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This work numerically investigates the role of viscosity and resistivity on Rayleigh-
Taylor instabilities in magnetized high-energy-density (HED) plasmas for a high Atwood
number and high plasma beta regimes surveying across plasma beta and magnetic
Prandtl numbers. The numerical simulations are performed using the visco-resistive
magnetohydrodynamic (MHD) equations. Results presented here show that the inclusion
of self-consistent viscosity and resistivity in the system drastically changes the growth of
the Rayleigh-Taylor instability (RTI) as well as modifies its internal structure at smaller
scales. It is seen here that the viscosity has a stabilizing effect on the RTI. Moreover,
the viscosity inhibits the development of small scale structures and also modifies the
morphology of the tip of the RTI spikes. On the other hand, the resistivity reduces the
magnetic field stabilization supporting the development of small scale structures. The
morphology of the RTI spikes is seen to be unaffected by the presence of resistivity in
the system. An additional novelty of this work is in the disparate viscosity and resistivity
profiles that may exist in HED plasmas and their impact on RTI growth, morphology,
and the resulting turbulence spectra. Furthermore, this work shows that the dynamics
of the magnetic field is independent of viscosity and likewise the resistivity does not
affect the dissipation of enstrophy and kinetic energy. In addition, power law scalings of
enstrophy, kinetic energy, and magnetic field energy are provided in both injection range
and inertial sub-range which could be useful for understanding RTI induced turbulent
mixing in HED laboratory and astrophysical plasmas and could aid in interpretation of
observations of RTI-induced turbulence spectra.

1. Introduction

The Rayleigh-Taylor instability (RTI) Lord (1900); Taylor (1950); Chandrasekhar
(1961), an important hydrodynamic instability, occurs at the unstable interface when
a high density fluid is supported by a lower density fluid under the influence of gravity,
or when the interface between two fluids with different densities is accelerated. This
instability is ubiquitous in nature and plays an important role in diverse areas of science
and technology, including inertial confinement fusion (ICF) Tabak et al. (1990); Zhou
et al. (2019); Remington et al. (2006); Betti et al. (1998); Srinivasan & Tang (2012);
Srinivasan et al. (2012, 2017, 2019); Srinivasan & Tang (2014b,a); Stone & Gardiner
(2007); Wang et al. (2017), astrophysics Gamezo et al. (2003); Kifonidis, K. et al. (2003);
Hwang et al. (2004); Hester (2008); Loll et al. (2013), geophysics Kaus & Becker (2007),
and engineering processes Lyubimova et al. (2019). For instance, the RTI is known to act

† Email address for correspondence: bratan@vt.edu
‡ Email address for correspondence: srinbhu@vt.edu



2 R. K. Bera, Y. Song, and B. Srinivasan

as an inhibitor in achieving an ignition grade hot spot in ICF targets Srinivasan & Tang
(2012); Srinivasan et al. (2012, 2019); Srinivasan & Tang (2014b,a); Zhou (2017a,b).
RTI occurs in ICF targets during both the acceleration and deceleration phase of the
implosion, leading to undesirable mixing of hot and cold plasmas. The RTI is also
observed in various astrophysical phenomena such as supernova explosions and their
remnants (Crab Nebula) Gamezo et al. (2003); Kifonidis, K. et al. (2003); Hwang et al.
(2004); Hester (2008); Loll et al. (2013). Therefore, a detailed understanding of such
instabilities in high-energy-density (HED) plasmas has implications for ignition-grade
hot-spots, understanding supernova explosions, and revealing Mega-Gauss (MG) scale
magnetic field generation and their turbulence in astrophysical settings. The RTI and
their mitigation mechanism in HED plasmas has been thoroughly studied by several
authors experimentally as well as theoretically and numerically Remington et al. (2006);
Srinivasan & Tang (2012); Srinivasan et al. (2012, 2019); Srinivasan & Tang (2014b,a);
Atzeni & Meyer-ter Vehn (2004); Sun et al. (2021); Silveira & Orlandi (2017). However,
there exists a substantial disagreement between computer simulation results and high-
energy density laboratory experiments or astrophysical observations of the RTI Kuranz
et al. (2010); Modica et al. (2013). Most of the experiments or astrophysical observations
have noted unusual morphological structure of RTI which are significantly different from
the computer simulation results, exhibiting strongly suppressed growth of small scale
structures and mass extensions of RT spikes. This is due to the fact that many theoret-
ical and numerical studies use conventional hydrodynamic and magnetohydrodynamic
(MHD) depiction where either the self-consistent effect of magnetic fields, viscosity, and
resistivity have been ignored or they have been considered in isolation. First observations
of the the magneto-Rayleigh-Taylor instability evolution in the presence of magnetic and
viscous effects have been made in recent experiments Adams et al. (2015). The impact
of magnetic fields on RTI in the presence of self-consistent viscosity and resistivity for
experimentally and observationally relevant parameter regimes in HED plasmas remains
an open area of research.

The primary purpose of this paper is, therefore, to understand the role of the viscous
and resistive effects on RTI in magnetized HED plasmas applicable to astrophysical
plasmas as well as ICF-based laboratory experiments. Specifically, this work aims to
understand how RTI dynamics is impacted by varying plasma beta (ratio of thermal
energy to magnetic energy) and magnetic Prandtl number (ratio of magnetic Reynolds
number to Reynolds number). This study focuses on a high Atwood number and high-β
regime, where the energy density in the magnetic field is small compared to the thermal
energy in the fluid. The Atwood number (At) is a dimensionless number defined as,
At = (ρH−ρL)/(ρH +ρL); where ρH and ρL represent the mass density of the heavy and
light fluid, respectively. This distinguishes the current work from previous works that have
examined the role of viscosity and resistivity in isolation for ICF applications Srinivasan &
Tang (2014a); Song & Srinivasan (2020). In addition, this work also presents the evolution
of RTI considering fully varying self-consistent viscosity and resistivity profiles. To study
the RTI dynamics in HED plasmas, the magnetohydrodynamic (MHD) equations with
the inclusion of viscosity and resistivity are solved in this work. These visco-resistive
MHD equations are solved in conservation form in 2D (two dimensions) using the fluid
modeling tool PHORCE (Package of High ORder simulations of Convection diffusion
Equations) based on the unstructured discontinuous Galerkin finite element method
Song (2020); Song & Srinivasan (2021); Hesthaven & Warburton (2007). Under this
configuration, simulations have been performed over a wide range of magnetic Prandtl
numbers with the presence of a longitudinal external magnetic field to reveal the effect of
viscosity and resistivity on the evolution of RTI and magneto-RTI in HED plasmas. It is
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observed that the inclusion of viscosity and resistivity dramatically changes the growth
as well as the structures/morphology of the instability on different length scales. It is
seen here that the presence of viscosity stabilizes the growth of the RTI and modifies the
morphology of the tip of RTI fingers, inhibiting the traditional mushroom cap structures.
On the other hand, the morphology of the RTI spikes is found to be independent of
resistivity. The presence of resistivity assists in the development of small scale structures
by reducing the magnetic field stabilization. When considering spatially-varying viscosity
and resistivity with highly disparate profiles, there is a significant impact on the RTI
evolution in the high Atwood number regime studied in this work. In this paper, the
numerical growth rates of RTI obtained from the simulations are compared with their
corresponding analytical values obtained from linear theory. Furthermore, it is also seen
here that the dynamics of magnetic field is independent of viscosity and likewise the
resistivity does not affect the dynamics of enstrophy and kinetic energy. In addition,
this work presents the power law scaling of enstrophy, kinetic energy, and magnetic field
energy in both the injection range and inertial sub-range of power spectra for different
viscosity and resistivity cases, which could be useful for understanding the RTI induced
turbulent mixing in HED plasmas.

The manuscript has been organized as follows. In Section 2, a brief description of the
governing equations is presented to study the RTI process in magnetized HED plasmas.
Section 3 discusses the simulation techniques and problem setup for the study. Section
4 presents the simulation results, comparison with theory, and discussions. Section 5
presents the summary and conclusion.

2. Governing Equations

In this section, the basic governing equations are presented for the study of RTI
in magnetized HED plasmas in the presence of an applied horizontal magnetic field,
viscosity, and resistivity. Thermal conduction is neglected in this study to focus on the
impact of viscosity, resistivity, and magnetic fields. The generalized Lagrange multiplier-
magnetohydrodynamic (GLM-MHD) equations Munz et al. (2001); Dedner et al. (2002)
with the inclusion of viscosity and resistivity are solved. The compressible MHD equations
are given by,

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)
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where ρ, u, p, g and B represent the mass density, fluid velocity, pressure, gravitational
field, and magnetic field, respectively. Here ε = p/(γ − 1) + ρu2/2 + B2/2µ0 defines the
total energy; where γ is the ratio of specific heats, and is normally taken as 5/3 for
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monatomic gases assuming an ideal gas law. Here p is the pressure. For the equation
of state, an ideal gas law p = (Zi + 1)ρkBTi/mi is assumed; where Zi, mi, kb, and Ti
represent the charge state of ion, mass of the ion, Boltzmann constant, and temperature
of the ion, respectively. Here ψ, Ch, and Cp represent the divergence cleaning potential,
hyperbolic cleaning speed, and parabolic cleaning speed, respectively. A user-specified
parameter Cr = C2

p/C
2
h is defined to determine the ratio between hyperbolic and

parabolic divergence cleaning. If Cr is very large, the divergence error will only be
transported through the hyperbolic term. Ch is calculated based on the grid sizes and
CFL number (Dedner et al. 2002). In the simulations presented here, Cr = 99999 is set to
be very large so that only hyperbolic cleaning dominates. In the above equations π and η
represent the viscous stress tensor and electrical resistivity coefficient, respectively. In this
study, the Braginskii formulation Braginskii (1965) for calculating viscosity and resistivity
co-efficient is used, µ = 0.96nikBTiτi and η = me/1.96neq

2
eτe, where τe and τi are the

collision times for electron and ion, respectively. Note that the viscosity and resistivity
can also be presented in terms of Reynolds (Re) and magnetic Reynolds number (Rem)
defined as, Re = ρV L/µ and Rem = µ0V L/η; where V and L represent some reference
velocity and length, respectively.

3. Numerical simulation and problem setup

This section presents the simulation techniques and problem setup used for studying
the role of viscosity and resistivity on RTI in magnetized HED plasmas. The simulations
presented here are in planar geometry and in 2D. A significant amount of insight can
be gained from 2D studies particularly where observations may be dominated by 2D
evolution of perturbation growth. In other words, this is true when the wavelength of
perturbation for RTI growth in the considered directions is much smaller than the wave-
length of perturbation in the third direction. This approximation would be particularly
well-suited for cases where magnetic fields influence RTI growth leading to regimes where
the perturbation growth are more “2D-like”. Most of the past literature on 2D MHD
turbulence, not specific to RTI, has focused on incompressible MHD models Orszag &
Tang (1979); Biskamp & Schwarz (2001) whereas this work uses a compressible MHD
model with a focus on the evolution of the RTI. However, a fully 3-D RTI turbulence
study would be important to understand the RTI induced turbulence accounting for 3-D
perturbations and this would constitute future studies. In this paper, the code PHORCE
(Package of High ORder simulations of Convection diffusion Equations) Song (2020);
Song & Srinivasan (2021) developed at Virginia Tech is used for the 2D RTI study.
PHORCE is based on the nodal unstructured discontinuous Galerkin method Hesthaven
& Warburton (2007) and solves fluid equations (2.1-2.5) in conservation form. To advance
the simulation in time, an explicit fourth-order five-stage strong stability-preserving
Runge-Kutta (SSP-RK) Song (2020) scheme has been implemented. Several limiters and
filters are applied in PHORCE to preserve the positivity of density and pressure and to
diffuse the numerical oscillations that typically occur due to strong discontinuities. The
code uses an affine reconstructed discontinuous Galerkin (aRDG) scheme Song (2020);
Song & Srinivasan (2021) to solve the diffusion terms and to self-consistently capture
the effect of spatially varying Reynolds numbers (viscous effects) and magnetic Reynolds
numbers (resistive effects).

The RTI simulations have been performed in a rectangular domain with x ∈
[−Lx/2, Lx/2], y ∈ [−Ly/2, Ly/2]; where Lx and Ly represent the width and height of
the simulation domain, respectively. The simulations are performed with 2000 × 1000
cells. The gravitational field g = −gŷ. The simulations are performed using “conducting



RTI in HEDP for high Atwood number regime 5

Parameter values

Atwood number (At) 0.95866
Light fluid density (ρL) 1
Heavy fluid density (ρH) 47
gravitational acceleration (g) 4.2× 10−3

Initial plasma beta (βini) ≈ 5000

Table 1. Summary of plasma parameters in normalized form.

wall” boundary conditions along the y- direction and “periodic” boundary condition
along the x-direction. In equilibrium, the simulation is initialized using the standard
hyperbolic tangent density profile given by,

ρ =
(ρH − ρL)

2
[tanh (αy/Ly) + 1] + ρL. (3.1)

In the above equation, α defines the width of the hyperbolic tangent function. In the
simulations presented here α is taken to be 0.01 in order to provide a sharp gradient at
the interface. The pressure profile is initialized as,

p = p0 −
(ρH + ρL)

2
gy − g (ρH − ρL)

2

Ly
α

ln cosh (αy/Ly) (3.2)

where p0 represents the background pressure of the system. To excite the multimode
RTI in the simulation, the y-component of velocity at the interface (y = 0 plane) is
perturbed as, v = Σ40

m=10.01R(m)cos(2π(mx/Lx + R(m)))exp(−ξy2) at t = 0; where
R(m) and ξ represent the random number generator function of m random numbers and
the spatial width along the y direction over which the perturbation falls at the interface,
with ξ = 1000.

In this work, all the simulation results are presented in normalized units. The following
normalization factors have been used, x → x

Lx
, y → y

Lx
, t → tγRT , ρ → ρ

ρL
, g → g

γ2
RTLx

and kx → kxLx. Here γRT =
√
Atgk, represents the growth rate of the RTI associated

with the wave number k = 2π/λ; where λ is the wavelength of the mode Chandrasekhar
(1961). As the simulations have been conducted with multimode perturbations having
mode number m = 1 − 40, note that the value of γRT would be different for different
modes (or wavelengths). The growth rate becomes maximum for smallest wavelength
and minimum for longest wavelength modes. To calculate the the value of γRT for the
normalization of time, the smallest mode of perturbation (m = 40) having wavelength
λ = Lx/40 has been selected.

In some flows in HED plasmas, such as in ICF and supernovae explosions Sauppe
et al. (2019); Burton (2011); Dimonte et al. (2005); Cabot & Cook (2006); Srinivasan &
Tang (2014a); Srinivasan et al. (2012), the Atwood number can reach a very high value
(At > 0.85) and the temperature can have a large variation in the domain. As a result,
a large variation in Reynolds and magnetic Reynolds numbers may exist in the domain.
In this work, the plasma parameters are selected to access highly varying density and
temperature regimes in laboratory and astrophysical plasmas where the viscosity and
resistivity may be important. The parameters are summarized in Table 1 in normalized
form. The simulations use an initial plasma beta βini = 2µ0p0/B

ext
x

2
= 5000 whenever

an external horizontal magnetic field (Bextx ) exists in the system.
Using the parameters given in the Table 1 and using the expressions for isotropic
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Figure 1. The left plot (a) shows the profile of Reynolds number (Re) and magnetic Reynolds
number (Rem) as function of vertical height (y/Lx) in the domain. The right plot (b) shows the
profile of magnetic Reynolds number (Rem) along with modified magnetic Reynolds number
(Remod

m ) profile as function of vertical height (y/Lx).

viscosity (µ) and resistivity (η) mentioned in Section 2, the Reynolds number Re =
ρVRTLy/µ and magnetic Reynolds number Rem = µ0VRTLy/η, are plotted as a function
of vertical height (y/Lx) in Fig 1(a). Here VRT = LyγRT defines the terminal velocity
of the RTI. Note that Re and Rem are in the range of 485 − 7.3 × 107 and 20 − 1105,
respectively. The profile of resistivity (and corresponding magnetic Reynolds number)
has been modified to ensure the resistive time step is larger than the hyperbolic time
step since an explicit time-stepping scheme is used in this work. The following form
of modified resistivity (ηmod) has been used, ηmod = η/a + b ; where a = 18.5 and
b = 7.3 × 10−9 are constants. Using the modified expression of resistivity ηmod, the
modified profile of magnetic Reynolds number (Remodm ) is plotted in Fig. 1(b). Note that
the resistivity profile is modified in the heavy fluid to increase the minimum value of
the magnetic Reynolds number from 20 to 285. For the simulations presented here, the
modified resistivity profile has been used to capture the essential physics of RTI in the
presence of resistivity. The magnetic Prandtl number, Prm = Rem/Re = ν/η (where
ν = µ/ρ is the kinematic viscosity), is a dimensionless quantity that estimates the ratio
of momentum and magnetic diffusivity. In Fig. 1b, Prm varies from 2 for y/Lx < 0 to
4× 10−6 for y/Lx > 0 producing a significant variation across the domain.

4. Simulation results and discussion

The simulations have been performed for different values of magnetic Prandtl numbers
to elucidate the role of viscosity and resistivity on the Rayleigh-Taylor and magneto-
Rayleigh-Taylor instability. Table 2 summarizes all simulation cases performed here for
different values of plasma beta (external magnetic field) and magnetic Prandtl numbers
(Reynolds numbers and magnetic Reynolds numbers). This section discusses the results
and findings of each case that is presented.

4.1. Simulation results for inviscid, irresitive cases: run-1 and run-2

Simulations for inviscid (µ = 0) and irresitive (η = 0) cases are performed (see run-1
and run-2 in Table 2). Fig. 2 presents plots of mass density (ρ/ρL) at different times
for βini → ∞ (no initial external horizontal magnetic field) and for βini = 5000 (in
the presence of initial external horizontal magnetic field). As expected, the height of
the RTI mixing region or the height of the RTI fingers reduces in the presence of an



RTI in HEDP for high Atwood number regime 7

runs βini Re Rem Prm

run-1 ∞ ∞ 0
run-2 5000 ∞ ∞

run-3 ∞ 2× 103 ∞ ∞
run-4 ∞ 2× 106 ∞ ∞
run-5 5000 2× 103 ∞ ∞
run-6 5000 2× 106 ∞ ∞

run-7 5000 ∞ 285 0
run-8 5000 ∞ 1105 0

run-9 5000 2× 103 285 0.1
run-10 5000 2× 103 1105 0.5
run-11 5000 2× 106 285 1× 10−4

run-12 5000 2× 106 1105 5× 10−4

run-13 ∞ fully varying ∞ ∞
run-14 5000 fully varying ∞ ∞

run-15 5000 fully varying 285 0.5− 4× 10−6

run-16 5000 fully varying 1105 2 − 1.5× 10−5

run-17 5000 fully varying fully varying 2 − 4× 10−6

Table 2. Summary of numerical simulations performed here.
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Figure 2. Plot of mass density (ρ/ρL) profiles at different times for βini → ∞ (left) and
βini = 5000 (right); where µ = 0 and η = 0. Note the stabilizing effect of an applied horizontal
magnetic field on overall RTI and the damping of short-wavelength modes.

applied horizontal magnetic field. Note ths suppression of small-scale structures due to
the presence of the magnetic field. To calculate the growth rate, the peak bubble-to-spike
distance (h/Lx) over the normalized times (tγRT ) for both βini → ∞ and βini = 5000
is presented in Fig. 3. In the simulations, the height has been measured by tracking the
difference of the upper and lower boundary of the RTI mixing region. As shown in the
subplot of Fig. 3, the numerical growth rates are calculated from the slope of the plot
log(h/Lx) vs. tγRT . The numerical growth rate obtained from the simulations for both
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B = 0 T
x

ext

B = 50 T
x

ext

Figure 3. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT ) for βini → ∞ and
βini = 5000; where µ = 0 and η = 0 to estimate a numerical growth rate. Note the growth rate
is reduced with an applied horizontal magnetic field as expected.

βini → ∞ and βini = 5000 are 0.75γRT and 0.5γRT , respectively. The growth of RTI
significantly decreases in the presence of applied horizontal magnetic field as expected.
The analytical expression of growth rate (γRT ) of RTI for purely hydrodynamic flows
(no viscosity, no resistivity, and no magnetic field) is given by Chandrasekhar (1961) as,

γRT =
√
Atgk. (4.1)

Using the parameters given in Table 1 and k = 80π/Lx (for λ = Lx/40), the analytical
values of the growth rate γRT can be estimated as 2.69 × 109s−1 for a single mode
that is estimated to be the fastest growing early in time. The numerical growth rate
is 0.75γRT = 2 × 109s−1 but this is for a multimode growth rate which explains the
difference between the analytical and numerical values. As time evolves, the nonlinear
interactions between modes significantly changes the dominant wave number. When an
applied magnetic field Bext exists, the RTI growth rate becomes Chandrasekhar (1961);
Jun & Norman (1996),

γBRT =

√
Atgk −

(B · k)2

2πµ0(ρH + ρL)
. (4.2)

Note that the RTI is affected by the horizontal magnetic field (B ‖ k) and is not
directly impacted by magnetic fields that are normal to the interface when using an
MHD model. In Fig. 2 for βini = 5000, the height of the mixing region is decreased along
with suppression of the small structures. In this case, one can approximately calculate
the wavelength of RTI fingers by calculating the number of RTI fingers in the domain.
This technique suggests approximately 30 RTI spikes growing at this time. Therefore,
the effective smallest wavelength is approximately ≈ Lx/30. When an appropriately
aligned magnetic field is initialized, the value of the peak magnetic field in the system
increases with time as RTI grows. For example, the plasma β becomes 226 from an initial
value of 5000 at time tγRT = 13.5. Using the parameters given in Table 1, β = 226,
and kxLx = 60π, the analytical values of the growth rate γBRT can be estimated as
γBRT = 0.63γRT . The numerical growth rate obtained from the simulation shows good
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-1/2 -1/2

Figure 4. Evolution of enstrophy (Z) and kinetic energy (E) spectra as a function of wave
number (kxLx) for βini →∞; where µ = 0 and η = 0.

agreement with the analytical value for βini = 5000 considering that these are estimates
for multimode simulations.

The enstrophy (Z), kinetic energy (E), and magnetic field energy (B2) averaged over
the vertical direction (y) of the system is defined as,

Z = 〈ω2〉 =

∫ Ly/2

−Ly/2

ω2dy; E =
1

2
〈u2〉; B2 = 〈B2〉 (4.3)

where ω = ∇×u represents the fluid vorticity. In 2D mixing and turbulence, the enstrophy
(Z), kinetic energy (E), and magnetic field energy (B2) are important quantities as
they appear to be the only quadratic constants of motion. In Fig. 4, the evolution of
enstrophy (Z) and kinetic energy (E) spectra are presented as a function of normalized
wave number kxLx at different times for βini →∞. Note that there will be no magnetic
field for βini →∞.

The spectra can be separated into three regions based on the range of kxLx. The
first region with kxLx 6 80π is known as the injection range where all the external
perturbation modes exist. All the energy has been injected to the system within these
wavelengths. The second region 80π 6 kxLx 6 600π or the middle range is the
inertial sub-range. This is the regime which basically connects the injection range to
the dissipation range. The third region where kxLx > 600π is the dissipation range
which accounts for grid scales as Lx = 2000∆x; where ∆x is the grid size along the
x-direction. As physical dissipation (viscosity and resistivity) is absent in the system for
the simulations in this section, the only dissipation mechanism is, therefore, governed
by the numerical dissipation. All the energy for modes smaller than or equal to the grid
size is dissipated by numerical dissipation. For βini → ∞ (see Fig. 4), note that the
enstrophy (Z) and kinetic energy (E) increase equally in all the available modes in the
system with time as long as tγRT 6 13.5. At tγRT = 17.5, the transfer of kinetic energy
as well as enstrophy is seen from short wavelength modes to long wavelength modes. This
happens due to the nonlinear interactions of the modes leading to the formation of longer
wavelength modes with time. As a result, the small scale structures get modified changing
the growth rate in the nonlinear regime for βini →∞. The numerically obtained power
law scalings for the enstrophy, kinetic energy, and magnetic field energy spectra at both
the injection and inertial sub-range are included in Fig. 4. In this case, the spectra of
kinetic energy and enstrophy obey the following power scaling laws in the injection range
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Figure 5. Evolution of enstrophy (Z), kinetic energy (E), magnetic field energy (B2) spectra
as a function of wave number (kxLx) for βini = 5000; where µ = 0 and η = 0.

(kxLx 6 80π),

E(k) ∼ k−1/2
x (4.4)

Z(k) ∼ k−1/2
x . (4.5)

In the inertial sub-range (80π 6 kxLx 6 600π), the spectra are found to obey different
power laws,

E(k) ∼ k−3
x (4.6)

Z(k) ∼ k−2
x . (4.7)

For βini = 5000, the evolution of enstrophy (Z), kinetic energy (E), and magnetic field
energy (B2) spectra as a function of wave number kxLx at different times is shown in
Fig. 5. The enstrophy (Z), kinetic energy (E), and magnetic field energy (B2) increase
equally in all modes in the system until tγRT = 17.5 for βini = 5000. There is no transfer
of kinetic energy, enstrophy, and magnetic field energy over the modes. This is because the
spectrum still lies in the linear regime due to the presence of a horizontal magnetic field.
The magnetic field opposes the growth of the RTI and decreases the vertical velocity of
the fluid. In this case, the spectra of kinetic energy, enstrophy, and magnetic field energy,
obtained from the numerical simulations, obey the following power laws in the injection
range (kxLx 6 80π)

E(k) ∼ k−1/3
x (4.8)

Z(k) ∼ k−1/4
x (4.9)

B2(k) ∼ k−1/2
x . (4.10)

Similarly, the power law in the inertial sub-range (80π 6 kxLx 6 600π) for βini = 5000
is found to be

E(k) ∼ k−2
x (4.11)

Z(k) ∼ k−5/4
x (4.12)

B2(k) ∼ k−2
x . (4.13)

The slope of the spectra in the inertial sub-range decreases with the presence of a
horizontal magnetic field. The slope of the inertial sub-range measures the rate at which
the energy is transferred from large scale to small scales or vice versa. In other words,
it defines the rate at which the larger scales get fragmented into smaller scales and vice
versa due to mixing. Therefore, this shows that the rate of small scale formation due to
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runs injection range power law

run-1 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x

run-2 Z(k) ∼ k−1/4
x , E(k) ∼ k−1/3

x , B2(k) ∼ k−1/2
x

run-3 Z(k) ∼ k−1/4
x , E(k) ∼ k−1/4

x

run-4 Z(k) ∼ k−1/5
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-5 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x

run-6 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-7 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-8 Z(k) ∼ k−0.3
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-9 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-10 Z(k) ∼ k−1/4
x , E(k) ∼ k−0.4

x , B2(k) ∼ k−1/2
x

run-11 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-12 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-13 Z(k) ∼ k−0.3
x , E(k) ∼ k−1/2

x

run-14 Z(k) ∼ k−0.3
x , E(k) ∼ k−0.3

x , B2(k) ∼ k−1/2
x

run-15 Z(k) ∼ k−0.3
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-16 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-17 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−0.3
x

Table 3. Summary of power laws for the numerical simulations in injection range.

RTI mixing decreases with the application of horizontal magnetic field. The scaling of
these power laws in both injection and inertial sub-range for these cases (run-1-2) have
been summarized in Tables 3 and 4. Note that the numerical dissipation is active in the
range of kxLx > 600π. As a result, all the energy is also seen to grow proportionally with
time in this regime.

4.2. Simulation results for constant viscosity, irresistive cases (Prm =∞): run-3-6

Constant viscosity is introduced throughout the domain in the simulation. The simula-
tions are performed for two different values of constant Reynolds numbers, Re = 2× 103

and Re = 2×106, but with no resistivity (Rem =∞). As η = 0 for these simulations, this
study corresponds to the cases of very large magnetic Prandtl number (Prm → ∞). In
this study, the case without magnetic field βini →∞ and with magnetic field βini = 5000
at tγRT = 0 are considered. The relevant simulation parameters are shown in Table 2
under run-3-6. In Fig. 6, the mass density (ρ/ρL) is shown at different times for
Re = 2 × 103 and Re = 2 × 106 for βini → ∞. It is seen that the growth of the RTI
decreases with decreasing Re or increasing viscosity (µ). Fig. 7 shows mass density (ρ/ρL)
at different times for the two Reynolds numbers Re = 2× 103 and Re = 2× 106, but for
βini = 5000. Here, the size of the RTI fingers decreases further when applying a horizontal
magnetic field compared with the inviscid case presented in Section 4.1. The magnetic
field has a stabilizing effect in addition to viscous stabilization on the growth of RTI. To
further illustrate the complementary role of viscous and magnetic field stabilization, the



12 R. K. Bera, Y. Song, and B. Srinivasan

runs inertial sub-range power law

run-1 Z(k) ∼ k−2
x , E(k) ∼ k−3

x

run-2 Z(k) ∼ k−5/4
x , E(k) ∼ k−2

x , B2(k) ∼ k−2
x

run-3 Z(k) ∼ k−5/2
x , E(k) ∼ k−4

x

run-4 Z(k) ∼ k−3
x , E(k) ∼ k−4

x , B2(k) ∼ k−3
x

run-5 Z(k) ∼ k−5/2
x , E(k) ∼ k−3

x

run-6 Z(k) ∼ k−5/2
x , E(k) ∼ k−5/2

x , B2(k) ∼ k−3
x

run-7 Z(k) ∼ k−2
x , E(k) ∼ k−3

x , B2(k) ∼ k−4
x

run-8 Z(k) ∼ k−5/2
x , E(k) ∼ k−4

x , B2(k) ∼ k−4
x

run-9 Z(k) ∼ k−5/2
x , E(k) ∼ k−7/2

x , B2(k) ∼ k−5
x

run-10 Z(k) ∼ k−2
x , E(k) ∼ k−4

x , B2(k) ∼ k−4
x

run-11 Z(k) ∼ k−2
x , E(k) ∼ k−3

x , B2(k) ∼ k−9/2
x

run-12 Z(k) ∼ k−2
x , E(k) ∼ k−3

x , B2(k) ∼ k−9/2
x

run-13 Z(k) ∼ k−2
x , E(k) ∼ k−3

x

run-14 Z(k) ∼ k−2
x , E(k) ∼ k−7/2

x , B2(k) ∼ k−3
x

run-15 Z(k) ∼ k−2
x , E(k) ∼ k−3

x , B2(k) ∼ k−5
x

run-16 Z(k) ∼ k−5/2
x , E(k) ∼ k−4

x , B2(k) ∼ k−3
x

run-17 Z(k) ∼ k−2
x , E(k) ∼ k−9/2

x , B2(k) ∼ k−3
x

Table 4. Summary of power laws for the numerical simulations in inertial sub-range.
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Figure 6. Plot of mass density (ρ/ρL) profile at different times for different constant values
of Re; where βini → ∞ and Prm = ∞ (η = 0). Note the stabilizing effect of viscosity on
short-wavelength RTI.

peak bubble-to-spike distance (h/Lx) over time (tγRT ) is presented for both βini → ∞
and βini = 5000 and for different constant Reynolds numbers (Re) in Fig. 8. Note that, as
Re increases the growth rate of the RTI approaches the growth rate for the inviscid cases
(µ = 0) with and without the initial magnetic field. For βini →∞, the growth rate from
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Figure 7. Plot of mass density (ρ/ρL) profile at different times for different constant values of
Re; where βini = 5000 and Prm =∞ (η = 0). Note the viscous and magnetic field stabilization
acting in tandem to damp RTI growth.

the simulations is 0.55γRT and 0.64γRT for Re = 2× 103 and Re = 2× 106, respectively.
The analytical expression for the growth rate of RTI in a compressible viscous fluid is
given by Menikoff et al. (1977),

γvisRT =
√
Atgk

(√
1 + ω −

√
ω
)

(4.14)

where ω = ν̄2k3/Atg and ν̄ = (µl + µh)/(ρl + ρh) is the density averaged kinematic
viscosity. In Fig 9, the analytical form of γvisRT /γRT is shown as a function of wave
number kxLx for Re = 2 × 103 and Re = 2 × 106. For Re = 2 × 103, it is seen
that the analytical growth rate is maximum for kxLx ≈ 60π which corresponds to a
wavelength of approximately Lx/30. Similarly, for Re = 2 × 106, the analytical growth
rate becomes maximum for kxLx ≈ 76π or a wavelength of approximately Lx/38. This is
consistent with the simulation results from Fig. 7. The theoretical growth rate of the mode
having wavelength Lx/30 and for the mode having wavelength Lx/38 are approximately
0.56γRT and 0.65γRT , respectively. The growth rates obtained from simulations show
good agreement with the analytical results.

Note that, when viscosity increases, the morphology of the RTI spikes appear to be
smooth and exhibit different characteristics as seen in Fig. 7. Due to the presence of
viscosity, the traditional mushroom cap structure on the tip of the RTI fingers gets
inhibited and forms smooth structures. The presence of viscosity also strongly suppresses
the growth of the small scale structures and short-wavelength modes.

The plasma β as a function of peak bubble-to-spike distance (h/Lx) for different Re
for βini = 5000 is presented in Fig. 10. Note that plasma β is independent of Re if
presented as a function of the peak bubble-to-spike amplitude instead of as a function of
time. This shows that the dynamics of magnetic field is not affected by the viscosity for
the same amplitude of the RTI growth but the actual RTI growth as a function of time
is impacted by the different Re as noted from Fig. 8. Also note that plasma β decreases
with time or height as RTI grows for all Re considered. This is because the value of
magnetic field increases as RTI grows in the system. Figure 11 presents enstrophy(Z),
kinetic energy (E) and magnetic field energy (B2(k)) spectra at time tγRT t = 17.5 as a
function of wave number kxLx for different values of Re. The scaling of these power laws
in both injection and inertial sub-range for these cases (run-3-6) have been summarized
in Tables 3 and 4. Note that the spectral power of the magnetic energy does not change
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Figure 8. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT ) for βini → ∞ and
βini = 5000 and for different constant values of Re; where η = 0. Note the effects of viscous and
magnetic stabilization on RTI growth.

Figure 9. Plot of γvis
RT /γRT as a function of wave number kxLx for different constant values

of Re; where η = 0. Note that the viscous cases produce a peak growth in the linear regime
corresponding to kxLx ≈ 60π.

with Re but the spectral power of enstrophy and kinetic energy increases with increasing
the value of Re for all available modes. This shows that the dynamics of magnetic field
energy is independent of Re or viscosity. It is shown by Kulsrud et al. (1997) that the
dynamics of the magnetic field can be completely described by ion fluid vorticity in the
absence of viscosity and resistivity but in the presence of a Biermann battery, which is not
considered in this work. Including the viscosity and resistivity into the MHD equations
considered here, a theoretical treatment is included to illustrate the dynamics of magnetic
field and vorticity in presence of viscosity and resistivity. Following the same method as
shown by Kulsrud et al. Kulsrud et al. (1997), the momentum equation (Eq. 2.2) can be
written in terms of vorticity (ω) as,

∂ω

∂t
=
∇ρ×∇P

ρ2
+∇× (u× ω) +∇× J×B

ρ
−∇× ∇ · π

ρ
(4.15)
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Figure 10. Plot of plasma β as a function of peak bubble-to-spike distance (h/Lx) for different
values of Re; where βini = 5000 and Prm =∞ (η = 0). Note that the plasma β is independent
of Re when compared at the same RTI amplitude.
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Figure 11. Evolution of enstrophy (Z), kinetic energy (E), and magnetic field energy (B2)
spectra at late-time tγRT = 17.5 as a function of wave number (kxLx) for different constant
values of Re; where η = 0. Note that the spectra of enstrophy and kinetic energy in the inertial
range of dissipation (kxLx > 80π) changes with Re but the spectra of magnetic field in this
range is independent of Re.

where J represents the net current density. Similarly, Eq. (2.4) can be modified in terms
of ion cyclotron frequency (ωci = ZieB/mi) as,

∂ωci

∂t
= ∇× (u× ωci)−

1

µ0
∇× (η∇× ωci). (4.16)

The last term on right hand side of equations (4.15) and (4.16) are responsible for the
dissipation of the vorticity and magnetic field, respectively. The dynamics of vorticity
and kinetic energy depend on the viscous stress tensor π and the corresponding Re.
This is consistent with the numerical results presented here. On the other hand, the
dynamics of vorticity is independent of resistivity η or magnetic Reynolds number Rem,
but the dynamics of magnetic field depends on the Rem. To illustrate this, simulations
are performed for different constant values of Rem discussed in the next section.
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Figure 12. Plot of mass density (ρ/ρL) profile at different times for Rem = 285 and Rem = 1105;
where βini = 5000 and µ = 0. Note that a smaller Rem corresponding to a larger η produces an
increase in RTI growth compared to a larger Rem.
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1105

Figure 13. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT ) for different constant
values of Rem; where βini = 5000 and µ = 0. Note that the growth rate increases with a decrease
in Rem corresponding to an increase in η.

4.3. Simulation results for constant resistivity, inviscid cases (Prm = 0): run-7-8

In this section, simulation results are presented for different constant magnetic
Reynolds numbers (Rem) but with no viscosity (µ = 0) (see run 7-8 in Table 2).
In this study, Prm = 0. In all these simulations, an initial horizontal magnetic field
with βini = 5000 is applied. In Fig. 12, the mass density (ρ/ρL) profile at different
times is presented for Rem = 285 and Rem = 1105. It is seen that the growth of the
RTI increases with a decrease in magnetic Reynolds numbers (Rem) or increase of
resistivity (η). This is because the resistivity diffuses the magnetic fields and reduces
the magnetic stabilization. As a result, the RTI growth increases due the reduction of
effective magnetic field tension. In this figure, it is to be noted that the morphology
of the RTI spikes in terms of mushroom cap structures on the tip of the fingers are
seen to be independent of Rem. Also of note is the appearance of additional small scale
structures for higher resistivity cases. This is also expected as the magnetic field opposes
development of the small scale structures. In Fig. 13, the peak bubble-to-spike distance
(h/Lx) over time (tγRT ) is presented for different constant values of Rem to illustrate
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Figure 14. Plot of plasma β as a function of peak bubble-to-spike distance (h/Lx) for different
constant values of Rem; where βini = 5000 and with µ = 0. Note that the plasma β changes
with Rem.

the effect of magnetic Reynolds number on the growth rate of RTI in HED plasmas. It is
found that the growth rate increases with increase in resistivity. The numerical growth
rates are obtained from the simulations for Rem = 285 and Rem = 1105 as 0.68γRT and
0.53γRT , respectively. Including a finite constant resistivity η, Jukes (1963) has shown
that the analytical growth rate of RTI changes with resistivity η as,

γresRT ∝ η1/3. (4.17)

The growth rates obtained from the simulations also obey the analytical scaling.
The plasma β is plotted as a function of peak bubble-to-spike distance (h/Lx) for

different Rem in Fig. 14. Note that plasma β decreases with peak bubble-to-spike distance
for all values of Rem but at different rates depending on the value of Rem. The rate at
which the plasma beta decreases is larger for high Rem. This shows that the dynamics
of the magnetic field is not independent of resistivity. This is due to the fact that the
magnetic field gets diffused more for low Rem leading to a higher plasma β.

In Fig. 15, the plot of enstrophy(Z), kinetic energy (E), and magnetic field energy
(B2(k)) spectra at time (tγRT t = 17.5) as a function of wave number kxLx has been
shown for different values of Rem. The scaling of these power laws in both injection and
inertial sub-range for these cases (run-7-8) have been summarized in Tables 3 and 4. It
is observed that the magnetic field spectra changes significantly by changing the value of
Rem, whereas the spectra of enstrophy and kinetic energy does not show any significant
dependence on the value of Rem. The spectral power of magnetic field energy increases
with increasing the value of Rem for all the available modes. This justifies that the
dynamics of magnetic field energy depends on Rem or η. But the dynamics of enstrophy
and kinetic energy does not depend on Rem. This is consistent with equations (4.15) and
(4.16).

4.4. Simulation results for constant viscosity, constant resistivity cases: run-9-12

Simulations have also been performed for different values of constant Re with the
inclusion of different constant values of Rem (see run-9-12 in Table 2). In this case, all the
simulations use an applied horizontal magnetic field corresponding to βini = 5000. Fig. 16
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Figure 15. Evolution of enstrophy (Z), kinetic energy (E), and magnetic field energy (B2)
spectra at late-time tγRT = 17.5 as a function of wave number (kxLx) for different constant
values of Rem; where βini = 5000 and µ = 0. Note that the spectra of enstrophy and kinetic
energy in the inertial range of dissipation (kxLx > 80π) are independent of Rem but the spectra
of magnetic field in this range changes with Rem.
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Figure 16. Plot of mass density (ρ/ρL) profile at different times for Rem = 285 (Prm = 0.1)
and Rem = 1105 (Prm = 0.5); where Re = 2× 103 and βini = 5000.

presents the mass density (ρ/ρL) profile at different times for Rem = 285 (Prm = 0.1) and
Rem = 1105 (Prm = 0.5) with Re = 2 × 103. Similarly, the mass density (ρ/ρL) profile
at different times for Rem = 285 (Prm = 1× 10−4) and Rem = 1105 (Prm = 5× 10−4)
for Re = 2 × 106 is presented in Fig. 17. Note that the morphology of the RTI fingers
doesn’t exhibit a strong dependence on Rem for the values considered here, but shows
more significant dependence with Re. The mushroom caps on the tip of the RTI fingers are
inhibited for high viscosity. When viscosity is held constant, the growth rate increases
with an increase in resistivity. On the other hand, the growth rate decreases with an
increase in viscosity when resistivity is held constant.

The power law scaling of the enstrophy (Z), kinetic energy (E), and magnetic field
energy (B2(k)) spectra as a function of wave numbers kxLx is quantified for these runs
(run-9-12) in both the injection range as well as the inertial sub-range. The scalings
of these power laws are given in Tables 3 and 4 for run-9-12. Fig. 18 presents the
enstrophy(Z), kinetic energy (E) and magnetic field energy (B2(k)) spectra at time
tγRT t = 17.5 as a function kxLx for different values of Re; where the value of Rem is
held constant to Rem = 285 for βini = 5000. It is seen here that the spectra of enstrophy
and kinetic energy change with Re, whereas the magnetic field spectra does not change
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Figure 17. Plot of mass density (ρ/ρL) profile at different times for Rem = 285
(Prm = 1× 10−4) and Rem = 1105 (Prm = 5× 10−4); where Re = 2× 106 and βini = 5000.
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Figure 18. Evolution of enstrophy (Z), kinetic energy (E), and magnetic field energy (B2)
spectra at late-time tγRT = 17.5 as a function of wave number (kxLx) for different constant
values of Re; where βini = 5000 and Rem = 285. Note that the spectra of enstrophy and kinetic
energy in the inertial range of dissipation (kxLx > 80π) change with Re but the spectra of
magnetic field in this range is independent of Re.

= 285

= 1105

Figure 19. Evolution of enstrophy (Z), kinetic energy (E), and magnetic field energy (B2)
spectra at late-time tγRT = 17.5 as a function of wave number (kxLx) for different constant
values of Rem; where βini = 5000 and Re = 2 × 103. Note that the spectra of enstrophy and
kinetic energy in the inertial range of dissipation (kxLx > 80π) are independent of Rem but the
spectra of magnetic field changes with Rem.
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Figure 20. Plot of mass density (ρ/ρL) profile at different times for βini →∞ and βini = 5000;
where fully varying Re is considered with no resistivity (η = 0). Note the viscous stabilization
of RTI due to the high viscosity of the low density region.

with Re. Similarly, the enstrophy(Z), kinetic energy (E), and magnetic field energy
(B2(k)) spectra at time tγRT t = 17.5 as a function kxLx for different values of Rem are
plotted in Fig. 19 holding Re constant at Re = 2× 103 for βini = 5000. Note that Rem
does not affect the spectra of enstrophy and kinetic energy, whereas the magnetic field
spectra depends on Rem. These findings are consistent with those in Sections 4.2 and
4.3.

4.5. Simulation results for fully varying viscosity, irresistive cases (Prm =∞):
run-13-14

Next, the self-consistent fully varying Re profile shown in Fig. 1 is considered without
resistivity (see run-13-14 in Table 2). The simulations have been performed using both
βini → ∞ and βini = 5000. In Fig. 20, the mass density (ρ/ρL) profile is presented
at different times for βini → ∞ and βini = 5000. To further illustrate the effect of a
fully varying Re profile on the RTI, the peak bubble-to-spike distance (h/Lx) over time
(tγRT ) is presented for βini → ∞ and βini = 5000 for this case in Fig. 21 along with
the bubble-to-spike amplitudes for constant Re cases. The growth and nature of the
RTI for fully varying viscosity for βini → ∞ and βini = 5000 is close to that of the
high viscosity case or low Reynolds number (Re = 2 × 103) case. This is because, the
RTI fingers largely grow in the lower density regime (y < 0) at the interface due to the
high Atwood number considered here. The mixing is not significant in the high density
regime. In the lower density regime, the value of Re = 2 × 103, which has significantly
higher viscosity compared to the high density regime (y > 0). Therefore, the evolution of
RTI is dominated by the high viscosity regime. Hence, viscosity, even if disparate, plays
an important role in the RTI process in such parameter regimes with and without an
applied horizontal magnetic field. Similar to the previous cases, the power law scaling of
enstrophy (Z), kinetic energy (E), and magnetic field energy (B2) spectra as a function
of wave number kxLx in both injection and inertial sub-range are summarized in Tables 3
and 4 under run-13-14.

4.6. Simulation results for fully varying viscosity, constant resistivity cases: run-15-16

Simulations are performed considering fully varying Re with the inclusion of different
values of constant Rem (Rem = 285 and Rem = 1105). These correspond to Prm ranging
from 0.5−4×10−6 for Rem = 285 and Prm ranging from 2−1.5×10−5 for Rem = 1105.
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Figure 21. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT ) for βini → ∞ and
βini = 5000 for different values of Re; where η = 0. Note that the fully varying Re case has
viscous stabilization corresponding to the viscosity of the lower density fluid.
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Figure 22. Plot of mass density (ρ/ρL) profiles at different times for Rem = 285 and
Rem = 1105; where βini = 5000 and fully varying Re is considered. Note increased growth
of RTI for lower Rem as expected even with a fully varying Re.

In these studies, an applied horizontal magnetic field corresponding to βini = 5000 is
included as before. Fig. 22 shows the mass density (ρ/ρL) profile at different times for
Rem = 285 and Rem = 1105. It is seen that the growth of the RTI spikes increases
with the decrease of Rem as expected. In Fig. 23, the peak bubble-to-spike distance
(h/Lx) over time (tγRT ) for different values of Rem is shown. Note that the growth of
RTI is higher for high resistivity (blue solid line) compared to that obtained for low
resistivity (red solid line) when also including the fully varying viscosity. The plasma
β as a function of peak bubble-to-spike distance (h/Lx) for different values of constant
Rem (solid blue and red line) is presented in Fig. 24, where βini = 5000 and fully varying
Re are considered. The magnetic field decreases for the lower value of Rem = 285 which
corresponds to higher η. Furthermore, it is observed here that the morphology of the RTI
fingers are not significantly affected by the resistivity. The power law scaling of enstrophy
(Z), kinetic energy (E), and magnetic field energy (B2) spectra as a function of wave
number kxLx in both injection and inertial sub-range for these cases is summarized in
Table 3 and 4 in the column under run-15-16.
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285

1105

Figure 23. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT ) for different values
of Rem; where βini = 5000 and fully varying Re is considered. Note that RTI growth is higher
for low Rem even with a fully varying Re. Also note that the fully varying Re and fully varying
Rem case asymptotes to the Rem corresponding to the lower fluid.

285,

1105,

Figure 24. Plot of plasma β as a function of peak bubble-to-spike distance (h/Lx) for
Rem = 285, Rem = 1105, and fully varying Rem; where βini = 5000 and fully varying Re
are considered. Note that the plasma β is higher late in time for lower Rem compared with a
higher Rem even with a fully varying Re. Also note that the fully varying Rem case produces a
magnetic field that lies in between the regimes of the upper and lower fluids.

4.7. Simulation results for fully varying viscosity, fully-varying resistivity case: run-17

The final set of simulations are performed for a fully varying Re along with a fully
varying Rem profile. These correspond to Prm ranging from 2− 4× 10−6. Note that the
resistivity profile used for this case is the modified resistivity profile shown in Fig. 1. In
this case, an applied horizontal magnetic field corresponding to βini = 5000 is included
as in the previous cases. Fig. 25 presents the mass density (ρ/ρL) profiles for fully varying
viscosity and resistivity profiles at different times. It is observed that the structure of
RTI is quite different from the conventional mushroom cap structure. The morphology
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Figure 25. Plot of mass density (ρ/ρL) profiles at different times for fully varying viscosity and
resistivity case; where βini = 5000. Note the morphology of the RTI in this case exhibiting less
Kelvin-Helmholtz formation than even the higher Rem = 1105, fully varying Re case presented
in Fig. 22.

of the RTI spikes exhibits less Kelvin-Helmholtz formation and shows the suppression
of small scale structures more significantly than the higher Rem = 1105, fully varying
Re case presented in Fig. 22. In Fig. 23, the peak bubble-to-spike distance (h/Lx) over
time(tγRT ) for fully varying Rem and fully varying Re profiles is presented along with
the constant Rem cases (see yellow solid line). The growth rate for the fully varying
resistivity case is close to the the growth rate obtained for the constant Rem = 1105
case. This is because the RTI mostly grows in the low density regime where Rem = 1105.
Therefore, the dynamics of RTI for the high Atwood number regime can be described by
the physical parameter space of the lower fluid, which is governed by the viscosity and
resistivity of the lower fluid. The plasma β as a function of peak bubble-to-spike distance
(h/Lx) for fully varying Rem and Re is shown in Fig. 24 (see solid yellow line), where
βini = 5000 is considered. The dynamics of the magnetic field and its corresponding
growth, as noted by the decreasing plasma β, for fully varying Rem and Re is different
from the constant magnetic Rem cases. The field strength obtained lies inbetween the
regimes of the upper and lower fluid (with their corresponding resistivities). The power
law scaling of enstrophy (Z), kinetic energy (E), and magnetic field energy (B2) spectra
as a function of wave number kxLx in both injection and inertial sub-range is summarized
in Table 3 and 4 under run 17.

5. Summary and conclusion

In summary, the role of viscosity and resistivity on Rayleigh-Taylor and magneto-
Rayleigh-Taylor instabilities is studied for a high Atwood number and high plasma-
β regime in high-energy-density (HED) plasmas applicable to both laboratory and
astrophysical settings. This work describes 2D RTI evolution and resulting turbulence
when surveying plasma-β and magnetic Prandtl number, Prm, for these regimes. The
simulations have been performed using fluid simulation techniques based on the un-
structured discontinuous Galerkin finite element method Song (2020); Song & Srinivasan
(2021); Hesthaven & Warburton (2007). Using a visco-resistive-magnetohydrodynamic
(MHD) model, a detailed investigation of RTI in 2D planar geometry for experimentally
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and observationally relevant parameters is presented. It has been shown here that the
inclusion of viscosity and resistivity in the system drastically changes the growth of the
instability as well as modifies its internal structure on smaller scales. The presence of
viscosity inhibits the development of small scale structures and significantly modifies
the morphology of the RTI spikes. On the other hand, the morphology of the RTI
spikes is found to be independent of resistivity but it assists in the development of
small scale structures via the diffusion of the magnetic fields. The reduced magnetic field
strength that results in time permits shorter wavelength modes to grow. Considering
fully varying viscosity and fully varying resistivity profiles in the simulation due to the
strong dependence of viscosity and resistivity on the disparate temperature profile across
the interface, the effect of both viscosity and resistivity is shown to be significant on
the evolution of RTI in HED plasmas. Furthermore, it is also found that the dynamics
of the magnetic field is explicitly independent of viscosity and likewise the resistivity
does not affect the dynamics of enstrophy and kinetic energy. Also presented here is
the power law scaling of enstrophy, kinetic energy, and magnetic field energy over a
wide range of viscosity and resistivity in both injection range and inertial sub-range of
spectra. This could provide a useful tool for understanding RTI induced turbulent mixing
in high Atwood number HED plasmas and could aid in interpretation of observations of
RTI-induced turbulence spectra.
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