
1

Title: Uncovering structural ensembles from single particle cryo-EM data using cryoDRGN 1

 2

Authors: Laurel F. Kinman1+, Barrett M. Powell1+, Ellen D. Zhong1,2,3+*, Bonnie Berger2,3,4*, 3

Joseph H. Davis1,2* 4

Author information: 1Department of Biology, 2Computational and Systems Biology, 3Computer 5

Science and Artificial Intelligence Laboratory, 4Department of Mathematics, Massachusetts 6

Institute of Technology, Cambridge, MA 02139. 7

 8

 9

 10

+Equal contribution 11

*Correspondence: zhonge@mit.edu, bab@mit.edu, jhdavis@mit.edu 12

 13

 14
 15
 16
 17
 18
 19
Key papers: 1) Zhong et al. Nature Methods 2021 [doi: 10.1038/s41592-020-01049-4]; 2) 20
Schoppe et al. Journal of Biological Chemistry 2021 [doi: 10.1016/j.jbc.2021.101334]; 3) Gui et 21
al. Nature Structural and Molecular Biology 2021 doi: 10.1038/s41594-020-00530-0]. 22
 23

 24
 25
 26
 27
Running Title: Single particle cryo-EM data analysis with cryoDRGN. 28
 29

mailto:zhonge@mit.edu
mailto:bab@mit.edu
mailto:jhdavis@mit.edu

2

Abstract 1
CryoDRGN is a machine learning system for heterogenous cryo-EM reconstruction of proteins 2
and protein complexes from single particle cryo-EM data. Central to this approach is a deep 3
generative model for heterogeneous cryo-EM density maps, which we empirically find effectively 4
models both discrete and continuous forms of structural variability. Once trained, cryoDRGN is 5
capable of generating an arbitrary number of 3D density maps, and thus interpreting the resulting 6
ensemble is a challenge. Here, we showcase interactive and automated processing approaches 7
for analyzing cryoDRGN results. Specifically, we detail a step-by-step protocol for analysis of the 8
assembling 50S ribosome dataset (Davis et al., EMPIAR-10076), including preparation of inputs, 9
network training, and visualization of the resulting ensemble of density maps. Additionally, we 10
describe and implement methods to comprehensively analyze and interpret the distribution of 11
volumes with the assistance of an associated atomic model. This protocol is appropriate for 12
structural biologists familiar with processing single particle cryo-EM datasets and with moderate 13
experience navigating Python and Jupyter notebooks. It requires 3-4 days to complete. 14
 15

3

Introduction 1
Proteins and their complexes exist in dynamic equilibria: assembling, disassembling, and 2
undergoing conformational changes. Many of these dynamics are intrinsically linked to function, 3
yet, often, they are poorly understood on a structural level. In recent years, cryo-EM has emerged 4
as a powerful tool for studying protein structure1-3 and the single-molecule nature of cryo-EM 5
makes it an appealing choice for studying protein motions, as millions of individual particles 6
sampled from an underlying energy landscape can be visualized on a single grid4-9. However, 7
studying highly heterogeneous cryo-EM datasets has proved to be a challenging computational 8
problem, as most traditional approaches rely on extensive classification and particle averaging10-9
12 to produce approximately static structures, thereby gaining resolution while obscuring or 10
blurring underlying structural variation8,9,13. 11
 12
We have developed an approach that leverages machine learning models capable of embedding 13
heterogeneous single particle cryo-EM images within a low-dimensional latent space and 14
generating 3D volumes as a function of that latent embedding8. Our approach, named cryoDRGN, 15
takes as inputs a particle stack and poses from a consensus 3D refinement, and uses these data 16
to train a neural network architecture based on the variational autoencoder (VAE)14,15. The overall 17
architecture consists of two neural networks: an image encoder network, which assigns a latent 18
embedding zi to each particle i, and a volume decoder network, which reconstructs a 3D density 19
map Vi given zi. The development, theoretical foundations, and limitations of this work have been 20
described previously8,15. We have applied this approach to a number of publicly-available 21
datasets, and found that cryoDRGN can uncover rare structural states in assembling bacterial 22
ribosomes and help visualize continuous conformational changes in spliceosome complexes8. 23
CryoDRGN has also recently been applied to visualize a tilting motion of radial spike proteins 24
important in dynein motors and ciliary motility7. 25
 26
To illustrate the process of training a cryoDRGN model on a cryo-EM dataset and interpreting the 27
resulting outputs, we present a full protocol and pipeline to analyze an assembling large ribosomal 28
subunit dataset16 (EMPIAR-10076) that exhibits rich compositional and conformational 29
heterogeneity and has been previously characterized8,9,17. The presented pipeline details: 1) the 30
preparation of inputs for cryoDRGN given a particle stack and corresponding consensus 31
reconstruction; 2) training of an initial low-resolution cryoDRGN model; 3) filtering the input 32
particle stack based on the results of low-resolution training; 4) high-resolution cryoDRGN 33
training; and 5) analysis, visualization, and interpretation of the resulting structural ensembles 34
with the assistance of an atomic model (Figure 1). 35
 36
Comparison with other methods 37
 38
Traditional approaches to handle heterogeneity rely on successive rounds of user-driven discrete 39
2D- and 3D-classification, which separate particles into a few independent underlying structures3. 40
Success of these approaches is strongly dependent on selection of the appropriate number of 41
classes, which is unknown a priori, and initial models used for refinement, which can be a 42
significant source of bias. Moreover, this strategy relies on a fundamental assumption that the 43
data are well-described by a finite and identifiable number of true volumes. For datasets 44

4

displaying conformational heterogeneity, in which particles exist in states sampled along one or 1
more continuous trajectories, this assumption does not hold. Even for datasets that show large 2
degrees of discrete compositional heterogeneity, questions still remain about how and when to 3
stop classifying, and how robust results are to classification parameters17. 4
 5
More recently, alternatives to traditional global 3D classification, including multi-body refinement13 6
and focused classification18, have been developed. However, these approaches are inherently 7
limited by the assumption that the structural heterogeneity can be decomposed into a small 8
number of rigid bodies and that the user can identify and define these rigid bodies using masks. 9
In contrast, a number of tools for modeling continuous heterogeneity have also emerged, 10
including principal component analysis based approaches such as cryoSPARC’s 3D variability 11
analysis9, neural network based approaches like cryoDRGN8, 3DFlex19, and e2gmm20 aimed at 12
generating heterogeneous ensembles of 3D-density maps, and analogous methods for directly 13
inferring ensembles of atomic models21,22. 3DVA models heterogeneity as a linear combination of 14
eigenvolumes, and is thus limited in its ability to model complex, nonlinear motions, whereas 15
3DFlex learns a single underlying structure and a set of continuous deformations of this structure 16
and may therefore be challenged by discrete heterogeneity caused by either large cooperative 17
movements, or by compositional variation within a complex. 18
 19
CryoDRGN has broad applicability for modeling complex ensembles containing both continuous 20
and discrete heterogeneity, with the ability to generate an arbitrary number of maps from the 21
imaged ensemble. We have found that cryoDRGN is sufficiently powerful to model non-linear 22
continuous motions and discrete changes in complex composition, yet, unlike many of the 23
aforementioned methods, does not require strong structural priors like the number of expected 24
classes or specification of rigid domains that are expected to undergo conformational changes. 25
Here we provide a protocol detailing how cryoDRGN can be applied to an exemplary 26
heterogeneous dataset and describe additional recently developed tools to aid in analyzing and 27
interpreting the resulting structural ensembles. 28
 29
Overview of the procedure 30
This protocol was developed through comprehensive experimentation and analyses of a variety 31
of cryo-EM datasets across a wide variety of systems. The presented protocol encodes our 32
current best practices in real application settings. 33
 34
Preparing cryoDRGN inputs 35
 36
Within the cryo-EM single particle reconstruction pipeline, cryoDRGN is applied between the 37
steps of traditional 3D reconstruction and model-building (Figure 1). As inputs, cryoDRGN 38
requires a stack of extracted single particles and their corresponding poses and CTF parameters, 39
which are derived from a traditional consensus 3D reconstruction in which the heterogeneous 40
particles are aligned in the same reference frame to a single volume. In general, one should 41
observe well-defined secondary structure in portions of the refined volume as indicative of 42
accurately posed images before initiating cryoDRGN training. Notably, we have found forgoing 43
stringent particle filtering at this stage often expands the range of heterogeneity cryoDRGN learns. 44

5

To improve resolution, poses and per-particle CTF parameters should be optimized, optionally 1
through the use of non-uniform refinement23 or Bayesian polishing24. 2
 3
CryoDRGN’s required inputs can be generated by many single particle reconstruction packages, 4
and we provide preprocessing tools to convert from cryoSPARC12 and RELION25 output formats. 5
During this preprocessing stage we recommend users downsample the particle stack to a lower 6
resolution to facilitate rapid initial network training for dataset filtering. Finally, we back-project the 7
downsampled particle stack using the cryoDRGN-parsed inputs and compare with the refined 8
volume to confirm that the inputs have been correctly prepared (Extended Data Figure 1). 9
 10
Training cryoDRGN networks 11
 12
A cryoDRGN model is trained by iterating through the dataset of particle images and updating 13
neural network parameters with stochastic gradient descent on the loss function described below. 14
One epoch of such training entails passing all particles through the encoder and decoder networks 15
once. The mean squared error between each input image and the corresponding image 16
reconstructed by the decoder network is used to estimate a ‘reconstruction loss’ that is used in 17
conjunction with a ‘regularization loss’ on the latent embeddings to iteratively update the network 18
parameters (Figure 2A). At the end of every iteration the updated parameters and latent space 19
embedding for each particle are saved as weights.[epoch].pkl and z.[epoch].pkl, 20
respectively. Thus, the output directory following 50 epochs of training will contain 50 network 21
weights files, 50 per-particle latent embedding z files, a config.pkl file containing the input 22
parameters and settings used, and a run.log file containing information about the run. 23
 24
Training a neural network can be computationally expensive. We have recently implemented GPU 25
parallelization and accelerated mixed-precision training which can lead to considerably faster 26
network training, particularly for large network architectures and image sizes. However, care must 27
be taken to ensure that training has converged as training dynamics are altered when using GPU 28
parallelization. In this protocol, we use a single GPU and mixed-precision training. 29
 30
We also describe intuitive heuristics to judge when neural network training has converged and is 31
unlikely to benefit from additional epochs of training (Box 1, Figure 2, Extended Data Figures 32
2,4,5). For simplicity, we independently assess the convergence of the encoder and decoder 33
networks and focus our assessment on particles likely to be of interest. Here, we define particles 34
of interest as those in well-populated neighborhoods of latent space, as these neighborhoods are, 35
by definition, well supported by the data. First, we examine encoder convergence as the training 36
epoch after which particles of interest only minimally change their relative positions in latent 37
space. Convergence is monitored epoch-to-epoch by visual comparison of UMAP embeddings 38
(Figure 2B), and by characterizing particle movement in latent space during training (Figure 2C). 39
Second, we note decoder convergence as the training epoch after which density maps 40
corresponding to particles of interest no longer change. Here, convergence is monitored by 41
generating volumes from a consistent set of particles of interest and comparing map-to-map 42
correlation coefficients and FSC curves between epochs (Figure 2D-G, Extended Data Figures 43
2,4,5). We provide a dedicated script within cryoDRGN that automatically calculates and plots 44

6

these criteria. Once training of the encoder and decoder networks has converged, a subsequent 1
epoch can be used for filtering or analysis, with the caveat that we occasionally observe overfitting 2
to noise. Thus, we recommend examining volumes for signs of increased noise, streaking 3
artifacts, or other pathologies in the density maps. If such pathologies are observed, an earlier 4
epoch should be analyzed. 5
 6
Particle filtering 7

Image heterogeneity within a given cryo-EM dataset can result from true structural heterogeneity 8
of the particle of interest or from the presence of contaminants such as ice or edge artifacts. To 9
achieve high-quality reconstructions in traditional cryo-EM processing workflows, these 10
contaminants are often removed by iterative rounds of 2D- or 3D-classification26. We have 11
observed that the latent embeddings produced by cryoDRGN can distinguish between true 12
particles and contaminants, and thus represent a powerful alternative method to filter particle 13
stacks8. Because training time scales with both the number of particles and the box size, and 14
because the presence of contaminants consumes representation capacity in the neural networks, 15
we recommend using an initial round of low-resolution training to eliminate contaminants before 16
proceeding to high-resolution training. Here, we describe one round of particle filtering (Figure 3, 17
Extended Data Figure 3); however, when working with other datasets, users may find it useful 18
to iterate through multiple rounds of particle filtering. 19

To facilitate this process, we provide a Jupyter notebook, cryoDRGN_filtering.ipynb, that 20
allows users to filter particles interactively or by using automated selections based on features 21
(e.g. clusters or z-scores) of the particle embeddings (Box 2). The choice of particle filtering 22
method is dataset-specific; datasets with highly featured latent representations may be more 23
amenable to filtering by clustering or interactive selection, whereas datasets with less featured 24
latent representations may require filtering based on z-score outliers. Particle images selected by 25
any of these approaches can be visualized within the notebook, enabling users to examine these 26
particles manually and adjust their selections (Extended Data Figure 3). We also provide tools 27
to export the selected particles to cryoSPARC or RELION to further assess particle subsets by 28
2D-classification or traditional 3D-reconstruction. Lastly, this notebook allows users to save a 29
.pkl file that records which particles have been retained (or excluded) in the filtering process. 30
This file can be directly passed to cryodrgn train_vae for additional rounds of training. 31

Interactively exploring cryoDRGN models 32

Generally, analysis of a cryoDRGN model involves both visualizing the latent embeddings of 33
particle images and generating volumes from the latent representation to understand the 34
structural heterogeneity within the dataset (Figure 4). The cryodrgn analyze command 35
automates these tasks by: 1) performing principal component analysis (PCA) and Uniform 36
Manifold Approximation and Projection27 (UMAP) on the latent embeddings to aid in visualization 37
of high (>2) dimensional latent spaces (see Glossary); 2) generating representative volumes from 38
different regions of the latent space; and 3) producing representative structural trajectories 39
through latent space. 40

7

To visualize a representative set of volumes, cryodrgn analyze generates volumes after k-1
means clustering of the latent embeddings – volumes are generated at the centroid location of 2
each k-means cluster. Importantly, the k-means algorithm is not used to identify clusters or assign 3
particles to classes, but, instead, is used to partition the latent space into k regions (by default, 4
k=20, and the number of sampled density maps may be modified by passing the --ksample 5
argument to cryodrgn analyze). 6

To visualize representative structural trajectories, cryodrgn analyze generates structures 7
along the first two principal component axes of the latent space, and trajectories along more latent 8
dimensions can be generated using the cryodrgn pc_traversal tool. By default, the volumes 9
are generated at equally spaced points between the 1st and 99th percentile of the data distribution 10
projected onto each principal component. The PC trajectories can highlight major modes of the 11
variability in the structure, however, the principal components of cryoDRGN's latent space are not 12
equivalent to the principal components of the volumes due to the nonlinear nature of the decoder. 13
This contrasts with tools such as cryoSPARC’s 3DVA9. Additionally, it is important to note that the 14
described PC trajectories do not necessarily reflect biologically meaningful paths, and that not all 15
volumes along these paths will originate from regions of the latent space that are equally well 16
supported by data. 17

In addition to visualizing structures present within their dataset, users may also wish to interpolate 18
between two or more such structures. The cryodrgn graph_traversal command provides 19
a means of doing so by building a nearest-neighbor graph between all particles’ latent 20
embeddings, finding the shortest path on the graph between specified particles, and generating 21
volumes along the visited nodes. Unlike standard approaches that naively morph between end-22
point volumes or interpolate along a principal component of variability independent of underlying 23
data support, all of the structures produced by this traversal approach are supported by data from 24
the input particle stack, and thus may represent a more probable structural trajectory. 25

The cryodrgn analyze command also produces a Jupyter notebook, cryoDRGN_viz.ipynb, 26
for interactive analysis. This notebook can be used to analyze the latent space in greater detail, 27
to generate volumes at selected points of interest in the latent space, and to export subsets of 28
particles for traditional 3D reconstruction and model building using other tools. 29

Interpreting structural ensembles 30

While cryodrgn analyze provides an initial characterization of the heterogeneity present within 31
the dataset, a more systematic interrogation of the learned structures allows one to fully explore 32
and quantify the structural states present. There are several possible approaches to perform this 33
more systematic sampling and structural characterization, each leveraging cryoDRGN’s ability to 34
generate large numbers of data-supported density maps. We have found supervised “subunit 35
occupancy analysis”16,30 to be particularly informative for compositionally heterogeneous 36
datasets. With this method, users designate structural elements of interest (e.g. RNA helices, 37
protein complex subunits, polypeptide chains, or elements of protein secondary structure) within 38
an aligned atomic model, and then quantify the presence or absence of each element across the 39
structural ensemble produced by cryoDRGN. Hierarchical clustering of the resulting structural 40

8

element occupancy matrix creates a highly interpretable visualization of the overall compositional 1
heterogeneity across the structural ensemble, and reveals patterns in how these subunits are 2
occupied, including positive and negative cooperative occupancy between individual structural 3
elements. 4

We note that this subunit occupancy analysis is limited by the underlying assumption that an 5
appropriate atomic model exists and that subunits occupy their native conformation within a 6
complex. When complexes exhibit conformational heterogeneity, it may be necessary to fit 7
ensembles of atomic models using tools such as Molecular Dynamics-based Flexible Fitting31. 8

In sum, this protocol provides users with a guided framework to analyze and interpret a richly 9
heterogeneous dataset, and we expect that the approaches and tools described herein will be 10
broadly applicable to the analysis of other datasets. 11

9

Materials 1
 2
EQUIPMENT 3

● The minimal compute requirements for this protocol are as follows: a Linux workstation or 4
cluster equipped with at least one NVIDIA GPU (Pascal, Turing, Volta, and Ampere 5
architectures have been tested), 128 GB RAM, and 250 GB disk space for all raw data 6
and outputs. We note that these requirements are similar to those of traditional cryo-EM 7
reconstruction software. 8

● Performance will vary based on system configuration. For compute-expensive steps of the 9
protocol, we provide approximate timings using a system equipped as follows: 10

○ CPU: Dual Xeon Gold 6242R processors 11
○ GPU: NVIDIA 3090 RTX (single GPU) 12
○ RAM: 512 GB 13

 14
REAGENTS - SOFTWARE 15

● CryoDRGN installation: Updated installation instructions are maintained at 16
https://github.com/zhonge/cryodrgn. Installation instructions for cryoDRGN v0.3.5 which 17
is used in this paper can be found in Supplementary Protocol 1. 18

● UCSF ChimeraX32: Installation instructions can be found at 19
https://www.cgl.ucsf.edu/chimera/download.html 20

● RELION v3.1.110: Installation instructions can be found at 21
https://relion.readthedocs.io/en/latest/Installation.html 22

● cryoSPARC (optional)12: Installation of version 2.4 from https://cryosparc.com/download 23
was used in this protocol. 24

● Occupancy analysis: installation instructions, segmented .pdb files, Python and shell 25
scripts, and Jupyter notebook for analysis available at 26
https://github.com/lkinman/occupancy-analysis. Version 0.1.2 was used in this protocol. 27
 28

REAGENTS - DATASETS 29
● EMPIAR-10076 particle stack: Download from EMPIAR web interface 30

https://www.ebi.ac.uk/empiar/EMPIAR-10076/ or via 31
rsync -avzP empiar.pdbj.org::empiar/archive/10076 ./ 32

● EMPIAR-10076 reconstruction and reconstruction metadata: Download 00_inputs 33
from https://doi.org/10.5281/zenodo.5164127, or follow the cryoSPARC reconstruction 34
guide in Supplementary Protocol 2. 35

● (Optional) all results from this protocol can be downloaded via a web browser from 36
https://doi.org/10.5281/zenodo.5164127. Files can alternatively be downloaded from the 37
command line: 38
 39

pip install zenodo_get 40
zenodo_get --md5 -w urls.txt 5164127 41
wget -c -i urls.txt 42
md5sum -c md5sums.txt 43
conda install zstd 44

https://github.com/zhonge/cryodrgn
https://www.cgl.ucsf.edu/chimera/download.html
https://relion.readthedocs.io/en/latest/Installation.html
https://cryosparc.com/download
https://github.com/lkinman/occupancy-analysis
https://www.ebi.ac.uk/empiar/EMPIAR-10076/
https://doi.org/10.5281/zenodo.5164127
https://doi.org/10.5281/zenodo.5164127

10

for i in *.tar.zst; do tar --use-compress-program=unzstd -1
xvf ${i}; done 2

Procedure 3
 4
[40 minutes] Prepare cryoDRGN inputs 5

1. Connect to the workstation containing the cryoDRGN installation and all downloaded files. 6
We will assume that the base directory contains the downloaded EMPIAR-10076 particle 7
stack at ./10076/data/L17Combine_weight_local.mrc and the downloaded 8
reconstruction and reconstruction metadata at 9
./00_inputs/cryosparc_P71_J21_004_volume_map.mrc and ./00_inputs/ 10
cryosparc_P4_J33_004_particles.cs, respectively. The majority of the commands 11
in this protocol will be run within this base directory. Ensure the cryoDRGN conda 12
environment is activated, which is required for all cryodrgn commands. Enter the 13
following at the terminal. 14

 15
cd /path/to/base/directory 16
conda activate cryodrgn 17
cryodrgn --help 18
 19
The last line provides a list of possible cryoDRGN commands. To learn more about a 20
particular cryoDRGN command, simply enter cryodrgn [command] --help. 21
 22

2. Convert poses from the downloaded cryoSPARC refinement to cryoDRGN format as 23
poses.pkl, specifying the refinement box size of D=320px. Rename the particles.cs 24
file appropriately if you ran your own cryoSPARC refinement following Supplementary 25
Protocol 2. 26
 27
cryodrgn parse_pose_csparc --help 28
cryodrgn parse_pose_csparc 29
00_inputs/cryosparc_P4_J33_004_particles.cs -D 320 -o poses.pkl 30
 31
CryoDRGN will report pose information for the first particle as well as the number of 32
particles parsed (131,889). 33
 34
Equivalent commands exist for preprocessing poses and CTF from RELION outputs as 35
parse_pose_star and parse_ctf_star. If using a star file from RELION 3.1 or later, 36
include the --relion31 flag in this command. 37
 38

3. Convert CTF parameters from the downloaded cryoSPARC refinement to cryoDRGN 39
format as ctf.pkl. 40

 41
cryodrgn parse_ctf_csparc 42
00_inputs/cryosparc_P4_J33_004_particles.cs -o ctf.pkl 43
 44

11

CryoDRGN will report relevant imaging parameters including image size and pixel size. 1
 2

4. Downsample the dataset to D=128px and D=256px, which we will use in the first and 3
second training rounds, respectively. Here we split the particle stacks into 50,000 particle 4
sub-stacks with --chunk to decrease the memory footprint. These chunked .mrcs files 5
are identified by an auto-generated particles.[px].txt file. 6

 7
cryodrgn downsample 10076/data/L17Combine_weight_local.mrc -D 128 8
-o particles.128.mrcs --chunk 50000 9
 10
cryodrgn downsample 10076/data/L17Combine_weight_local.mrc -D 256 11
-o particles.256.mrcs --chunk 50000 12

 13
5. Verify that all data was parsed correctly by back-projecting the first 10,000 particles and 14

comparing the resulting map (backproject.128.mrc) with the refined consensus map 15
cryosparc_P71_J21_004_volume_map.mrc using ChimeraX. Overall, the back-16
projected map should match the refined map well, albeit at lower resolution and with more 17
noise (Extended Data Figure 1). 18

 19
cryodrgn backproject_voxel particles.128.txt --uninvert-data --20
poses poses.pkl --ctf ctf.pkl -o backproject.128.mrc 21

 22
 23
[5 hours] Train cryoDRGN networks 24

6. Run the cryodrgn train_vae command to begin training. To expedite this initial 25
training run, we use a small neural network architecture (256x3) on the 128px 26
downsampled particles. A description of all available training parameters can be displayed 27
with cryodrgn train_vae --help. If memory utilization is limiting on the GPU, 28
decreasing the --batch-size parameter (see Glossary) from its default value of 8 may be 29
helpful. However, training dynamics will also be affected and additional training epochs 30
may be required. Note also that the AMP acceleration used here is most effective for large 31
network architectures and image sizes that are a power of 2. 32
 33
cryodrgn train_vae particles.128.txt --ctf ctf.pkl --poses 34
poses.pkl --zdim 8 -n 50 --batch-size 8 --amp --uninvert-data -o 35
01_128_8D_256 > 01_128_8D_256.log & 36
 37
Pausepoint: the training command will take several hours to run, depending on your 38
computational hardware. You can follow training progress with tail -f 39
01_128_8D_256.log. If your job is interrupted or you otherwise want to restart or extend 40
training, you can resume from any epoch by adding --load 41
01_128_8D_256/weights.[EPOCH#].pkl to the above train_vae command. 42
Alternatively, you can specify --load_latest to avoid providing the specific path to the 43
weights .pkl file for the most recent epoch. 44

12

 1
7. After 50 epochs of training have completed, we check if the network has converged such 2

that additional training would not be beneficial. 3
 4
python /path/to/cryodrgn/utils/analyze_convergence.py --help 5
python /path/to/cryodrgn/utils/analyze_convergence.py 6
01_128_8D_256 49 --flip 7
 8
The --flip flag used here changes the handedness of the map and should be set 9
accordingly in all subsequent steps that generate volumes. 10
 11
All outputs are saved to 01_128_8D_256/convergence.49, including plots of each 12
heuristic convergence metric (Figure 2 and Extended Data Figure 2). A description of 13
the purpose, implementation, and interpretation of all convergence heuristics is included 14
in “Box 1: Convergence Analysis”. For each of these heuristics, a plateau is consistent 15
with convergence and, although individual metrics can be noisy and vary in a dataset-16
dependent manner, we define convergence as the epoch upon which most of these 17
metrics have plateaued. For this training job, we examine the output plots in 18
01_128_8D_256/convergence.49/plots and observe convergence between 19
epochs 29 and 39. 20
 21
These plots also give insight into training dynamics and the distribution of latent variable 22
embeddings. For example, the latent embedding of this dataset is highly featured with 23
clearly visible clusters in the UMAP embedding plots. This will not be the case for all 24
datasets, and many datasets exhibit a less featured latent space, yet display significant 25
heterogeneity when volumes are visualized from distal points in the latent space. This is 26
also a point where it may be useful to examine the volumes in 27
convergence.49/vols.[EPOCH#] directly for evidence of “overtraining” pathologies such as 28
increased noise or streaking artifacts. If overtraining artifacts are observed, users should 29
examine earlier epochs, as these may lack such pathologies. 30
 31

8. In the event that training had not converged, users should return to step 6 (cryodrgn 32
train_vae), increase the number of epochs to -n 100, and load the epoch 49 weights 33
with --load 01_128_8D_256/weights.49.pkl to resume training. Users would then 34
reassess convergence as above before proceeding with particle filtering and model 35
analysis. In general, the number of epochs should be chosen with the dataset size and 36
suitable training time in mind. 37

 38
[30 minutes] Filter particles 39

9. Run the cryodrgn analyze command to perform an automated analysis of the trained 40
cryoDRGN model at epoch 49: 41

cryodrgn analyze 01_128_8D_256 49 --flip --Apix 3.275 42

13

This command runs PCA and UMAP on the embedded latent space, generates volumes 1
at 20 k-means cluster centers, and creates interactive Jupyter notebooks for further 2
visualization and analysis. Note that the user should provide the pixel size in angstroms 3
after accounting for downsampling (--Apix). If the user wishes to change the number of 4
k-means cluster center volumes generated, this can be accomplished using the --5
ksample flag. The --flip flag is set to invert volume chirality, as described above. Note 6
that all volumes generated in this protocol are generated from “on-data” positions in latent 7
space (see Glossary). 8

10. A new directory named analyze.49 was created within 01_128_8D_256 by cryodrgn 9
analyze. The directory contains subdirectories pc1, pc2, and kmeans20, along with 10
plots of the latent space (umap.png and z_pca.png) and the Jupyter notebook files 11
cryoDRGN_filtering.ipynb and cryoDRGN_viz.ipynb. View the contents of this 12
folder to verify that the analysis script ran correctly. 13
 14

11. Before proceeding to high-resolution training, we will eliminate contaminating particles 15
including edge artifacts and ice. Here, we demonstrate one possible filtering approach 16
using a combination of k-means and Gaussian mixture model (GMM) clustering of latent 17
space. Additional approaches involving manual selection or filtering on outlying latent 18
values are implemented within the notebook, and may be more appropriate for other 19
datasets (Box 2: Particle filtering; Extended Data Figure 3). 20
 21
Open the cryoDRGN_filtering.ipynb notebook within Jupyter Lab. See 22
Supplementary Protocol 3 for notes on how to access this Jupyter notebook remotely if 23
you are running this protocol on a compute cluster. 24

 25
12. Check that EPOCH=49 in the third cell is set and run all cells up to the “Filter by cluster” 26

header. 27
 28

13. Examine the volumes generated by k=20 k-means clustering using ChimeraX32 by 29
opening all volumes in the 01_128_8D_256/analyze.49/kmeans20 directory. 30
Comparing the centroid locations of these clusters in UMAP space, as visualized within 31
the notebook, to their corresponding volumes suggests that for this dataset the central 32
teardrop-shaped UMAP cluster containing k-mean centers 11-19 contains primarily poor-33
quality particles (Figure 3A-B). This conclusion is based on the appearance of the 34
volumes, with the volumes that fall within the “junk cluster” showing significant noise (11) 35
or much weaker density than the other volumes (12-19) at a uniform isosurface level. Note 36
that due to random initialization each time cryoDRGN and UMAP are run, users may find 37
this cluster differently shaped, comprised of different k-means classes, and in a different 38
area of their UMAP space. We note that the number and latent distribution of junk particles 39
is highly dataset-specific, and identification of which particles should be filtered often 40
requires detailed inspection of the volumes by the users, and is typically verified by 41
subsequent inspection of representative particles and corresponding cryoDRGN volumes, 42
and by traditional 2D classification or 3D reconstructions using these particles stacks. 43

14

 1
14. To exclude these particles from further analysis, move to the GMM clustering section of 2

the notebook. Run GMM clustering with G=5 or G=6 such that the plot of UMAP space 3
colored by GMM cluster shows a clean separation of the junk cluster (here, the central 4
teardrop-shaped cluster) from the rest. Due to GMM’s random initialization, this may take 5
several iterations and may separate as one or two GMM clusters (Figure 3C). 6
Alternatively, this cluster may be specified by the corresponding k-means clusters (here, 7
11-19), or by selection with a lasso tool in the interactive selection section of the filtering 8
notebook (Box 2). 9
 10

15. In the subsequent cells, define ind_selected as an array of GMM cluster labels which 11
exclude the junk particle cluster (for our initialization, cluster 3), such as ind_selected 12
= [0, 1, 2, 4, 5]. 13
 14

16. Under the “Save selection” header, run all cells to save the filtered particle indices as a 15
.pkl file that can be fed directly to cryodrgn train_vae. We expect to have included 16
~100,000 particles and excluded ~30,000. Alternatively, download the filtered particle 17
indices from precomputed-01_128_8D_256.tar.zst as described in Materials. 18

 19
17. Optionally, a .star file corresponding to these filtered indices can be created at the 20

command line for import into traditional reconstruction software. For example, export both 21
good and bad particles to assess particle filtering by 2D-classification in cryoSPARC 22
(Extended Data Figure 3) using the write_star.py script found within the cloned 23
cryoDRGN software directory: 24

mv 10076/data/L17Combine_weight_local.mrc 25
10076/data/L17Combine_weight_local.mrcs 26

cryodrgn write_starfile 10076/data/L17Combine_weight_local.mrcs 27
ctf.pkl --poses poses.pkl --ind 28
01_128_8D_256/ind_keep.96478_particles.pkl -o ind_keep.star 29

cryodrgn write_starfile 10076/data/L17Combine_weight_local.mrcs 30
ctf.pkl --poses poses.pkl --ind 31
01_128_8D_256/ind_bad.35421_particles.pkl -o ind_bad.star 32

[1 day] Train high-resolution cryoDRGN networks 33

18. Train a new model using the particles selected above at higher resolution (D=256px) and 34
using a larger network architecture (1024x3). Training this model is the most 35
computationally expensive step in this protocol, and using –-amp decreases training 36
times. If your workstation is equipped with less than 128 GB RAM, you may encounter 37
out-of-memory errors. These errors can be circumvented by the addition of --lazy to the 38
following command, allowing on-the-fly image loading from disk at a significant cost of 39
performance. 40

15

cryodrgn train_vae particles.256.txt --amp --ctf ctf.pkl --poses 1
poses.pkl --zdim 8 -n 50 --uninvert-data --enc-dim 1024 --enc-2
layers 3 --dec-dim 1024 --dec-layers 3 -o 02_256_8D_1024 –ind 3
01_128_8D_256/ind_keep.96478_particles.pkl > 02_256_8D_1024.log & 4
 5
Pausepoint: as in step 6, this training step will require many hours to complete. 6

19. Verify that the new model has converged by running: 7

python /path/to/cryodrgn/utils/analyze_convergence.py 8
02_256_8D_1024 49 --flip 9

We find that the network has satisfactorily converged by the end of training according to 10
the criteria described in step 7 above (Extended Data Figures 4,5). 11

[30 minutes] Interactively explore cryoDRGN models 12

20. Run cryodrgn analyze at the desired epoch. Here, we will analyze epoch 49 based 13
on the convergence criteria described above. 14

cryodrgn analyze 02_256_8D_1024 49 --Apix 1.6375 --flip 15

21. Launch Jupyter Lab to explore the cryoDRGN_viz.ipynb file located in 16
02_256_8D_1024/analyze.49. Run the cells sequentially, verifying that epoch 17
number 49 is entered in the third cell. This notebook produces a series of figures, some 18
of which allow for interactive visualization of the distribution of poses, CTF parameters, or 19
defocus values in latent space. Comparing these distributions allows us to check if the 20
latent variable is capturing variation in non-structural heterogeneity, such as imaging 21
parameters or viewing direction. Other figures include global pose distribution within the 22
dataset and the latent space colored by k-means clusters with center points of clusters 23
annotated (Extended Data Figure 6). 24
 25

22. Visualize the k-means cluster center volumes generated by cryodrgn analyze in 26
ChimeraX by opening all volumes in the 02_256_8D_1024/analyze.49/kmeans20 27
folder. Compare these volumes to the annotated k-means cluster centers in the latent 28
space graphs (umap.png and umap_hex.png in the same directory). The latent space 29
for this dataset is highly structured, with clusters visible by UMAP that correspond to 30
assembly states of the ribosomal large subunit originally identified by Davis et al16. 31
Selected volumes and their corresponding particles are shown in Figure 4. 32
 33

23. To help understand the major modes of motion within the dataset, visualize the volumes 34
generated along the first two principal components in ChimeraX (Supplementary Movies 35
1 and 2). These volumes are located in the 02_256_8D_1024/analyze.49/pc1 and 36
02_256_8D_1024/analyze.49/pc2 subdirectories, respectively. Note that the first 37

16

principal component encodes variable density in the base of the ribosome, whereas the 1
second principal component encodes variable density in the central protuberance. 2

 3
[2 hours] Interrogate structural ensembles using an atomic model 4
 5
Now that we have a sense of the types of variability present in this dataset, we seek to more 6
systematically sample and analyze this structural heterogeneity. We use a supervised “subunit 7
occupancy analysis”, as we identified extensive compositional heterogeneity in the observed k-8
means cluster center volumes. Here we will generate 500 volumes using k-means clustering and 9
interpret their structural heterogeneity using an aligned atomic model. These 500 volumes can be 10
generated directly by re-running the cryodrgn analyze command with the optional argument 11
--ksample 500, or through the cryoDRGN_viz.ipynb interactive Jupyter notebook as 12
described in steps 24-25 below. 13

 14
24. To focus our subunit occupancy analysis on assembling large subunit particles, we first 15

filter the small number of contaminating 70S particles that appear as outliers in the latent 16
space (Figure 4). The criteria defining these particles may change from run-to-run; here, 17
we distinguish these particles as those with UMAP1 > 10. Create a new cell in the 18
cryoDRGN_viz.ipynb notebook and enter the following to perform k-means clustering 19
with 500 cluster centers on the remaining particles. Users may adjust the definition of the 20
sub dataframe in the first line to reflect their own criteria to exclude the 70S particles. 21
 22
sub = df[df[UMAP1'] < 10] 23
sub_z = z[sub.index] 24
K = 500 25
kmeans_labels, centers = analysis.cluster_kmeans(sub_z, K) 26
centers, centers_ind = analysis.get_nearest_point(sub_z, centers) 27
centers_ind_df = sub.index[centers_ind] 28
sub.loc[:, 'Kmeans500'] = kmeans_labels 29
sub.to_csv('kmeans500_df.csv') 30
utils.save_pkl(centers_ind_df, 'kmeans500_labels.pkl') 31
 32
Note that the last three lines save the information about which particles belong to which 33
k-means cluster, and which particles within each cluster represent the cluster center. We 34
use this information below. 35

25. Navigate to the ‘Generate volumes’ section of the same Jupyter notebook and change the 36
vol_ind definition to vol_ind = centers_ind_df. Additionally, several cells below 37
this, set Apix = 1.6375 and set flip = True. After making these changes, run the 38
cells in this section in order, generating 500 volumes corresponding to the on-data centers 39
of the 500 k-means clusters identified in the previous step (Extended Data Figure 7). 40
 41

26. Subunit occupancy analysis requires an aligned atomic model segmented into chains 42
indicating the structural elements of interest. The segmented PDB files for this dataset are 43

17

available at https://github.com/lkinman/occupancy-analysis, in the protocol_examples 1
folder (Materials), and Supplementary Protocol 4 details how to generate them. Chain 2
assignments for each residue are provided in Supplementary Table 1. Note that the 3
segmented PDB models must be aligned with an example cryoDRGN map prior to use; 4
while the PDB models included in protocol_examples folder have been pre-aligned to 5
the consensus refinement at 00_inputs/cryosparc_P4_J33_004_particles.cs, 6
instructions on how to align these models to an arbitrary volume in ChimeraX are provided 7
in Supplementary Protocol 5. 8

 9
For the remaining workflow, we will assume you have stored all the downloaded 10
occupancy analysis scripts in a subdirectory of your base directory called 11
03_occupancy_analysis. This subdirectory will be your new working directory for 12
steps 27-33. We also assume that the aligned .pdb files, along with the 13
reconstruct_000000 folder containing all 500 volumes sampled from latent space, are 14
stored in /path/to/base/directory/03_occupancy_analysis/00_aligned/. 15
 16

27. Navigate to your working directory 17
(/path/to/base/directory/03_occupancy_analysis). If the cryodrgn conda 18
environment is not already active, activate it as before and use the provided 19
gen_mrcs.sh shell script to convert the segmented and aligned PDB files into .mrc files 20
aligned to an example cryoDRGN map. This script is a wrapper for chimerax, thus 21
ChimeraX must be activated in your current environment (i.e. which chimerax should 22
return the path to the ChimeraX executable on your system). 23

conda activate cryodrgn 24
bash protocol_examples/gen_mrcs.sh 25
 26
This shell script may be adapted to use for other datasets by changing the names of the 27
PDB files, the chains within each file, and the resolution, where the resolution used 28
should be approximately the global FSC= 0.143 resolution of the consensus 29
reconstruction. The output of this shell script is a directory called 01_PDB_mrc 30
containing a separate converted .mrc file for each of the 136 chains defined in the 31
segmented PDB files. 32

28. Create masks from each of the .mrc files generated in the last step using RELION and the 33
gen_masks.py script. This script is a wrapper for relion_mask_create, thus RELION 34
must be activated in your current environment (i.e. which relion_mask_create 35
should return the path to the relion_mask_create executable on your system). 36

for i in 01_PDB_mrc/*.mrc; do python gen_masks.py --mrc $i --37
outdir 02_mask; done 38

This script produces a pixel size warning that can be ignored. 39

https://github.com/lkinman/occupancy-analysis

18

29. Calculate the reference-normalized occupancies of each defined subunit in each of the 1
500 electron density maps sampled from latent space using the provided 2
calc_occupancy.py script. 3

python calc_occupancy.py --mapdir 00_aligned/reconstruct_000000 -4
-maskdir 02_mask --refdir 01_PDB_mrc 5

30. Launch Jupyter Lab and open the provided occupancy_analysis.ipynb template 6
notebook. Change the occupancies variable in the second cell to indicate the location 7
of the occupancies.csv file generated in the previous step (e.g. 8
('/path/to/base/directory/03_occupancy_analysis/occupancies.csv'). 9

If using this notebook on a different dataset or with different segmented atomic models, 10
change the num_volumes variable and chains dictionary as necessary. The keys for 11
the chains dictionary should be the names of the atomic model files, and the 12
corresponding values should describe the identity of the chains in that file, in alphabetical 13
order of the chains. 14
 15

31. After changing the necessary variables, run the cells in order through the ‘Normalization’ 16
section. Here, we implement a normalization method in which the values are re-scaled to 17
span a range from the tenth to ninetieth percentiles of the original data. The most 18
appropriate normalization method may vary be dataset and users will likely need to try 19
several methods of normalizing data to determine which best facilitates visual analysis 20
interpretation of the resulting heatmap. 21
 22

32. Hierarchical clustering allows us to group volumes that exhibit similar patterns of subunit 23
occupancy. We define density map classes by setting a threshold distance on the 24
dendrogram of the rows. In applying such a threshold to the dataset shown here, we 25
observe classes of particles at varying stages of assembly, as evidenced by the presence 26
and absence of various structural features in these different classes (Figure 5A,C). 27
Applying a threshold to the dendrogram of the columns identifies structural blocks 28
consisting of rRNA or protein elements that show similar occupancy patterns. 29
 30
Coloring the atomic model by these structural blocks improves the interpretability of the 31
clustermap and assists in visualizing cooperative blocks that may be present (Figure 32
5A,B). Clustering can be performed within the provided Jupyter notebook by running the 33
‘Hierarchical clustering’ cells. 34
 35

33. Run the ‘Extract classes from clustering’ section of the notebook to automatically extract 36
the volume classes and structural blocks at the thresholds you defined in step 32. The 37
subsequent two sections of the notebook, ‘Visualize volume classes in ChimeraX’ and 38
‘Visualize structural blocks in ChimeraX’, produce a series of .py scripts that can be 39
opened in ChimeraX for direct visualization of the subset of kmeans500 electron density 40
maps within each volume class, and the atomic model colored by the structural blocks, 41

19

respectively. 1

[30 minutes] Visualize data-supported structural transitions 2

34. Return to the cryoDRGN_viz.ipynb analysis notebook to generate on-data centroid 3
volumes for each class. Here, we provide the indices we define as the centroid of each of 4
our classes in Supplementary Table 2. See Supplementary Protocol 6 for detailed 5
instructions on how to define these indices independently. 6
 7

35. Having identified representative centroid indices for the varying assembly states of the 8
50S ribosome (Extended Data Figure 8), we can generate an on-data graph traversal 9
using these points as anchors and the cryodrgn graph_traversal command. The 10
graph traversal we highlight here showcases the B→D1→D2→D3→D4→E3→E5 11
assembly pathway described in Davis et al.16 (Extended Data Figure 9, Supplementary 12
Movie 3). Note that the italicized anchor indices corresponding to the cluster centroids will 13
vary run-to-run and should be calculated using your data as described in step 34. 14

cryodrgn graph_traversal 02_256_8D_1024/z.49.pkl --anchors 89122 15
37896 53298 81097 66910 95314 73537 51189 51011 -o 16
02_256_8D_1024/analyze.49/path01.txt --out-z 17
02_256_8D_1024/analyze.49/z.path01.txt 18

cryodrgn eval_vol 02_256_8D_1024/weights.49.pkl -c 19
02_256_8D_1024/config.pkl --flip --zfile 20
02_256_8D_1024/analyze.49/z.path01.txt -o 21
02_256_8D_1024/analyze.49/path01 22

[1 hour] Validating minor states with traditional tools 23

36. While the coarse clustering described above is useful for surveying the broad landscape 24
of structural heterogeneity within the dataset, it may obscure interesting intra-class 25
variation. It is therefore useful to check each class individually for low-population states 26
that differ from the rest of the class. For example, in this dataset we observe a set of 27
volumes in class 11 with high H68 occupancy and low central protuberance occupancy. 28
These particles correspond to the C4 class of particles identified previously by our group 29
using cryoDRGN8 but which were overlooked using traditional 3D classification 30
approaches16. 31

37. Using the Jupyter notebook generated by cryodrgn analyze, you can extract particles 32
corresponding to structural states of interest to conduct homogeneous refinement with 33
tools such as cryoSPARC and RELION. Here, we select particles belonging to the C4 34
class k-means clusters, which are represented by maps 270, 283, 284, 285, and 286 in 35
our analysis (Extended Data Figure 10). The map indices will vary from run to run; users 36
should determine which particles belong to class C4 for their run by looking for maps with 37
high H68 occupancy and low occupancy of the central protuberance block. 38

20

df = pd.read_csv('kmeans500_df.csv', index_col = 0) 1
c4 = [270, 283, 284, 285, 286] 2
df_c4 = df[df['Kmeans500'].isin(c4)] 3

Having defined our selection, we can now set ind_selected = df_c4.index in the 4
‘Save the index selection’ cell, and run this cell to save a .pkl file with the indices of these 5
particles. This .pkl file can be used to filter the original .star file for import into cryoSPARC 6
or RELION with the cryodrgn write_star script, as described above during particle 7
filtering (Figure 5D). 8

This concludes a preliminary cryoDRGN analysis, however users are encouraged to continue 9
exploring their data using the tools we’ve described, and additional functionalities within these 10
notebooks that are beyond the scope of this protocol. We encourage users to embrace the 11
iterative, interactive approach to cryoDRGN analyses described herein, and hope users will find 12
these tools valuable as they develop testable hypotheses aimed at understanding dynamic 13
macromolecular complexes. 14

 15

21

Glossary 1
• Network architecture: the arrangement of hidden layers and nodes in each neural 2

network. For example, a 256x3 network architecture has 3 hidden layers each containing 3
256 nodes. These descriptions do not include the number of nodes in the input or output 4
layers, as these are determined by the image size and by the dimensionality of the latent 5
space. 6

• Encoder network: the neural network that encodes each particle image in a low-7
dimensional latent space. By default, we use an 8-dimensional latent space, though users 8
can specify higher or lower dimensions. 9

• Decoder network: the neural network that generates a 3D density map, given a latent 10
embedding. 11

• Epoch: the passage of an entire particle stack through the encoder and decoder networks. 12
The networks are iteratively trained through multiple epochs. 13

• Minibatch: Particles are passed through the encoder and decoder networks in groups 14
called mini-batches of 8 images by default; changing the mini-batch size affects memory 15
utilization, training dynamics, and training speed. 16

• PCA: a linear dimensionality technique used in this protocol to visualize the latent space. 17
Axes produced by PCA are orthogonal and ordered by maximum variance along each 18
axis, and we typically inspect the first 2-4 axes. In practice, we find that PCA is useful for 19
identifying outliers in the latent embedding distribution and summarizing major modes of 20
heterogeneity, however we find that useful local structure in the distribution is often lost 21
due to the linear projection. 22

• UMAP: a non-linear dimensionality technique used in this protocol to embed the latent 23
space into an easily visualized 2D space. UMAP tends to highlight local neighborhood 24
structure at the expense of preserving global structure. As a result, distance metrics in 25
UMAP-space such as inter-cluster distance are not generally meaningful. We find that 26
UMAP embeddings are useful in segmenting structurally disparate groups of particles and 27
that high particle densities within a UMAP cluster meaningfully represent dense particle 28
neighborhoods in latent space. 29

• Z-score: the number of standard deviations above the mean. Used during particle filtering 30
to identify particles with a z-score > 2 (by default), meaning a latent embedding whose 31
magnitude is 2 standard deviations above the mean magnitude across all particles. 32

• On-data: volumes generated by the described cryoDRGN analysis scripts are always 33
generated from a position in the latent space directly corresponding to the latent 34
embedding of some particle within the input stack – i.e. “on-data”. Specifically, we always 35
generate a volume from the closest on-data point to a given query in latent space. 36

• UMAP local maxima method: our approach to identify a set of latent coordinates 37
representing diverse particles in areas of latent space that are well-supported by data. 38
This method aims to automatically reproduce how a user might interactively select a 39
subset of dense clusters from a UMAP embedding. Briefly, latent values for all particles 40
from the final epoch of training are embedded in 2D UMAP space. This space is then 41
binned with 30 bins per axis and the resulting 2D histogram is smoothed with a gaussian 42
of width = 1 bin. All local maxima are identified, then greedily pruned such that the lower 43
amplitude maximum of two local maxima within a defined radius of each other is removed. 44

22

A final filtering step returns the 10 largest local maxima. Particles within a 3x3 grid of bins 1
centered on each local maximum are labelled as corresponding to local maxima A-J, and 2
their on-data median latent coordinate is returned for volume generation. Note that 3
maxima are labeled A-J in order of decreasing particle count. 4

 5

23

Box 1: Convergence Analysis 1
Here, we include several heuristic metrics to assess convergence of cryoDRGN network 2
training. Each metric queries convergence of different elements of the network (i.e. the 3
encoder, the decoder, or the entire network). Although alternative heuristics exist, we have 4
found that these metrics are useful in judging when cryoDRGN networks have been 5
sufficiently trained across a variety of datasets. The motivation, implementation, and 6
example interpretation of each convergence metric are detailed below. 7

• Total network loss: This metric is the loss function guiding network learning during 8
training8. Total loss per epoch is expected to decrease as the network trains. Smooth 9
asymptotic behavior is indicative of stable network training. 10

• UMAP latent embeddings: In a converged network we expect the distribution of latent 11
embeddings to be insensitive to further training. To visualize high dimensional latent 12
distributions, we calculate UMAP embeddings of the latent at set intervals during training. 13
Note that UMAP is subject to artifacts like rotation, mirroring, or inconsistent mapping of 14
particles on cluster boundaries. For our application, the important criteria are that the 15
number, size, and relative distribution of clusters remains constant. For datasets with less 16
featured UMAP embeddings, locally monitoring dense regions within UMAP clusters or 17
relying on alternative metrics can be useful. 18

• Latent embedding shifts: This metric examines the “movement” of particles through latent 19
space during training, with the expectation that converged networks will exhibit movement 20
that is small and randomly directed within local minima. Movement is monitored by the 21
size (magnitude) and consistency of direction (dot product and cosine distance) of a given 22
particle’s motion over epochs. Specifically, we consider the n-dimensional vectors 23
connecting its latent embedding in epochi, to epochi+1, and in epochi+1, to epochi+2. The 24
magnitude of each vector, as well as the dot product and cosine distance of this pair of 25
vectors, are calculated and the median values for these three parameters across all 26
particles are plotted per epoch. Similar to the total loss plot, an elbow and subsequent 27
stabilization in each of these plots is consistent with convergence. Less featured latent 28
spaces can result in more “noise” in these plots; in such cases, a rolling average of these 29
values can be used. 30

• Correlation of generated volumes: This approach assesses the convergence of the 31
decoder by examining whether volumes sequentially generated from related positions in 32
latent space stabilize during training. These positions are calculated as the on-data 33
median latent values of particles in well-supported clusters identified using the UMAP local 34
maxima method (Glossary). The median latent encoding of each cluster’s particles is 35
updated, and a corresponding volume generated, every five epochs. Volumes generated 36
in this way should trend towards high correlation with the previously generated volume 37
during convergence, as particles map to increasingly consistent regions of latent space 38
and the decoder produces increasingly consistent corresponding volumes. Stabilization is 39
measured by map-to-map real-space correlation and map-to-map FSC. For this dataset, 40
which produces structures whose resolution are Nyquist-limited, we find in addition to 41
examining FSC at all spatial frequencies, specifically visualizing the increasing correlation 42
at the Nyquist limit is informative. 43

 44

24

In general, strict cutoffs for convergence are difficult to identify. These heuristics are 1
intended to be used in a holistic fashion when assessing convergence. Typically, 2
additional training beyond convergence provides diminishing returns while increasing the 3
likelihood of overtraining artifacts as described above. 4

25

Box 2: Particle Filtering 1
 2
Several methods to filter particles are implemented in cryoDRGN. The optimal method for 3
particle filtering is dataset-specific, and users are encouraged to try several methods to 4
determine which is the best-suited for their particular data. We recommend that all particle 5
filtering pipelines, regardless of method employed, start with visually inspecting k-means 6
cluster center volumes generated automatically by cryodrgn analyze, and cross-7
referencing these to the UMAP plots of the k-means clusters in the 8
cryoDRGN_filtering.ipynb notebook. Volumes from within clusters containing 9
particle picking artifacts often appear noisy or have particularly weak density. When users 10
have determined which regions of latent space appear to represent such artifacts, they 11
can proceed to use any of the following methods in the Jupyter notebook to exclude 12
particles belonging to these regions: 13

• Filtering by clustering: In cases where users are able to clearly identify undesired clusters 14
using the k-means cluster center volumes, they can directly select these clusters to be 15
filtered out within the cryoDRGN_filtering.ipynb notebook. Gaussian mixture model 16
(GMM) clustering can also be used, as described in this protocol. 17

• Filtering by interactive selection: If there is a clearly-defined region of undesired particles 18
within latent space, users may find it easiest to use the interactive widget in the 19
cryoDRGN_filtering.ipynb notebook to manually select this region of latent space 20
via a lasso tool and filter out all particles contained within it. 21

• Filtering on magnitude of the latent embeddings: In some datasets, “junk” particles can be 22
easily distinguished by outlying latent embedding values. This may be particularly valuable 23
for datasets with less featured latent spaces, where the regions corresponding to particle 24
picking artifacts are less amenable to separation by clustering or interactive selection. With 25
the filtering notebook, users can compute the magnitude of the latent embedding and 26
eliminate particles for which the magnitude is more than a defined number of standard 27
deviations above the mean. 28
 29
Particle filtering efficacy can be assessed by several metrics, including generating more 30
volumes from regions enriched of latent space enriched for retained or discarded particles 31
and confirming the presence of good volumes and poor volumes, respectively. Users can 32
also directly view particles in the cryoDRGN_filtering.ipynb notebook to see if they 33
contain ice or edge artifacts, or other protein contaminants unrelated to the complex of 34
interest. Finally, retained and discarded particles can be exported and further inspected 35
via traditional 2D classification or 3D reconstruction in other processing software such as 36
cryoSPARC or RELION. See Extended Data Figure 3 for a comparison of these particle 37
filtering methods using the EMPIAR-10076 dataset; note that all three filtering methods 38
identify largely overlapping particle sets for this dataset. 39
 40

 41

26

Troubleshooting 1
 2
Step Problem Possible reason Possible solution
4 Out of memory error when

running cryodrgn
downsample

The particle stack is too large to
fit into memory

Add the --chunk flag to the
cryodrgn downsample
command

5 Back projection is noisy,
discontinuous, or does not
resemble consensus
refinement

Incorrect pose and CTF
metadata were supplied, or
pose and CTF parameters were
incorrectly mapped to particles.
Noisy maps may also result
from using a small number of
particles used in the back
projection (default: 10,000).
Users may also have not
applied the correct --
uninvert-data convention,
which determines whether the
data is light-on-dark or dark-on-
light

Verify that the correct pose
and CTF parameters were
supplied during parsing and
that the particle stack
originated from, and contains
the same particle index/order
as the pose and CTF
parameter metadata. If the
volume is very noisy, re-run
cryodrgn
backproject_voxel with
a larger number of particles
using --first flag. Check
whether the correct --
uninvert-data convention
for the dataset is followed by
running cryodrgn
backproject_voxel with
and without --uninvert-
data

6, 18 Out of memory error shortly
after starting cryodrgn
train_vae

The particle stack is too large to
preload into memory

Append --lazy to the
cryodrgn train_vae
command to allow on-the-fly
image loading, further
downsample particles, or
train on a subset of the
particle stack.

6, 18 CUDA out of memory error
during cryodrgn
train_vae

Batch size may be set too large
for your GPU's memory
capacity

Manually decrease batchsize
with the --batchsize flag
in the cryodrgn
train_vae command

6, 18 Assertion error during
cryodrgn train_vae
similar to assert
(coords[...,0:3].abs()
- 0.5 < 1e-4).all()

Infrequent issues with numerical
instability using --amp may
cause this assertion to fail

Restart cryodrgn
train_vae without --amp

7, 9,
19,
22-
23

Volumes generated after
training appear non-
continuous or hollow in the
center of the box

Users failed to apply correct --
uninvert-data flag

Run cryoDRGN
backproject_voxel with
and without the --
uninvert-data flag and
determine which convention
is applicable, then re-run

27

cryodrgn train_vae as
necessary

7, 9,
19,
22-
23

Volumes generated after
training all resemble junk

Volumes may be displayed at
too permissive an isosurface.
Alternatively, data may have
been parsed incorrectly in the
preprocessing steps.

Increase the isosurface
threshold for display. Run
cryodrgn
backproject_voxel to
determine whether poses
and CTF parameters were
correctly parsed.

7, 9,
19,
22-
23

Volumes generated after
training all appear
homogeneous

For datasets other than
EMPIAR-10076, this may be
caused by too much upstream
filtering prior to cryoDRGN
training.

Restart cryoDRGN training
with an unfiltered dataset.

All Jupyter notebooks aren’t
behaving as described in the
protocol

Cells may have been run out of
order or may reference
outdated variables

Restart the kernel and run
the notebook again in order
from top to bottom

 1
 2

Timing 3
 4
The required time to run this protocol is dependent on the hardware users have available. We 5
provide approximate timings in each section of the protocol based on our hardware described in 6
Materials. For users who seek to employ this protocol on their own datasets, the primary 7
determinant of the timing will be how long the cryoDRGN model training steps require, as these 8
steps are the most expensive in terms of both time and computational resources. We generally 9
recommend training “high-resolution” cryoDRGN models at a boxsize of 256 pixels, as 10
computational time can become prohibitive with significantly larger boxes. For very large datasets 11
or datasets with large boxsizes, users may find it useful to employ the cryodrgn preprocess 12
command instead of cryodrgn downsample, as this command changes some of the 13
preprocessing steps to minimize downstream memory usage and obviates the need for using on-14
the-fly image loading via the --lazy flag, which significantly increases training times. Instructions 15
for how to use cryodrgn preprocess are available at https://github.com/zhonge/cryodrgn. 16
 17
 18
Anticipated Results 19
 20
This protocol describes the training of a cryoDRGN model on a highly heterogeneous exemplar 21
dataset (EMPIAR-10076), as well as the systematic characterization of the resulting structural 22
ensemble. Following the protocol, users produce the following principal outputs: 23

1. A latent embedding for each particle in the input stack. 24
2. A decoder network able to generate an arbitrary number of volumes from embeddings 25

across latent space. This decoder network can then be used, as shown in this protocol, 26
to explore the structural landscape of the dataset by sampling the 3D volumes found in 27
different positions of latent space. 28

https://github.com/zhonge/cryodrgn

28

3. A representative ensemble of volumes sampled from across latent space using the 1
decoder network, which can be directly visualized and used for downstream landscape 2
analysis. 3

4. A matrix of occupancy values for each structural element in each sampled volume, which 4
can be clustered and represented as a heatmap, and which can be used for quantitative 5
analysis of the sample’s structural heterogeneity. 6

 7
Though the precise nature of the heterogeneity uncovered is dataset-dependent, and aspects of 8
the analysis – notably how clustered or featured the distribution of latent embeddings is – may 9
differ from the analysis of this example dataset, users should be able to follow this protocol on 10
their own datasets to produce a similar set of outputs. 11
 12
 13
Data Availability 14
 15
All final and intermediate results presented in this protocol are available at 16
https://doi.org/10.5281/zenodo.5164127 17
 18
 19
Code Availability 20
 21
The software and scripts used in these analyses are available at 22
https://github.com/zhonge/cryodrgn (version 0.3.5) and https://github.com/lkinman/occupancy-23
analysis (version 0.1.2), as described in Materials. All code is available through the open source 24
GPL-3.0 License. 25
 26
 27
Author Contributions 28
 29
Conceptualization - All; Funding acquisition - BB, JHD; Investigation - JHD, LK, BMP, EDZ; 30
Software - LK, BMP, EDZ; Supervision - BB, JHD; Visualization - LK, BMP; Writing - original draft 31
- LK, BMP, EDZ; Writing - review & editing – All. 32
 33
 34
Acknowledgements 35
 36
We thank the MIT-IBM Satori team for GPU computing resources and support. This work was 37
funded by the NSF GRFP Fellowship to E.D. Z., NIH grant R01-GM081871 to B.B., NSFCAREER-38
2046778 and NIH grant R01-GM144542 to J.H.D., and a grant from the MIT J-Clinic for Machine 39
Learning and Health to J.H.D. and B.B. Research in the Davis lab is supported by the Alfred P. 40
Sloan Foundation, the James H. Ferry Fund, and the Whitehead Family. 41
 42
 43

https://doi.org/10.5281/zenodo.5164127
https://github.com/zhonge/cryodrgn
https://github.com/lkinman/occupancy-analysis
https://github.com/lkinman/occupancy-analysis

29

Supplementary protocol 1. Installing cryoDRGN version 0.3.5 1

1. Instructions for installing the latest version of cryoDRGN are available at 2
https://github.com/zhonge/cryodrgn. For consistency with our results, we recommend 3
using version 0.3.5 that we employed in this protocol. It can be installed using github as 4
described below. To set up the conda environment, run the following commands: 5
 6
conda create --name cryodrgn python=3.7 7
conda activate cryodrgn 8
conda install pytorch cudatoolkit=10.2 -c pytorch 9
conda install pandas seaborn scikit-learn 10
conda install umap-learn jupyterlab ipywidgets cufflinks-py 11
"nodejs>=15.12.0" -c conda-forge 12
conda update typing_extensions -c conda-forge 13
jupyter labextension install @jupyter-widgets/jupyterlab-manager 14
--no-build 15
jupyter labextension install jupyterlab-plotly --no-build 16
jupyter labextension install plotlywidget --no-build 17
jupyter lab build 18
 19
Critical step: Ensure that you install cudatoolkit and pytorch versions compatible with 20
your graphics card and drivers. For example, your CUDA version is returned by the 21
command nvidia-smi, and generally the latest pytorch version (built for your CUDA version 22
and python 3.7) will be appropriate. See pytorch.org for more details on how to install 23
pytorch. 24
 25

2. Optionally install NVIDIA’s Apex library to enable --amp acceleration via the following 26
commands: 27
 28
git clone https://github.com/NVIDIA/apex 29
cd apex 30
pip install -v --disable-pip-version-check --no-cache-dir ./ 31
 32

3. Optionally install the CUDA machine learning library for faster UMAP embeddings in 33
analyze_convergence.py. 34
 35
conda install cuml -c rapidsai-nightly -c rapidsai -c nvidia -c 36
conda-forge 37
 38

4. Clone version 0.3.5 from GitHub: 39
 40
git clone https://github.com/zhonge/cryodrgn.git 41
cd cryodrgn 42
git checkout tags/0.3.5 43
python setup.py -q install 44

https://github.com/zhonge/cryodrgn

30

Supplementary protocol 2. Creating a consensus refinement in cryoSPARC 1

1. Run an import particle stack job by specifying L17Combine_weight_local.mrcs as 2
the particle data path and Parameters.star as the particle meta path. Note that the 3
data sign needs to be flipped to dark-on-light. 4
 5

2. Run an ab initio reconstruction job with default parameters. 6
 7

3. Run a homogeneous refinement job with default parameters. Note that we generally 8
suggest performing reconstructions without imposed symmetry (i.e. C1) as it preserves 9
potentially interesting heterogeneity. 10
 11

4. Copy the refined particles.cs file, whose name should resemble 12
cryosparc_P4_J33_004_particles.cs, to the working cryoDRGN directory where 13
the full dataset is stored. 14

31

Supplementary protocol 3. Setting up port forwarding via SSH 1

1. SSH port forwarding can be set up at the time of login using the following command and 2
replacing remote_username and remote_host_name with the appropriate values: 3

ssh -N -f -L localhost:8888:localhost:8888 4
remote_username@remote_host_name 5

If you are running your jupyter notebook on a worker node in a compute cluster, as 6
opposed to a local workstation, we suggest the following alternative port forwarding 7
command: 8

ssh -t -t username@cluster-head-node -L 8888:localhost:8888 ssh 9
active-worker-node -L 8888:localhost:8888 10

 11
2. To open Jupyter notebook, enter the command jupyter lab --no-browser --port 12

8888 into the terminal, and navigate to localhost:8888 in a web browser on your local 13
computer. 14

32

Supplementary protocol 4. Generating segmented PDB chains for subunit occupancy analysis 1

1. Open PyMOL and use the command-line interface to retrieve an atomic model of the 70S 2
ribosome from the PDB: fetch 4ybb 3
 4

2. Delete atoms outside the region of interest. For example, to generate the segmented .pdb 5
of the 5S rRNA, we use: 6

sele not_5s, not chain CB 7

Then select ‘Remove atoms’ from the drop-down ‘Action’ menu in the not_5s selection. 8
This will delete all non-5S atoms. 9

3. Segment the map into chains if necessary. If you want to do occupancy analysis on whole 10
protein subunits, this is likely unnecessary, as the chains are likely already defined in the 11
atomic model. If you want to define your own subunits for occupancy analysis as we do 12
here, you can do so using the alter command as shown below, again for the examples 13
of the 5S rRNA: 14

alter (resi 1-14,108-120), chain='A' 15
alter (resi 15-27,60-68), chain='B' 16
alter (resi 28-59), chain='C' 17
alter (resi 78-99), chain='D' 18
alter (resi 69-77,100-107), chain='E' 19

4. After you have made all the chain alterations, save the .pdb file with a new name, e.g. 20
RNA_5S.pdb using the “Export Molecule” command. Note that to create more than 26 21
chains, you will need to use multiple .pdb files, each containing at most 26 chain IDs. 22

33

Supplementary protocol 5. Aligning segmented PDB models for subunit occupancy analysis 1

1. The .pdb files must now be aligned to your cryoDRGN sampled maps. Open one of the 2
generated 500 maps (e.g. vol_000.mrc) in ChimeraX. Aim to select a map that has high 3
occupancy of most elements of your structure to ensure a good alignment. Because maps 4
with adjacent indices (e.g. vol_000 and vol_001) are often structurally similar as they are 5
sampled from proximal locations in latent space, users are advised to find a mature map 6
by downloading 20 random volumes from the set of 500. 7
 8

2. Open all the .pdb files (prots1.pdb, prots2.pdb, RNA_5S.pdb, RNA1.pdb, 9
RNA2.pdb, RNA3.pdb, RNA4.pdb). These should now be models #2-8 in your ChimeraX 10
session. 11
 12

3. Select models #2-8 with the command select #2-8. Provide a rough manual alignment 13
between the selected atoms and the example map, using the ‘Rotate model’ and ‘Move 14
model’ right mouse modes. 15
 16

4. Having provided a rough manual alignment, use the Tools > Volume Data > Fit in Map 17
option to fit your .pdb files in the map. Choose to fit ‘selected atoms’ in your example map, 18
making sure that all the .pdb model files are still selected. 19
 20

5. Save each of the .pdb files individually using File > Save, and selecting .pdb file type. Be 21
sure you have the correct .pdb model selected in the Models selection box, and that you 22
select the option to ‘Save relative to model:’, with the example map selected as the model. 23

 24

34

Supplementary protocol 6. Identifying centroid volumes for subunit occupancy volume classes 1

1. Use pandas to load dataframe you saved with information about which k-means 500 class 2
each particle corresponds to. 3

df = pd.read_csv('kmeans500_df.csv', index_col = 0) 4

2. To save the volume classes defined by clustering in the occupancy_analysis.ipynb 5
Jupyter notebook, run the cells in the ‘Extract classes from clustering’ section. This will 6
save the class assignments as a .pkl file that you can load into the 7
cryoDRGN_viz.ipynb notebook. 8

3. Open the volume class assignments .pkl file in the cryoDRGN_viz.ipynb notebook, 9
changing the name or relative path of the .pkl file name as necessary in the code below. 10

classes = utils.load_pkl('../../vol_class.pkl') 11

4. Identify the nearest on-data point to the median z-coordinates of each class. The resulting 12
variable nearest_inds contains the indices in your dataframe of the centroid particles. 13
You can then generate volumes at these indices as before using the volume generation 14
cells of the Jupyter notebook. 15

median_coords = np.empty([len(classes.keys()), z.shape[1]], dtype 16
= 'float64') 17
z_list = df.columns[df.columns.str.contains('z')] 18
 19
for i in classes.keys(): 20
 df.loc[df[df['Kmeans500'].isin(classes[i])].index, 21
'volume_class'] = i 22
 sub = df[df['volume_class'] == i][z_list] 23
 median_coords[i, :] = np.array(sub.median(axis = 0)) 24
 25
df_z = df[z_list] 26
 27
neighbor_dists = pd.DataFrame(distance.cdist(median_coords, df_z, 28
'euclidean')) 29
nearest_inds = neighbor_dists.idxmin(axis = 1) 30

 31

35

 1

Figure 1. The cryoDRGN workflow. Steps (center) of the cryoDRGN analysis workflow are 2
noted, with typical inputs to each step (left) and insights gained (right) illustrated. Each noted step 3
corresponds to a subsection of the provided protocol, with numbered steps of the protocol listed. 4

36

 1
Figure 2. Training and assessing convergence of cryoDRGN networks. a) Representative 2
plot of total loss at each epoch. Decreasing loss reflects gains in neural network 3
performance. b) Representative density heatmaps of the particle embeddings at noted epochs of 4
training. In each density heatmap, UMAP27 was used to embed each 8-D latent distribution in a 5
2-D space. Note the shape of the resulting heatmap stabilizes in later epochs, consistent with 6
encoder network convergence. c) Illustration of a hypothetical particle’s embedding in successive 7
epochs of training. Difference vectors between successive epochs are colored blue (left). Such 8
vectors’ dot product, magnitude, and cosine distance are computed, and the median value at 9
each epoch is shown (right). The asymptotic behavior of these curves is consistent with encoder 10
network convergence. d) Identification of representative latent embeddings via the “UMAP local 11
maxima method”, (Glossary). e) Volumes generated by the decoder network at the local maxima 12
positions (A-J) defined in d. Note the diversity of low-resolution structures. f) Map-to-map 13
correlation and g) FSC at Nyquist frequency calculated between volumes generated from local 14
maxima identified as defined in d at five epoch intervals. Epochs for which the encoder network 15
was not assessed to have converged are noted with dotted lines. 16

37

 1
 2

Figure 3. Particle filtering. a) UMAP visualization of latent space embeddings at epoch 49, 3
colored by k-means clustering with k=20. Cluster centers are annotated. b) Volumes generated 4
at each k-means cluster center, rendered at an isosurface level of 0.25. Map colors correspond 5
to those in a. Note volumes generated from clusters 11-19, labeled in red, are poorly resolved, 6
consistent with the presence of poor-quality particles. c) UMAP embedding highlighting particles 7
selected for further training in orange. Poor-quality particles excluded from further training are 8
shown in grey. 9
 10
 11

38

 1
Figure 4. Analysis of a cryoDRGN model trained on high-resolution particle images. a) 8D 2
latent space visualized in 2D using UMAP (top) or PCA (bottom). K-means clustering of the latent 3
space embeddings with k=20 was applied, and notable clusters are colored and annotated. b) 4
Representative volumes generated by the decoder network from notable cluster centers, with 5
colors and annotation corresponding to those in a. Key structural elements of the bacterial 6
ribosome are noted. 7
 8

39

 1
Figure 5. Atomic model-based analysis of cryoDRGN-generated structural ensemble. a) 2
“Occupancy analysis” heatmap illustrating low (white) and high (blue) occupancy proteins or rRNA 3
helices (columns) in various cryoDRGN generated density maps (rows). Using a fixed threshold 4
linkage distance, dendrograms are colored according to structural blocks (top) and volume 5
classes (right). A red arrow indicates the position of H68 in the heatmap. b) Atomic model (4YBB) 6
colored by structural blocks as defined in a. c) Centroid volumes of the occupancy analysis 7
classes, generated at the closest on-data point to the median position in latent space for each 8
class. Volumes are outlined for comparison to the mature 50S ribosomal subunit (class 1, in red). 9
d) C4 class example volume generated by cryoDRGN (top) compared to the cryoSPARC 10
homogeneous refinement (bottom) using the 1,149 particles identified through occupancy 11
analysis. Particle group rows within class 11 and H68 column are noted with red arrows. 12

40

 1
Extended Data Figure 1. Assessing cryoDRGN input parsing. Comparison of 10,000 back 2
projected cryoDRGN-parsed particles at D=128px (left) with the unsharpened map from 3
cryoSPARC’s homogeneous refinement (right). 4
 5
 6

41

 1
Extended Data Figure 2. Assessing convergence of representative cryoDRGN density 2
maps during network training. a) Particle sets of interest A-J identified in epoch 49 by the 3
“UMAP local maximum” method are mapped to prior epochs’ UMAP embeddings. The on-data 4
median latent value of each particle set is embedded into UMAP space and annotated for each 5
epoch. Note that each annotated point maps to the same high occupancy region of UMAP space 6
following convergence. b) Corresponding volumes generated from each on-data median latent 7
value at five epoch intervals as shown in panel a. Note that the volumes’ gross morphology 8
stabilizes by epoch 14-19, though some additional details in maxima I and J require 24-29 epochs. 9
c) FSC plots correlating each local maximum volume at epochj and at epochj-5. 10

42

 1
Extended Data Figure 3. Visualizing particle filtering. a) Representative particles filtered by 2
ind_keep.star, selected for further training, and corresponding 2D-classification using default 3
cryoSPARC parameters. b) Representative particles filtered by ind_bad.star, excluded from 4
further training, and corresponding 2D-classification using default cryoSPARC parameters. c) 5
Three-way Venn diagram of “junk” particles identified by one of the following methods: two 6
classes from k=6 gaussian mixture model latent-space classification (red, 35,421 particles); 7
ten classes from k=20 k-means latent-space classification (green, 29,080 particles); or latent 8
encoding magnitude (z-norm) exceeding 0.5 standard deviations larger than the mean (blue, 9
30,879 particles). d) Corresponding CryoSPARC 2D-classification results using “junk” 10
particles identified through the GMM (top), k-means (middle), or z-norm (bottom) filtering 11
approaches. e) UMAP embedding or f) PCA projections highlighting location of junk particles 12
identified by GMM (red), k-means (green), or z-norm (blue) methods. 13

14

43

 1
Extended Data Figure 4. Training and assessing convergence of high-resolution training. 2
a) Representative plot of average total loss at each epoch. b) Median per-particle movement 3
through latent space, characterized by vectors connecting each particle’s latent embedding in 4
successive epochs. Resulting vector dot products (left), magnitude (center) and cosine distance 5
(right) are shown. c) Identification of representative latent embeddings via the “UMAP local 6
maxima method”. The UMAP embedding of epoch 99 is binned into a 2-D histogram, smoothed, 7
annotated with local maxima, and overlaid with the maxima. The on-data median UMAP location 8
of each maximum and its neighboring 8 bins is shown. Label order corresponds to decreasing 9
particle count in each local maximum. d) Map-map correlation and e) FSC at Nyquist frequency 10
calculated between representative volumes generated as defined in c at five epoch intervals. 11
Epochs for which the encoder network has not converged are noted with dotted lines. 12
 13

44

 1
Extended Data Figure 5. Assessing convergence of representative cryoDRGN density 2
maps during high-resolution training. a) Particle sets A-J identified by the “UMAP local 3
maximum” method (Glossary) mapped to prior epochs as illustrated in Extended Data Figure 2. 4
b) Corresponding volumes generated from labeled positions in panel a. Note that the volumes’ 5
gross morphology stabilizes by epoch 19-29, though maximum I stabilizes as a 70S ribosome 6
around epoch 39. c) FSC plots between volumes from each local maximum offset by 5 epochs of 7
training, as in Extended Data Figure 2. The map-to-map FSC stabilizes by epoch 39. 8

45

 1
Extended Data Figure 6. Assessing results of high-resolution training. a) The UMAP 2
representation of the latent space resulting from 50 epochs of high-resolution training, colored by 3
indicated imaging parameters. b) Angular and translational pose distributions. c) PCA of the latent 4
space, colored by the 20 k-means cluster centers automatically generated by cryodrgn 5
analyze. Numbered black dots indicate the locations in latent space of each k-means cluster 6
center volume. 7

46

 1
Extended Data Figure 7. Sampled points from latent space used in subunit occupancy 2
analysis. UMAP representation of the latent space resulting from 50 epochs of high-resolution 3
training with contours colored with darker blues as particle density increases. Sampled points 4
correspond to the centers of 500 k-means clusters and are indicated with white circles. 5

47

 1
Extended Data Figure 8. Confusion matrix of published class labels and classes assigned 2
by subunit occupancy analysis. K-means 500 cluster center maps were assigned to 15 classes 3
by subunit occupancy analysis. Particles within a given k-means 500 cluster are assigned to the 4
same subunit occupancy class as the center map. Published particle labels were drawn from 5
Davis et al.16 and the fractional correspondence is plotted as a heat map. Note that published 6
classes A and F corresponded to 70S and 30S particles, respectively. 7

8

48

 1
 2
Extended Data Figure 9. Graph traversal through latent space for the 3
B→D1→D2→D3→D4→E3→E5 assembly pathway. Centroid volumes from the subunit 4
occupancy classes were aligned and compared to the previously published assembly 5
intermediate structures16 to determine approximate equivalences between published classes and 6
subunit occupancy classes. The volumes corresponding to intermediates B, D1, D2, D3, D4, E3, 7
and E5 were provided to cryodrgn graph_traversal as anchor points; the resulting path 8
through latent space is shown. Non-anchor points are indicated with white circles, whereas anchor 9
points and their corresponding class ID are shown with colored circles. Volumes resulting from 10
the complete graph traversal are shown in Supplementary Movie 3. 11

49

 1
Extended Data Figure 10. Selection of particles corresponding to the C4 minor class. 2
Particles (1,149) in the C4 class were identified by subunit occupancy analysis and are 3
highlighted in orange. 4
 5

50

Subunit PDB ID PDB
Chain

Residues Segmented
file name

Segmented
file chain

H1 4YBB CA 1-12,2895-2904 RNA1.pdb A
H2 4YBB CA 13-30,510-531 RNA1.pdb B
H3 4YBB CA 31-32,473-474 RNA1.pdb C
H4 4YBB CA 33-47,431-451 RNA1.pdb D
H5 4YBB CA 48-56,114-120 RNA1.pdb E
H6 4YBB CA 57-74 RNA1.pdb F
H7 4YBB CA 75-113 RNA1.pdb G
H8 4YBB CA 121-130 RNA1.pdb H
H9 4YBB CA 131-148 RNA1.pdb I
H10 4YBB CA 147-177 RNA1.pdb J
H11 4YBB CA 178-218,319-323 RNA1.pdb K
H12 4YBB CA 219-232 RNA1.pdb L
H13 4YBB CA 233-262 RNA1.pdb M
H14 4YBB CA 263-269,424-430 RNA1.pdb N
H16 4YBB CA 269-280,360-370 RNA1.pdb O
H18 4YBB CA 281-298,340-359 RNA1.pdb P
H19 4YBB CA 299-318 RNA1.pdb Q
H20 4YBB CA 324-339 RNA1.pdb R
H21 4YBB CA 371-404 RNA1.pdb S
H22 4YBB CA 405-423 RNA1.pdb T
H23 4YBB CA 452-472 RNA1.pdb U
H24 4YBB CA 475-509 RNA1.pdb V
H25 4YBB CA 532-561 RNA1.pdb W
H25a 4YBB CA 562-578 RNA1.pdb X
H26 4YBB CA 579-586,1251-1261 RNA1.pdb Y
H27 4YBB CA 587-602,655-670 RNA1.pdb Z
H28 4YBB CA 603-625 RNA2.pdb A
H29 4YBB CA 626-636 RNA2.pdb B
H31 4YBB CA 637-654 RNA2.pdb C
H32 4YBB CA 671-683,790-809 RNA2.pdb D
H33 4YBB CA 684-698,763-775 RNA2.pdb E
H34 4YBB CA 699-733 RNA2.pdb F
H35 4YBB CA 734-762 RNA2.pdb G
H35a 4YBB CA 776-789 RNA2.pdb H
H36 4YBB CA 810-821,1186-1195 RNA2.pdb I
H37 4YBB CA 822-835 RNA2.pdb J
H38 4YBB CA 836-942 RNA2.pdb K
H39 4YBB CA 943-973 RNA2.pdb L
H40 4YBB CA 974-990 RNA2.pdb M
H41 4YBB CA 991-1025,1133-1163 RNA2.pdb N
H42 4YBB CA 1026-1056,1103-1132 RNA2.pdb O

51

H43 4YBB CA 1057-1081 RNA2.pdb P
H44 4YBB CA 1087-1102 RNA2.pdb Q
H45 4YBB CA 1164-1185 RNA2.pdb R
H46 4YBB CA 1196-1250 RNA2.pdb S
H26a 4YBB CA 1262-1270,2010-2017 RNA2.pdb T
H47 4YBB CA 1271-1294 RNA2.pdb U
H48 4YBB CA 1295-1302,1640-1647 RNA2.pdb V
H49 4YBB CA 1303-1306,1622-1625 RNA2.pdb W
H49b 4YBB CA 1307-1313,1603-1608 RNA2.pdb X
H50 4YBB CA 1314-1338 RNA2.pdb Y
H51 4YBB CA 1339-1347,1599-1602 RNA2.pdb Z
H52 4YBB CA 1348-1382 RNA3.pdb A
H53 4YBB CA 1383-1404 RNA3.pdb B
H54 4YBB CA 1405-1417,1581-1598 RNA3.pdb C
H55 4YBB CA 1418-1428,1569-1580 RNA3.pdb D
H49a 4YBB CA 1609-1621 RNA3.pdb E
H56 4YBB CA 1429-1444,1547-1564 RNA3.pdb F
H57 4YBB CA 1445-1466 RNA3.pdb G
H58 4YBB CA 1467-1525 RNA3.pdb H
H59 4YBB CA 1526-1546 RNA3.pdb I
H60 4YBB CA 1626-1639 RNA3.pdb J
H61 4YBB CA 1648-1678,1990-2009 RNA3.pdb K
H62 4YBB CA 1679-1706 RNA3.pdb L
H63 4YBB CA 1707-1751 RNA3.pdb M
H64 4YBB CA 1758-1773,1977-1989 RNA3.pdb N
H65 4YBB CA 1774-1790 RNA3.pdb O
H66 4YBB CA 1791-1828 RNA3.pdb P
H67 4YBB CA 1829-1834,1970-1976 RNA3.pdb Q
H68 4YBB CA 1835-1905 RNA3.pdb R
H69 4YBB CA 1906-1924 RNA3.pdb S
H71 4YBB CA 1932-1969 RNA3.pdb T
H72 4YBB CA 2018-2042 RNA3.pdb U
H73 4YBB CA 2043-2057,2611-2625 RNA3.pdb V
H74 4YBB CA 2058-2074,2430-2451 RNA3.pdb W
H75 4YBB CA 2075-2092,2226-2245 RNA3.pdb X
H76 4YBB CA 2093-2114,2179-2196 RNA3.pdb Y
H77 4YBB CA 2115-2126,2169-2178 RNA3.pdb Z
H78 4YBB CA 2127-2168 RNA4.pdb A
H79 4YBB CA 2197-2225 RNA4.pdb B
H80 4YBB CA 2246-2258 RNA4.pdb C
H81 4YBB CA 2259-2281 RNA4.pdb D
H82 4YBB CA 2282-2286,2382-2390 RNA4.pdb E
H83 4YBB CA 2287-2296,2335-2344 RNA4.pdb F

52

H84 4YBB CA 2297-2321 RNA4.pdb G
H85 4YBB CA 2322-2334 RNA4.pdb H
H86 4YBB CA 2345-2371 RNA4.pdb I
H87 4YBB CA 2372-2381 RNA4.pdb J
H88 4YBB CA 2391-2429 RNA4.pdb K
H89 4YBB CA 2452-2504 RNA4.pdb L
H90 4YBB CA 2505-2517,2567-2586 RNA4.pdb M
H91 4YBB CA 2518-2546 RNA4.pdb N
H92 4YBB CA 2547-2561 RNA4.pdb O
H93 4YBB CA 2587-2610 RNA4.pdb P
H94 4YBB CA 2626-2643,2771-2788 RNA4.pdb Q
H95 4YBB CA 2644-2675 RNA4.pdb R
H96 4YBB CA 2676-2731 RNA4.pdb S
H97 4YBB CA 2732-2770 RNA4.pdb T
H98 4YBB CA 2789-2805 RNA4.pdb U
H99 4YBB CA 2806-2814,2886-2894 RNA4.pdb V
H100 4YBB CA 2815-2831 RNA4.pdb W
H101 4YBB CA 2832-2885 RNA4.pdb X
H1_5S 4YBB CB 1-14,108-120 RNA_5S.pdb A
H2_5S 4YBB CB 15-27,60-68 RNA_5S.pdb B
H3_5S 4YBB CB 28-59 RNA_5S.pdb C
H4_5S 4YBB CB 78-99 RNA_5S.pdb D
H5_5S 4YBB CB 69-77,100-107 RNA_5S.pdb E
uL2 4YBB CC all prots1.pdb A
uL3 4YBB CD all prots1.pdb B
uL4 4YBB CE all prots1.pdb C
uL5 4YBB CF all prots1.pdb D
uL6 4YBB CG all prots1.pdb E
bL9 4YBB CH all prots1.pdb F
uL11 4YBB CJ all prots1.pdb G
uL13 4YBB CK all prots1.pdb H
uL14 4YBB CL all prots1.pdb I
uL15 4YBB CM all prots1.pdb J
uL16 4YBB CN all prots1.pdb K
bL17 4YBB CO all prots1.pdb L
uL18 4YBB CP all prots1.pdb M
bL19 4YBB CQ all prots1.pdb N
bL20 4YBB CR all prots1.pdb O
bL21 4YBB CS all prots1.pdb P
uL22 4YBB CT all prots1.pdb Q
uL23 4YBB CU all prots1.pdb R
uL24 4YBB CV all prots1.pdb S
bL25 4YBB CW all prots1.pdb T

53

bL27 4YBB CX all prots1.pdb U
bL28 4YBB CY all prots1.pdb V
uL29 4YBB CZ all prots1.pdb W
uL30 4YBB C0 all prots1.pdb X
bL32 4YBB C1 all prots1.pdb Y
bL33 4YBB C2 all prots1.pdb Z
bL34 4YBB C3 all prots2.pdb A
bL35 4YBB C4 all prots2.pdb B
bL36 4YBB C5 all prots2.pdb C

Supplementary Table 1: Residue and chain assignment for subunit occupancy analysis. 1
Ribosomal RNA helices and ribosomal proteins are numbered as in Davis et al. 2

54

Class Centroid index
1 51011
2 51189
3 80371
4 9177
5 74182
6 73537
7 95314
8 66910
9 53298
10 81097
11 11144
12 71755
13 46961
14 37896
15 89122

Supplementary Table 2: Particle stack indices for the centroid volume of each subunit 1
occupancy class. Note that these indices are only relevant for the provided pre-computed results 2
and users should select alternative indices when training new cryoDRGN models. 3

55

Supplementary Movie 1. PC1 trajectory from high resolution training. Density maps sampled 1
along PC1 were automatically generated by the cryodrgn analyze command. Volumes are 2
displayed at the same isosurface level, and the movie progresses from low to high PC1 value 3
strictly along the PC1 axis. 4
 5
Supplementary Movie 2. PC2 trajectory from high resolution training. Density maps sampled 6
along PC2 were automatically generated by the cryodrgn analyze command. Volumes are 7
displayed at the same isosurface level, and the movie progresses from low to high PC2 value 8
strictly along the PC2 axis. 9
 10
Supplementary Movie 3. Graph traversal showing the B→D1→D2→D3→D4→E3→E5 11
assembly pathway. Graph traversal pathway was generated using the cryodrgn 12
graph_traversal command as described in the protocol. The path taken by the traversal 13
through latent space is shown in Extended Data Figure 9. All volumes are displayed at the same 14
isosurface level. 15

56

References 1
 2
1 Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J Biol 3

Chem 294, 5181-5197, doi:10.1074/jbc.REV118.005602 (2019). 4
2 Wu, M. & Lander, G. C. Present and Emerging Methodologies in Cryo-EM Single-5

Particle Analysis. Biophys J 119, 1281-1289, doi:10.1016/j.bpj.2020.08.027 (2020). 6
3 Serna, M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures 7

of Heterogeneous Macromolecular Complexes. Front Mol Biosci 6, 33, 8
doi:10.3389/fmolb.2019.00033 (2019). 9

4 Dashti, A. et al. Retrieving functional pathways of biomolecules from single-particle 10
snapshots. Nat Commun 11, 4734, doi:10.1038/s41467-020-18403-x (2020). 11

5 Dashti, A. et al. Trajectories of the ribosome as a Brownian nanomachine. Proc Natl 12
Acad Sci U S A 111, 17492-17497, doi:10.1073/pnas.1419276111 (2014). 13

6 Haselbach, D. et al. Long-range allosteric regulation of the human 26S proteasome by 14
20S proteasome-targeting cancer drugs. Nat Commun 8, 15578, 15
doi:10.1038/ncomms15578 (2017). 16

7 Gui, M. et al. Structures of radial spokes and associated complexes important for ciliary 17
motility. Nat Struct Mol Biol 28, 29-37, doi:10.1038/s41594-020-00530-0 (2021). 18

8 Zhong, E., Bepler, T., Berger, B. & Davis, J. CryoDRGN: Reconstruction of 19
Heterogeneous cryo-EM Structures Using Neural Networks. Nature Methods, 20
doi:10.1038/s41592-020-01049-4 (2020). 21

9 Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and 22
discrete heterogeneity from single particle cryo-EM. J Struct Biol 213, 107702, 23
doi:10.1016/j.jsb.2021.107702 (2021). 24

10 Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure 25
determination in RELION-3. Elife 7, doi:10.7554/eLife.42166 (2018). 26

11 Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle 27
image processing. Elife 7, doi:10.7554/eLife.35383 (2018). 28

12 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for 29
rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296, 30
doi:10.1038/nmeth.4169 (2017). 31

13 Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular 32
motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7, 33
doi:10.7554/eLife.36861 (2018). 34

14 Kingma, D. & Welling, M. Auto-encoding variational bayes. 2nd International Conference 35
on Learning Representations (2013). 36

15 Zhong, E., Bepler, T., Davis, J. & Berger, B. Reconstructing continuously heterogeneous 37
structures from single particle cryo-EM with deep generative models. arXiv, 38
doi:arXiv:1909.05215 (2019). 39

16 Davis, J. H. et al. Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell 167, 40
1610-1622 e1615, doi:10.1016/j.cell.2016.11.020 (2016). 41

17 Rabuck-Gibbons, J. N., Lyumkis, D. & Williamson, J. R. Quantitative Mining of 42
Compositional Heterogeneity in Cryo-EM Datasets of Ribosome Assembly 43
Intermediates. bioRxiv, 2021.2006.2023.449614, doi:10.1101/2021.06.23.449614 44
(2021). 45

18 von Loeffelholz, O. et al. Focused classification and refinement in high-resolution cryo-46
EM structural analysis of ribosome complexes. Curr Opin Struct Biol 46, 140-148, 47
doi:10.1016/j.sbi.2017.07.007 (2017). 48

19 Punjani, A. & Fleet, D. J. 3D Flexible Refinement: Structure and Motion of Flexible 49
Proteins from Cryo-EM. bioRxiv, 2021.2004.2022.440893, 50
doi:10.1101/2021.04.22.440893 (2021). 51

57

20 Ludtke, S. & Chen, M. Deep learning based mixed-dimensional GMM for characterizing 1
variability in CryoEM. arXiv, doi:arXiv:2101.10356 (2021). 2

21 Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. Exploring generative atomic models in 3
cryo-EM reconstruction. arXiv, doi:https://arxiv.org/abs/2107.01331v1 (2021). 4

22 Rosenbaum, D. et al. Inferring a Continuous Distribution of Atom Coordinates from Cryo-5
EM Images using VAEs. arXiv, doi:https://arxiv.org/abs/2106.14108v1 (2021). 6

23 Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization 7
improves single-particle cryo-EM reconstruction. Nat Methods 17, 1214-1221, 8
doi:10.1038/s41592-020-00990-8 (2020). 9

24 Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced 10
motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5-17, 11
doi:10.1107/S205225251801463X (2019). 12

25 Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure 13
determination. J Struct Biol 180, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012). 14

26 Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-15
electron microscopy. Cell 161, 438-449, doi:10.1016/j.cell.2015.03.050 (2015). 16

27 McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and 17
Projection for dimension reduction. doi:https://arxiv.org/abs/1802.03426 (2018). 18

28 van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine 19
Learning Research 9, 2579−2605 (2008). 20

29 Narayan, A., Berger, B. & Cho, H. Assessing single-cell transcriptomic variability through 21
density-preserving data visualization. Nat Biotechnol 39, 765-774, doi:10.1038/s41587-22
020-00801-7 (2021). 23

30 Davis, J. H. & Williamson, J. R. Structure and dynamics of bacterial ribosome 24
biogenesis. Philos Trans Soc B 372, doi:10.1098/rstb.2016.0181 (2017). 25

31 Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B. & Schulten, K. Molecular 26
dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-27
ray crystallography. Methods 49, 174-180, doi:10.1016/j.ymeth.2009.04.005 (2009). 28

32 Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and 29
analysis. Protein Sci 27, 14-25, doi:10.1002/pro.3235 (2018). 30

 31

https://arxiv.org/abs/2107.01331v1
https://arxiv.org/abs/2106.14108v1
https://arxiv.org/abs/1802.03426

	Title: Uncovering structural ensembles from single particle cryo-EM data using cryoDRGN

