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Abstract. In smart grids, two-way communication between end-users
and the grid allows frequent data exchange, which on one hand enhances
users’ experience, while on the other hand increase security and privacy
risks. In this paper, we propose an efficient system to address security and
privacy problems, in contrast to the data aggregation schemes with high
cryptographic overheads. In the proposed system, users are grouped into
local communities and trust-based blockchains are formed in each com-
munity to manage smart grid transactions, such as reporting aggregated
meter reading, in a light-weight fashion. We show that the proposed sys-
tem can meet the key security objectives with a detailed analysis. Also,
experiments demonstrated that the proposed system is efficient and can
provide satisfactory user experience, and the trust value design can easily
distinguish benign users and bad actors.
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1 Introduction

Smart grid enables sharing information about electricity demand and supply
in real time, which improves energy efficiency and provides more features to
end-users [1]. With Internet of Things (IoT) applications in smart grids, such
as smart meters and IoT appliances, two way communications between end-
users and the grid allows frequent meter readings, which leads to more accurate
prediction and further optimization of supply and demand. Also, certain tasks,
like laundry, can be scheduled at off-peak hours to smooth demand fluctuation
and reduce the energy bill of end-users [2].

However, two way communication and high frequency meter reading also
raise security and privacy concerns. For example, a cyberattack (e.g. man-in-
the-middle attack) may gain access to detailed electricity usage data, such as
running laundry or watching television during certain hours of a day, which can
be leveraged to infer more sensitive information, such as vacancy in the house [3],
and may further lead to security risks like break-ins. Data aggregation at local
gateways [4] may mitigate some of the privacy issues, but the computational
overhead can be high [5].



To efficiently address the security and privacy problems, in this paper, we
propose a new design, a community based blockchain solution: the end-users are
grouped in communities and each community holds a local blockchain, which ag-
gregates electricity usage data of members in the community and reports back to
the service provider. Within a community, a time-based trust model is designed
to detect bad actors who are not cooperative or having fraudulent behaviors.
Compared to cryptography-heavy schemes, the proposed solution is much more
lightweight and efficient.

The contributions of this paper are summarized as follows.

— We proposed a community based blockchain solution to address privacy prob-
lems in eletricity usage data reporting in smart grids.

— We proposed a time-based trust model, a lightweight solution to security
problems in community operations.

— We did extensive analysis on how the proposed system can achieve the se-
curity goals and experimentally verified the performance of the proposed
system and the effectiveness of the trust value design.

Organization. The rest of this paper is organized as follows. The related works
are discussed in Section II. We describe the proposed system in Section III.
In Section IV and Section V, the security and the performance aspects of the
proposed system are discussed, respectively. Section VI concludes the paper.

2 Related Works

Various security aspects in smart grids are discussed in [3]. Security in smart
grid is crucial as a large amount of data is generated, transmitted and possibly
exposed. Various cryptographic countermeasures are developed to fight against
security threats [6,7].

Privacy in smart grids has been studied from multiple aspects. In [8], a pri-
vacy preserving scheme using cryptographic methods was proposed for incentive
based demand response in smart grids. In [9], the authors proposed autonomous
demand side management based on game theoretic energy consumption schedul-
ing while preserving users’ privacy. Multiple privacy preserving data aggregation
schemes are also proposed [4, 10, 11]. At the core of the works, encryption schemes
are designed such that only aggregated data can be learned after decryption.

Traditional cryptography-based methods for smart grid security and privacy
may impose a large computational overhead [12] to the light-weight IoT devices
in smart grids, also, bad actors may circumvent access control to damage the
system. Hence, blockchain techniques are studied in smart grids for privacy and
security gains [13, 14]. For general IoT systems, [15] explored the applicability of
blockchain techniques, focusing on hardware specifications and standard, while
[16] proposed the implementation of local blockchain in IoT without Proof of
Work and coins. For smart grids, blockchain-based applications like anonymous
authentication with key management [17] and distributed energy trading [18]
were proposed. However, existing works do not provide privacy-preserving elec-
tricity usage transmission with awareness of bad actors in the system.

Blockchain-based trust management system for bad actor detection is de-
scribed in [5], in which the trust is between actors (end-users) in the system. In



comparison, we propose to maintain trust at the local community level, which
is more suitable for the application we focus on.

3 Time-based Trust Community System Design

In this section, we first discuss the formation and maintenance of local commu-
nities of end-users, the organizational structure of the local community based
blockchain, and then introduce detailed operations of data aggregation and the
time-based trust system.

3.1 Community Formation and Maintenance
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Fig. 1: Registration Process

3.1.1 User Registration Figure 1 shows the registration process when a
user signs up with a smart grid service provider. After the user is verified as
benign from the service provider, the user generates a pseudo-random number
(token) and shares it with the service provider. Once a token is created, user only
communicates with the service provider and the community through the token
until the account termination is requested. Once the registration is finished, the
user is allowed to join a community.

3.1.2 Community Formation There are two main guidelines when forming
communities. 1) Each community should have an appropriate size. If the com-
munities are too small, we may not have the security and privacy guarantees
from blockchain and data aggregation. If the communities are too large, it may
be too costly for the smart meters to maintain a blockchain due to their limited
computing power. 2) Members of a community should be in close proximity. On
one hand, it reduces the communication cost within community. On the other
hand, users with close proximity may share similar electricity usage patterns,
generation patterns (for example, households with solar panels) and policies (for
example, different regions may have different baseline utility rates). Hence, hav-
ing location based communities can help the service provider better optimize
energy generation.

We see community formation as an adaptive problem [19]. After initial net-
work setup, the service provider stores the community structure and updates
the assignment adaptively based on new users’ enrollment/termination and the
existing structure, without recomputing the community structure for the whole
network from scratch.



Algorithm 1 Community Structure Update

1: Input: G, AG® ,t=0,....,T, AE®D t=1,...,T
2: C¢® —Community-Formation(G, AG®, 0)

3: for t=1 to T do

4: ¢ =Community-Formation(G, AG®, c(t~1)
for v € AE® do

5:
6: ¢ = User-Termination(G, v, C(!))

Algorithm 2 Scan Community

1: Input: d,u 40, communities C, node v

2: SC=0

3: for c in C do

4: if Distance between c and v is less than d,,., then
5: add ¢ to SC

6: Return SC

Algorithm 3 User-Termination

. Input: M,,in, set of all communities C, users to terminate V, v’s community c,,Vv € V.
Cremove =
for v € V do
Remove v from c¢,.
if ¢y .size < Myin and ¢, not in Cremove then
Add ¢, to Cremove

Vassign = UceCremove €
Community-Formation(G, Vassign, C)

Algorithm 4 Community-Formation

1: Input: dmaz, Mmaz, set of nodes to assign V', set of communities C'.
2: for node v € V do
: SCs = Scan-Community (C, dymaq)

4 if SC's is empty then

5: Create a new community ¢ and add to C

6: Add v to ¢

7 else

8 SCavait =0

9: for SC € SCs do

10: if SC.size < M4, then

11: add SC to SCqpail

12: if SCuyair is not empty then

13: Find the closest community ¢’ € SCqyai; to v
14: Add v to ¢’

15: else

16: Find the closest community ¢* € SCs to v
17: Split ¢* to ¢!, ¢? based on proximity, |¢!| = |¢?].
18: add v to the closer of ¢!, ¢?

19: Return C




The overall community formation is described in Alg. 1. C is the commu-
nity structure at time ¢, AG®* and AET) are the user enrollments/terminations
at time t respectively and G() is the first network snapshot. The community
structure at time ¢ is calculated based on the network structure G, updates at
time ¢ and the existing community structure. For the base case t = 0, there
exists no calculated community structure, so we use empty set as an input to
Alg. 4 in this case.

In Alg. 4, dpas is the maximum allowed distance between a node and the
center of a community it can join, where the center of a community is the Jordan
center [20] of the subgraph formed by nodes in the community. M, is the
maximum number of members a community can hold. For each node v, the
algorithm first tries to find communities within close proximity of v using Alg. 2.
If no such communities can be found, a new one is created to hold v. Otherwise,
the algorithm checks if the communities have open slots for v. If so, v is added
to the closest one. If not, the closest community is split to two communities of
approximately equal size (depending on whether there’s odd or even number of
members) and v is added to the closer one of the two new communities. The
blockchain of the original community will be forked. A community will not start
working until the number of members reaches the minimum threshold M., .
Users in such small communities will fall back to traditional reporting methods.

When users V' stops service, they will need to be removed from their com-
munities ¢,,Vv € V. As shown in Alg. 3, the size of communities ¢, must be
checked to make sure they are still large enough. If the size of ¢, falls below
the minimum threshold M,,;,, it will be removed from the community structure
and Alg. 4 will be called for all the remaining members of ¢, to find their new
communities.

Time Complexity. For Alg. 2, since the max number of communities scanned is
n where n denotes the total number of nodes, it’s complexity is O(n). Alg. 4 has
time complexity O(n) for each new node to be added, as scan community (line
3), check if communities are within size limit (lines 9-11), community split (lines
16-18) can all be done in O(n) time and the rest operations are O(1). Hence,
the overall time complexity of Alg. 4 is O(|V|n) where V is the set of nodes that
need community assignment. For Alg. 3, the complexity can be O(n?) in the
worst case when community removal is needed for all remaining nodes, but it is
a very rare case in practice. In most of the cases, it has O(|V|) complexity. For
Alg. 1, at each time step, we will call Alg. 4 at most twice for each node, hence
the overall time complexity for Alg. 1is O(Tn?) for all T time steps.

3.1.3 Genesis Transaction Once community formation is completed, the
service provider generates a local blockchain for each community and the blocks
are not shared with other communities. For each community, a genesis block
is created by the service provider, so that members of the community can cre-
ate blocks following the genesis block. Figure 2 shows the structure of local
blockchain with the genesis block. The service provider shares a key generated
using generalized Diffie-Hellman with a new user to join the community and the
policy header gets updated to include a new member in the community.
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Fig. 2: Local Blockchain structure

3.2 Data Aggregation

For a community ¢ with enough members, each time a meter reading is required,
a reporter is selected within the community from the latest block to aggregate
the electricity usage data and report to the service provider so all members listed
in the policy header can participate in the data aggregation. For each report,
every member M; sends encrypted data D; from their smart meter to the selected
reporter.

o; = x; H(D;||M;|[t) (1)

where o; is a signature signed with private key z;, H is a cryptographic hash
function, and ¢ is the time it is generated. In this process, the records are created
in the local blockchain in the form of a transaction. Then, the reporter will
aggregate the received data in a privacy preserving way [4].

D= Z D; mod n? (2)
i=1

After data aggregation, it is signed with the private key of the reporter to
create a signature o,.

o = - H(D||M,||t) (3)

Then, D||M,||o, is reported to the service provider.

Communication Costs. During data aggregation, there will be communi-
cation costs within each community to reach consensus. For the communica-
tion overhead, each user sends a 2048 bit ciphertext to the reporter, so the
reporter receives 2048n bits of ciphertext in total, then after the data aggrega-
tion, the reporter sends a 2048 bit ciphertext to the service provider. Meanwhile,
the consensus can be reached with linear communication cost of upper bound
2logloglog(n), and lower bound logloglog(n) given that we have m bits of mem-
ory where m > 3logloglog(n) [21]. This result shows that the proposed architec-
ture can be implemented to the hardware that lacks high computing power and
IMemory resources.



3.3 Time-based Trust System

While having blockchain-based local communities in smart grids brings privacy
benefits, maintaining benign communities arises as a new issue. Each member has
a power in consensus, so compromised members can affect others. A more severe
situation is when a compromised member is selected as a reporter. To reduce the
impact from compromised members/bad actors in a blockchain, either proof of
work (PoW) [22] or trust [5] may be used. We argue that PoW cannot work well
in the case of smart grids, since smart meters have computational resource limits
and are unlikely to outperform the bad actors. On the other hand, a carefully
designed trust system may be suitable for smart grids.

In the system, trust is used to vote and report. When reporting electricity
usage data, the aggregated report is generated with the consensus from commu-
nity members, and members with higher trust value have higher voting power
compared to those with lower trust value. Also, members with low trust values
may be reported for suspicious activities. We let trust be a numerical value in
range [0,1]. At the time of enrollment, all new members are given a relatively
high trust value. Then, two factors may change the trust value: time and inter-
action. Trust has the time-decaying property because it is more likely to have
a firmware update overdue from the service provider and old firmware is more
prone to the attacks. To formulate this:

T(t) < T(0) x e= (4)

Where T(t) is the trust value at time ¢, 7'(0) is the initial trust value and
7 is the time constant. This equation is derived from Newton’s law of cooling.
Since trust decreases over time, users have to participate in the community’s
consensus and update the firmware to slow down the trust loss.

We also associate trust with the participation in community activities. We
adapt the idea of reputation management in P2P networks [23] and define the
value S;. as:

Sic = sat(i,c) — v x unsat(i, c) (5)

Where sat(i,c) and unsat(i, c) is the number of satisfactory/unsatisfactory
transactions member i had within a community c. Here the unsatisfactory trans-
actions are disagreements to the consensus or simply no participation. v > 1 is
a tunable parameter to penalize unsatisfactory transactions.

The value is further normalized with a sigmoid function to S, where

Sic
’

ic T eSiC—‘rl

(6)
S!. € (0,1) and for newly enrolled users wiht S;. = 0, S}, = 0.5. Denote

A 0 latest security update is installed
vV =
t—1t;. 1 latest security update is not installed



Where ¢ is the current time and ¢ ., is the release time of the oldest security
update that i have not installed. Also denote f as the security update frequency,
the trust value can be represented as

= Sie
Tic(t) = T;c(0) x e (= 133577) )

Hence, when a member ¢ has a lot of satisfactory transactions (S}, ~ 1) and
always keep the security software up-to-date (Av = 0), its trust value will be
close to 1.

When a community c¢ is split, members of ¢ will carry their trust value in ¢
to their new communities. When a community ¢ is removed, members of ¢ will
join new communities as new members. If their original trust value is lower than
a threshold, they may need to be re-authenticated before joining.

4 Security Analysis

Confidentiality, Integrity, and Availability (CIA) are the key objectives in the
security requirements [24]. In this section, we will first discuss how these three
objectives are achieved with the proposed design. Next, we will describe the
replay attack scenario and how the proposed design can prevent such attacks.
Then, we will run a simulation to demonstrate how the trust system can detect
bad actors in the smart grid.

4.1 CIA Analysis

4.1.1 Confidentiality As maintaining the trust value is required for the
members, it provides assurance to benign members that they can trust each
other for the data transmission. Moreover, the data that they transmit is en-
crypted and the reporter does not have the private key for other members to
decrypt and access the contents. From the outside of the community, an adver-
sary may obtain the data. However, since the data is aggregated, though the
adversary may gain the accesses to the data, the data won’t be linked to the
individual usage.

4.1.2 Integrity Data integrity is a key part in the smart grid both for billing
and rewards and for the correct and accurate demand prediction. As each local
blockchain generates blocks for each of their reports to the service provider, the
integrity can be traced back and validated through the generated blocks. As the
blockchain blocks are tamper proof, the data integrity can be maintained.

4.1.3 Availability The design with randomized reporters in local commu-
nities mitigates the possible unavailability of centralized aggregators like local
gateways [4]. In the cases that an attacker tries to steal the aggregated data in
the middle of the transmission or to simply block the transmission to achieve
denial of service, it will be harder for the attacker to track and steal or make
the data unavailable as the reporter changes every time.

If any attempt of an attack is made, instead of the service provider observing
the anomaly, it can be enabled with rule based anomaly detection system by



allowing community members to report other participants within the community.
We propose five specific rules, summarized in Table. 1, to detect bad behaviors.
For example, if a member failed to participate in community activities for certain
period of time or denied most of the consensus, its trust value can be lower than
a threshold and the other members can report to the service provider to re-
authenticate the member. In addition, time-dependent price (TDP) refers to the
dynamic pricing the service provider places on the electricity rate to control
the demand. Smart appliances are capable of receiving the TDP and run the
task when the price is low in the day, which opens up the vulnerability of False
Data Injection (FDI) attack. In FDI attacks, malicious users may report data
mismatching the TDP. However, those users will have low trust values as they
violate the rules, hence the attack can be greatly mitigated.

If there are no threats initiated from attackers, anomaly detection system
can be applied to regular operations to remind the members to update their
firmware to restore trust, as it naturally decays over time.

Table 1: Behavior Rules for monitoring members
Rule Descriptions

Report a member who does not participate in the

consensus.

Report a member who falls below the threshold of

trust value.

Report a reporter who does not agree with the

consensus.

Share time-dependent price (TDP) with members

and report if mismatch occurs.

Compare the TDP with previous date and report

if mismatch occurs above the threshold.

4.2 Replay Attack Prevention

In this section, we discuss how the proposed system can prevent the replay
attack.

Listening Phase Replaying Phase

Encrypted repart
. Service Provider Service Provider
|
]
| &
1 sy
)
5

User User &

4
i’; i Qj&é&

Adversary Adversary

Fig. 3: Replay Attack Procedure

4.2.1 Attack Scenario Replay attack is an eavesdropping attack where an
adversary intercepts the conversation between two parties and use the replay of



the message in favor of the adversary. Typical replay attack has two phases shown
in Figure 3. First phase is listening to the user’s communication and storing the
encrypted message with the signature, in our case, the aggregated report. The
second phase is replaying or re-sending the exact message without decrypting to
the service provider from the adversary. When the encrypted communication oc-
curs with the timestamp included, two parties negotiate the discrepancy interval
At to accept the valid messages [25] and the replay attack can still occur if the
adversary can replay the recorded message within the negotiated discrepancy
time period. Suppose At is static throughout the communication, the adversary
can record the valid message in ¢, where ¢, is the time spent to record the valid
message and replay to the service provider within At — ¢, to be treated as valid
messages. A replay attack may prevent a proper connection between two benign
parties, resulting in unavailability. It can be significantly harmful to smart grid
users as they may lose their service.

4.2.2 Protection Scenario Conventional approach to prevent replay attacks
attaches the timestamp with a prefixed discrepancy |8, 26]. However, as discussed
above, a replayed message with small delay may still be treated as valid. To
be more resistant against replay attack, we show that randomly changing the
reporter within the community can be helpful, since it gives an extra verification
step for the service provider along with the timestamp. Even if the adversary
eavesdrops and replay the report within the negotiated discrepancy, the service
provider will expect next report from another user, invalidating the duplicate
report and flagging the anomaly.

Randomized reporter also prevents specific nodes in the community from
becoming special target to the adversary as well as becoming overloaded both in
communication and computational costs. Even if a reporter is attacked, e.g. by a
denial-of-service attack, the overall operation can continue with another reporter,
and an anomaly report will be sent by other members in the community due to
lack of participation.

5 Performance Analysis
5.1 Experiment Setup

Data Set. In this experiment, we use the Pegase 9241 node network from Pan-
dapower [27]. Since we want to simulate a set of smart grid consumers, only the
loads and their geographic locations are extracted from the data set. In total,
we have 4,461 nodes.

Simulation Method. To simulate a real smart grid with user enrollment and
termination, we start the smart grid with 3,000 random users and simulate 100
time steps. At each step, we randomly terminate 1-2 smart grid users and ran-
domly enroll 1-2 non-smart grid users. In each experiment below, we ran the
simulation 1,000 times and report the average numbers.

Metrics Considered. We consider both the efficiency of community formation
and user experience, with the following metrics:

— Number of community splits. Throughout the simulation, how many
communities are split. Community split may increase operational burden

10



and may be bad for users in them. As splitting a community requires com-
municating with every member in the community, forking the blockchain,
and assigning members to new communities.

— Number of community removals. Throughout the simulation, how many
communities are removed due to size smaller than minimum after user termi-
nation. Community removal causes disturbance to members of the removed
communities.

— Number of non-community users. The average number of users who
can not join a community with adequate size in each time step. Those users
may be distant from the existing communities and may have to report to
the service provider on their own, resulting in a higher security risk.

— Running time. Total time taken for community formation simulation.

5.2 Simulation Results

We observe the change in the above four metrics varying the maximum com-
munity size and the maximum allowed distance between a member and the
community center. The max community size varies between [100, 300] and max
allowed distance varies between D /5 to D, where D is the maximum distance
between any two nodes. Min community size is set to be 1/4 of max community
size.

Since there are two variables, we use heat maps to illustrate the experiment
results in Figure 4 to Figure 7.
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From Figure 4, we can see that more splits may happen when the maximum
community size is smaller and the max allowed distance is larger. Figure 5 and
Figure 6 shows similar trends for the number of non-community users and the
number of community removals. Both values are small when max distance is at
least 2/5D. For non-community users, it is expected, since a large enough max
distance grants the users to find suitable communities to join. For number of
community removals, when max distance is small, the members in a community
must be closer to each other, so when some of the members terminated service, it
is harder to find new members to join. As for running time, we can see in Figure 7
that the time taken for community formation is longer when max community
size is larger, since more updates are needed within a community when a new
member joins. In general, the algorithms can finish initial community setup and
all updates efficiently, as the total running time never exceeds 200 seconds in all
cases. It is notable that the running time does not always grow monotonically
with max distance, as in the case when max community size is 300. It is possibly
due to large time consumption from rare community removal cases for max
distances 2/5D and 3/5D, since there tend to be more communities to choose
from when enrolling members from a removed community. While for larger max
distance, community removal will not happen at all.

5.3 Trust Updates

In this section, we track trust value updates for different types of users to show
that the proposed trust system can easily differentiate the anomaly users.

We construct the users by varying two parameters: probability to participate
in community activities (P,) and probability to install a security update (FP).
At each time step, a user will participate in data aggregation and reporting with
probability P,. If the latest security update is not installed, the user will install
it with probability P;.

Throughout this experiment, we set the trust parameters as follows: time
constant 7 = 2, unsatisfactory transaction penalty constant v = 3. Also, we
assume a report is sent for every time step and a security update happens every
24 time steps (f = 24).

5.3.1 Trend of Trust Value. To have a clear picture of how trust value
changes overtime, we simulate reporting and security updates for 100 time steps
for the following types of users:

— Ideal User: P, = P, = 1, the user participates in all activities and always
install updates as soon as possible.

— Normal Benign User: P, = P, = 0.9, the user is generally cooperative
but may forgot to participate or update time-to-time.

— Benign User Slow Update: P, = 0.9, P, = 0.3, the user is generally
cooperative but is slow on keeping software up-to-date.

— Updated but not Too Active: P, = 0.6, P, = 0.9, the user is generally
up-to-date for software but often ignores community activities.

— Inactive: P, = 0.2, P; = 0.2. The user is mostly inactive.
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From Figure 8, we can see that users with high P, value generally have high
trust. If they do not always install security update on time, their trust value
may have certain dips, but the trust value can recover. However, for users with
low P,, their trust value will soon become very low, the lower the P, value, the
faster the drop. Even high P; won’t help.

5.3.2 Time to Become Untrusted. To better understand the impact of P,
and Ps to how soon the user becomes "untrusted" (trust value below a threshold,
we vary P,, Ps and log the first time step that the average trust value drops below
0.1. For each pair of P,, P,, we run simulation for 1,000 time steps. The result
is illustrated in Figure 9. It is clear that users will never become untrusted as
long as they are relatively active (P, >= 0.8) and will eventually install security
updates (P; >= 0.2). Otherwise, the user will soon become untrusted. It is
expected since we do want the system to penalize unsatisfactory transactions
more. For security updates, it is fine to install them with a delay.
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6

Conclusion

In this paper, we designed a trust-based community system with local blockchains
to address security and privacy issues in smart grid, with a focus on problems
in frequent meter readings. The proposed trust manage system helped with effi-
cient data aggregation and can also be used to detect bad actors. We conducted
detailed security analysis to show that the proposed system meets the key secu-
rity objectives. Also, we demonstrated the performance of the proposed system
through experiments.
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