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Rayleigh-Taylor (RT) instabilities are prevalent in many physical regimes ranging from astro-
physical to laboratory plasmas and have primarily been studied using fluid models, the majority of
which have been ideal fluid models. This work is the first of its kind to present a 5-dimensional
(2 spatial dimensions, 3 velocity space dimensions) simulation using the continuum-kinetic model
to study the effect of the collisional mean-free-path and transport on the instability growth. The
continuum-kinetic model provides noise-free access to the full particle distribution function permit-
ting a detailed investigation of the role of kinetic physics in hydrodynamic phenomena such as the
RT instability. For long mean-free-path, there is no RT instability growth, but as collisionality
increases, particles relax towards the Maxwellian velocity distribution, and the kinetic simulations
reproduce the fluid simulation results. An important and novel contribution of this work is in the
intermediate collisional cases that are not accessible with traditional fluid models and require ki-
netic modeling. Simulations of intermediate collisional cases show that the RT instability evolution
is significantly altered compared to the highly collisional fluid-like cases. Specifically, the growth
rate of the intermediate collisionality RT instability is lower than the high collisionality case while
also producing a significantly more diffused interface. The higher moments of the distribution func-
tion play a more significant role relative to inertial terms for intermediate collisionality during the
evolution of the RT instability interface. Particle energy-flux is calculated from moments of the
distribution and shows that transport is significantly altered in the intermediate collisional case and

deviates much more so from the high collisionality limit of the fluid regime.

I. INTRODUCTION

Rayleigh-Taylor (RT) instabilities occur when a dense
fluid is accelerated into a lighter fluid, for example under
the influence of a gravitational field [1, 2]. While this in-
stability is traditionally studied in a strictly fluid regime
[3, 4], applying a fully-kinetic treatment allows for study
of a range of collisionality, from collisionless and inter-
mediate, where fluid models are not applicable, to highly
collisional regimes approaching the fluid limit [5-8].

This work explores a fully-kinetic treatment of the clas-
sical RT instability for a single neutral particle species for
varying collisionality, with a future goal of extending into
a collisional two-species plasma with evolving electro-
magnetic fields. A body of literature exists studying mag-
netohydrodynamic and extended-magnetohydrodynamic
modeling of the RT instability [9-11], the role of viscosity,
resistivity, and thermal conduction in RT and magneto-
RT instability growth [12-14], and the role of incorpo-
rating some kinetic effects on the magneto-RT instability
through use of higher-fidelity fluid models [15, 16].

Kinetic effects can emerge when mean-free-paths are
long relative to a relevant characteristic length scale.
Shock-driven implosion experiments at the OMEGA
Laser facility [17] have shown evidence of kinetic phe-
nomena in high-energy-density regimes, such as non-
hydrodynamic mixing, thermal decoupling, and species
separation [18-20]. Emergence of kinetic effects within
a shock may imply the presence of kinetic effects for
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the RT instability when mean-free-paths are long rela-
tive to the fluid interface. Other implosion experiments
at OMEGA have studied the physics relevant to RT in-
stability growth in core-collapse supernovae but focused
on a purely hydrodynamic interpretation of the results
[21-23]. As there is evidence of a transition from a hy-
drodynamic to a kinetic regime within OMEGA high-
energy-density experiments, fully-kinetic simulations to
accompany RT experiments may offer a novel explana-
tion of disparities between experiment and hydrodynamic
simulation.

For these studies, the continuum-kinetic capabilities of
the plasma simulation framework Gkeyl1l [24] are used to
evolve particle distribution functions, f. Gkeyll uses a
discontinuous Galerkin method [25-27] to discretize and
evolve the Boltzmann equation [28, 29],
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where  and v are the two independent particle posi-
tion and velocity, respectively. Acceleration vector, a,
is simply gravity, g, for this work, as only neutral par-
ticles will be considered. The right-hand term accounts
for particle collisions and is approximated here by the
Bhatnagar-Gross-Krook (BGK) operator [30, 31],

(3), =wtru=n, ©)

where fj; is an ideal Maxwellian distribution function
calculated from moments of f, and v is the collision fre-
quency. The BGK operator is necessarily conservative in
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number density, momentum, and energy when v is con-
stant with respect to particle velocity as it is in this work.
This approximation is appropriate for neutral species, as
considered here. For a plasma, v is generally known to
scale with particle velocity as v—*. Assuming constant
v for a plasma would overestimate energy-fluxes in the
high-energy tails of the distribution.

Gkeyll discretizes f on a phase-space grid of up to
six dimensions by decomposing f using a set of piecewise
polynomials with superlinear order up to p [32]. Distri-
bution functions are then evolved in time using a strong-
stability-preserving Runge-Kutta method.

II. PROBLEM DESCRIPTION

Distribution functions in this work are 5-dimensional,
with two spatial and three velocity space dimensions,
(x,y, Vs, vy, v:), and have initial conditions derived from
hydrostatic equilibrium with

Vp = —nmg. (3)

All units are normalized using a particle species of mass
m = 1.0, upper bound density ny = 1.0, and gravity
g = 1.0. Initial number density and pressure profiles are
as follows
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where ng = 0.5 is density at the center of the interface,
L, = 1.0 is half the length of the simulation domain in
y, and Tj is an arbitrary constant chosen to ensure the
minimum pressure in the domain is positive. With the
density and pressure profiles above, the interface between
the high- and low-density regions is continuous and has
width defined by «. Simulations are initialized with a =
25 to ensure the width of the interface is small relative to
the domain size. This initial density profile corresponds
to an Atwood number, A; = (ny — na)/(ny + ng), of
1/3. Boundary conditions are periodic in x and static
reservoir in y, where the edge ghost layers of cells are a
continuation of the initial conditions and do not evolve
in time. Distribution functions are initially Maxwellian
in velocity space, according to,
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for initial bulk velocity w, where vy, = /T /m is thermal
velocity. The pressure profile given by Eq. (5) is used to
calculate a temperature T' = p/n, which is then used to
initialize the Maxwellian distribution.
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FIG. 1. Initial conditions in number density (left), bulk ve-
locity (center), and square of thermal velocity (right).

While these initial conditions are hydrostatic, they are
not a true Boltzmann equilibrium for the case of finite
collision frequency, as any deviations from Maxwellian
are not immediately damped out by collisions. Addi-
tionally, if the collision frequency is not sufficiently high,
the interface diffuses and the fluid layers mix before the
instability grows.

To generate the RT instability, a single-mode sinu-
soidal perturbation of wavenumber k is applied to the
y-direction bulk velocity, u,, according to

2
uy = —0.1vy, . cos (kz) exp (_Qy_y2> , (7)
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where k = w/(2L;), v, is initial thermal velocity at the
center of the domain, L, = 0.75 is half the simulation
domain length in z, and y, = L, /10 is a characteristic
decay length for the perturbation. Initial conditions of
n, v3,, and u, are shown in Figure 1.

III. RESULTS

Collision frequencies are calculated from a chosen
Knudsen number, Kn = \,,/L,, i.e., the ratio between
particle mean-free-path A,, and scale length L,. Col-
lision frequencies are assumed to be constant spatially
and temporally, according to v = v, o/ Am. However,
collision frequency is generally known to scale with den-
sity and temperature [33], and RT instability simulations
with spatially-varying collisionality will be explored in fu-
ture work. In this work, values of Kn are chosen as 0.1,
0.01, and 0.001. Simulations are run to an end time of 3
classical RT instability growth periods, 7 = 1/v/kgA;.
Time evolution of number density and temperature for
each case is shown in Figure 2 and Figure 3 respectively,
for times 0, 1.5 g, and 3.0 7.

The fluid interface diffuses in all cases due to finite col-
lisionality. As mean-free-path increases from the limit of
infinite collisionality, particles stream past one another
over longer distances without interacting. The net result
is a mixing of the fluid layers that speeds up as mean-
free-path increases, as particles are not affected by the
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FIG. 2. Time evolution of number density for varying colli-
sionality. Left to right is Kn of 0.1 (a), 0.01 (b), and 0.001
(c). Top to bottom is time 0.0, 1.57r7, and 3.07r7r. Note that
the low collisionality case (left column) presents no RT insta-
bility growth, and the intermediate collisionality case (middle
column) presents significantly altered RT instability growth
compared to the high collisionality case (right column) which
approaches the fluid limit.

pressure gradient until a collision event. With no pertur-
bation, the interface continues to diffuse until the fluid
layers mix completely.

For the lowest collisionality case, the interface diffuses
so quickly relative to the RT instability growth time scale
that there is effectively no interface where the instabil-
ity can form. As collisionality increases by an order of
magnitude, the interface diffuses slowly enough that the
RT instability is able to grow. At the end time, the
expected bubble and spike structures are present with
diffuse edges. The most collisional case approaches the
expected fluid result, with minimal diffusion of the inter-
face and mushroom structures on the bubble and spike
as secondary Kelvin-Helmholtz instabilities form. The
temperature distribution exhibits identical behavior to
the density evolution. Note that the growth of the RT
instability for the intermediate case is slower than that
of the highly collisional case.

In order to quantify the effects of collisionality on RT
instability growth, an approach similar to [6] and [34] is
used to calculate a growth rate, 7o, that includes viscous
and diffusive effects,

Yo =V kgAt + v2k* —

where v, = vy ¢

(v + €K, (8)

Am/2 is the kinematic viscosity, and
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FIG. 3. Time evolution of temperature for varying collision-
ality. Left to right is Kn of 0.1 (a), 0.01 (b), and 0.001 (c).
Top to bottom is time 0.0, 1.57rr, and 3.07r7.

& = v, is the diffusion coefficient. Note that [6] and
[34] include an additional factor for dynamic diffusion ef-
fects to calculate a time-dependent growth rate, which
has been neglected here. Because the primary dynamic
diffusion effect is the diffusion of the interface, which oc-
curs exclusively early in the simulation, those early data
points are excluded from the growth rate calculation to
achieve a constant linear growth rate that describes RT
instability growth for the majority of the simulation.
Growth rates are calculated using h, the difference be-
tween the top of the bubble and the bottom of the spike,
and are presented in Figure 4 for the case of Kn = 0.01
and 0.001, compared with a neutral fluid simulation using
the Euler equations. It is assumed that kinetic simula-
tions converge to those of the Euler equations in the limit
of infinite collisionality as non-ideal transport becomes
negligible. Early data points are also ignored for the
fluid simulations, as the perturbation to u, causes waves
to be launched that interfere with RT instability growth
early in time. Growth rates calculated from the linear fits
in Figure 4 are compared with theoretical growth rates
in Table I. There is good agreement between the calcu-
lated growth rates and the theoretical growth rates with
static diffusion, and as Kn increases, v and 7y approach
the fluid result. The slight decrease in agreement from
the 0.01 Kn case to the 0.001 case is likely due either to
the presence of diffusion in the kinetic case or not cap-
turing the transition from time-varying growth to linear
growth as well in the data output frames (i.e., the tran-
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FIG. 4. Logarithm of h, the difference between spike and
bubble heights, as a function of time for Kn = 0.01 and 0.001
and a fluid simulation using the Euler equations. Data points
early in time are excluded from the fit due to dynamic diffu-
sion of the interface for the kinetic cases and wave launching
for the fluid case. Note as Kn decreases, the RT instability
growth rate approaches the fluid simulation result.

sition is between data points 3 and 4 for the 0.001 case).
While fluid simulations of the RT instability have been
performed with viscosity [12-14, 35], the presence of a
fluid viscosity alone is insufficient to explain the diffusion
of the interface seen here (including the dynamic diffusion
effects early in time). To explain the kinetic parameter
regime of the intermediate collisionality case, this work
is a first to probe into a detailed kinetic interpretation of
the RT instability.

While highly collisional regimes asymptoting to fluid
results are reasonably well-understood for the neutral
fluid RT instability, intermediate collisional regimes re-
quire kinetic simulations since the fluid model is no longer
valid in these regimes. Variation in RT instability growth
as a function of collisionality implies the emergence of
kinetic effects as collisionality decreases and distribution
functions are allowed to become less Maxwellian. A met-
ric to quantify non-Maxwellian distributions spatially can
aid in probing the 5-dimensional distribution function
by highlighting potential areas of variation from equilib-
rium. In an attempt to capture the spatial distribution
of such variations, a density analogue is constructed from
the distribution function and a constructed Maxwellian
as follows,

nv@) = [1f@o) - fulzolde. )

TABLE I. Values of RT instability growth rates, calculated
from simulation () and theory (vo).

Case 0% Yo
Kn = 0.01 0.9635 0.9723
Kn = 0.001 1.1369 1.1603

Fluid 1.1708 1.1816
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FIG. 5. Density of non-ideal distribution, according to Eq.
(9), for Kn of 0.1 (left), 0.01 (center), and 0.001 (right), nor-
malized to number density. Note the varying color scale for
each subplot.

This non-Maxwellian density allows for spatial repre-
sentation of non-Maxwellian distribution functions and
has units of density, allowing for simple comparison to
the density profiles in Figure 2. Non-Maxwellian density
for each Kn is presented below in Figure 5. Note that
recent work by Cagas et al. [36] shows that a boundary
layer forms at reservoir boundaries for the Vlasov-BGK
model, Egs. (1) and (2). The boundary layer is approx-
imately one mean-free-path wide and non-Maxwellian.
Therefore, three layers of cells at the top and bottom of
the domain are omitted in Figure 5 in order to maintain a
useful color scale for the regions of interest. As expected,
high collisionality leads to a decrease in ny by approxi-
mately an order of magnitude between the most and least
collisional cases. For the case where the RT instability
does not develop, ny simply follows an almost identical
distribution to density, comparing Figure 2 (a3) to the
center plot of Figure 5. However, for the cases where the
RT instability develops, the interfaces appear as regions
of peak ny. Magnitudes of ny are small relative to n,
even for the least collisional case that has the highest
peak ny.

To further characterize the effect of varying collisional-
ity, two higher moments of the distribution function are
defined,

Pij g m/’Ui’Ujfd3’U, (10)

Qijk = m/vivjkad3v- (11)

As in Wang et al. [37], by defining w; = v; — u;, Eq. (11)
can be expanded and tensor contracted to get the particle
energy-flux (using Einstein’s summation convention),
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where

1
Qe = §m/wiwiwkfd3v, (13)



is the heat flux vector in the gas frame, and the stress
tensor II;; is related to the pressure tensor,

Pij = m/wiwjfd?’v, (14)

by II;; = P;; — pd;; with scalar pressure p = P;;/3. The
pressure tensor is also related to the second moment by
Pij = Pij + mnu;u;. Note that the use of collision fre-
quency that is independent of particle velocity leads to
an overestimation of energy fluxes in the high-energy tails
of the distribution if charged species are considered in-
stead of neutral species. In the case of charged species,
the energy-fluxes presented here will be greater in magni-
tude than those calculated with a collision frequency that
varies with velocity. This work considers neutral species.
Individual terms are grouped in Eq. (12) by whether they
arise from Maxwellian parts of the distribution (group I),
or non-Maxwellian parts (group II). Group I will be re-
ferred to as ideal terms, while group II are the non-ideal
terms. The y-component of each term of Eq. (12) (nor-
malized to ngv3, ) is plotted in Figure 6 for the cases of
Kn = 0.01 and 0.001 for times with similar instability
amplitude. Note that magnitudes of each column (term)
vary by orders of magnitude, so color scales are distinct
by column to show spatial features. The first ideal term
is the dominant term by several orders of magnitude at
its peak for both cases. As collisionality increases, all
terms increase in magnitude, though the ideal terms in-
crease more than the non-ideal terms. This can be seen
by taking the ratio of the average of the absolute values
of the ideal terms to that of the non-ideal terms. The
ratio is 21.5 for the less collisional case and 283.8 for the
more collisional case, indicating the particle energy-flux
becomes less dominated by the ideal terms as collisional-
ity decreases. This is an important and impactful result
as it is the first to present an order of magnitude in-
crease in the importance of the non-ideal terms for the
less collisional (more kinetic) case of the RT instability.
The overall increase in energy-flux with increased colli-
sionality, even when comparing similar amplitudes of RT
instability growth, relates to the increase in growth rate
shown in Table I, as larger total flux leads to faster in-
stability growth.

By taking moments of a first-order Chapman-Enskog
expansion of the BGK collision operator, expressions for
the heat flux, ¢; ok, and stress tensor II;; ok, can be
obtained assuming a nearly Maxwellian distribution,

P 8UZ 8’U,j 2 8’U,k
11, = —= — =0 |, 1
JBGK v <8:Cj ox; 3 (’“)xkgj (15)
5p 0T
1: —_ - . 1
i, BGK 2my Ox; (16)

Figure 7 presents the non-ideal terms of the parti-
cle energy-flux calculated directly from the distribution
function with those calculated from the expansion. Note
color scale is held constant for each term compared across

the two different values of collisionality. For both de-
grees of collisionality, the heat flux terms are similar
in both magnitude and spatial distribution. The stress
terms show more deviation between true and approxi-
mate results likely due to the fact that two stress tensor
elements are involved in the calculation, so errors from
the first-order approximation compound. As collisional-
ity decreases from Kn = 0.001 to 0.01, the approximate
stress term deviates more from the direct calculation be-
cause the assumption of near-equilibrium distribution be-
comes less accurate with decreasing collisionality.

Higher moments of the distribution function are also
measures of non-ideal distribution, so the spatial dis-
tribution of gas-frame higher moments should correlate
with ny. Presented in Figure 8 are comparisons of ny,
y-direction vector skewness, gy, and y-direction excess
kurtosis,

§K, = /wffd% - /w;*fMd%. (17)

As expected, the distribution of ny aligns with those
of the higher moments. Additionally, the magnitudes of
the normalized higher moments increase as collisionality
decreases, which is expected as decreased collisions de-
viate from a Maxwellian distribution function towards a
more kinetic regime. The evolution of the intermediate
collisionality RT instability is clearly distinguished from
the high collisionality regime to explain the kinetic effects
that produce the difference in growth rates and morphol-
ogy. These are the first results to present a high-fidelity
kinetic interpretation of the classical RT instability in
low and intermediate collisionality regimes where fluid
models are inadequate.

IV. CONCLUSION

Single-mode Rayleigh-Taylor instabilities are success-
fully simulated in 2x3v using the continuum-kinetic ca-
pabilities of Gkeyll for a range of collisionalities. As
mean-free-paths become smaller relative to the width
of the simulation domain, the resulting instability ap-
proaches the classical fluid result, as expected. Growth
rates estimated using static viscosity and diffusion agree
well with calculated growth rates when early dynamic
diffusion of the interface is left out of the fit. Non-
Maxwellian density, the velocity space integration of the
difference between a local particle distribution function
and a corresponding Maxwellian distribution calculated
from the first three moments, shows that, as collision-
ality increases, the distribution function approaches a
Maxwellian (fluid) distribution. Local maxima in non-
Maxwellian density also occur around the primary ar-
eas of transport, i.e., the edges of the bubble and spike.
A decomposition of the particle energy-flux shows that
transport is dominated by terms that arise from the
Maxwellian parts of the distribution, and the ideal terms
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FIG. 6. Terms of the expanded particle energy-flux (3.5) in the y-direction for Kn of 0.01 (top) and 0.001 (bottom), normalized
to novfhyc. Energy-flux is calculated at normalized time 3.07rr for the 0.01 case and 2.17ry for the 0.001 case to have similar
amplitudes. Note the varying color scale of each column.
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FIG. 7. Comparison of energy-flux non-ideal terms, Eq. (12),
calculated from distribution function and those calculated
from a first-order Chapman-Enskog expansion of the colli-
sion operator. Top and bottom rows of each comparison are
Kn = 0.01 and 0.001, respectively. Note the similarities in
spatial distribution and magnitude and that color scales are
constant by term and row (collisionality). Stress terms show
more discrepancy because they are calculated from several
stress tensor elements, so errors compound.

of the expansion become more dominant as collisionality
increases toward the fluid limit.

An important and novel contribution of this work is in
the intermediate collisional cases that are not accessible
with traditional fluid models and require kinetic mod-
eling. The continuum-kinetic model used in this work
provides unique access to the full noise-free distribution
function to investigate the kinetic regime. Simulations of
intermediate collisional cases show significantly altered
RT instability evolution compared to the high collision-
ality fluid-like cases highlighting the importance of ki-
netic physics through higher moments of the distribu-
tion function. These higher moments include the heat
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FIG. 8. Non-Maxwellian density, nny, compared with gas-
frame y-direction skewness, ¢y, and excess kurtosis, JKy.
Note the presence of local extrema for all quantities around
the RT instability interface.

flux vector, which is the third moment indicating the
skewness of the distribution, and the fourth moment in-
dicating the kurtosis of the distribution. The heat flux
vector plays a more significant role relative to inertial
terms in the intermediate collisional cases compared to
the highly collisional cases. A quantitative comparison
shows an order of magnitude difference in the ratio of
the non-ideal terms to the ideal terms when comparing
the intermediate collisional cases to the highly collisional
fluid-like cases. These kinetic effects are primarily noted
in the region of the RT instability interface. Regimes
of intermediate collisionality often occur in astrophysical
and laboratory plasmas requiring a kinetic model due to
the invalidity of the fluid model for these cases, highlight-
ing the significance and relevance of the results presented
here.
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Appendix A: Getting Gkeyll and reproducing results

Readers may reproduce our results and also use Gkeyll
for their applications. The code and input files used
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here are available online. Full installation instruc-
tions for Gkeyll are provided on the Gkeyll website
[24]. The code can be installed on Unix-like oper-
ating systems (including Mac OS and Windows us-
ing the Windows Subsystem for Linux) either by in-

stalling the pre-built binaries using the conda pack-
age manager (https://www.anaconda.com) or building
the code via sources. The input files used here are
under version control and can be obtained from the
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