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Abstract—Cascading failure can aggravate the vulnerability
of power grids, which brings attention to cascading failure
protection research. Existing works focus on either finding the
critical components whose failure can cause large-scale blackouts
or methods to mitigate failures after they have happened. How-
ever, they are not able to proactively protect against real-world
failures, which may not only happen at the critical components.
In this paper, we study the problem of finding components that
will be impacted the most after unintentional initial failures,
which suits the need for practical scenarios. The problem is
challenging since approaches like simulating a large number of
cascading failures cannot scale and they must be redone when
power network parameters change. To tackle the problem, we
derive a line importance metric based on all paths and illustrate
how it is correlated with highly impacted lines after unintentional
failure both intuitively and with an IEEE test case. Further,
we design a path sampling algorithm to estimate the metric
with provable guarantee and achieve scalability. We evaluate the
performance of the proposed method within a protection scenario
using various IEEE test cases and demonstrate its superiority
against several baseline methods.

Index Terms—Cascading Failure, Vulnerability Analysis, Path
Sampling, Protection

I. INTRODUCTION

Smart grids are now essential parts of the modern society.
The integration of cyber and physical processes has many
benefits [1], however, it also opens up possibilities of attacks
and accidents from the cyber surface ([2] and references
therein) and makes smart grids more vulnerable. What ag-
gravates the vulnerability of smart grids is cascading failure,
where the failure of a component (e.g. a transmission line)
in power grids can cause successive failures and eventually
lead to a large blackout [3]. Many blackouts in real life
are related to cascading failures ([4] and references therein),
including three major blackouts in 2003 [5]. Because of the
importance of smart grids and catastrophic impact of cascading
failures, protection against cascading failures has been studied
in various settings [3], [6]–[13].

The existing works toward cascading failure protection
mainly answer two questions. Firstly, what are the top com-
ponents in a power grid to fail such that the disruption to
the network is maximized after cascading failure? Secondly,

how to reduce the damage to the power grid when failures
already happened? The first question is answered through
vulnerability analysis [7]–[9], [14], which works well against
intentional attacks. Since the malicious attacks usually aim at
maximizing damage, the attack decisions overlap well with the
top components revealed with vulnerability analysis. Typical
answers to the second question are through load shedding [3]
or controlled islanding [15]. They are reactive ways that can
eliminate transmission line overloading, usually at the cost of
lower overall yield, via ramping down loads or intentionally
trip transmission lines, respectively.

Based on the characteristics of real-world cascading failures
and protection requirements, we observe a new question that
has not been answered yet by existing works: what are the
lines in a power grid that need protection the most after an
unintentional failure? The reason why answering this question
is needed is two-folds. On one hand, most of the cascading
failures in real life are due to accidents like fallen trees,
severe weather conditions, human error, etc [4], hence they
may not just cause failures to the critical components and
vulnerability analysis that focuses on intentional attacks may
not be as effective against such accidents. On the other hand, if
load shedding or controlled islanding decisions are not made
in a timely manner, cascading failure can still happen [16].
Hence, a proactive approach that makes decisions prior to
actual failures is necessary. When we identify the components
that may fail right after unintentional failures, we can enhance
those components, for example, increase transmission line
capacity, and allocate more resources to monitor and control
such lines.

An intuitive way for answering the new question is to
leverage cascading failure data [6], [17]–[22]. [6] tries to
find the interaction of components via data analysis and
propose to protect against cascading failure by applying certain
control measures to throttle critical component to component
interactions. However, since real-world cascading failure data
is limited, in most of the cases (except for [22]), analysis
requires extensive simulation of the cascading failure process.
It can be very costly to simulate cascading failure for all size-:
initial random component failures even with moderate values
of : . For example, in a power grid with 200 transmission
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lines, collecting all cascading failure data when : = 5 requires
2.5 billion simulations. Also, in all cases, the data analysis
must be redone whenever power network parameters change.
Therefore, it is challenging to scale this method and hence
a light-weight approach is needed. Also, the approach is
preferably reusable with different power network parameters.

In this paper, we propose a light-weight, effective and
proactive approach that can protect against or mitigate the
impact of cascading failures from unintentional initial failures.
It is achieved through two steps. For the first step, we utilize all
paths between generators and loads to derive a line importance
metric and experimentally show that it aligns well with metrics
derived from cascading failure data. Although generating all
paths are much more cost effective than generating all cas-
cades, it is still not practical for large power grids. Hence, for
the second step, we design a path sampling approach and prove
theoretically that the line importance metric generated using
path samples and that generated using all path are close. Also,
since the path samples are dependent only on the topology of
the power network, they don’t have to be recalculated when
power supplies/demands change.

The proposed line importance metric generated with path
samples is compared with a few other network topology based
metrics in a protection scenario. We experimentally verified
that protections based on the proposed metric has superior
performance against other metrics in various IEEE test cases,
in terms of both number of line failures as well as total load
shed.

Our main contributions are summarized as follows:
• We propose an all path based line importance metric and

show that lines with high values in this metric are critical
in mitigating cascading failures from unintentional initial
failures, in other words, they are more vulnerable to fail
after unintentional initial failures.

• We design a sampling approach that can efficiently and
accurately estimate the proposed line importance metric
with theoretically bounded error margin.

• We evaluate the proposed metric in a protection scenario
using power network test cases and show that it outper-
forms a few topology based line importance metrics.

Organization. The rest of the paper is organized as follows.
We first summarize the related works in Section. II. In Sect. III,
we propose a line importance metric based on all paths, as well
as demonstrate that the proposed all path based line importance
metric captures the critical lines in cascading failure after
unintentional initial failure. Then, a path sampling method
for estimating the all path based line importance metric is
proposed in Section. IV and the error bounds are proved. The
performance of cascading failure protection using the new line
importance metric are evaluated within various IEEE test cases
in Section. V. We conclude the paper in Sect. VI.

II. RELATED WORKS

Cascading failure in power grids is an important practical
problem since it is a major cause of power system blackouts
[4], [5]. Also, it is a complicated problem in theory. Cascading
failures are usually modeled by iteratively removing over-
loaded lines, islanding and load re-balancing and the process

involves solving power equations for each iteration [3]. The
cascading failure model involves multiple steps and is hard
to be analyzed under a unified theoretical framework. One
additional complexity of cascading failure in power grid is
that the evolution of the cascades may not be contiguous [3],
[23], which limits the application of typical diffusion models
into cascading failure analysis.

One major line of research towards cascading failure pro-
tection is vulnerability analysis. The goal is to identify the
critical components whose failure can lead to large-scale
blackouts. Because of the complexity of the problem, existing
works mostly focus on heuristics combined with optimization
techniques [7]–[14] or game theoretical approaches [24]–[26].
Another line of research uses load shedding or controlled
islanding to mitigate the impact of cascading failure [3], [15],
[27]–[29]. However, the works cannot be applied to proactively
protect against cascading failure after unintentional initial
failures, since vulnerability analysis is more effective towards
intentional attacks aiming at the critical components and load
shedding/controlled islanding approaches are reactive.

Some recent works rely on simulated cascading failure data
to obtain interactions of components in cascading failures [6],
[17], [20], [22], make predictions of cascading failures [18],
[21] or reveal characteristics of cascading failures [19]. These
works, together with another line of work that builds simpler
cascading failure models [30], [31], can shed light on the
importance of components in a cascading failure. However, the
goals of most of the works (except for [6]) are similar to vul-
nerability analysis, by which the identified critical lines may
not align well with the task of protecting against unintentional
initial failures. Also, since the approaches based on simulated
cascading failure data would have to restart simulation from
scratch whenever the power network parameters change and
most of them (except for [22]) require a large amount of
cascading failure data to begin with, these approaches may
not be scalable. Therefore, an innovative approach is needed
to efficiently identify components that are vulnerable after un-
intentional initial failures. More importantly, such an approach
should be light-weight and does not have to rely on cascading
failure data, by which the result would not be impacted if the
power network parameters are changed.

III. QUANTIFYING LINE IMPORTANCE

In this section, we first discuss a view of line importance
after unintentional initial failures using cascading failure data.
Then, we derive a line importance metric based on paths and
show the relation to cascading failure based line importance.
Especially, we give examples on why the proposed metric
based on all paths is better than existing metrics based on
shortest paths, and validate the results with an IEEE test case.

A. Line Importance from Cascading Failure Data
There are different ways to quantify line importance in

cascading failure. The most prominent approach is based on
the number of subsequent line failures when a certain line fails
[7], [9], [13]. In the context of cascading failure protection
against unintentional initial line failures, a more preferable
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alternative is to consider the first round failures: the lines that
fail right after initial failures. We adopt the cascading failure
model described in [3], which is based on DC power flow,
and a round means one iteration of islanding, supply-demand
balancing, solving power equations and removal of overheated
lines. Conceptually, this view emphasizes the importance of
lines that are the most susceptible to failures of other lines,
comparing to the approach that deem the lines that can cause
more other lines to fail as more important. Also, there are a
variety of ways that lines may fail in an unintentional failure
(natural disaster, human error, etc.). Although some types of
unintentional failures, like natural disasters, are more likely
to happen in certain regions of the power system, the exact
locations that such failures can happen are still random. Other
types of failures, like faulty equipment, human errors, vehicle
accidents and trees [4], are more random in nature. Hence,
thorough protection of those unintentional failures can be
quite complicated, while subsequent line failures in cascading
failure can be described by models and the protection of which
is more approachable. The reason for choosing only the first
round failures but not all failures is that focusing on first round
failures is more beneficial to mitigating cascading failures as
early as possible.

Denote C as the collection of cascades and let 2 2 C denote
one cascade. For each cascade 2, let A0

2 , A
1
2 , ... denote the set

of failed lines in each round and A0
2 are the initial failures. We

define the cascading failure based line importance �2; , ; 2 ! as
the line’s frequency of appearance in first round failures A1

2:

�
2
; =

|{2 |; 2 A1
2 2 2 C}|
|C| ,8; 2 ! (1)

where ! is the set of transmission lines.

B. Line Importance from Paths

There are a few existing line importance metrics that are
based on paths. The examples are edge betweenness centrality
[32] and edge current flow betweenness centrality [33]. Since
edge betweenness centrality is based on shortest paths, it is less
useful in the context of cascading failure. Failing lines with
largest betweenness centrality may merely increase the length
of shortest paths between generator/load pairs, with no impact
on connectivity and power network dynamics. Edge current
flow betweenness centrality utilizes unit current injection to
decide the involvement of lines in the current flow from
a source/destination node pair. One downside of using this
metric in power networks is that the characteristics of nodes
are not considered. Electrical betweenness centrality [13] was
proposed to include power of generators and load of loads, it
is proposed as a node centrality metric but can be extended to
lines. However, although both edge current flow betweenness
and electrical betweenness implicitly considers all paths, such
line importance metrics do not reveal how lines will respond
when other lines fail, which is the primary focus in this paper
since we target the first round failures for protection.

The proposed line importance metric is based on an intuitive
interpretation about the impact of the failure of one line
to another line: Before the failure, power flow between a

Fig. 1: Non-local Cascade

generator/load pair can utilize all paths connecting them, while
after the failure, there will be more pressure on the paths that
do not include the failed lines. Consider a generator B, a load
3 and denote all paths between them as PB3 . For a line ;, let
PB3; be the set of paths between B, 3 that contains ;. Based on
the intuition, we can approximate a line ;’s pressure [ after
the failure of line ; 0 as:

[
;0
; =

’
B2(

’
32⇡

|PB3; � PB3;0 |
|PB3 � PB3;0 |

(2)

where ( and ⇡ are the sets of generators and loads, respec-
tively and ”�” is the set difference operation.

(2) aggregates the fraction of survived paths after failure of
line ; 0 that contains line ;, for all generator/load pairs, which
is directly related to the evaluation of first round failures. One
extra benefit of this interpretation is that it explains the non-
local cascade behavior with respect to the topology [3], [23]
with only topological information. Consider the example in
Figure 1 with one generator B and one load 3. There are two
paths between the generator/load pair, when the line (F, G)
fails, the flow on path (B,F, G, 3) will be redistributed to path
(B, H, I, 3) and may cause non-local cascading failure on line
(H, I).

In the case of unintentional failures, we can aggregate [;0; for
line ; over all ; 0 < ; to quantify the impact line ; receives. Also,
similar to the electrical betweenness centrality metric [13], to
let lines connecting larger generators and loads having higher
importance, we weigh each generator/load pair by

p
FBF3

where FB and F3 are the power for generators and load for
loads, respectively. Additionally, we let line importance to
be reversely proportional to line capacity, since based on the
cascading failure model in [3], a line fails when its flow is
over the capacity by a certain margin, which means that lines
with lower capacities are more likely to fail.

In summary, the proposed all path based line importance
metric can be written as:

�
?
; =

’
B2(

’
32⇡

p
FBF3

A;

’
;0 2!B3 ,;0<;

|PB3; � PB3;0 |
|PB3 � PB3;0 |

(3)

where A; is the capacity of line ; and !B3 is the collection of
all lines that are included in any paths between generator B
and load 3. In the special case where PB3 � PB3;0 = ;, we let
|PB3

; �PB3
;0 |

|PB3�PB3
;0 | = 0. Note that it is implicitly assumed that all lines

fail with the same probability with an unweighted aggregation.
If more information on the power system is available, it is
straightforward to aggregate [

;0
; based on individual failure
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Fig. 2: Top-5 Important Lines in IEEE 39-Bus System

probability of lines. In future renewable grids, a node can be
a generator or a load at different times (e.g. a house with solar
panels can be a generator at daytime and a load at night time).
In such cases, we can calculate � ?; for different snapshots and
take the average.

In practice, factors like transmission line material and age
can also be considered in �

?
; . We emit those factors in this

theoretical model to focus on network topology and power
flow and the associated line importance metric for cascading
failure. Note that identifying important lines with a theoretical
model can aid the decision making in system planing consid-
ering the practical factors, for example, having more regular
maintenance or rebuild the important lines.

Since in the worst case, enumerating all paths in a connected
network between one pair of nodes takes exponential time
(with respect to the number of lines), the proposed metric
cannot scale to larger networks. Instead of calculating �

?
;

directly, we will show in Section IV that we can approximate it
using path samples with guaranteed accuracy. In the remaining
of this section, we will demonstrate the effectiveness of the
metric in a small IEEE test case.

C. Effectiveness of the All Path Based Line Importance Metric

In order to examine the effectiveness of the proposed metric,
we compute �2; and � ?; from the IEEE 39-bus system [34]. To
compute �2; , we simulate all scenarios in n-2 and n-3 contin-
gency analyses (hence

�=
2
�
+
�=
3
�

cascades for a network with
= nodes). As a baseline, we also compute edge betweenness
centrality �1; and edge current flow betweenness centrality � 5;
for all lines. Then, we order all lines in descending order by the
four metrics respectively. Since the main purpose is to find out
whether � ?; can identify the lines that are impacted the most by
unintentional initial failures, we focus on the top-ranked lines
in the comparison. Specifically, how many lines with top-5 �2;
are ranked as top-5 by � ?; (and �1; , �

1
; respectively). The result

is visualized in Fig. 2 (original figure is from [35]).

It is clear that all path based line importance resonates
well with cascading failure data based line importance, if we
consider the top-5 ranked lines. Four out of five top lines
by highest �2; are also top-5 in �

?
; . On the contrary, edge

betweenness centrality and edge current flow betweenness
centrality cannot capture the important lines in a cascade: their
top-5 ranked lines only overlap with two and one lines with
top-5 lines by �2; .

IV. PROBABILISTIC APPROXIMATION OF ALL PATH BASED
LINE IMPORTANCE

In this section, we introduce the sampling approach that can
be used to approximate all path based line importance � ?; .

A. Path Sampling
Although there are multiple unknown metrics in (3), it is

only necessary to estimate one of them. Let

PB3;¬;0 = PB3; � PB3;0 , PB3¬;0 = PB3 � PB3;0
the metric we need is

|PB3;¬;0 |
|PB3¬;0 |

which is the fraction of (B, 3) paths not including line ; 0 that
include line ;.

In order to obtain the estimate of the metric, we extend
the path sampling methods discussed in [36], [37]. The main
difference is that in this work, we introduce a new pmf for path
sampling. Also, we add explicit restrictions that certain lines
should not be included in the sample, which was not the case
for neither [36] nor [37]. In the algorithm, the probability of
a path is denoted as 6(?) and 6(?) has domain ⇡ (B, 3, !, ; 0).

Algorithm 1 Path Sampling Algorithm
Input: Power network ⌧ = (+ , ⇢), generator B 2 + , load
3 2 + , path length threshold !, line to avoid ; 0.

Output: A path ? and probability 6(?)
00 = B, 8 = 0, ? = 00, 5 (?) = 1
while 08 < 3 do

Let # (08) = {18 | (08 , 18) 2 ⇢} be neighbors of 08 that are
not in ?, adding 18 to ? will keep path length within ! and
(08 , 18) < ; 0.

Choose 08+1 according to pmf ?(08+1 |08 , # (08), ! � 8)
from # (08).

if no 08+1 found then
break

8 = 8 + 1, ? = ?08 , 6(?) = 6(?) ⇥ 1
|# (08) |

return ? = 0001..., 6(?)

The path sampling algorithm is described in Alg. 1. It
starts from the generator node B and iteratively pick nodes
from a set of candidate nodes in the path until either load
node 3 is reached or the candidate node set is empty. The
candidate node set contains all nodes that are neighbors of the
current node and 1) adding the node will not form a cycle, 2)
adding the node will not cause the path length to be greater
than a predefined threshold ! and 3) the line connecting the
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current node and new node is not ; 0, the line to avoid. We
add condition 2) to control the impact of long paths. In our
problem, the extremely long paths have low contribution since
they are likely to be disconnected whenever unintentional line
failure happens, hence have little impact in (3).

In both [36] and [37], the next node is selected uniformly
randomly from the set of candidate nodes, so the probability
mass function (pmf) is

%(08+1 = E) = 1
# (08)

,8E 2 # (08) (4)

However, there are two problems if we use this pmf. Firstly,
as mentioned in [36], the shorter paths will have much higher
probability. Secondly, many sample paths may be wasted as
they cannot reach to the load 3 when the length already hits
!. For the first problem, [36] proposed to first estimate the
length distribution of paths and then update the probability of
selecting node 3 (when it is among the candidates) according
to the length distribution. The approach may not work well
in our problem since a large fraction of samples will be
wasted and it may take too many samples to estimate a good
enough length distribution. [37] mitigated the second problem
by generating a shortest path between (B, 3) when Alg. 1 failed
to find a path for a predetermined number of times, but it still
has a large amount of wasted samples.

In order to solve both problems, we propose to first obtain
a crude estimate of PB3 with pmf (4), denote as dB3 and then
utilize dB3 as well as shortest path distances among nodes in
the main sampling process. Denote B?(D, E) as the shortest
path distance between two nodes D, E, we have

?(08+1) =

8>>>>>>>>><
>>>>>>>>>:

min( 1
6 (?)dB3 , 1), 3 2 # (08), 08+1 = 3

1
|# (08) | , B?(08 , 3) < ! � 8, 3 8 # (08)
1�min( 1

6 (?)dB3 ,1)
|# (08)�1 | , B?(08 , 3) < ! � 8,

3 2 # (08), 08+1 < 3
1

|# � (08) | , B?(08 , 3) >= ! � 8

The new pmf depends on two main factors: 1) whether the
load 3 is in # (08) and 2) whether the shortest path distance
to 3 from the current node 08 is shorter than the remaining
length. Whenever 3 2 # (08), we will select 3 as the next
node with a probability that the overall probability of the path
is as close to 1

dB3
as possible. When B?(08 , 3) < !�8, it is still

possible to reach 3 eventually no matter what node is selected,
so we uniformly randomly select nodes in # (08) as the next
node. Note that the probability is adjusted when 3 2 # (08).
#

� (08) = {E |E 2 # (08), B?(E, 3) = B?(08 , 3) � 1}, it means
that when the shortest path distance to 3 from the current node
is no smaller than the remaining length, the next node will be
selected only from nodes that are closer to 3 than the current
node. Otherwise, the sampled path will never reach 3.

B. The Estimators

For notation convenience, let 5
B3
;¬;0 =

|PB3
;¬;0 |

|PB3
¬;0 |

. Also, for a

random path ?, let � (? 2 PB3; ^ ? 8 PB3;0 ) be an indicator
function that takes value 1 if ? 2 PB3; and ? 8 PB3;0 , and

takes value 0 otherwise. In the following, we first assume
the knowledge of |PB3¬;0 | and prove the following unbiased
estimators of 5 B3;¬;0

Lemma 1. Let ' be the set of path samples, then 5̄
B3
;¬;0 =

1
|' |

Õ
?2'

� (?2PB3
; ^?8PB3

;0 )
6 (?) |PB3

¬;0 |
is an unbiased estimator for 5

B3
;¬;0 .

Proof. Let -B3;¬;0 (?) be the random variable

-
B3
;¬;0 (?) :=

� (? 2 PB3; ^ ? 8 PB3;0 )
6(?) |PB3¬;0 |

(5)

The expectation of -B3;¬;0 (?) is:

E(-B3;¬;0 (?)) =
’

?2⇡ (B,3,!,;0)

� (? 2 PB3; ^ ? 8 PB3;0 )
6(?) |PB3¬;0 |

⇥ 6(?)

=
’

?2⇡ (B,3,!,;0)

� (? 2 PB3; ^ ? 8 PB3;0 )
|PB3¬;0 |

=
1

|PB3¬;0 |
’

?2⇡ (B,3,!,;0)
� (? 2 PB3; ^ ? 8 PB3;0 )

=
|PB3;¬;0 |
|PB3¬;0 |

= 5
B3
;¬;0 ⇤

Since it is #P-complete to compute |PB3¬;0 | [38], we will not
be able to use the estimators in Lemma 1 directly. Instead, we
will first estimate |PB3¬;0 | with an unbiased estimator and use
the estimate P̄B3¬; in the estimator of 5 B3;¬;0 .

Lemma 2. 1
|' |

Õ
?2'

� (?2PB3^?8PB3
;0 )

6 (?) is an unbiased estimator
of |PB3¬;0 |.

The proof is similar to the one for Lemma 1 and hence
omitted.

Let P̄B3¬;0 be the estimator of PB3¬;0 where P̄B3¬;0 :=
1
|' |

Õ
?2'

� (?2PB3^?8PB3
;0 )

6 (?) , we have the following corollary of
Lemma 1.

Corollary 1. 5̃ B3;¬;0 =
1
|' |

Õ
?2'

� (?2PB3
; ^?8PB3

;0 )
6 (?) P̄B3

¬;0
is an unbiased

estimator for
|PB3

¬;0 |
P̄B3
¬;0

5
B3
;¬;0 .

From Corollary 1, it is clear that (3) can be rewritten with
the unbiased estimators defined above:

�
?
; =

’
B2(

’
32⇡

p
FBF3

A;

’
;0 2!B3 ,;0<;

P̄B3¬;0
E(P̄B3¬;0)

E( 5̃ B3;¬;0) (6)

C. Accuracy of the Estimators

In this section, we derive theoretical bounds on the number
of path samples required to obtain estimators for |PB3¬;0 | and
5
B3
;¬;0 with performance guarantee.

We start with the estimator P̄B3¬;0 of |PB3¬;0 |. Let -B3¬;0 (?) be

the random variable -
B3
¬;0 (?) := � (?2PB3^?8PB3

;0 )
6 (?) . It is clear

that 1
6 (?)  3

!
<0G where 3<0G is the maximum degree in the

network, so -
B3
¬;0 (?) 2 [0, 3!<0G].
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Lemma 3 (Hoeffding’s Inequality). [39] Let -1, -2, ..., -=
are independent random variables and -8 is strictly bounded
by [08 , 18]. Denote -̄ = 1

=

Õ
8=1,...,= -8 , we have

P( | -̄ � E( -̄) | � C)  2 exp( �2=2
C
2Õ

8=1,...,= (08 � 18)2 )

Theorem 1. With |'1 | = ln 2�ln X1
2n 2

1
path samples, we have

P( |P̄B3¬;0 � E(P̄B3¬;0) | � C1)  X1 (7)

where n1 > 0, X1 2 (0, 1) and C1 = n13!<0G .

Proof. By Hoeffding’s inequality, we have

P( |P̄B3¬;0 � E(P̄B3¬;0) | � C1)

= P( | 1
|'1 |

’
?2'1

-
B3
¬;0 (?) � E( 1

|'1 |
’
?2'1

-
B3
¬;0 (?)) | � C1)

 2 exp(
�2|'1 |2C21Õ

8=1,..., |'1 | (3!<0G)2 )

 2 exp(
�2|'1 |C21
(3!<0G)2 )

Solving 2 exp( �2 |' |C21
(3!<0G )2 ) = X1 gives |'1 | = ln 2�ln X1

2n 2
1

. ⇤

Let . B3;¬;0 (?) be a random variable

.
B3
;¬;0 (?) :=

� (? 2 PB3; ^ ? 8 PB3;0 )
6(?)P̄B3¬;0

It is clear that . B3; (?) 2 [0, 3
!
<0G

P̄B3
¬;0

]. Using similar proof
techniques as in Theorem 1, we have the following theorem
for the number of samples to guarantee a bounded estimate of
5̃
B3
;¬;0 .

Theorem 2. With |'2 | = ln 2�ln X2
2n 2

2
path samples, we have

P( | 5̃ B3;¬;0 � E( 5̃ B3;¬;0) | � C2)  X2 (8)

where where n2 > 0, X2 2 (0, 1) and C2 = n2
3!<0G

P̄B3
¬;0

.

D. Performance Bound and the Complete Algorithm
In this section, we will propose the algorithm that yields

estimations of the path importance metric defined in (6) with
performance guarantee, utilizing the building blocks obtained
from the previous sections.

We first extend Theorem 1 to obtain a data-dependent bound
of |P̄B3¬;0 � E(P̄B3¬;0) |. Specifically, we want to generate enough
samples such that P̄B3¬;0 � :n13

!
<0G , where : is a predefined

positive number. We can achieve that by keep increasing the
number of samples to estimate E(P̄B3¬;0). This way, we have

P( |1 �
E(P̄B3¬;0)
P̄B3¬;0

| � 1
:

)  X1 (9)

Then, we prove the performance bound for estimating the
path importance metric �

?
; for all lines ; 2 ⇢ with both

multiplicative and additive error terms.

Theorem 3.

P( : � 1
:

�
?
; � \

: + 1  �̄
?
;  : + 1

:

�
?
; + \

: � 1 ) � 1 � X,8; 2 ⇢

where \ = n2 |( | |⇡ | |⇢ |
n1

and X 2 (0, 1).
Proof. For each quadruple (B, 3, ;, ; 0), the error it brings to (6)
is

P̄B3¬;0
E(P̄B3¬;0)

E( 5̃ B3;¬;0) � 5̃
B3
;¬;0

With (9), we have

P( : � 1
:


E(P̄B3¬;0)
P̄B3¬;0

 : + 1
:

) � 1 � X1, so

P( :

: + 1 
P̄B3¬;0

E(P̄B3¬;0)
 :

: � 1 ) � 1 � X1 (10)

Using the fact that P̄B3¬;0 � :n13
!
<0G , the parameter C2 defined

in Theorem 2 is now C2 = n2
n1:

and we have

P( | 5̃ B3;¬;0 � E( 5̃ B3;¬;0) | �
n2
n1:

)  X2

P( 5̃ B3;¬;0 �
n2
n1:

 E( 5̃ B3;¬;0)  5̃
B3
;¬;0 +

n2
n1:

) � 1 � X2 (11)

Combining (10) and (11), we have

P̄B3¬;0
E(P̄B3¬;0)

E( 5̃ B3;¬;0) � 5̃
B3
;¬;0 �

:

: + 1 ( 5̃
B3
;¬;0 �

n2
n1:

) � 5̃
B3
;¬;0

= �
5̃
B3
;¬;0

:

� n2
n1 (: + 1) (12)

P̄B3¬;0
E(P̄B3¬;0)

E( 5̃ B3;¬;0) � 5̃
B3
;¬;0 

:

: � 1 ( 5̃
B3
;¬;0 +

n2
n1:

) � 5̃
B3
;¬;0

=
5̃
B3
;¬;0

:

+ n2
n1 (: � 1) (13)

Also, the probability for having both (12) and (13) is (1 �
X1) (1 � X2).

Applying the bounds to all quadruples (B, 3, ;, ; 0) gives

�̄
?
; � � ?; � �

Õ
B2(

Õ
32⇡

p
FBF3

A;
: 5̃

B3
;;0

:

� n2 |( | |⇡ |ÕB2(
Õ
32⇡ ( |!B3 | � 1)

n1 (: + 1)

� �
�
?
;

:

� n2 |( | |⇡ | |⇢ |
n1 (: + 1)

and

�̄
?
; � � ?; 

Õ
B2(

Õ
32⇡

p
FBF3

A;
: 5̃

B3
;;0

:

+ n2 |( | |⇡ |ÕB2(
Õ
32⇡ ( |!B3 | � 1)

n1 (: � 1)


�
?
;

:

+ n2 |( | |⇡ | |⇢ |
n1 (: � 1)
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Let \ = n2 |( | |⇡ | |⇢ |
n1

and set X1 = X2 = X
|( | |⇡ | |⇢ |2 , we have

P( : � 1
:

�
?
; � \

: + 1  �̄
?
;  : + 1

:

�
?
; + \

: � 1 ) � 1 � X

for all ; 2 ⇢ by union bound. ⇤

The complete algorithm is detailed in Alg. 2. Note that when
the sample paths are generated and 5̃

B3
;¬;0 are calculated, Alg. 2

can directly calculate �̄ ?; as long as the topology of the power
network stays the same.

Algorithm 2 All Path Based Line Importance Estimation
Input: Power network ⌧ = (+ , ⇢), generator set (, load set
⇡, path length threshold !, : , n2, X1, X2 > 0

Output: �̄ ?; ,8; 2 ⇢ .
if 5̃ B3;¬;0 are not calculated or topology of ⌧ is changed then

for 8; 2 ⇢ do
for 8B 2 (, 3 2 ⇡, ; 0 2 ⇢ do

Run Alg. 1 to generate sample paths to estimate P̄B3¬;0
until P̄B3¬;0 = :n13!<0G .

Generate ln 2�ln X2
2n 2

2
samples paths with Alg. 1 to

estimate 5̃
B3
;¬;0 and store it.

for 8; 2 ⇢ do
�̄
?
; =

Õ
B2(

Õ
32⇡

p
FBF3

A;

Õ
;0 2!B3 ,;0<; 5̃

B3
;¬;0 .

return �̄
?
; ,8; 2 ⇢ .

E. Approximate Algorithms for Better Efficiency
To further boost the efficiency of Alg. 2, we consider to

only generate path samples for generator/load pairs with highp
FBF3 values since other pairs have low contribution to

�
?
; . Figure 3 shows the contribution to

Õ
B2(

Õ
32⇡

p
FBF3

from top ranked generator/load pairs ordered by
p
FBF3 in

descending order, for the IEEE 300-Bus System [40]. We can
observe that top 50% of generator/load pairs contribute 84%
of the sum, meaning we can cut required calculation by half
and would not lose much accuracy.

V. PERFORMANCE EVALUATION

In previous sections, we figured out how to obtain the most
important lines after unintentional initial failures and further
developed sampling techniques to obtain such lines in large
power grids efficiently. In this section, we utilize the identified
important lines in cascading failure protection and evaluate the
effectiveness of protection against unintentional initial failures.

A. Experiment Setup
1) Protection Strategy: In the experiments, in order to show

the direct impact from protecting the identified important lines,
we adopt a simple protection strategy: double the capacity of
the lines based on their original capacity. This way, we can
clearly observe the status of the individual lines and overall
network stats before/after the protection. In practice, a large
increase in transmission line capacity in a short period of time
may not always be feasible. Instead, the capacities of lines
can be increased over a longer time frame and the identified

important lines can have higher priority in the process. For
example, in the OPA models (e.g. [41]), line capacities are
increased in the slow dynamics based on their vulnerability.
It is possible to consider transmission line vulnerability after
unintentional failures in such models when deciding the lines
that should be improved.

For both estimations in Alg. 2, we generate a fixed number
of sample paths for each triple of generator, load and the line to
avoid. The number changes with data sets and is summarized
in Table I. Also, the sample paths length limit ! is set to be
twice the diameter of each network.

2) Algorithms to Compare: We consider the following
algorithms as baselines:

1) Edge Betweenness: pick top- lines with highest edge
betweenness centrality.

2) Current Flow Betweenness: pick top- lines with
highest edge current flow betweenness centrality.

3) Cascade Importance: pick top- lines with highest �2;
(defined in (1)) values, calculated from all # � 2 and
# � 3 cascades.

4) PageRank [22]: pick top- lines with highest PageRank
value from a modified PageRank model in the interaction
graph (where transmission lines are nodes in the graph),
generated using all # � 1 failures.

5) GLODF: In this algorithm, we calculate the flow change
on each line without solving power flow equations with
generalized line outage distribution factors (GLODF)
[42]. Specifically, we first calculate the flow change on
each line for each of the # � 2 and # � 3 cascades, and
pick the  lines with highest average flow change

line capacity .
6) Random: pick  random lines to protect (result is

averaged over 10 runs).
7) No Protection: do not apply any protection.
Most of the algorithms for finding critical lines in vulnera-

bility analysis cannot scale to neither larger networks nor more
number of critical lines. For example, [9] only considers the
IEEE 300-Bus System with at most two critical lines. Hence,
we only apply Cascade Importance and GLODF for the IEEE
118-Bus System. Also, as the size of the power grid networks
can be very different, the value  depends on the network size
instead of being fixed across all networks.

3) Evaluation Methods: For each power grid network, we
randomly generate a fixed collection of initial failures, each
set of initial failures contains 3 to 8 failed lines to simulate
unintentional initial failures. Then, we will simulate cascading
failure with each set of initial failures in power grid networks
with the important lines generated by each algorithm being
protected. As pointed out in [43], topological measurements
may not be suitable to evaluate the impact of cascading failure,
hence, we rely on measurements such as total number of line
failures and total load shed, from the simulation result. Both
measurements give idea of the blackout size and provide an
approximation to the impact of unintentional failures to each
protected network.

4) Data Sets: Throughout the experiments, we consider
three data sets: IEEE 118-Bus System, IEEE 300-Bus System
and the Polish 3120-Bus System. The data sets are all from
the pandapower package [40]. In Table I, we summarize the
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Fig. 3: CDF of
p
FBF3 for IEEE 300-

Bus System
Fig. 4: Overlap and Rank Difference of
Top-10 Lines with Varying # of Sample
Paths. IEEE 118-Bus System.

Fig. 5: Overlap and Rank Difference
of Top-10 Lines with Varying Weight
Threshold. IEEE 118-Bus System.

basic stats of the data sets as well as the number of top
lines  used in each data set. Note that # lines in the table
includes both transmission lines and transformers. Also, we
ignore generators/loads whose active power is zero.

TABLE I: Stats of Data Sets

Data Set # Lines # Generators # Loads  # Samples

118-Bus 186 23 80 10 100K
300-Bus 411 51 176 20 50K

3120-Bus 3693 124 2156 100 1K

B. Stability of the Important Lines

The first question we want to answer with experiments is:
how much will the set of important lines change with the
sampling approach? Stability is a key question since although
Theorem 3 bounds line importance for all lines, there’s no
guarantee on the order of line importance values of the lines.
For protection, it is crucial to ensure the set of most important
lines stays stable in different runs so that the protection
strategy is consistent. To answer this question, we calculate
all path based line importance for all transmission lines in the
IEEE 118-Bus System, varying the number of sample paths
for each triple of generator, load and the line to avoid. Also,
we examine the variation of the set of generator/load pairs to
consider by varying weight threshold. A weight threshold of
-% means we consider only top -% of generator/load pairs
with highest

p
FBF3 values.

Stability is evaluated with a baseline and two metrics. The
baseline is the line ranking with 100 samples and 100%
weight threshold. The two metrics are: 1) Overlap: fraction
of top-10 lines that also exist in top-10 of the baseline ranking.
2) Average rank difference: let the ranks of the top-10 lines
in the baseline be 01, ..., 010, average rank difference is defined
as

Õ10
8=1 |08�8 |

10 .
The results are illustrated in Figs. 4 and 5. It is clear that

the top-10 lines are quite stable: from Fig. 4, the top-10 lines
have 100% overlap since 40 samples and their rankings are
stabilized at 60 samples. From Fig. 5, the top-10 lines have
100% overlap since a weight threshold of 80%. Results for
300-Bus and 3120-Bus data sets are similar and are omitted
for conciseness. To have better efficiency, we choose to use

the weight threshold 50% for those two data sets in all path
based line importance calculation.

C. Protection Performance
To evaluate protection performance of the algorithms, we

randomly generate another collection of 20, 000 sets of initial
failures for each network and the number of failed lines in
each set is between 3 and 8. We then simulate cascading
failure using the same collection of initial failure sets against
all algorithms. Note that for each algorithm, we double the
capacity of the identified lines, hence the cascading behavior
will be different for different algorithms even though the
initial failures are the same. The performance is measured
using two metrics, average number of failed lines and average
load shed over the set of cascading failures and the results
are summarized in Table II. It is clear that Path Importance
has better performance than almost all other algorithms ac-
cording to both metrics. The only exceptions are Cascade
Importance and GLODF. Cascade Importance chooses lines to
protect according stats from complete N-2 and N-3 cascading
failure results, which is reasonable to be better than other
algorithms. GLODF can be seen as an approximation of
Cascade Importance, as it calculates line flow changes without
solving power flow equations. Hence, the performance of
GLODF is inferior to Cascade Importance, but quite similar
to Path Importance. However, even for the small IEEE-118
bus system, both Cascade Importance and GLODF need to
consider more than a million cascades for # � 2 and # � 3
scenarios, which would not scale. Also, it’s worth noting that
having protection may result in more failed lines than having
no protection, like in the case of using edge current flow
betweenness centrality to identify important lines in the IEEE
118-Bus System. However, average load shed does decrease
when having protection.

Next, we vary the number of lines to protect. In each
data set, we simulated cascading failure with top 10%, 20%
..., 100% of the  identified important lines protected. The
results are summarized in Figures 6 and 7. From the results,
the effectiveness of the proposed path based line importance
metric is further proved, as it outperformed most of the
baselines (except for cascade importance) regardless of the
number of critical lines protected. What can also be observed
from the figures is that the protection gain is the highest by
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(a) IEEE 118 (b) IEEE 300 (c) Polish 3120

Fig. 6: Number of failed lines with 10%, 20%, ..., 100% of the identified critical lines protected

(a) IEEE 118 (b) IEEE 300 (c) Polish 3120

Fig. 7: Amount of load shed with 10%, 20%, ..., 100% of the identified critical lines protected

(a) IEEE 118 (with 10 Lines Protected) (b) IEEE 300 (with 20 Lines Protected) (c) Polish 3120 (with 100 Lines Protected)

Fig. 8: Number of failed lines per round

protecting the first 10%-20% of the critical lines and drops
when protecting more lines.

We further break down the number of line failures by
round of failure, in the scenario that  lines are protected
in each data set. For readability, we only show the results
from first 5 rounds, although in some cases a cascading failure
can last for more than 15 rounds. Figure 8 demonstrates the
correlation between all path based line importance and first
round failures, since protection using that importance metric
results in the least number of first round failures. However,
number of failures for that importance metric may be higher
than other algorithms for later rounds.

Identified Critical Lines: We list the idendified top-10 critical
lines in the IEEE 118-Bus System by the four best-performing

algorithms in Table III. Since the algorithms rank the lines
by very different criteria, it is not surprising that there exists
limited overlap among critical lines identified by different
algorithms. However, the lines are all critical to some extent,
so the protection performances are similar.

Running Time: We are also interested in the running time
of the best-performing algorithms: Path Importance, Cascade
Importance, PageRank and GLODF. The other simple heuris-
tics run faster but didn’t perform well, so they are ignored
from the analysis. Since the running time of the algorithms
are all highly dependent on the parameters, having a thorough
comparison of their running time can be hard due to the large
parameter space. Here, we only compare the running times of
the algorithms with the parameters used for the experiments
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TABLE II: Protection Performance Summary

Data Set Algorithm Avg. #
Failed Lines

Avg. Load
Shed (MW)

118-Bus

Betweenness 47.34 871.66
Current Flow 54.70 1020.61

Path Importance 43.79 855.67
Random 48.51 1035.96

Cascade Importance 42.84 850.31
Page Rank 45.43 865.84

GLODF 43.68 870.76
No Protection 52.08 1094.56

300-Bus

Betweenness 84.21 4235.07
Current Flow 90.94 4232.40

Path Importance 80.73 4209.37
Random 90.23 4679.75

Page Rank 83.98 4213.56
No Protection 91.45 4682.13

3120-Bus

Betweenness 300.14 1250.80
Current Flow 286.89 1239.18

Path Importance 276.39 1123.50
Random 364.32 1883.98

Page Rank 293.53 1543.52
No Protection 399.62 2165.25

TABLE III: Top-10 Critical Lines in IEEE 118-Bus System

Rank Path
Importance

Cascade
Importance

PageRank GLODF

1 L81 L111 L38 L12
2 L31 L73 L7 L115
3 L161 L31 L96 L120
4 L117 L30 L8 L124
5 L111 L32 L36 L14
6 L5 L15 L51 L117
7 L62 L148 L9 L123
8 L40 L158 L33 L5
9 L104 L165 L31 L108
10 L50 L143 L29 L109

above. For Path Importance, we report its running time both
with and without pre-processing, where pre-processing means
to pre-generate all the samples and pre-calculate all 5̃

B3
;¬;0

values. This is to simulate the scenario that the critical lines
need to be found again when power network supplies/demands
change. For all other algorithms, since pre-processing is not
possible and the corresponding running time of finding the
critical lines in an existing network with power parameter
changes is not different from the running time of finding the
critical lines of a new network, we only report the running
time per algorithm per data set.

From Table IV, we can see that Path Importance without
pre-processing is faster than Cascade Importance and GLODF.
It demonstrates that sampling paths is more efficient than
extensively solving linear systems in the case of Cascade
Importance (the power flow system) and GLODF (the linear
system for GLODF calculation). Also, as path sampling is
highly parallelizable, the running time can be much shorter
in practice with multi-threading. Note that PageRank is much
faster than the above three algorithms because it only involves
LODF calculation from N-1 failures and matrix operations.
The fastest is Path Importance with pre-processing, which is
at least 17 times faster than PageRank, showing its advantage
to avoid most of the recalculation when supplies/demands
change.

TABLE IV: Running Times (in Seconds)

Datasets

Algorithms 118-Bus 300-Bus 3120-Bus
Path Importance
(with pre-processing) 0.003 0.026 8.22

Path Importance
(without pre-processing) 23,544 69,426 431,146

Cascade Importance 148,932 N/A N/A
PageRank 2.85 4.01 141.16
GLODF 134,136 N/A N/A

VI. CONCLUSION

In this paper, we studied the cascading failure protection
problem from a new angle: identify the lines that are the most
likely to fail after unintentional initial failures. We first pro-
posed an all path based line importance metric and illustrated
that there is a strong correlation between lines with high values
of the metric and lines who are likely to fail after unintentional
initial failures. Then, we designed a path sampling algorithm
to estimate the proposed metric efficiently with theoretically
bounded error margin. The proposed metric was evaluated
in a protection scenario using multiple IEEE power system
test cases and we demonstrated that the proposed metric
outperformed several baseline metrics.
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