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Abstract

Myeloid-derived suppressor cells (MDSCs) play a prominent role in the tumor microenvironment.
A quantitative understanding of the tumor-MDSC interactions that influence disease progression
is critical, and currently lacking. We developed a mathematical model of metastatic growth and
progression in immune-rich tumor microenvironments. We modeled the tumor-immune
dynamics with stochastic delay differential equations and studied the impact of delays in MDSC
activation/recruitment on tumor growth outcomes. In the lung environment, when the circulating
level of MDSCs was low, the MDSC delay had a pronounced impact on the probability of new
metastatic establishment: blocking MDSC recruitment could reduce the probability of metastasis
by as much as 50%. To predict patient-specific MDSC responses we fit to the model individual
tumors treated with immune checkpoint inhibitors via Bayesian parameter inference. We reveal
that control of the inhibition rate of natural killer (NK) cells by MDSCs had a larger influence on
tumor outcomes than controlling the tumor growth rate directly. Posterior classification of tumor
outcomes demonstrates that incorporating knowledge of the MDSC responses improved
predictive accuracy from 63% to 82%. Investigation of the MDSC dynamics in an environment low
in NK cells and abundant in cytotoxic T cells revealed, in contrast, that small MDSC delays no
longer impacted metastatic growth dynamics. Our results illustrate the importance of MDSC
dynamics in the tumor microenvironment overall and predict interventions promoting shifts
toward less immune-suppressed states. We propose that there is a pressing need to consider
MDSCs more often in analyses of tumor microenvironments.



Introduction

Myeloid-derived suppressor cells (MDSCs) are immature myeloid immune cells that become
pathologically activated with potent immunosuppressive activity (1-7). Since the introduction of the
term “MDSC” in the late 1990s (4-6), there has been a great deal of effort to understand MDSC
phenotypes and dynamics. MDSCs are implicated in the regulation of immune responses in many
biological contexts and pathological conditions, including cancer, inflammation, wound healing, and
autoimmune disorders (1). Some have gone as far as to claim that MDSCs are “the most important cell
you have never heard of” (8). Recently, with the advent of high-dimensional measurement
technologies including mass cytometry and single-cell RNA sequencing, the characterization of
MDSCs and their roles in diverse contexts has become more refined (7, 9). Here, we characterize
MDSCs by their function—immunosuppressive activity—rather than their expression phenotype
(e.g. CD11b* and Gr-1+ in mice), bypassing the need to delve into the heterogeneity of the CD11b*Gr-
1+ population at the single-cell level.

In the context of cancer, the role of MDSCs is convoluted, in part due to the complexity of the tumor
microenvironment and related immunology (3, 10-14). MDSCs certainly play important roles in
tumor microenvironments (8, 9, 15, 16); increased levels of MDSCs are associated with poor clinical
outcomes (2, 12, 17-19); although an important caveat is that studies often measure only circulating
MDSCs. There is compelling evidence that MDSCs can effectively shield tumors from antitumor
immune responses mediated by cytotoxic T cells and natural killer (NK) cells (20-24). Thus, targeting
MDSCs as a way to sensitize non-immunogenic tumors is an attractive treatment strategy in cancer
immunotherapy (16, 17). MDSC dynamics have also been studied in the specific context of breast
cancer, where they have been shown to affect the progression of primary breast tumors and
associated metastases (7, 15, 18, 23, 25-27).

Understanding tumor-immune-MDSC dynamics is by nature a systems biology problem.
Mathematical and computational modeling are essential to tease apart the intricate relationships
involved (28, 29). There have been relatively few works, in comparison to experimental/clinical
interest, in the literature that report mathematical models of MDSCs (30-33). Shariatpanahi et al.
(30) developed a model described by ordinary differential equations with which they explored
therapeutic strategies that aim to restore antitumor immunity, in comparison with experimental data
(23). Allahverdy et al. (31) developed a stochastic agent-based model that was used to explore the
effects of different drugs on MDSC and tumor dynamics. Liao et al. (32, 33) developed a model
described by partial differential equations that was used to determine optimized drug treatment and
to understand primary drug resistance. While these models offer insight into the roles of MDSCs, a
rigorous treatment of MDSC dynamics in the tumor microenvironment, fitting models to data, and
taking into account the effects of noise remains lacking.

Here, we focus on the effect of MDSC dynamics on metastatic tumor growth following an initial
seeding event. Most cancer deaths are a result of metastasis (34): a highly dynamic and stochastic
process. Most metastatic tumors are seeded by a small number of circulating tumor cells (13, 34).
MDSC migration to the site of a new tumor has been identified as crucial for cancer progression, both
in primary tumors and metastases, but the interactions involved are not well understood, in part due
to a relative lack of MDSC characterization, the complex tumor-immune environment, and the
difficulties associated with tracking cell-cell interactions in vivo (13, 35, 36). As a result, there are
many open and pressing questions regarding MDSCs and tumor metastasis (37). How much
therapeutic benefit can be gained by blocking MDSC recruitment to the tumor site? Would therapies
that decrease the number of circulating MDSCs achieve similar or greater effects? There are now
various methods to target MDSCs in peripheral lymphoid organs and their migration to tumor sites.



However, it is not clear whether either of these methods alone will be sufficient to inhibit MDSC
immunosuppressiveness at a tumor site or whether combination approaches will be required.

To address these questions, we developed a stochastic delay differential equation model of
metastatic tumor growth. We included an MDSC delay that could represent delays in MDSC
recruitment to the metastatic tumor site as well as delays in MDSC activation to suppress antitumor
immune cells. Stochasticity was included due to the inherent noise in the cell dynamics, and to allow
the assessment of the probabilistic events of new metastases. We first demonstrated the importance
of MDSCs in the tumor immune microenvironment and established conditions necessary for
metastatic growth for the deterministic model. We then identified the most important parameters
and interactions in the system, to shed light on the underlying biological dynamics. Next, through
simulation we explored the impact of MDSC delays on metastatic growth, finding that under certain
conditions, inhibiting MDSC recruitment alone might be a highly effective treatment strategy. Finally,
we performed Bayesian parameter estimation of models fit to individual tumors growing in vivo, from
which we determined tumor- and MDSC-specific parameters. Inference results revealed that
knowledge of MDSC-specific parameters is important to be able to accurately predict metastatic
outcomes.

Methods

A stochastic delay differential equation model of tumor-immune dynamics in the
presence of MDSCs

Mathematical modeling of tumor-immune cell interactions has been increasingly recognized as
critical for understanding strategies to mount an effective response to cancer initiation, spread, and
evolution (28, 29, 38-43). Herein, we first describe a theoretical basis for MDSC dynamics in the
context of a metastasizing tumor (e.g. in the lung, bone, or liver (44)) from a primary tumor in the
breast. For parameterization of the model, we focused on the lung, as it is one of the most common
distant metastases sites of breast cancer (45). Thus, we primarily considered an NK cell-abundant
environment (46).

Our mathematical model is comprised of four non-spatial delay differential equations to
describe tumor-immune interactions incorporating MDSCs. Our model is built on previous literature
in mathematical oncology (30, 40) with a focus on the role of MDSCs in metastases (37). We used our
previous preclinical data (15), and data reported in the literature (cited below and in Table 1), and
focused on important interactions between tumor, immune and MDSC populations, leading to a
relatively simple model that allowed us to gain insight into system dynamics and metastatic tumor
spread. We included the antitumor immune populations of cytotoxic T cells (CTL) and NK cells.
MDSC-CTL interactions are important given the primary function of intratumoral MDSCs is
suppression of CTLs (1, 6, 15, 16). MDSC-NK cell interactions are also important (20-22, 24, 25), and
NK cells are increasingly being studied as an immune population specifically affected by tumor cells
to promote metastasis (47, 48). A schematic diagram of the model is provided in Figure 1A.

We denote xt, xmpsc, Xnk, and xcri, as the populations of tumor cells, MDSCs, NK cells, and CTL cells,
respectively, at time t. The model derived can be expressed conceptually (i.e. agnostic as yet to the
form of the dynamics) as follows, where 6x;denotes the rate of change of x;, i € [T, MDSC, NK, CTL].

OXT

|growth of tumor cells |— |tumor cells inhibited by NK cells|

|tumor cells inhibited by CTL cells |— |death of tumor cells |,

6xMpsc = [jrculating level of MDSCs |+ [recruitment of MDSCs in presence of tumot]

(1a)



- death of MDSCs

SXNK |circu1ating level of NK cells |+ |recruitment of NK cells in presence of tumor|
- |NK cells inhibited by MDSCs |— |death of NK cells |,
oxcrL = |CTL cells stimulated by NK-tumor interaction |+ |recruitment of CTL cells in presence of tumor|

|CTL cells inhibited by MDSCs |— |death of CTL cells l
Based on these biological processes, we developed a stochastic delay differential equation (SDDE)
model to characterize tumor-immune interactions. This model is described by the equation:

dx(t) = fx(0)x(t - 1))dt +g(x(8)x(t - 7))dW(d), (2)

at time ¢, with delay 0 < 7 < t, where f{:) describes the deterministic dynamics controlled by the model
interactions, g(-)dW(t) describes the stochastic dynamics, dW(t) denotes an increment of a Weiner
process, W(t), and xj(t) = [xr(t),xmpsc(t),xnk(£),XctL(t)]- The model thus consists of coupled SDDEs,
where we assumed an It6 interpretation (49). For the stochastic dynamics, we have:

9(x(0)x(t - 1)) = &(8),

where &(t) is the size of the ithpopulation, i.e. we assumed multiplicative noise (49, 50). We studied
the tumor-immune dynamics under the assumption of multiplicative noise given the mounting
evidence that biological systems more often exhibit dynamics generated from multiplicative noise
models (51).

For the deterministic dynamics, we have:

(1b)

(1)

(1d)

-almT(t) log (x:(t)) — Brar(O)ank (t) — Boxr(t)zorL(t) — Clch(t)- (3a)
zr(t — 1)
f (s (8), 23t — 7)) = T et=) R >
oy + a5wmf+?(t)z — Bszmpsc(t)znk () — Gk () (3¢c)
2
oz () Nk (t) + m#% — Bazmpsc(t)zerL(t) — GzerL(t) | (3d)

with description of the parameters in Table 1. We modeled tumor growth (first term of Eqn. (3a))
according to a Gompertzian model (30, 38), with maximum size 1. Tumor cells can be eradicated by
NK cells and CTLs (antitumor response), with rates 1 and 2, respectively. MDSCs are activated due
to their basal circulation, az, and die at rate (. In the presence of tumor cells, immune-suppressive
signals (a3) lead to increased MDSC production, activation, and recruitment to the site of the tumor,
and the size of the MDSC population increases; i.e., tumor growth can dramatically increase the
number of MDSCs. In the absence of tumor cells, a3 is zero and the MDSC population is unaffected.
MDSCs are produced primarily in the bone marrow, from which they migrate to peripheral
lymphoid organs and tumor sites in tumor bearing hosts (13, 52). The delay in activation/recruitment
of MDSCs to the site of a tumor was modeled using a Mackey-Glass delay term (53), with a delay of T
(second term of Eqn. (3b)). We also considered an alternative form for the delay, for which we found
the dynamics were similar; see Supplementary Text Section S1 and Supplementary Figure S1. We
considered delays only in xupsc; while other delays, e.g. in CTL activation, may well be important in
some contexts, here such a delay was observed to exert only minor effects on the tumor dynamics,



due to the low circulating levels of CTL cells (Supplementary Text Section S2 and Supplementary
Figure S2). We note that the model does not include MDSC subtypes or maturation, but accounts only
for their functional significance as immature myeloid cells with immunosuppressive capability.
Future work could include MDSC maturation into other cell types as influenced by the tumor
microenvironment, see the Discussion for further details.

Regarding the antitumor immune dynamics, NK cells are produced at rate as, and CTLs are
activated by the NK cell-tumor cell interaction at rate as. In line with (30), both NK cells and CTLs can
be activated by the tumor (at rates as and a7, respectively). We assumed that NK cells and CTLs can
be inhibited by MDSCs (at rates 3 and fs, respectively), and are lost due to cell death (at rates {zand
{4, respectively).

In simulations of new metastases (Eqns. (3a)-(3d)), the initial conditions are set by the tumor-
free steady state (Eqns. 6b)-(6d)), except that we seeded tumor growth by one or two initial tumor
cells. Unless explicitly stated otherwise, all parameter values used for simulation were as defined in

Table 1. Standard error is defined as standard deviation/vnumber of simulations.

In the work below we considered analyses of the full SDDE model, as well as various reduced
models. In the case that g = 0, the SDDE model reduces to a deterministic delay differential equation
(DDE) model. In the case that g = 0 and 7 = 0, the model reduces to an ordinary differential equation
(ODE) model. All models were developed in the Julia programming language (54), using
DifferentialEquations.jl (55). For simulation of the full model, we use the SOSRI algorithm for stiff
stochastic differential equations (56). Metaprogramming in Julia enables transitioning between
model formulations (SDDE, DDE, or ODE) with ease (57).

Parameter sensitivity analysis

Parameter sensitivity analysis was performed to assess the relative importance of parameters on the
model given by Eqns. (3a)-(3d). We used Morris global sensitivity analysis (GSA) (58, 59), with the
steady state of the tumor population defined as the output variable. Table 1 contains the ranges used
for GSA as well as the parameter descriptions. Hyperparameters used for the Morris algorithm
(implemented in DifferentialEquations.jl (55)) were total num_trajectory = 1000 and num_trajectory
=100.

Bayesian parameter inference with RECIST data

RECIST criteria have been developed for use in clinical trials to determine the change in tumor burden
of selected target lesions to inform whether a patient is responding to a given therapy (60). We
implemented Bayesian parameter inference to fit the model to tumor responses using RECIST to
classify tumor sizes and responses over time (61). We fit differential equation-based models to
RECIST data following a similar conceptual framework to (38). In the case of our model, we also fit
certain MDSC parameters, such as the interaction strengths between the MDSCs and other
immune/tumor populations, to assess the effect of MDSC dynamics on clinically-relevant tumor
growth. We employed Bayesian parameter inference (62) implemented in Turing.jl (63).

We used in vivo tumor data from a study evaluating the efficacy and safety of anti-programmed
death-ligand 1 (PD-L1) atezolizumab in advanced non-small cell lung cancer (61). These data were
also recently used to fit mathematical models of tumor growth (Study 1, (38)). Each tumor was
assessed at baseline, before the initiation of treatment in the clinical trial (for the purposes of fitting
we set the time of the baseline assessment to be zero). Tumor size was then reassessed approximately
every six weeks for twelve months, then every nine weeks, and then at disease progression. At each



assessment the tumor size was measured in millimeters in one dimension (x), which we converted to
. . . . 1
a volume following the convention adopted by Laleh et al,, i.e. taking the volume (mm3) as 5x3(38,

64). We estimated the number of tumor cells from this volume by multiplying by a factor of 107 (65).
From the available data we selected six measurable tumors from six different patients that each have
data from at least five time points (including the baseline assessment), were from all three study
cohorts, and were representative of the range of the dataset (i.e. tumors that increase/decrease at a
variety of rates). We fit the relative change in the tumor population, which is measured as the
difference between the measurement and the baseline assessment, divided by the baseline
assessment ((measurement-baseline)/baseline, which produces a real number € [-1,0)). As the
relative change at the baseline assessment was always zero, we removed this data point for all
tumors. Since only the tumor data were available, we fit the log transformed data from this population
(i.e. log(xr +1)). All of the data for each of the six tumors is available in the supplementary file
tumor_data.xlsx.

For inference, a three-dimensional parameter space was considered, in which we fit the following
parameters: 53 (NK cells inhibition rate by MDSCs), as (CTL stimulation by tumor-NK cell interaction),
and a; (tumor growth rate). We did not infer all parameters simultaneously due to the high
dimensionality of the parameter space; we chose parameters to infer based on their importance as
judged by prior knowledge and global sensitivity analysis. The parameters chosen affect all
populations of the model. As no information on time since incidence was available, we set the initial
conditions according to previous simulations (see Figure 1B and Table 1) at day 100
(x7(0) = 8395.4, xmpsc(0) = 804.1, xnk(0) = 197565.7 and xc1.(0) = 1654.4). Therefore, we rescaled 1 =
105 (tumor maximum size), and all other parameters were set to be as in Table 1 with 7 =0.

A prior distribution over the three-dimensional parameter space was selected using weakly
informative Normally distributed priors, with means set to the values given in Table 1, and relatively
large variances:

B3 ~ truncated (A (4 x 107°,107*),0,107%) (4a)
ag ~ truncated (M (1.1 x 1077,107%),0,107%) (4b)
a1 ~ truncated (N (10_1, 3 x 10_1) ,0,1) (4c)
o ~ InverseGamma (2,3) (4d)

where o is the observational noise. For each tumor we ran four independent Markov chain Monte
Carlo (MCMC) simulations with 2 x 103 iterations using the No U-Turn Sampler (NUTS) with a target
acceptance ratio of 0.65 (66).

Additionally, we fit the model to the same six tumors in a CTL-abundant environment. Here we
assumed the initial conditions were x1(0) = 16654.8, xmpsc(0) = 707.8, xxx(0) = 16162.1 and xc1.(0) =

778128.8 (simulation values at day ten) and that the prior distributions for the parameters were:

B3 ~ truncated (N (4 x 1079, 10_4) ,0, 10_2) (5a)
ag ~ truncated (N (2 x 1073, 10_2) ,0, 10_2) (5b)
a1 ~ truncated (N (1071,3 x 107%),0,1) (5¢)

o ~ InverseGamma (2,3). (5d)



Decision tree classification of tumor responses

We used a decision tree classifier to test whether different combinations of the marginal posterior
parameters obtained from Bayesian parameter inference could classify tumor responses as either
decreasing or increasing over time. Decision trees were built using DecisionTree.jl (67) and cross
validation was performed using scikit-learn (68).

Modeling MDSC dynamics in a CTL-abundant environment

As described above, the primary tumor microenvironment of focus is that of the lung, an NK cell-rich
environment (46). However, we also considered tumor-MDSC dynamics in a microenvironment
that—relative to the lung—is low in NK cells and abundant of CTLs. We modeled this CTL-abundant
environment by adjusting key CTL/NK cell-related model parameters (see Table 1 for parameter
descriptions). To model a CTL-abundant environment, we considered the parameter values given in
Table 1, but decreased the NK cells’ circulating rate to as = 103, and increased the CTL stimulation by
tumor/NK cell-interaction rate to @ = 2 x 10-3. This led to an increase in the number of CTL cells and
a concordant decrease in the number of NK cells.

Data Availability Statement

All code and data are available at a public github repository located here:
https://github.com/macleanlab/ModelingMDSCs. Tumor data (38, 61) are available in the
supplementary file tumor_data.xlsx. All other data are available in the figures, tables, and supplementary
materials or from the corresponding author upon reasonable request.

Results

Dynamics of metastatic growth in the presence of MDSCs

We studied MDSC dynamics in the context of a metastasizing tumor, specifically we focused on breast-
to-lung metastasis, i.e. metastatic growth in the lung resulting from a tumor in the breast. To
parameterize the model (model description in Methods), we considered the immune cell composition
known to be present in tumors in the lung, which is an environment abundant in NK cells (46) (Figure
1A). We began by analyzing the behavior of the deterministic model (delay differential equations
(DDEs); Eqgns. (3a)-(3d), g = 0). Simulation of the DDE model for different sizes of MDSC delay (1)
showed that the delay in the recruitment of MDSCs to the tumor site played a critical role in
determining metastatic tumor size after one year (Figure 1B-E). Tumor growth resulted in large
increases in the MDSC population. We also saw that increasing t led to slower growth and smaller
sizes of both the MDSC and tumor populations. Increasing the delay led to a lag before the MDSCs
received activation signals from the tumor and began to proliferate. Smaller MDSC population sizes
led to slower growth/smaller tumor population sizes because a smaller MDSC population made the
tumor more susceptible to killing by NK-cell and CTL populations. Note that, given the parameters in
Table 1, the same steady state would be reached for any finite 7, 0 < T < 0. The time until steady state
was positively correlated with the delay t.
In the case of no tumor (xr= 0), the tumor-free fixed point of the model is:



#r = 0, (6a)
%)

EMpsc = +, (6b)
2
. Caary
T = —, 6c
NK az33 + (2(3 (6c)
o, = 0, (6d)

where X1, Xmpsc, Xnk, and Xcr. represent the steady state values of xt, xupsc, Xnk, and xcri, respectively.
We observed baseline populations of MDSCs and NK cells at the metastatic site, but no CTL cells, as
they need to be recruited and activated against the tumor. Since tumor cells cannot be spontaneously
generated in this model, the tumor-free fixed point (Eqns. (6a)-(6d)) was stable (Supplementary Text
Section S3). In the case of a nonzero tumor population (Xt > 0), in general the steady state must be
determined numerically, although we can derive analytical approximations in special cases. For
example, for X1 > 0, the steady states of the non-tumor populations are:

ag(Er + v1) + a3l

N _ a , 7

IMDSC Cz(SCT +%) (7a)
P+ P2 4 2) + asd?

fNK = CQ ($T 71) (044 (wT 72) 055"1’"11) (7b)

(22 + 72) (2B3(@1 +71) + asBsdr + (oG3(dr + 1))’
Cdr(y + 1)
(y2 + 22) (3 + 42) ha’

where
hi = (@r(aeBsar(y +it) (2 + 2%) + Gasasir(v + 1) (v3 + %) + asBsazir (v2 + i%)
+ GGar(n +at) (2 + %)) + Gauas(v + @) (72 + 37) (v3 + 3%) ),
ha = (a2B3(1+ @)+ azfsit + (G(y + 21))(a2Ba(y1 + Z1) + azfadr + (a1 + Z1)).

If we assume that the tumor reaches its carrying capacity, 1, then the tumor steady state is given by
Eqns. (7a)-(7c) with Xr=n. A comparison of simulations with different carrying capacities is given in
Supplementary Text Section S4 and Supplementary Figures S3 and S4.

Using the model, we can also determine whether a small initial number of tumor cells will grow
to a nonzero positive steady state (for simulation, we consider steady states with xr > 10) or will
decay. This is a helpful characterization, as metastases are thought to be seeded from a small initial
number of circulating tumor cells (1, 13, 34, 37, 69). When we began at the tumor-free steady state
(Egns. (6b)-(6d)), and increased the number of tumor cells by one or two, then taking the highest
order terms in Eqn. (3a) we saw that the rate of change of the tumor population was initially positive
if G > 0. Here G can be defined as the tumor growth threshold, or equivalently, the tumor basic
reproductive ratio (analogous to Roin epidemiological models; see Supplementary Text Section S5
and Supplementary Figure S5 for details). G is given by:

G2Bioy G

G =olog(n) = @B+ CaGs (8)

Examples of simulations starting from the tumor-free steady state (Eqns. (6b)-(6d)) but with the
addition of a single tumor cell are shown in Figure 2A-C. In these examples, the tumor population



grows initially if and only if G > 0. In Figure 2A the parameter values are as defined in Table 1, giving
G = 0.8, and a resulting tumor size at steady state of 9.8x106. We changed the tumor cell death rate
(¢1) to vary G: to G = 0 (giving a tumor steady state of  1; Figure 2B), and to G = -0.2 (giving a tumor
steady state of < 1; Figure 2C). The threshold G thus gives an approximation of whether small
numbers of tumor cells will grow into fully developed metastases, of relevance for cancer prognosis,
treatment, and progression (36).

Parameter sensitivity analysis reveals that inhibition rates between populations are
important in determining tumor growth outcomes

We performed parameter sensitivity analysis to assess the relative importance of model parameters
on the growth and final size of the tumor population (see Methods for description of the model and
the parameter sensitivity analysis). Since the tumor steady state is independent of the MDSC delay as
t = oo, for sensitivity analysis we set the delay 7 = 0.

As seen in the model (Eqns. (3a)-(3d)), the MDSC-specific parameters are az, az, {2, 3, f1, and 1.
The Morris global sensitivity values of parameters on the (numerical) tumor steady state are given
in Figure 2D, where the MDSC-specific parameters are marked by hexagons. The green (red) color
denotes parameters that were positively (negatively) correlated with the tumor steady state. We
found that ¢, (death rate of MDSCs) and y: (steepness of MDSC production) were the only MDSC-
specific parameters negatively correlated with the tumor population, as increasing either of these
parameters resulted in fewer MDSCs and thus a more immunosusceptible tumor population.

As shown in Figure 2D, 3 (inhibition of NK cells by MDSCs) was the most important MDSC-specific
parameter for the tumor steady state. This is in part due to the initially large size of the NK-cell
population (46) (see NK cells in Figure 1B-E and Eqn. (6¢)): the MDSC population must effectively
suppress NK cells for the tumor to be able to grow rather than die out. Similarly, B4 (inhibition of CTL
cells by MDSCs) was important, but less so than 53 as the CTL population is initially small thus less
important for initial growth of the tumor (see CTL cells in Figure 1B-E and Eqn. (6d)). For
consideration of the model in a CTL-abundant environment, see the final section of the Results. Figure
2E and 2F show the effects of parameter f; (inhibition of NK cells by MDSCs) on the tumor steady
state at both ends of the range studied. We saw that small values of 3 (Figure 2E) resulted in small
tumors (tumor steady state approx. 2.5x102), whereas large values of 53 (Figure 2F) resulted in much
larger tumors (tumor steady state approx. 9.9 x 108).

Comparison of MDSC-specific parameters (hexagons) with non-MDSC-specific parameters
(circles, Figure 2D) showed that a, az, a1, 1, B3, {3, B4, {4, Y2, and y3 were positively correlated with the
tumor population steady state; all other parameters were negatively correlated. The most important
parameters (as measured by their effect on the tumor steady state) were as, 1, B2, f3and fa. asis the
rate of CTL stimulation by tumor-NK cell interaction, 51 and (5, are inhibition rates of tumor cells by
NK and CTL cells, and 3 and B4 are inhibition rates of NK and CTL cells by MDSCs (see Table 1).
Therefore, model dynamics are predominantly influenced by inhibition/stimulation between the
competing populations (see Figure 1A for schematic). This reinforces recent literature that highlights
these tumor-immune interactions (especially in the context of MDSCs) as important determinants of
outcomes (1, 8, 10, 17, 20, 21, 42).



Stochastic dynamics of metastatic growth and establishment

We next analyzed the stochastic dynamics of the model. Given the seeding of metastases by one or a
few cells, stochastic effects are likely to play a large role in the system. In order to study metastatic
tumor establishment and viability we simulated the SDDE model (Eqns. (3a)-(3d)), with MDSC delay
t20.

Stochastic simulations allowed for the probabilistic analysis of “successful metastases.” In the
deterministic setting, using the parameters defined in Table 1, a metastatic tumor is always formed
(G > 0). In the stochastic setting, this is no longer the case. Model outcomes vary even for identical
initial conditions due to noise in the system (10, 70, 71). Although we did not study the sources of
biological noise here, we expect the major component to result from noise in the intercellular
signaling processes, i.e. extrinsic noise (72).

To study the probability that a small number of pioneering cells will establish a new metastasis,
we implemented simulations that started with two tumor cells (see Supplementary Text Section S6
and Supplementary Figure S6 for larger initial conditions), and denoted a metastasis successful if the
number of tumor cells did not drop below one (i.e. |x(t)] > 0) in a one-year timespan (t € [0,365]
days). We note that the number of initial tumor cells is a constant parameter in our model and is
independent of any other tumors that may be present in the individual (as we only consider the
potential establishment of a new metastasis). Figure 3 shows examples of both successful metastatic
tumors (panels A and C) and unsuccessful metastatic tumors (panels B and D) for different values of
the MDSC delay 7 (see Supplementary Text Section S7 for further description). For more examples of
successful and unsuccessful tumors see Supplementary Figures S7 and S8, respectively. While a
metastatic tumor can become unsuccessful at any time point (and all tumors will be unsuccessful
almost surely as t — o), we found that the tumor population is most likely to drop below one near
the beginning of the simulation (i.e. soon after metastatic tumor seeding) when the tumor population
is small (Supplementary Figures S9 and S10).

Delays in MDSC recruitment decrease the probability of metastasis and the size of
metastatic tumors

Analysis of the probability of metastasis under different assumptions of MDSC-tumor-immune
interactions for thousands of tumors studied in silico revealed striking dependencies of tumor
outcomes on MDSC dynamics (Figure 4). Through joint analysis of the effects of the number of
circulating MDSCs (a2) and the size of the MDSC delay (7), we found that the probability of successful
metastatic tumor establishment and the average size of metastatic tumors were positively correlated
with the level of circulating MDSCs, and negatively correlated with the size of the MDSC delay. As
more MDSCs became available at or near the site of the nascent metastasis, the NK-cell and CTL
populations became more suppressed, resulting in a greater likelihood of tumor growth (Figure 4A-
B). The data indicate that the positive feedback loop (tumor cells are able to activate more MDSCs)
reinforces the tumor’s ability to grow, even in a “hot” tumor microenvironment.

We found that our model provides a biologically-driven way to determine exactly what can be
inferred from levels of circulating MDSCs. Given the relative difficulty of defining MDSCs and the
relative ease of sampling circulating cells this has clinical relevance (19). We saw that if the baseline
level of circulating MDSCs (az) was high, MDSC activation delays had little effect on the metastasis
establishment probability (Figure 4A-B), but the MDSC delay still had a pronounced effect on the
resulting sizes of the metastases that grew (Figure 4C-D and Supplementary Figure S11). Recall that
we used a liberal definition for a successful metastasis: a population of > 1 tumor cells that survives
for a year. Differences in the sizes of these nascent metastases from tens to thousands of cells bear
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direct clinical relevance. Further statistics on metastatic survival and size can be found in
Supplementary Table S1. Relative to a MDSC delay of 0 days, a MDSC delay of 365 days led to a 2-fold
decrease in the probability of successful metastasis, a 21-fold decrease in the mean tumor size (of
successful tumors), and a 4.6-fold increase in the mean time to extinction of unsuccessful metastases
(Figure 4E-F).

Supplementary Figure S12 shows the effect of the rate of MDSC inhibition of NK cells (83) and
Supplementary Figure S13 shows the effect of the rate of MDSC inhibition of CTL cells (84). In these
analyses, we found that more effective MDSCs (i.e. more inhibitory against antitumor populations)
meant NK-cell and CTL populations were more inhibited, resulting in a larger tumor burden.
However, if the level of inhibition of NK cells (3) was high enough, delays in recruitment of more
MDSCs (7) had little effect on the probability of successful metastatic tumors (as the tumor population
will grow to very large levels very quickly, independently of a large increase in the number of MDSCs)
but still affected the average size, as fewer NK cells resulted in more tumor cells (Supplementary
Figure S12). Since there are initially zero CTL cells and the CTL population does not reach extremely
high levels relative to other populations (see for instance Figure 1B-E, blue lines) changing . did not
have a large effect on the probability of successful metastasis (Supplementary Figure S13A-B).
However, increasing f. resulted in a small increase in the average size of successful tumors (see
Figure S13C-D). We contrast this with analysis of a CTL-abundant environments below in the Section
titled “Analysis of tumor—MDSC dynamics in a CTL-abundant environment”.

MDSCs can be sub-divided into one of two states: monocytic MDSCs (M-MDSCs; typically assumed
to be more immunosuppressive) and granulocytic/poly-mononuclear (G- or PMN-MDSCs) (1, 3, 6).
The relative proportion of G- to M-MDSCs can alter the immunosuppressive properties of the tumor
microenvironment (15, 73). For example, if the relative proportion of G- to M-MDSCs skews toward
M-MDSCs, we would expect larger effects of MDSC delays (as seen in Figure 4), whereas the opposite
would be expected if G-MDSCs dominate. Extensions of the current model include separating M-
MDSCs and G-MDSCs, with for instance 3M-MDSCs > 33G-MDSCs gnd [34M-MDSCs > [3,G-MDSCs, see the Discussion

for further details.

To summarize the results of this section, we have identified two crucial effects of MDSC delays on
the stochastic tumor dynamics. First, that MDSC delays always resulted in significantly smaller tumor
sizes. This effect became more pronounced as MDSCs became more immunesuppressive (in the
model: when £33, f4 were large). Under these conditions, the increase in MDSCs allowed the tumor to
outcompete the antitumor populations and reach large sizes. However if the MDSCs were so powerful
as to completely inhibit the NK-cell and CTL populations, then increasing £33, s had no further effect.
The effect of MDSC delay on tumor size was less pronounced when the MDSCs were less
immunesuppressive (i.e. when 53, fsare small): in this case increases in the number of MDSCs did not
have significant effects on the long term dynamics of the other populations.

Second, that MDSC delays could result in drastically decreased probabilities of a successful new
metastasis. This effect was most pronounced when the initial level of circulating MDSCs (a2) was not
too high, and when the MDSCs were not too immunesuppressive of the NK-cell population (large £5).
This was due to the greater likelihood of extinction of stochastic tumors (|x;(t)] < 1) early in the
simulation. If the level of circulating MDSCs (az) was high, offering the nascent tumor protection
against CTL and NK-cell responses, then the effects of delays in recruitment of more MDSCs were
lessened. Similarly, if the MDSCs were strongly immunesuppressive (particularly against NK cells),
then the tumor was likely to grow to a large size quickly, negating the impact of delays in MDSC
recruitment on the probability of successful establishment of a new metastasis. These results
establish how MDSC plasticity, as defined by their different suppressive functions and environments
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(i.e. circulation throughout the body or within a tumor), differentially contribute to tumor growth
and progression of disease from a primary tumor location to a distant metastatic site.

Bayesian parameter inference reveals the clinical importance of MDSC-NK cell
interactions in the lung microenvironment

To assess more rigorously the variability and uncertainty with which we know model parameters, we
performed Bayesian parameter inference using clinical data on tumor progression as defined through
RECIST (38). We fit the model, initialized in a lung microenvironment (Figure 5A) to data from six
individual tumors that spanned possible response outcomes (Figure 5B). We selected a three-
dimensional free parameter space (see Methods), consisting of the tumor growth rate, the NK-cell
inhibition rate by MDSCs, and the rate of CTL stimulation by tumor-NK cell interactions. Successful
fits were obtained for each of the tumors fit (Figure 5C-D and Supplementary Figures S14 and S15).

To analyze the parameters that give rise to different response dynamics, we plotted parameters
sampled from the posteriors of each tumor fit (Figure 5E-G). We saw a clear trend towards larger
values of tumor growth rate (a1) and NK-cell inhibition rate by MDSCs (f3) for tumors that did not
respond to treatment (tumors 5 & 6) compared to those that did respond to treatment (tumors 1 &
2) (Figure 5E). This can be understood in light of the previously characterized effects these
parameters have on tumor growth (see e.g. Figure 2D). Furthermore, strong correlations were
observed for these parameters. The correlation between the two parameters was steeper for
increasing tumors, suggestive of the discriminative ability of this parameter pair for quantifying
tumor outcomes (i.e. whether tumors will grow or decay upon the initiation of treatment). In
comparison, no correlations nor distinct effects on tumor outcomes were observed for the other two
parameter pairs (Figure 5F-G).

We tested the discriminative power of different combinations of posterior parameters by training
decision trees to classify tumor responses as either decreasing (i.e. tumors 1 & 2) or increasing (i.e.
tumors 5 & 6) over time. Supplementary Table S2 gives the cross validation scores for decision trees
(maximum depth three) trained on different sets of posterior parameters as features. In line with the
joint marginal posterior distributions observed (Figure 5E) we saw that the best discriminative
power was obtained using both the tumor growth rate (@1) and the NK-cell inhibition rate by MDSCs
(B3) as features (81.5% mean accuracy). When constrained to using one feature, the NK-cell inhibition
rate by MDSCs (69.1% mean accuracy) was a better predictor than the tumor growth rate (62.8%
mean accuracy), even though the tumor growth rate was intricately tied to the classification outcome
(43). Interest in interactions between MDSCs and NK cells has been growing in recent years (20, 21,
24); our results strongly suggest that more investigation is warranted.

Given that the clinical data did not capture immune dynamics, and the relative simplicity of the
tumor dynamics in response to treatment, we expected to obtain fits to different individual tumor
outcomes with the model. However, the relative importance of parameters that the fits revealed were
unexpected. The strength of immunesuppressiveness—as controlled by NK-cell inhibition by
MDSCs—was identified as the most important parameter in determining outcome. This has direct
clinical implications: while it may not yet be possible to directly modulate this parameter in a clinical
setting, it highlights the importance of interventions targeting properties of MDSCs in and around the
tumor site. Moreover, successful fitting of various tumor responses to tumor—MDSC dynamics and
the stratification of rate parameters that resulted demonstrates our ability to build and fit patient-
specific tumor growth models (74), with which to predict metastatic outcomes.
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Analysis of tumor—MDSC dynamics in a CTL-abundant environment

To complement the analysis thus far of tumor-MDSC dynamics in NK cell-abundant environments,
we studied how outcomes change if we considered an environment with relatively few NK cells but
which was abundant in CTLs (see parameter in Methods and Figure 6A). Simulation of the DDE model
for different MDSC delays in the CTL-abundant environment Supplementary (Figure S16) showed a
dramatic increase in the steady state value of the CTL population, and declines in the NK population,
relative to the NK cell-abundant environment (Figure 1B-E). Since CTL cells must be activated before
they act against the tumor (Eqn. (1d)), and since simulations start from the tumor-free steady state
(initially zero CTL cells, (Eqn. (6d)), then in the CTL-abundant environment small changes in the
MDSC delay had negligible effects on the probability of establishing a new tumor (Figure 6B-C and
Supplementary Figure S17). This highlights the importance of the environment: whereas small delays
in MDSC recruitment/activation will impact tumor growth in the case that there are already
circulating immune cells at the tumor site, this is not the case when the dominant immune component
must be activated to respond to tumor growth.

We went on to fit the model to clinical response data, similar to above, but not assuming a CTL-
abundant environment and adjusting the parameters accordingly. We observed an increase in the
influence of as (CTL stimulation by tumor-NK cell interaction) in classifying tumor outcomes (Figure
6D-F and Supplementary Table S3, see also Supplementary Figures S18 and S19 for model fits), thus
CTL-related parameters became more important in this context (although note that the results of
parameter inference in this setting are not directly comparable to those above due to differences in
the prior distributions). The relative increase in importance makes sense intuitively: the increase in
the CTL population size in a CTL-abundant environment can be expected to lead to greater
prominence of this population in regulating tumor outcomes, and thus the predictive power of its
parameters for classification. We observed a corresponding drop in the importance of NK cell-related
parameters: the tumor growth rate was now the most important single parameter in determining
tumor outcome (Supplementary Table S3); whereas previously the NK-cell inhibition rate by MDSCs
was ranked highest.

Discussion

Cancer dynamics are complex, and understanding cancer-immune dynamics is a complex systems
biology problem (10, 28, 29, 39, 43). Modeling how tumors interact with the immune system is critical
for understanding treatment responses and predicting the best possible therapeutic strategies in
response to metastasis. MDSCs have been identified in various tumor microenvironments (8, 9, 15),
where they can exert strong immunosuppressive effects leading to worse outcomes (12, 17, 37), yet
a rigorous theoretical characterization of MDSC dynamics in the tumor microenvironment has
remained lacking. Here, through the introduction of a SDDE model with which to study tumor-MDSC
dynamics, we have provided means to characterize the plasticity of MDSCs and their effects on tumor
progression and outcome.

With this model we began by studying outcomes under simple, idealized circumstances, such as:
how large do tumors grow in the presence of MDSCs? What is their likelihood of persistence in the
stochastic case? We discovered that delays in MDSC recruitment/activation had striking effects on
metastatic growth and establishment. Under certain conditions (lower levels of circulating MDSCs),
strategies that block MDSC recruitment to the site of the tumor are likely to greatly improve
metastatic outcomes and hinder growth. We also demonstrated through model analyses how
strategies that decrease the immunosuppressive properties of MDSCs are likely to have dramatic
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antitumor effects. Via Bayesian parameter estimation using data from tumor growth in vivo, we
identified correlations between the tumor and the MDSC response parameters, again demonstrating
the potential of inhibition of MDSCs as a desirable drug target.

Our inference results showed that in NK cell-abundant environments such as the lung, MDSC
inhibition of NK cells was a crucial parameter determining outcomes; more important even than the
tumor growth rate. We also found important differences between tumor microenvironments: we
focused primarily on MDSC dynamics in the lung, an NK cell-rich environment (24, 46), however we
contrasted this with analysis of a CTL-abundant environments, i.e. one in which CTL cells are greater
in number than NK cells. In such a CTL-abundant environment, we observed a rise in prominence of
the role of CTL activation (75, 76). Future work, where prompted by data, may need to examine
intermediate environments, where CTL and NK-cell population sizes are more closely matched. Here,
we might expect to see both NK-cell and CTL parameters to be important in informing tumor growth
outcomes.

These results suggest that the identification of effective anti-MDSC treatment strategies to control
cancer growth and spread ought to be more highly prioritized (8, 13, 17, 24). In particular, drug
treatments that block MDSC recruitment to tumor sites and/or target MDSCs in the lymphoid organs
might be expected to be most highly effective in preventing metastasis, but their effects are likely to
be lessened if the level of circulating MDSCs is low or if MDSCs are less effective at suppressing
antitumor populations. Since the level of circulating MDSCs (as well as the level of MDSC-
immunosuppression) is likely to be highly variable within patients (20, 77), effective treatment
strategies ought to be informed by patient-specific biomarkers (74, 78). In addition, evaluation of the
phenotype of circulating MDSCs may not fully reflect the immunosuppressed state within tumors
enough to predict potential response to immunotherapy, which may be determined in part by further
mathematical and data-driven modeling. Towards this end, we have shown via tumor-specific
parameter inference that we can train machine learning models using posterior parameters to
classify metastatic outcomes. Future work, informed by more data (such as richer dynamic
information or single-cell gene expression data) will provide additional means to classify treatment
outcomes. In this context it will be important to consider the prediction of responses in different
tumor microenvironments and under different treatment regimes.

MDSCs cannot be assumed to be a homogeneous population. Although we have assumed as such
here—for lack of data with which to quantify subpopulation-specific MDSC rate parameters—future
models ought to consider MDSC heterogeneity. MDSCs are typically classified into one of two possible
cell types, M-MDSCs and G-/PMN-MDSCs, which exhibit different levels of immunosuppression (1, 3,
15). M-MDSCs in metastatic breast cancer patients resemble monocytes isolated from patients with
sepsis, indicating fascinating similarities between the immunosuppression capability of the MDSCs
present in metastatic (but perhaps not primary) breast cancer patients and those involved in the
immunosuppressive sepsis response (79). Further measurement of MDSC subtype-specific
immunosuppression in vivo will likely yield substantial new insight into their activity. Moreover,
these additional data will permit the fitting of more detailed mathematical models that are able to
describe patient-specific (or even tumor site-specific) dynamics and quantify the possible benefits of
treatments targeting MDSCs. Current knowledge suggests that shifting MDSC phenotypes towards G-
MDSCs is beneficial as this state is less immunosuppressive (1, 15), however further characterization
of these states is needed.

The models we have developed of MDSCs in the tumor microenvironment do not consider space,
although of course spatial architectures play an important role in tumor progression (28, 32), in
primary growth as well as for circulating tumor cells that seed metastases (34, 80). The role of spatial
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aspects of cancer niches in regulating MDSC-tumor dynamics will be an important topic in future
work (81). Here, carefully fitting models to appropriate data ought to include both single-cell-
resolved characterization of the tumor microenvironment (15) and explicit spatial characterizations
(82, 83). Furthermore, non-immunological mechanisms of MDSC suppression (e.g. tissue remodeling,
angiogenesis, priming the metastatic niche (1)) may be important to consider in future models. Given
our preclinical and clinical results (15), one current avenue of investigation is defining which
mechanisms of MDSC suppression are affected by the epigenetic modulating drug entinostat, which
sensitizes the lung metastatic tumor microenvironment and as such considers both immune- and
non-immune-mediated mechanisms of suppression. In addition, the level of suppression imparted by
MDSCs within a tumor is not only directly affected by the signaling cascades and subsequent
mechanism of suppression engaged (i.e. metabolic via amino acid depletion vs. immunologic
suppression by IL10), but also indirectly affected by the surrounding microenvironments in which
immune cell infiltration greatly varies. These are questions we hope to address in future work.

There is an urgent need to understand the role of MDSC dynamics during tumor growth and
metastasis. Here, we discovered an essential and remarkable role for MDSC recruitment/activation
in dictating growth outcomes in the context of new metastases. This is but the first step. To make
progress, further conceptual model development tightly linked to inference and the gathering of
higher-resolution data on MDSC phenotypes in vivo will be crucial. Mathematical modeling will
continue to play an integral part in discovery as it allows us to account for the numerous and dynamic
factors controlling MDSC plasticity and its impact of tumor responses in a way that traditional
biologic biomarkers alone cannot. Only by developing theory and gathering data hand-in-hand can
we hope to gain an understanding of the dynamics of MDSCs in the tumor microenvironment, and in
turn, develop new therapies for metastatic disease.
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Notation Description Value Units Reference Range
xr(t),t<0 initial condition for tumor cells lor2 - -
xmMpsc(0) initial condition for MDSCs a2/{2 - -
xnk(0) initial condition for NK cells % - -
xcTL(0) initial condition for CTL cells 0 - -
T delay parameter for MDSCs varies days - -
al tumor growth rate 10-1, varies days! (40, 84, 85) [10-25 x 10-1]
n tumor maximum size 107, varies - estimated [106,108]
1 tumor cells inhibition rate by NK cells 3.5x10°¢ days! (40, 84, 85) [10-7,10-6]
B2 tumor cells inhibition rate by CTL cells 1.1 x 107 days! (84) [10-7,10-6]
{1 tumor cell death rate 0, varies days! (30) [0,0.1]
az MDSCs circulating rate 102, varies days! estimated (77) [0,103]
a3 MDSCs expansion coefficient 108 days! (23, 30, 86) [107,109]
Q2 MDSCs death rate 0.2 days-! (87,88) [0,1]
a4 NK cells circulating rate 1.4 x 104, varies days! (84) [103,105]
as NK cells expansion coefficient 2.5x102 days! (40, 84, 85) [10-2,10-1]
B3 NK cells inhibition rate by MDSCs 4 x 10-5, varies days-! (30) [10-5,10-4]
{3 NK cells death rate 4.12 x 102 days! (84) [10-2,10-1]
a6 CTL stimulation by tumor-NK cell interaction 1.1 x 107, varies days! (89,90) [10-7,10-6]
a7 CTL expansion coefficient 10-1 days! 91) [5x10210-1]
B4 CTL inhibition rate by MDSCs 10-4, varies days! (30) [5x10-55x 10-4]
{4 CTL death rate 2 %102 days! (40, 89) [10-2,10-1]
y1 steepness of MDSC production 1010 - (30, 86) [109,1011]
y2 steepness of NK production 2.02 x 107 - (40, 84) [106,108]
y3 steepness of CTL production 2.02 x 107 - (40, 84, 85) [106,108]

Table 1: Description of model parameters and values.

Estimated from the literature, see in particular (40,

77,84, 86). Cell populations are measured in terms of cell numbers and are non-dimensionalized. The first
column is the parameter notation, the second column is the parameter description, the third column is the
parameter estimated value, the fourth column is the parameter units (if applicable), the fifth column is the
citation of the reference for the parameter estimate, and the sixth column is the parameter range used for the
global stability analysis (see Methods).

Figure Legends

Figure 1: Larger MDSC delays result in significantly altered tumor growth dynamics. A: Model diagram.
The myeloid-derived suppressor cell (MDSC), natural killer (NK) cell, and cytotoxic T (CTL) populations are all
signaled to proliferate in the presence of a metastatic tumor. The MDSC population inhibits the NK-cell and CTL
populations, and the NK-cell and CTL populations inhibit the tumor population. B-D: Simulations of the
deterministic (DDE) system (Eqns. (3a)-(3d), g = 0) over one year, with one initial tumor cell and different
MDSC delay parameter 7. See Methods for simulation details. (B); t = 0. (C); T = 10. (D); = 50. (E); T = 365.

Figure 2: Dependencies of tumor growth characteristics on model parameters. Simulations of the ODE
system (Eqns. (3a)-(3d), g = T = 0) with one initial tumor cell. A-C: Different tumor growth thresholds G (Eqn.
(8)).(A); G= 0.8 (parameters as in Table 1). (B); G~ 0 (¢1=0.81). (C); G=-0.2 (¢1=1). D: Morris global sensitivity
analysis (GSA) for the steady state of the tumor population for all model parameters. Green denotes parameters
that are positively correlated with the tumor size at steady state; red denotes negatively correlated. Hexagons




represent MDSC-specific parameters; circles represent non-MDSC-specific parameters. E-F: Effects of the NK-
cell inhibition rate by MDSCs (3), for 83 = 10-5, the minimum of the GSA range (E); the tumor size at steady state
is 2.5 x 102. And for 3= 104, the maximum of the GSA range (F); The tumor size at steady state is 9.9 x 10¢.

Figure 3: Stochastic effects influence the growth and probability of establishment of metastatic tumors.
Examples of simulations of the SDDE system (Eqns. (3a)-(3d)) over one year, with two initial tumor cells and
different values of the MDSC delay parameter, 7 (all other parameters not explicitly defined otherwise are as in
Table 1). A “successful” metastatic tumor is one that does not drop below a size of one tumor cell over the
simulation period. A: T = 0; successful. B: T = 10; unsuccessful. C: T = 50; successful. D: 7 = 365; unsuccessful.

Figure 4: Effects of MDSC properties on the probability of metastatic establishment. Stochastic
simulations run for a period of one year. Each point is the mean over at least 105 simulations. All parameters
not explicitly defined otherwise are as in Table 1. Ribbons (shaded area) represent the standard error. A:
Probability of new tumor establishment over a period of one year, for different values of the level of circulating
MDSCs (a2) and the MDSC delay (7). B: As for A with t plotted on log scale. C: Of the new metastases that are
successfully established, the distribution of their means sizes is given. D: As for C with t plotted on log scale. E:
Of the new metastases that go extinct, the distribution of the mean times to extinction is given. F: As for E with
T plotted on log scale.

Figure 5: Interactions between MDSCs and NK cells control clinical tumor growth outcomes. All
parameters not explicitly defined otherwise are as in Table 1. A: Schematic diagram of NK cell-abundant
environment. B: Relative change in tumor size from the baseline assessment for six tumors from non-small cell
lung cancer patients undergoing treatment with anti-PD-L1. Tumors are ordered (1-6) by their response,
compared to baseline assessment. C: Tumor 2 model trajectories based on the relative change in the tumor
population with the black dots representing the data, the purple line representing the fit from using the median
of the posterior distribution for each parameter, and the shaded area denoting the 90% credible interval (where
90% of the posterior trajectories lie). D: Same as B for tumor 5. E-G: Samples from the posterior distribution of
each of the six tumors, 8x103 samples plotted for pairs of model parameters. E: NK-cell inhibition rate by MDSCs
(B3) versus tumor growth rate (a1). F: NK-cell inhibition rate by MDSCs (83) versus CTL stimulation by tumor-
NK cell interaction (as) G: CTL stimulation by tumor-NK cell interaction (as) versus tumor growth rate (az1).

Figure 6: The impact of CTL parameters on tumor growth increases in a CTL-abundant environment. A:
Schematic diagram of CTL-abundant environment. B: Stochastic simulations run for a period of one year. Each
point is the mean over at least 105 simulations. Ribbons (shaded area) represent the standard error. Probability
of new tumor establishment over a period of one year, for different values of the level of circulating MDSCs (az)
and the MDSC delay (7). C: As for A with t € [0,10]. Simulations use parameters as defined in the final section
of the Methods, all other parameters not explicitly defined otherwise are as in Table 1. D-F: Samples from the
posterior distribution of each of the six tumors, 8 x 103 samples plotted for pairs of model parameters. D: NK-
cell inhibition rate by MDSCs (f33) versus tumor growth rate (a1). E: NK-cell inhibition rate by MDSCs (83) versus
CTL stimulation by tumor-NK cell interaction (as) F: CTL stimulation by tumor-NK cell interaction (as) versus
tumor growth rate (a1).
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