Elife 7, doi:10.7554/eLife.35383 (2018).

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for
rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296,
doi:10.1038/nmeth.4169 (2017).

Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular
motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7,
doi:10.7554/eLife.36861 (2018).

Kingma, D. & Welling, M. Auto-encoding variational bayes. 2nd International Conference
on Learning Representations (2013).

Zhong, E., Bepler, T., Davis, J. & Berger, B. Reconstructing continuously heterogeneous
structures from single particle cryo-EM with deep generative models. arXiv,
doi:arXiv:1909.05215 (2019).

Davis, J. H. et al. Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell 167,
1610-1622 e1615, doi:10.1016/j.cell.2016.11.020 (2016).

Rabuck-Gibbons, J. N., Lyumkis, D. & Williamson, J. R. Quantitative Mining of
Compositional Heterogeneity in Cryo-EM Datasets of Ribosome Assembly
Intermediates. bioRxiv, 2021.2006.2023.449614, doi:10.1101/2021.06.23.449614
(2021).

von Loeffelholz, O. et al. Focused classification and refinement in high-resolution cryo-
EM structural analysis of ribosome complexes. Curr Opin Struct Biol 46, 140-148,
doi:10.1016/j.sbi.2017.07.007 (2017).

Punjani, A. & Fleet, D. J. 3D Flexible Refinement: Structure and Motion of Flexible
Proteins from Cryo-EM. bioRxiv, 2021.2004.2022.440893,
doi:10.1101/2021.04.22.440893 (2021).

56

-_—
QOWoONOOOPR,WN-=-

WWNNNDNNDNNDNNN=22 22 A
2, O OWONODOPAPWN_OOONOOOAPRWN -

20

21

22

23

24

25

26

27

28

29

30

31

32

Ludtke, S. & Chen, M. Deep learning based mixed-dimensional GMM for characterizing
variability in CryoEM. arXiv, doi:arXiv:2101.10356 (2021).

Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. Exploring generative atomic models in
cryo-EM reconstruction. arXiv, doi:https://arxiv.org/abs/2107.01331v1 (2021).
Rosenbaum, D. et al. Inferring a Continuous Distribution of Atom Coordinates from Cryo-
EM Images using VAEs. arXiv, doi:https://arxiv.org/abs/2106.14108v1 (2021).

Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization
improves single-particle cryo-EM reconstruction. Nat Methods 17, 1214-1221,
doi:10.1038/s41592-020-00990-8 (2020).

Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced
motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5-17,
doi:10.1107/S205225251801463X (2019).

Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure
determination. J Struct Biol 180, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).
Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-
electron microscopy. Cell 161, 438-449, doi:10.1016/j.cell.2015.03.050 (2015).
Mclnnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and
Projection for dimension reduction. doi:https://arxiv.org/abs/1802.03426 (2018).

van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine
Learning Research 9, 2579-2605 (2008).

Narayan, A., Berger, B. & Cho, H. Assessing single-cell transcriptomic variability through
density-preserving data visualization. Nat Biotechnol 39, 765-774, doi:10.1038/s41587-
020-00801-7 (2021).

Davis, J. H. & Williamson, J. R. Structure and dynamics of bacterial ribosome
biogenesis. Philos Trans Soc B 372, doi:10.1098/rstb.2016.0181 (2017).

Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B. & Schulten, K. Molecular
dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-
ray crystallography. Methods 49, 174-180, doi:10.1016/j.ymeth.2009.04.005 (2009).
Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and
analysis. Protein Sci 27, 14-25, doi:10.1002/pro.3235 (2018).

57

https://arxiv.org/abs/2107.01331v1
https://arxiv.org/abs/2106.14108v1
https://arxiv.org/abs/1802.03426

	Title: Uncovering structural ensembles from single particle cryo-EM data using cryoDRGN

