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ABSTRACT 9 

Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase 10 
(aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms 11 
from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins 12 
with innovative functions outside translation. Recent bioinformatic analyses have revealed the 13 
extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase 14 
family. However, only a fraction of these duplicated genes has been characterized, leaving many with 15 
biological functions yet to be discovered. Here we discuss how genomic duplication is associated 16 
with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their 17 
hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic 18 
sites. This precedent underscores the need to investigate currently unexplored aaRS genomic 19 
duplications as they may hold a key to the discovery of exciting biological processes, new drug 20 
targets, important bioactive molecules, and tools for synthetic biology applications. 21 

1 INTRODUCTION 22 

Aminoacyl-tRNA synthetases (aaRSs) catalyze one of the most consequential reactions during 23 
mRNA translation: the ligation of amino acids to their cognate tRNAs. Except for selenocysteine, 24 
there is a dedicated aaRS family for each proteinogenic amino acid. These families are sorted into 25 
two almost equally populated classes (class I and II) based on the architecture of their catalytic site, 26 
their mechanism of tRNA aminoacylation, and their phylogenetic relationship (Cusack et al., 1990; 27 
Eriani et al., 1990; Ribas de Pouplana and Schimmel, 2001b; Zhang et al., 2006). Synthetases 28 
catalyze tRNA aminoacylation in a two-step reaction wherein the amino acid is first condensed with 29 
ATP, to form an aminoacyl-adenylate intermediate, and subsequently esterified to the 3´-end 30 
adenosine of the tRNA. The efficiency and specificity of aaRSs are paramount for the accurate and 31 
productive translation of genomic information into proteins.  32 

aaRSs are multi-domain enzymes consisting of a conserved ancient catalytic domain and additional 33 
accessory domains that increase their specificity and/or efficiency. (Guo et al., 2010; Zhang et al., 34 
2021). Common features of aaRSs include tRNA binding domains and hydrolytic (or editing) 35 
domains that facilitate tRNA recognition and correct aminoacylation errors, respectively (Ling et al., 36 
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2009). aaRSs have also expanded their biological function beyond tRNA aminoacylation by adding 37 
new domains or motifs (Wolf et al., 1999; Schimmel and Ribas De Pouplana, 2000; Guo and 38 
Schimmel, 2013; Pang et al., 2014). This is particularly prevalent in aaRSs from higher organisms 39 
(Guo et al., 2010). aaRSs originated early, and consequently, have a complex evolutionary history 40 
that contributed to the structural and biochemical diversification of each aaRS family (Wolf et al., 41 
1999; Ribas de Pouplana and Schimmel, 2000; Woese et al., 2000; Ribas de Pouplana and Schimmel, 42 
2001a; Al-Shayeb et al., 2020).  43 

In many organisms, the number of aaRS genes can be higher than that of the genetically encoded 44 
amino acids, which is the consequence of apparent genomic duplication of aaRSs for a particular 45 
amino acid (Rubio et al., 2015; Chaliotis et al., 2017). The duplicated aaRSs generally share a 46 
conserved tertiary structure but with low sequence homology, and distinct evolutionary origins. Thus, 47 
acquisition of additional genes is likely possible via horizontal gene transfer (HGT) or duplicated 48 
within a single domain. These evolutionary events can occur separately or simultaneously to 49 
accelerate the emergence of aaRSs with new or improved functions (Conant and Wolfe, 2008; Innan 50 
and Kondrashov, 2010; Treangen and Rocha, 2011). The evolutionary drive for genomic duplication 51 
of aaRSs is an organism’s response to physical forces and natural selection, influenced by their 52 
environment and lifestyle. In this review we describe the functional outcome of genomic aaRS 53 
duplications and highlight the broad range of additional functions imparted by these evolved aaRSs, 54 
from maintaining aminoacylation activity under stress to regulation of cell cycle, antibiotic 55 
resistance, RNA and protein modifications, and mistranslation (Figure 1 and Table 1). We discuss 56 
how these events are not rare, fortuitous occurrences, but rather are found repeatedly throughout 57 
evolution. Given the large number of organisms with additional aaRS genes, we surmise that many 58 
new and exciting functions can be uncovered by investigating this phenomenon. Our focus is on 59 
genes which retained their catalytic domain and have a clearer connection to their evolution from a 60 
gene duplication event. Other reviews provide more details on genes which are related to the tRNA 61 
binding domain or editing domain (Francklyn, 2005; Giegé and Springer, 2016). 62 

2 AUXILIARY tRNA AMINOACYLATION 63 

2.1 tRNA aminoacylation under pressure 64 

The capacity to acclimate to environmental changes is vital for most organisms, particularly in 65 
conditions that jeopardize cellular homeostasis and cause cell death. Cells generally respond to 66 
environmental cues by expressing dedicated factors to counteract a given stress. In several species, 67 
genomic duplication of aaRSs offers a mechanism to endure challenges such as disturbances in 68 
amino acid concentration, metal salts, temperature, and exposure to toxic substances. For example, 69 
Bacillus subtilis encodes a specialized tyrosyl-tRNA synthetase (TyrZ) to protect cells against high 70 
concentrations of D-Tyr and possibly other nonproteinogenic amino acids (Williams-Wagner et al., 71 
2015). TyrZ accomplishes this through its increased selectivity for L-Tyr over D-Tyr (compared to the 72 
housekeeping TyrS) preventing misincorporation of D-Tyr into proteins. The physiological 73 
conditions that control TyrZ expression remain unknown.  74 

In the green-blue alga Anabaeana sp. PCC7120, low zinc levels cause dissociation and inactivation 75 
of the constitutively expressed threonyl-tRNA synthetase (ThrRS-T1). This restrictive condition 76 
induces expression of a second ThrRS gene, T2. In contrast to T1, T2 can dimerize in low zinc 77 
concentrations and maintain its aminoacylation activity (Rubio et al., 2015). This could provide an 78 
alternate strategy for organism viability under low zinc conditions. 79 
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Gram-positive bacteria have adopted a similar approach to acclimate to their environment through a 80 
copy of tryptophanyl-tRNA synthetase (TrpRS II) that is induced upon radiation damage. One role of 81 
TrpRS II is its ability to reduce nitric oxide toxicity by interacting with nitric oxide synthase (NOS) 82 
(Buddha et al., 2004a). While retaining Trp aminoacylation activity, TrpRS II harnesses NOS to 83 
catalyze regioselective nitration of Trp (Buddha et al., 2004b). It remains unclear whether nitro-84 
tryptophan is used by the ribosome for protein synthesis or whether it plays a role in DNA repair.  85 

Saccharomyces cerevisiae and Vanderwaltozyma polyspora have also adapted to environmental 86 
strains with an additional copy of glycyl-tRNA synthetase (GlyRS2). Under standard conditions, 87 
GlyRS2 has ~5-fold lower activity relative to GlyRS1 (the housekeeping enzyme) but is able to 88 
rescue the impaired activity of GlyRS1 under stress (e.g. high temperature) (Chen et al., 2012). It is 89 
hypothesized that Candidatus Methanohalarchaeum thermophilum HMET1 has evolved an 90 
additional pyrrolysyl-tRNA synthetase (PylRS2) for a similar purpose. Unlike GlyRS2, PylRS2 has 91 
its own cognate tRNAPyl2 and is shown to be orthogonal to PylRS1/tRNAPyl1. Therefore, it is also 92 
possible that both PylRS systems are expressed simultaneously (Zhang et al., 2022). 93 

2.2 Antibiotic resistance 94 

The potent antibiotics albomycin, mupirocin, and indolmycin inhibit protein synthesis by targeting 95 
the activities of seryl-tRNA synthetase (SerRS), isoleucyl-tRNA synthetase (IleRS), and TrpRS, 96 
respectively (Montgomery et al., 2015). These antibiotics are produced by bacteria that avoid suicide 97 
by encoding a second gene copy of the corresponding aaRS (SerRS, IleRS, or TrpRS) that is 98 
insensitive to the action of the related antibiotic. The coexisting aaRS genes are evolutionarily 99 
distinct from each other, exhibiting low sequence homology (~ 30% sequence identity) and different 100 
biochemical characteristics (Zeng et al., 2009). They also display devoted expression patterns where 101 
the antibiotic-resistant aaRS is expressed primarily when synthesis of the antibiotic is active while 102 
the other acts as the housekeeping enzyme (Kitabatake et al., 2002; Vecchione and Sello, 2009).  103 

In addition to facilitating the synthesis of antibiotics, acquisition of supplementary aaRS genes to 104 
gain antibiotic resistance has been observed in strains of the relevant bacterial human pathogens 105 
Staphylococcus aureus and Bacillus anthracis. These strains have acquired a plasmid encoded IleRS 106 
that is insensitive to mupirocin (Hodgson et al., 1994). Barring the low activity of IleRS2, its retained 107 
editing capacity and amino acid specificity compensates for the sensitivity of IleRS1 to mupirocin 108 
(Brown et al., 2003; Zanki et al., 2022). 109 

2.3 Diverging tRNA aminoacylation functions 110 

In many cases, the role of duplicated aaRS genes is not yet well understood. For instance, the 111 
additional leucyl-tRNA synthetase (LeuRS-I) in species from the archaeal family Sulfolobaceae is 112 
critical for optimal cell growth (Weitzel et al., 2020). LeuRS-I contains a disrupted CPI editing 113 
domain and a very divergent acidic C-terminal domain. Surprisingly, although LeuRS-I can bind 114 
tRNALeu and produce a leucyl-adenylate, it is unable to aminoacylate. LeuRS duplication in 115 
Halobacteria (LeuRS2), evolved an enzyme with drastically reduced aminoacylation activity but 116 
preserved the affinity for tRNALeu (Fang et al., 2014). The functional and regulatory mechanisms of 117 
LeuRS2 also remain unknown. The remarkable characteristics of these LeuRS genes suggest they 118 
play a role outside of protein synthesis, possibly mediating cellular functions in a tRNA-dependent 119 
manner.  120 

A genomic aaRS duplication found in trypanosomes encodes a tyrosyl-tRNA synthetase (TyrRS) 121 
gene consisting of two independent TyrRSs. In each TyrRS enzyme, one of the domains has lost 122 
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activity, giving rise to a pseudo-dimer. This pseudo-dimer is capable of only one aminoacylation 123 
reaction, though it is twice as large as a single TyrRS enzyme (Larson et al., 2011). The function of 124 
this pseudo-dimer remains unclear. A similar occurrence is found in Arabidopsis thaliana, but in this 125 
case both TyrRS proteins appear to be fully active synthetases, each containing both a ‘HIGH’ and 126 
‘KMSK’ motif (Duchêne et al., 2005). The duplication in these organisms is suggested to have 127 
occurred later in evolution as additional mutagenesis has not yet inactivated a domain (Larson et al., 128 
2011). 129 

As these additional aaRSs continue to evolve, their functions begin to deviate from canonical 130 
aminoacylation towards synthetase-like proteins. Threonyl-tRNA synthetase-like protein (ThrRS-L) 131 
is an example found in higher eukaryotes, that retains aminoacylation activity, but its low expression 132 
levels and poor editing activity suggests it did not evolve for protein translation. Instead its N-133 
terminal extension (Zheng et al., 2006) targets ThrRS-L to the multi-synthetase complex (Zhou et al., 134 
2013) where it is hypothesized to play a role in the recycling of tRNAThr for ThrRS under stress 135 
conditions (Zhou et al., 2019). 136 

3 AMINOACYL-tRNA SYNTHETASE-LIKE PROTEINS 137 

3.1 Amino acid biosynthesis 138 

The active sites of aaRSs offer amenable scaffolds that can be co-opted for alternative functions 139 
involving ATP-dependent and/or amino acid-related reactions. Consequently, aaRS-like proteins 140 
have evolved to participate in amino acid biosynthesis. In some bacteria and archaea, an aspartyl-141 
tRNA synthetase (AspRS)-like enzyme, asparagine synthetase A (AS-A), is responsible for L-142 
asparagine biosynthesis (Nakamura et al., 1981; Roy et al., 2003). Like AspRS, AS-A activates 143 
aspartate using ATP, however, the amino acid is transferred to an acceptor ammonia instead of a 144 
tRNA due to the absent tRNA binding domain (Nakamura et al., 1981; Nakatsu et al., 1998). AS-A 145 
presumably descends from gene duplication of an ancestral archaeal AspRS that also gave rise to 146 
extant canonical asparginyl-tRNA synthetase and was eventually transferred to bacteria via HGT 147 
(Roy et al., 2003). Notably, two additional pathways for asparagine biosynthesis exist. Another direct 148 
pathway catalyzed by the glutamine-dependent asparagine synthetase B and an indirect pathway 149 
involving the conversion of the Asp-tRNAAsn to Asn-tRNAAsn by GatCAB transamidase (Francklyn, 150 
2003; Sheppard et al., 2008). The latter mechanism may constitute the original route to asparagine as 151 
it relies on an additional, non-discriminating AspRS attaching Asp to tRNAAsn (Becker and Kern, 152 
1998; Min et al., 2002; Francklyn, 2003). 153 

HisZ, a histidyl-tRNA synthetase paralog, is also involved in amino acid biosynthesis. HisZ acts as a 154 
functional regulatory subunit of the ATP-phosphoribosyl-transferase (HisG), which catalyzes the first 155 
step of histidine biosynthesis (Sissler et al., 1999). In contrast to AS-A, HisZ is only found in bacteria 156 
and does not possess adenylation activity; instead, it mediates the allosteric inhibition of His 157 
biosynthesis in the presence of His (Vega et al., 2005; Thomson et al., 2019). 158 

3.2 Cell-cycle regulation and signaling  159 

In insects, a conserved SerRS paralog, known as SLIMP (SerRS-like insect mitochondrial protein), 160 
has evolved as a key regulator of mitochondrial protein synthesis and DNA replication. SLIMP 161 
prevents mitochondrial DNA accumulation by association with LON protease while also forming a 162 
heterodimer with canonical mitochondrial SerRS (Picchioni et al., 2019), an essential function for 163 
cell-cycle progression. SLIMP possibly originated via duplication of mitochondrial SerRS, retaining 164 
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tRNA binding capabilities specific for mitochondrial tRNASer but lacking aminoacylation activity 165 
(Guitart et al., 2010). 166 

In Escherichia coli, LysU, an additional lysyl-tRNA synthetase (LysRS), is induced under stress 167 
conditions including anaerobiosis, heat shock, oxidative stress, or low external pH (Hirshfield et al., 168 
1981; Lévêque et al., 1991; Ito et al., 1993). While LysU is capable of tRNA aminoacylation (Brevet 169 
et al., 1995), it is found to have multiple roles outside translation. For example, LysU functions in the 170 
synthesis of alarmone diadenosine 5′,5′′′-P1,P4-tetraphosphate (Ap4A) (Blanquet et al., 1983; Wright 171 
et al., 2006; Chen et al., 2013) and capping of the 5′-end of RNA transcripts by Ap4 (Luciano et al., 172 
2019). Accumulation of Ap4A ultimately leads to cell death while Ap4-capped RNAs have prolonged 173 
half-lives. Therefore, LysU is indirectly involved in both cellular regulation and gene expression, 174 
respectively (Ji et al., 2019; Luciano et al., 2019). 175 

3.3 Post-transcriptional modification 176 

Synthetase paralogs have also evolved as RNA modifiers. Glutamyl-queuosine tRNAAsp synthetase 177 
(Glu-Q-RS) activates Glu in the absence of tRNA and attaches it onto the queuosine in the first 178 
position of the anticodon of tRNAAsp (Blaise et al., 2004; Dubois et al., 2004; Salazar et al., 2004). 179 
Glu-Q-RS, also known as YadB, is present in proteobacteria, cyanobacteria, and actinobacteria and is 180 
homologous to the catalytic domain of glutamyl-tRNA synthetase, while lacking an anticodon 181 
binding domain (Salazar et al., 2004). The role and essentiality of Glu-Q-RS in these organisms 182 
remains unclear, however it does provide more information regarding the evolutionary pathway of 183 
the non-essential Glu-Q-RS and its conservation across different bacterial genera (Ravishankar et al., 184 
2016). 185 

3.4 Post-translational modification  186 

Other aaRS mimics have been found to modify proteins. PoxA (also known as GenX and YjeA) is a 187 
paralog of LysRS that modifies elongation factor-P (EF-P) post-translationally with an amino acid 188 
(Yanagisawa et al., 2010). Although PoxA is capable of acylating both α-lysine and β-lysine onto 189 
EF-P, it prefers the latter, thereby creating an orthogonal system to the natural LysRS (Roy et al., 190 
2011). This modification on EF-P, analogous to modification of the eukaryotic homolog eIF5A with 191 
hypusine, is suggested to play a role for Salmonella to establish virulence and maintain a stress 192 
resistance phenotype (Navarre et al., 2010). 193 

Another family of aaRS-related post-translational modification enzymes is the amino acid:carrier 194 
protein (aa:CP) ligase. These ligases from methanogenic archaea attach an amino acid onto 4’-195 
phosphopantetheine (Ppant) which is linked to a CP. aa:CP ligases are homologs of class II aaRSs 196 
which have lost their tRNA-binding domain and canonical tRNA aminoacylation activity (Mocibob 197 
et al., 2010). They still act as dimers and are dependent on zinc for their catalytic activity, however 198 
their mode of macromolecular recognition is distinct from aaRSs. Instead, their catalytic strategy is 199 
reminiscent of adenylation domains: activation of the amino acid followed by transfer to the Ppant 200 
chain. The biological role of amino acid attachment to CPs remains unknown (Mocibob et al., 2013).   201 

3.5 Alternative expression of the genetic code 202 

Recent studies have uncovered novel noncanonical aaRSs that have co-evolved with unique tRNA 203 
partners. These aaRS homologs maintained the amino acid specificity of their predecessors while 204 
developing affinity for new tRNA substrates. For instance, ProRSx appeared from a genomic 205 
duplication of bacterial prolyl-tRNA synthetase in a group of Streptomyces species that includes 206 
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pathogens that cause the common scab disease in staple food crops, particularly in potatoes. ProRSx 207 
co-evolved with a unique proline tRNA (tRNAProA) with Ala anticodon. This synthetase ligates Pro to 208 
tRNAProA, leading to mistranslation of Ala codons with Pro (Vargas-Rodriguez et al., 2021). Thus, 209 
organisms encoding these genes have the capacity to produce multiple variants of the same protein 210 
from a single gene by deliberately mistranslating their genetic code. However, the biological function 211 
of the ProRSx and tRNAProA pair is still unknown. 212 

Another example is found in a subgroup of Desulfobacterales bacteria that encodes CysRS*, a 213 
noncanonical cysteinyl-tRNA synthetase (CysRS). CysRS* is genetically coupled with homologs of 214 
SelC and SelB (SelC* and SelB*, respectively), which coexist with the wildtype SelC and SelB 215 
(Mukai et al., 2017b). CysRS* lacks an anticodon binding domain and contains mutations that enable 216 
exclusive aminoacylation of SelC*. The aminoacylated SelC* tRNA incorporates Cys at 217 
selenocysteine UGA codons. CysRS* and SelC* are posited to serve as an alternative mechanism for 218 
the synthesis of selenoproteins under conditions in which selenium is scarce (Mukai et al., 2017b). 219 
These examples add to the growing wealth of evidence that demonstrate the flexibility of the genetic 220 
code and how mistranslation can be employed as an adaptive mechanism (Pan, 2013; Ribas de 221 
Pouplana et al., 2014). 222 

3.6 Bioactive molecule synthesis 223 

aaRS-like proteins are also involved in the synthesis of important metabolic and bioactive molecules 224 
including the antioxidant mycothiol (Newton et al., 2008), and antibiotics albonoursin (Fukushima et 225 
al., 1973) and SB-203207 (Stefanska et al., 2000). The CysRS-like protein, MhC, catalyzes the ATP-226 
dependent ligation of Cys to 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-D-myo-inosityl (GlcN-Ins) 227 
in the penultimate step of the mycothiol biosynthesis (Sareen et al., 2002; Tremblay et al., 2008). 228 
Mycothiol is the major thiol found in actinobacteria acting as a glutathione substitute, the dominant 229 
thiol in other bacteria and eukaryotes but absent in actinobacteria (Newton et al., 2008). In 230 
Streptomyces sp. NCIMB 40513, the final step of the SB-203207 biosynthesis is catalyzed by SbzA, 231 
an IleRS homolog. SbzA catalyzes the transfer of Ile from Ile-tRNAIle onto a non-peptide secondary 232 
metabolite during the synthesis of altemicidin (Hu et al., 2019). A similar mechanism of amino acid 233 
transfer is observed in a family of enzymes known as cyclodipeptide synthases (CDPs) (Gondry et 234 
al., 2009; Yao et al., 2018). CDPs are involved in biosynthetic pathways of diketopiperazines (DKPs) 235 
through the formation of two successive peptide bonds. One example is Streptomyces noursei AlbC 236 
which uses Phe-tRNAPhe and Leu-tRNALeu as substrates to synthesize Albonoursin, an antibacterial 237 
DKP. AlbC does not possess a C-terminal tRNA-binding domain, however its N-terminal domain is 238 
structurally similar to TyrRS and TrpRS (Sauguet et al., 2011).  239 

3.7 Membrane remodeling 240 

Membrane remodeling is a crucial biological process that allows cells from all domains of life to 241 
navigate in different environments. A recent study found a tRNA-dependent lipid modification 242 
process in fungi, which is orchestrated by a single enzyme, ergosteryl-3β-O-L-aspartate synthase 243 
(ErdS) (Yakobov et al., 2020). In bacteria, membrane glycerolipids are aminoacylated in a tRNA-244 
dependent fashion by aminoacyl-tRNA transferases belonging to the Domain of Unknown Function 245 
2156 (DUF2156) family (Fields and Roy, 2018). ErdS is unique in that it comprises catalytic 246 
activities from both AspRS and DUF2156; catalyzing attachment of Asp to tRNAAsp and the transfer 247 
of the amino acid to ergosterol to produce ergosteryl-3β-O-L-aspartate (Erg-Asp), respectively. The 248 
evolution of ErdS has been suggested to be important in fungal membrane remodeling, trafficking, 249 
antimicrobial resistance, or pathogenicity (Yakobov et al., 2020). Mycobacterium tuberculosis has 250 
also evolved a two-domain aaRS, LysX, for production of lysinylated phosphatidylglycerol (L-PG). 251 
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LysX is composed of LysRS fused to an MprF domain, functioning in two biochemical steps to 252 
transfer Lys to PG. The production of L-PG works to polarize the membrane, acting as an important 253 
frontline defense against invading pathogens (Maloney et al., 2009).   254 

4 DISCUSSION 255 

The motivation behind this review is to bring attention to the important biological role of duplication, 256 
divergence, and lateral transfer in the functional diversification and innovation of aaRS and aaRS-257 
like proteins. Here we summarized the wide range of functions associated with aaRS duplication 258 
involving 15 of the 21 canonical aaRS families (Figure 1 and Table 1). Recent bioinformatic 259 
surveys estimated that approximately 95% of sequenced genomes have at least one instance of aaRS 260 
genomic duplication encompassing all aaRS families (Rubio et al., 2015; Chaliotis et al., 2017). Most 261 
of these genes are yet to be characterized and many of the characterized aaRS genes remain poorly 262 
understood. We envision that investigation of aaRS genomic duplication may uncover many 263 
unexpected new functions that will contribute to our biological understanding of various species. The 264 
use of aaRS duplication as a mechanism to resist, persist and adapt to stresses can shed light on 265 
pathogen interactions with their host environments. Notably, many additional aaRS gene copies are 266 
primarily encoded by bacteria (possibly due to their predisposition to readily acquire genomic 267 
material from other species); thus, they may be targeted for the development of antimicrobials. The 268 
involvement of aaRSs in antibiotic biosynthesis (Garg et al., 2008) and resistance should also inspire 269 
investigation of aaRS duplication for the discovery of new natural antibiotics. Lastly, several 270 
synthetic organisms with expanded genetic alphabets or open codons for reassignment are now 271 
available (Malyshev et al., 2014; Fredens et al., 2019). However, the discovery and engineering of 272 
new orthogonal aaRS-tRNA pairs to expand the genetic code of these organisms for non-canonical 273 
amino acid insertion into proteins is imperative (Vargas-Rodriguez et al., 2018). The recent 274 
identification of two naturally orthogonal aaRS-tRNA pairs (PylRS-tRNAPyl or TrpRS-tRNATrp) in 275 
the same organism suggests that additional co-existing orthogonal aaRS-tRNA pairs may be present 276 
(Mukai et al., 2017a; Castelle et al., 2018; Zhang et al., 2022).  277 
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Table 1. List of duplicated aminoacyl-tRNA synthetases and their evolved function 578 

aaRS Auxiliary function Paralog function 

AlaRS  (a) aa:CP ligases add Ala to Ppant which is linked to a 
carrier protein (Mocibob et al., 2013) 

AspRS  (a) AS-A/AS-AR synthesizes L-Asp (Nakamura et al., 
1981; Nakatsu et al., 1998) 
(b) ErdS catalyzes synthesis of Erg-Asp (Fields and 
Roy, 2018; Yakobov et al., 2020) 

CysRS  (a) CysRS* inserts Cys at opal (UGA) codons (Mukai 
et al., 2017b) 
(b) MhC catalyzes Cys ligation onto GlN-Ins in MHS 
biosynthesis (Sareen et al., 2002; Tremblay et al., 2008) 

GluRS  (a) YadB (Glu-Q-RS) transfers Glu onto queuosine of 
anticodon in Asp-tRNAAsp (Blaise et al., 2004; Dubois 
et al., 2004; Salazar et al., 2004) 

GlyRS (a) GlyRS2 produces Gly-tRNAGly at high 
temperatures (Chen et al., 2012) 

(a) aa:CP ligases add Gly to Ppant which is linked to a 
carrier protein (Mocibob et al., 2013) 

HisRS  (a) HisZ synthesizes L-His (Sissler et al., 1999; 
Thomson et al., 2019) 

IleRS (a) IleRS2 is resistant to mupirocin (Zanki et 
al., 2022) 

(a) SbzA transfers Ile onto altemicidin (Hu et al., 2019) 
 

LeuRS (a) LeuRS-I produces leucyl-adenylates 
(Weitzel et al., 2020) 
(b) LeuRS2 produces low levels of Leu-
tRNALeu (Fang et al., 2014) 

 

LysRS  (a) LysU produces Lys-tRNALys under stress (Brevet et 
al., 1995) 
(b) PoxA (GenX, YjeA) transfers β-lysine onto EF-P 
(Yanagisawa et al., 2010; Roy et al., 2011) 
(c) LysX transfers Lys to peptidoglycan (Maloney et al., 
2009) 

ProRS  (a) ProRSx inserts Pro at Ala codons (Vargas-
Rodriguez et al., 2021) 

PylRS  (a) PylRS2 aminoacylates cognate tRNAPyl (Zhang et 
al., 2022) 

SerRS (a) SerRS2 is resistant to albomycin (Zhou et 
al., 2019) 

(a) SLIMP regulates cell-cycle progression (Picchioni et 
al., 2019) 
(b) aa:CP ligases add Ser to Ppant which is linked to a 
carrier protein (Mocibob et al., 2010) 

ThrRS (a) T2 produces Ser-tRNAThr in low zinc 
conditions (Rubio et al., 2015) 
(b) ThrRS-L produces Thr-tRNAThr but with 
poor editing activity (Zhou et al., 2013) 

(a) ThrRS-L plays a role in the MSC and recycles 
tRNAThr for ThrRS under stress (Zhou et al., 2019) 
 

TrpRS (a) TrpRSII nitrates Trp on Trp-tRNATrp in 
toxic environments (Buddha et al., 2004a; 
Buddha et al., 2004b) 
(b) TrpRS1 is resistant to indolmycin 
(Kitabatake et al., 2002; Vecchione and Sello, 
2009) 

 

TyrRS (a) TyrZ produces Tyr-tRNATyr with high 
selectivity for l-Tyr under stress (Williams-
Wagner et al., 2015) 
(b) Two fused TyrRSs produce 1 or 2 Tyr-
tRNATyr (Duchêne et al., 2005; Larson et al., 
2011) 
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FIGURE 1. (A) Duplication and divergence of aaRS genes. Genomic duplication generates a new 579 
aaRS gene (aaRS gene 2) while preserving the parental copy (aaRS gene 1) which is responsible for 580 
the housekeeping tRNA aminoacylation activity. The second copy (aaRS gene 2) either develops new 581 
characteristics under specific selection pressures (auxiliary function, green rounded squares) or a 582 
combination of genetic drift and selection can produce an aaRS-like protein with new activity (gold 583 
boxes). (B) From the parental aaRS protein, mutations and protein architecture can change, leading to 584 
non-canonical functions. Domain mutations generally give rise to auxiliary functions while aaRS-like 585 
proteins are found with inactive domains, or the loss or addition of domains.  586 

 587 

 588 
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