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Abstract	
Myeloid-derived	suppressor	cells	(MDSCs)	play	a	prominent	role	in	the	tumor	microenvironment.	
A	quantitative	understanding	of	the	tumor–MDSC	interactions	that	influence	disease	progression	
is	critical,	and	currently	lacking.	We	developed	a	mathematical	model	of	metastatic	growth	and	
progression	 in	 immune-rich	 tumor	 microenvironments.	 We	 modeled	 the	 tumor–immune	
dynamics	with	stochastic	delay	differential	equations	and	studied	the	impact	of	delays	in	MDSC	
activation/recruitment	on	tumor	growth	outcomes.	In	the	lung	environment,	when	the	circulating	
level	 of	MDSCs	was	 low,	 the	MDSC	delay	had	 a	 pronounced	 impact	 on	 the	probability	 of	 new	
metastatic	establishment:	blocking	MDSC	recruitment	could	reduce	the	probability	of	metastasis	
by	as	much	as	50%.	To	predict	patient-specific	MDSC	responses	we	fit	 to	the	model	 individual	
tumors	treated	with	immune	checkpoint	inhibitors	via	Bayesian	parameter	inference.	We	reveal	
that	control	of	the	inhibition	rate	of	natural	killer	(NK)	cells	by	MDSCs	had	a	larger	influence	on	
tumor	outcomes	than	controlling	the	tumor	growth	rate	directly.	Posterior	classification	of	tumor	
outcomes	 demonstrates	 that	 incorporating	 knowledge	 of	 the	 MDSC	 responses	 improved	
predictive	accuracy	from	63%	to	82%.	Investigation	of	the	MDSC	dynamics	in	an	environment	low	
in	NK	cells	 and	abundant	 in	 cytotoxic	T	 cells	 revealed,	 in	 contrast,	 that	 small	MDSC	delays	no	
longer	 impacted	 metastatic	 growth	 dynamics.	 Our	 results	 illustrate	 the	 importance	 of	 MDSC	
dynamics	 in	 the	 tumor	 microenvironment	 overall	 and	 predict	 interventions	 promoting	 shifts	
toward	 less	 immune-suppressed	 states.	We	propose	 that	 there	 is	 a	 pressing	 need	 to	 consider	
MDSCs	more	often	in	analyses	of	tumor	microenvironments.	
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Introduction	
Myeloid-derived	 suppressor	 cells	 (MDSCs)	 are	 immature	 myeloid	 immune	 cells	 that	 become	
pathologically	activated	with	potent	immunosuppressive	activity	(1–7).	Since	the	introduction	of	the	
term	 “MDSC”	 in	 the	 late	 1990s	 (4–6),	 there	 has	 been	 a	 great	 deal	 of	 effort	 to	 understand	MDSC	
phenotypes	and	dynamics.	MDSCs	are	 implicated	 in	 the	 regulation	of	 immune	responses	 in	many	
biological	contexts	and	pathological	conditions,	including	cancer,	inflammation,	wound	healing,	and	
autoimmune	disorders	(1).	Some	have	gone	as	far	as	to	claim	that	MDSCs	are	“the	most	important	cell	
you	 have	 never	 heard	 of”	 (8).	 Recently,	 with	 the	 advent	 of	 high-dimensional	 measurement	
technologies	 including	 mass	 cytometry	 and	 single-cell	 RNA	 sequencing,	 the	 characterization	 of	
MDSCs	and	 their	 roles	 in	diverse	contexts	has	become	more	 refined	 (7,	9).	Here,	we	characterize	
MDSCs	 by	 their	 function—immunosuppressive	 activity—rather	 than	 their	 expression	 phenotype	
(e.g.	CD11b+	and	Gr-1+	in	mice),	bypassing	the	need	to	delve	into	the	heterogeneity	of	the	CD11b+Gr-
1+	population	at	the	single-cell	level.	

In	the	context	of	cancer,	the	role	of	MDSCs	is	convoluted,	in	part	due	to	the	complexity	of	the	tumor	
microenvironment	 and	 related	 immunology	 (3,	 10–14).	 MDSCs	 certainly	 play	 important	 roles	 in	
tumor	microenvironments	(8,	9,	15,	16);	increased	levels	of	MDSCs	are	associated	with	poor	clinical	
outcomes	(2,	12,	17–19);	although	an	important	caveat	is	that	studies	often	measure	only	circulating	
MDSCs.	 There	 is	 compelling	 evidence	 that	 MDSCs	 can	 effectively	 shield	 tumors	 from	 antitumor	
immune	responses	mediated	by	cytotoxic	T	cells	and	natural	killer	(NK)	cells	(20–24).	Thus,	targeting	
MDSCs	as	a	way	to	sensitize	non-immunogenic	tumors	is	an	attractive	treatment	strategy	in	cancer	
immunotherapy	(16,	17).	MDSC	dynamics	have	also	been	studied	 in	 the	specific	context	of	breast	
cancer,	 where	 they	 have	 been	 shown	 to	 affect	 the	 progression	 of	 primary	 breast	 tumors	 and	
associated	metastases	(7,	15,	18,	23,	25–27).	

Understanding	 tumor–immune–MDSC	 dynamics	 is	 by	 nature	 a	 systems	 biology	 problem.	
Mathematical	 and	 computational	modeling	 are	 essential	 to	 tease	 apart	 the	 intricate	 relationships	
involved	 (28,	 29).	 There	 have	 been	 relatively	 few	works,	 in	 comparison	 to	 experimental/clinical	
interest,	 in	 the	 literature	 that	report	mathematical	models	of	MDSCs	(30–33).	Shariatpanahi	et	al.	
(30)	 developed	 a	 model	 described	 by	 ordinary	 differential	 equations	 with	 which	 they	 explored	
therapeutic	strategies	that	aim	to	restore	antitumor	immunity,	in	comparison	with	experimental	data	
(23).	Allahverdy	et	al.	(31)	developed	a	stochastic	agent-based	model	that	was	used	to	explore	the	
effects	 of	 different	 drugs	 on	MDSC	 and	 tumor	 dynamics.	 Liao	 et	 al.	 (32,	 33)	 developed	 a	model	
described	by	partial	differential	equations	that	was	used	to	determine	optimized	drug	treatment	and	
to	understand	primary	drug	resistance.	While	these	models	offer	insight	into	the	roles	of	MDSCs,	a	
rigorous	treatment	of	MDSC	dynamics	in	the	tumor	microenvironment,	fitting	models	to	data,	and	
taking	into	account	the	effects	of	noise	remains	lacking.	

Here,	we	focus	on	the	effect	of	MDSC	dynamics	on	metastatic	tumor	growth	following	an	initial	
seeding	event.	Most	cancer	deaths	are	a	result	of	metastasis	(34):	a	highly	dynamic	and	stochastic	
process.	Most	metastatic	tumors	are	seeded	by	a	small	number	of	circulating	tumor	cells	(13,	34).	
MDSC	migration	to	the	site	of	a	new	tumor	has	been	identified	as	crucial	for	cancer	progression,	both	
in	primary	tumors	and	metastases,	but	the	interactions	involved	are	not	well	understood,	in	part	due	
to	 a	 relative	 lack	 of	 MDSC	 characterization,	 the	 complex	 tumor–immune	 environment,	 and	 the	
difficulties	associated	with	tracking	cell–cell	interactions	in	vivo	(13,	35,	36).	As	a	result,	there	are	
many	 open	 and	 pressing	 questions	 regarding	 MDSCs	 and	 tumor	 metastasis	 (37).	 How	 much	
therapeutic	benefit	can	be	gained	by	blocking	MDSC	recruitment	to	the	tumor	site?	Would	therapies	
that	decrease	 the	number	of	 circulating	MDSCs	achieve	 similar	or	greater	effects?	There	are	now	
various	methods	to	target	MDSCs	in	peripheral	lymphoid	organs	and	their	migration	to	tumor	sites.	
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However,	 it	 is	not	 clear	whether	 either	of	 these	methods	 alone	will	 be	 sufficient	 to	 inhibit	MDSC	
immunosuppressiveness	at	a	tumor	site	or	whether	combination	approaches	will	be	required.	

To	 address	 these	 questions,	 we	 developed	 a	 stochastic	 delay	 differential	 equation	 model	 of	
metastatic	 tumor	 growth.	 We	 included	 an	 MDSC	 delay	 that	 could	 represent	 delays	 in	 MDSC	
recruitment	to	the	metastatic	tumor	site	as	well	as	delays	in	MDSC	activation	to	suppress	antitumor	
immune	cells.	Stochasticity	was	included	due	to	the	inherent	noise	in	the	cell	dynamics,	and	to	allow	
the	assessment	of	the	probabilistic	events	of	new	metastases.	We	first	demonstrated	the	importance	
of	 MDSCs	 in	 the	 tumor	 immune	 microenvironment	 and	 established	 conditions	 necessary	 for	
metastatic	growth	for	the	deterministic	model.	We	then	identified	the	most	important	parameters	
and	interactions	in	the	system,	to	shed	light	on	the	underlying	biological	dynamics.	Next,	 through	
simulation	we	explored	the	impact	of	MDSC	delays	on	metastatic	growth,	finding	that	under	certain	
conditions,	inhibiting	MDSC	recruitment	alone	might	be	a	highly	effective	treatment	strategy.	Finally,	
we	performed	Bayesian	parameter	estimation	of	models	fit	to	individual	tumors	growing	in	vivo,	from	
which	 we	 determined	 tumor-	 and	 MDSC-specific	 parameters.	 Inference	 results	 revealed	 that	
knowledge	 of	MDSC-specific	 parameters	 is	 important	 to	 be	 able	 to	 accurately	 predict	metastatic	
outcomes.	

Methods	

A	stochastic	delay	differential	equation	model	of	tumor–immune	dynamics	in	the	
presence	of	MDSCs	
Mathematical	 modeling	 of	 tumor–immune	 cell	 interactions	 has	 been	 increasingly	 recognized	 as	
critical	for	understanding	strategies	to	mount	an	effective	response	to	cancer	initiation,	spread,	and	
evolution	 (28,	29,	38–43).	Herein,	we	 first	describe	a	 theoretical	basis	 for	MDSC	dynamics	 in	 the	
context	of	a	metastasizing	tumor	(e.g.	in	the	lung,	bone,	or	liver	(44))	from	a	primary	tumor	in	the	
breast.	For	parameterization	of	the	model,	we	focused	on	the	lung,	as	it	is	one	of	the	most	common	
distant	metastases	sites	of	breast	cancer	(45).	Thus,	we	primarily	considered	an	NK	cell–abundant	
environment	(46).	

Our	mathematical	 model	 is	 comprised	 of	 four	 non-spatial	 delay	 differential	 equations	 to	
describe	tumor–immune	interactions	incorporating	MDSCs.	Our	model	is	built	on	previous	literature	
in	mathematical	oncology	(30,	40)	with	a	focus	on	the	role	of	MDSCs	in	metastases	(37).	We	used	our	
previous	preclinical	data	(15),	and	data	reported	in	the	literature	(cited	below	and	in	Table	1),	and	
focused	 on	 important	 interactions	 between	 tumor,	 immune	 and	MDSC	 populations,	 leading	 to	 a	
relatively	simple	model	that	allowed	us	to	gain	insight	into	system	dynamics	and	metastatic	tumor	
spread.	We	 included	 the	 antitumor	 immune	 populations	 of	 cytotoxic	 T	 cells	 (CTL)	 and	NK	 cells.	
MDSC–CTL	 interactions	 are	 important	 given	 the	 primary	 function	 of	 intratumoral	 MDSCs	 is	
suppression	of	CTLs	(1,	6,	15,	16).	MDSC–NK	cell	interactions	are	also	important	(20–22,	24,	25),	and	
NK	cells	are	increasingly	being	studied	as	an	immune	population	specifically	affected	by	tumor	cells	
to	promote	metastasis	(47,	48).	A	schematic	diagram	of	the	model	is	provided	in	Figure	1A.	

We	denote	xT,	xMDSC,	xNK,	and	xCTL	as	the	populations	of	tumor	cells,	MDSCs,	NK	cells,	and	CTL	cells,	
respectively,	at	time	t.	The	model	derived	can	be	expressed	conceptually	(i.e.	agnostic	as	yet	to	the	
form	of	the	dynamics)	as	follows,	where	δxi	denotes	the	rate	of	change	of	xi,	i	∈	[T,	MDSC,	NK,	CTL].	

δxT	 =	 growth	of	tumor	cells	−	tumor	cells	inhibited	by	NK	cells 	
	 −	 tumor	cells	inhibited	by	CTL	cells	−	death	of	tumor	cells	 ,	 (1a)	
δxMDSC	 =	 circulating	level	of	MDSCs	+	recruitment	of	MDSCs	in	presence	of	tumor 	
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	 −	 death	of	MDSCs	 ,	 (1b)	

δxNK	 =	 circulating	level	of	NK	cells	+	recruitment	of	NK	cells	in	presence	of	tumor 	

	 −	 NK	cells	inhibited	by	MDSCs	−	death	of	NK	cells	 ,	 (1c)	

δxCTL	 =	 CTL	cells	stimulated	by	NK-tumor	interaction	+	recruitment	of	CTL	cells	in	presence	of	tumor 	
	 −	

CTL	cells	inhibited	by	MDSCs	−	death	of	CTL	cells	 ,	 (1d)	
Based	on	these	biological	processes,	we	developed	a	stochastic	delay	differential	equation	(SDDE)	

model	to	characterize	tumor–immune	interactions.	This	model	is	described	by	the	equation:	

 dxi(t)	 =	 f(xj(t),xj(t	−	τ))dt	+	g(xj(t),xj(t	−	τ))dW(t),	 (2)	

at	time	t,	with	delay	0	<	τ	<	t,	where	f(·)	describes	the	deterministic	dynamics	controlled	by	the	model	
interactions,	g(·)dW(t)	describes	the	stochastic	dynamics,	dW(t)	denotes	an	increment	of	a	Weiner	
process,	W(t),	 and	 xj(t)	 =	 [xT(t),xMDSC(t),xNK(t),xCTL(t)].	 The	model	 thus	 consists	 of	 coupled	 SDDEs,	
where	we	assumed	an	Itô	interpretation	(49).	For	the	stochastic	dynamics,	we	have:	

g(xj(t),xj(t	−	τ))	=	ξi(t),	

where	ξi(t)	is	the	size	of	the	ith	population,	i.e.	we	assumed	multiplicative	noise	(49,	50).	We	studied	
the	 tumor–immune	 dynamics	 under	 the	 assumption	 of	 multiplicative	 noise	 given	 the	 mounting	
evidence	that	biological	systems	more	often	exhibit	dynamics	generated	from	multiplicative	noise	
models	(51).	

For	the	deterministic	dynamics,	we	have:	
	

with	description	of	the	parameters	in	Table	1.	We	modeled	tumor	growth	(first	term	of	Eqn.	(3a))	
according	to	a	Gompertzian	model	(30,	38),	with	maximum	size	η.	Tumor	cells	can	be	eradicated	by	
NK	cells	and	CTLs	(antitumor	response),	with	rates	β1	and	β2,	respectively.	MDSCs	are	activated	due	
to	their	basal	circulation,	α2,	and	die	at	rate	ζ2.	In	the	presence	of	tumor	cells,	immune-suppressive	
signals	(α3)	lead	to	increased	MDSC	production,	activation,	and	recruitment	to	the	site	of	the	tumor,	
and	 the	 size	 of	 the	MDSC	 population	 increases;	 i.e.,	 tumor	 growth	 can	 dramatically	 increase	 the	
number	of	MDSCs.	In	the	absence	of	tumor	cells,	α3	is	zero	and	the	MDSC	population	is	unaffected.	

MDSCs	 are	 produced	 primarily	 in	 the	 bone	 marrow,	 from	 which	 they	 migrate	 to	 peripheral	
lymphoid	organs	and	tumor	sites	in	tumor	bearing	hosts	(13,	52).	The	delay	in	activation/recruitment	
of	MDSCs	to	the	site	of	a	tumor	was	modeled	using	a	Mackey-Glass	delay	term	(53),	with	a	delay	of	τ	
(second	term	of	Eqn.	(3b)).	We	also	considered	an	alternative	form	for	the	delay,	for	which	we	found	
the	dynamics	were	similar;	see	Supplementary	Text	Section	S1	and	Supplementary	Figure	S1.	We	
considered	delays	only	in	xMDSC;	while	other	delays,	e.g.	in	CTL	activation,	may	well	be	important	in	
some	contexts,	here	such	a	delay	was	observed	to	exert	only	minor	effects	on	the	tumor	dynamics,	
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due	 to	 the	 low	circulating	 levels	of	CTL	cells	 (Supplementary	Text	Section	S2	and	Supplementary	
Figure	S2).	We	note	that	the	model	does	not	include	MDSC	subtypes	or	maturation,	but	accounts	only	
for	 their	 functional	 significance	 as	 immature	 myeloid	 cells	 with	 immunosuppressive	 capability.	
Future	 work	 could	 include	 MDSC	 maturation	 into	 other	 cell	 types	 as	 influenced	 by	 the	 tumor	
microenvironment,	see	the	Discussion	for	further	details.	

Regarding	 the	 antitumor	 immune	 dynamics,	 NK	 cells	 are	 produced	 at	 rate	 α4,	 and	 CTLs	 are	
activated	by	the	NK	cell–tumor	cell	interaction	at	rate	α6.	In	line	with	(30),	both	NK	cells	and	CTLs	can	
be	activated	by	the	tumor	(at	rates	α5	and	α7,	respectively).	We	assumed	that	NK	cells	and	CTLs	can	
be	inhibited	by	MDSCs	(at	rates	β3	and	β4,	respectively),	and	are	lost	due	to	cell	death	(at	rates	ζ3	and	
ζ4,	respectively).	

In	simulations	of	new	metastases	(Eqns.	(3a)-(3d)),	the	initial	conditions	are	set	by	the	tumor-
free	steady	state	(Eqns.	6b)-(6d)),	except	that	we	seeded	tumor	growth	by	one	or	two	initial	tumor	
cells.	Unless	explicitly	stated	otherwise,	all	parameter	values	used	for	simulation	were	as	defined	in	
Table	1.	Standard	error	is	defined	as	standard	deviation/√number	of	simulations.	

In	 the	work	below	we	considered	analyses	of	 the	 full	SDDE	model,	as	well	as	various	reduced	
models.	In	the	case	that	g	=	0,	the	SDDE	model	reduces	to	a	deterministic	delay	differential	equation	
(DDE)	model.	In	the	case	that	g	=	0	and	τ	=	0,	the	model	reduces	to	an	ordinary	differential	equation	
(ODE)	 model.	 All	 models	 were	 developed	 in	 the	 Julia	 programming	 language	 (54),	 using	
DifferentialEquations.jl	(55).	For	simulation	of	the	full	model,	we	use	the	SOSRI	algorithm	for	stiff	
stochastic	 differential	 equations	 (56).	 Metaprogramming	 in	 Julia	 enables	 transitioning	 between	
model	formulations	(SDDE,	DDE,	or	ODE)	with	ease	(57).	

Parameter	sensitivity	analysis	
Parameter	sensitivity	analysis	was	performed	to	assess	the	relative	importance	of	parameters	on	the	
model	given	by	Eqns.	(3a)-(3d).	We	used	Morris	global	sensitivity	analysis	(GSA)	(58,	59),	with	the	
steady	state	of	the	tumor	population	defined	as	the	output	variable.	Table	1	contains	the	ranges	used	
for	 GSA	 as	 well	 as	 the	 parameter	 descriptions.	 Hyperparameters	 used	 for	 the	 Morris	 algorithm	
(implemented	in	DifferentialEquations.jl	(55))	were	total_num_trajectory	=	1000	and	num_trajectory	
=	100.	

Bayesian	parameter	inference	with	RECIST	data	
RECIST	criteria	have	been	developed	for	use	in	clinical	trials	to	determine	the	change	in	tumor	burden	
of	 selected	 target	 lesions	 to	 inform	whether	 a	 patient	 is	 responding	 to	 a	 given	 therapy	 (60).	We	
implemented	Bayesian	parameter	 inference	 to	 fit	 the	model	 to	 tumor	 responses	using	RECIST	 to	
classify	 tumor	 sizes	 and	 responses	 over	 time	 (61).	 We	 fit	 differential	 equation-based	 models	 to	
RECIST	data	following	a	similar	conceptual	framework	to	(38).	In	the	case	of	our	model,	we	also	fit	
certain	 MDSC	 parameters,	 such	 as	 the	 interaction	 strengths	 between	 the	 MDSCs	 and	 other	
immune/tumor	 populations,	 to	 assess	 the	 effect	 of	 MDSC	 dynamics	 on	 clinically-relevant	 tumor	
growth.	We	employed	Bayesian	parameter	inference	(62)	implemented	in	Turing.jl	(63).	

We	used	in	vivo	tumor	data	from	a	study	evaluating	the	efficacy	and	safety	of	anti-programmed	
death-ligand	1	(PD-L1)	atezolizumab	in	advanced	non-small	cell	lung	cancer	(61).	These	data	were	
also	 recently	 used	 to	 fit	mathematical	models	 of	 tumor	 growth	 (Study	 1,	 (38)).	 Each	 tumor	was	
assessed	at	baseline,	before	the	initiation	of	treatment	in	the	clinical	trial	(for	the	purposes	of	fitting	
we	set	the	time	of	the	baseline	assessment	to	be	zero).	Tumor	size	was	then	reassessed	approximately	
every	six	weeks	for	twelve	months,	then	every	nine	weeks,	and	then	at	disease	progression.	At	each	
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assessment	the	tumor	size	was	measured	in	millimeters	in	one	dimension	(x),	which	we	converted	to	
a	volume	following	the	convention	adopted	by	Laleh	et	al.,	i.e.	taking	the	volume	(mm3)	as	!

"
𝑥#(38,	

64).	We	estimated	the	number	of	tumor	cells	from	this	volume	by	multiplying	by	a	factor	of	107	(65).	
From	the	available	data	we	selected	six	measurable	tumors	from	six	different	patients	that	each	have	
data	 from	at	 least	 five	 time	points	 (including	 the	baseline	assessment),	were	 from	all	 three	study	
cohorts,	and	were	representative	of	the	range	of	the	dataset	(i.e.	tumors	that	increase/decrease	at	a	
variety	 of	 rates).	 We	 fit	 the	 relative	 change	 in	 the	 tumor	 population,	 which	 is	 measured	 as	 the	
difference	 between	 the	 measurement	 and	 the	 baseline	 assessment,	 divided	 by	 the	 baseline	
assessment	 ((measurement-baseline)/baseline,	 which	 produces	 a	 real	 number	 ∈	 [−1,∞)).	 As	 the	
relative	 change	 at	 the	 baseline	 assessment	 was	 always	 zero,	 we	 removed	 this	 data	 point	 for	 all	
tumors.	Since	only	the	tumor	data	were	available,	we	fit	the	log	transformed	data	from	this	population	
(i.e.	 log(xT	+1)).	 All	 of	 the	 data	 for	 each	 of	 the	 six	 tumors	 is	 available	 in	 the	 supplementary	 file	
tumor_data.xlsx.	

For	inference,	a	three-dimensional	parameter	space	was	considered,	in	which	we	fit	the	following	
parameters:	β3	(NK	cells	inhibition	rate	by	MDSCs),	α6	(CTL	stimulation	by	tumor–NK	cell	interaction),	
and	 α1	 (tumor	 growth	 rate).	 We	 did	 not	 infer	 all	 parameters	 simultaneously	 due	 to	 the	 high	
dimensionality	of	the	parameter	space;	we	chose	parameters	to	infer	based	on	their	importance	as	
judged	 by	 prior	 knowledge	 and	 global	 sensitivity	 analysis.	 The	 parameters	 chosen	 affect	 all	
populations	of	the	model.	As	no	information	on	time	since	incidence	was	available,	we	set	the	initial	
conditions	according	to	previous	simulations	(see	Figure	1B	and	Table	1)	at	day	100	
(xT(0)	=	8395.4,	xMDSC(0)	=	804.1,	xNK(0)	=	197565.7	and	xCTL(0)	=	1654.4).	Therefore,	we	rescaled	η	=	
105	(tumor	maximum	size),	and	all	other	parameters	were	set	to	be	as	in	Table	1	with	τ	=	0.	

A	 prior	 distribution	 over	 the	 three-dimensional	 parameter	 space	 was	 selected	 using	 weakly	
informative	Normally	distributed	priors,	with	means	set	to	the	values	given	in	Table	1,	and	relatively	
large	variances:	

	
where	σ	is	the	observational	noise.	For	each	tumor	we	ran	four	independent	Markov	chain	Monte	
Carlo	(MCMC)	simulations	with	2	×	103	iterations	using	the	No	U-Turn	Sampler	(NUTS)	with	a	target	
acceptance	ratio	of	0.65	(66).	

Additionally,	we	fit	the	model	to	the	same	six	tumors	in	a	CTL-abundant	environment.	Here	we	
assumed	the	initial	conditions	were	xT(0)	=	16654.8,	xMDSC(0)	=	707.8,	xNK(0)	=	16162.1	and	xCTL(0)	=	
778128.8	(simulation	values	at	day	ten)	and	that	the	prior	distributions	for	the	parameters	were:	
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Decision	tree	classification	of	tumor	responses	
We	used	a	decision	tree	classifier	to	test	whether	different	combinations	of	the	marginal	posterior	
parameters	obtained	 from	Bayesian	parameter	 inference	could	classify	 tumor	responses	as	either	
decreasing	or	 increasing	over	 time.	Decision	trees	were	built	using	DecisionTree.jl	 (67)	and	cross	
validation	was	performed	using	scikit-learn	(68).	

Modeling	MDSC	dynamics	in	a	CTL-abundant	environment	
As	described	above,	the	primary	tumor	microenvironment	of	focus	is	that	of	the	lung,	an	NK	cell–rich	
environment	 (46).	 However,	 we	 also	 considered	 tumor–MDSC	 dynamics	 in	 a	 microenvironment	
that—relative	to	the	lung—is	low	in	NK	cells	and	abundant	of	CTLs.	We	modeled	this	CTL-abundant	
environment	by	adjusting	key	CTL/NK	cell–related	model	parameters	 (see	Table	1	 for	parameter	
descriptions).	To	model	a	CTL-abundant	environment,	we	considered	the	parameter	values	given	in	
Table	1,	but	decreased	the	NK	cells’	circulating	rate	to	α4	=	103,	and	increased	the	CTL	stimulation	by	
tumor/NK	cell–interaction	rate	to	α6	=	2	×	10−3.	This	led	to	an	increase	in	the	number	of	CTL	cells	and	
a	concordant	decrease	in	the	number	of	NK	cells.	

Data	Availability	Statement	
All	 code	 and	 data	 are	 available	 at	 a	 public	 github	 repository	 located	 here:	
https://github.com/macleanlab/ModelingMDSCs.	 Tumor	 data	 (38,	 61)	 are	 available	 in	 the	
supplementary	file	tumor_data.xlsx.	All	other	data	are	available	in	the	figures,	tables,	and	supplementary	
materials	or	from	the	corresponding	author	upon	reasonable	request.	

Results	

Dynamics	of	metastatic	growth	in	the	presence	of	MDSCs	
We	studied	MDSC	dynamics	in	the	context	of	a	metastasizing	tumor,	specifically	we	focused	on	breast-
to-lung	 metastasis,	 i.e.	 metastatic	 growth	 in	 the	 lung	 resulting	 from	 a	 tumor	 in	 the	 breast.	 To	
parameterize	the	model	(model	description	in	Methods)	,	we	considered	the	immune	cell	composition	
known	to	be	present	in	tumors	in	the	lung,	which	is	an	environment	abundant	in	NK	cells	(46)	(Figure	
1A).	We	began	by	analyzing	 the	behavior	of	 the	deterministic	model	 (delay	differential	equations	
(DDEs);	Eqns.	(3a)-(3d),	g	=	0).	Simulation	of	the	DDE	model	for	different	sizes	of	MDSC	delay	(τ)	
showed	 that	 the	 delay	 in	 the	 recruitment	 of	 MDSCs	 to	 the	 tumor	 site	 played	 a	 critical	 role	 in	
determining	metastatic	 tumor	 size	 after	 one	 year	 (Figure	 1B-E).	 Tumor	 growth	 resulted	 in	 large	
increases	in	the	MDSC	population.	We	also	saw	that	increasing	τ	led	to	slower	growth	and	smaller	
sizes	of	both	the	MDSC	and	tumor	populations.	Increasing	the	delay	led	to	a	lag	before	the	MDSCs	
received	activation	signals	from	the	tumor	and	began	to	proliferate.	Smaller	MDSC	population	sizes	
led	to	slower	growth/smaller	tumor	population	sizes	because	a	smaller	MDSC	population	made	the	
tumor	more	susceptible	to	killing	by	NK-cell	and	CTL	populations.	Note	that,	given	the	parameters	in	
Table	1,	the	same	steady	state	would	be	reached	for	any	finite	τ,	0	≤	τ	<	∞.	The	time	until	steady	state	
was	positively	correlated	with	the	delay	τ.	

In	the	case	of	no	tumor	(xT	=	0),	the	tumor-free	fixed	point	of	the	model	is:	
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where	𝑥1T,	𝑥1MDSC,	𝑥1NK,	and	𝑥1CTL	represent	the	steady	state	values	of	xT,	xMDSC,	xNK,	and	xCTL,	respectively.	
We	observed	baseline	populations	of	MDSCs	and	NK	cells	at	the	metastatic	site,	but	no	CTL	cells,	as	
they	need	to	be	recruited	and	activated	against	the	tumor.	Since	tumor	cells	cannot	be	spontaneously	
generated	in	this	model,	the	tumor-free	fixed	point	(Eqns.	(6a)-(6d))	was	stable	(Supplementary	Text	
Section	S3).	In	the	case	of	a	nonzero	tumor	population	(𝑥1T	>	0),	in	general	the	steady	state	must	be	
determined	 numerically,	 although	 we	 can	 derive	 analytical	 approximations	 in	 special	 cases.	 For	
example,	for	𝑥1T	>	0,	the	steady	states	of	the	non-tumor	populations	are:	

	
where	

	

If	we	assume	that	the	tumor	reaches	its	carrying	capacity,	η,	then	the	tumor	steady	state	is	given	by	
Eqns.	(7a)-(7c)	with	𝑥1T	=	η.	A	comparison	of	simulations	with	different	carrying	capacities	is	given	in	
Supplementary	Text	Section	S4	and	Supplementary	Figures	S3	and	S4.	

Using	the	model,	we	can	also	determine	whether	a	small	initial	number	of	tumor	cells	will	grow	
to	a	nonzero	positive	steady	state	 (for	simulation,	we	consider	steady	states	with	xT	>	10)	or	will	
decay.	This	is	a	helpful	characterization,	as	metastases	are	thought	to	be	seeded	from	a	small	initial	
number	of	circulating	tumor	cells	(1,	13,	34,	37,	69).	When	we	began	at	the	tumor-free	steady	state	
(Eqns.	(6b)-(6d)),	and	increased	the	number	of	tumor	cells	by	one	or	two,	then	taking	the	highest	
order	terms	in	Eqn.	(3a)	we	saw	that	the	rate	of	change	of	the	tumor	population	was	initially	positive	
if	 G	>	0.	 Here	 G	 can	 be	 defined	 as	 the	 tumor	 growth	 threshold,	 or	 equivalently,	 the	 tumor	 basic	
reproductive	ratio	(analogous	to	R0	in	epidemiological	models;	see	Supplementary	Text	Section	S5	
and	Supplementary	Figure	S5	for	details).	G	is	given	by:	

 .	 (8)	
	

Examples	of	 simulations	 starting	 from	 the	 tumor-free	 steady	 state	 (Eqns.	 (6b)-(6d))	but	with	 the	
addition	of	a	single	tumor	cell	are	shown	in	Figure	2A-C.	In	these	examples,	the	tumor	population	



9	

grows	initially	if	and	only	if	G	>	0.	In	Figure	2A	the	parameter	values	are	as	defined	in	Table	1,	giving	
G	≈	0.8,	and	a	resulting	tumor	size	at	steady	state	of	9.8×106.	We	changed	the	tumor	cell	death	rate	
(ζ1)	to	vary	G:	to	G	≈	0	(giving	a	tumor	steady	state	of	≈	1;	Figure	2B),	and	to	G	≈	−0.2	(giving	a	tumor	
steady	 state	 of	 <	 1;	 Figure	 2C).	 The	 threshold	 G	 thus	 gives	 an	 approximation	 of	 whether	 small	
numbers	of	tumor	cells	will	grow	into	fully	developed	metastases,	of	relevance	for	cancer	prognosis,	
treatment,	and	progression	(36).	

Parameter	sensitivity	analysis	reveals	that	inhibition	rates	between	populations	are	
important	in	determining	tumor	growth	outcomes	
We	performed	parameter	sensitivity	analysis	to	assess	the	relative	importance	of	model	parameters	
on	the	growth	and	final	size	of	the	tumor	population	(see	Methods	for	description	of	the	model	and	
the	parameter	sensitivity	analysis).	Since	the	tumor	steady	state	is	independent	of	the	MDSC	delay	as	
t	→	∞,	for	sensitivity	analysis	we	set	the	delay	τ	=	0.	

As	seen	in	the	model	(Eqns.	(3a)-(3d)),	the	MDSC-specific	parameters	are	α2,	α3,	ζ2,	β3,	β4,	and	γ1.	
The	Morris	global	sensitivity	values	of	parameters	on	the	(numerical)	tumor	steady	state	are	given	
in	Figure	2D,	where	the	MDSC-specific	parameters	are	marked	by	hexagons.	The	green	(red)	color	
denotes	parameters	 that	were	positively	 (negatively)	 correlated	with	 the	 tumor	 steady	 state.	We	
found	 that	ζ2	(death	rate	of	MDSCs)	and	γ1	(steepness	of	MDSC	production)	were	 the	only	MDSC-
specific	parameters	negatively	correlated	with	the	tumor	population,	as	 increasing	either	of	these	
parameters	resulted	in	fewer	MDSCs	and	thus	a	more	immunosusceptible	tumor	population.	

As	shown	in	Figure	2D,	β3	(inhibition	of	NK	cells	by	MDSCs)	was	the	most	important	MDSC-specific	
parameter	 for	 the	 tumor	 steady	 state.	 This	 is	 in	 part	 due	 to	 the	 initially	 large	 size	 of	 the	NK-cell	
population	(46)	(see	NK	cells	in	Figure	1B-E	and	Eqn.	(6c)):	the	MDSC	population	must	effectively	
suppress	NK	cells	for	the	tumor	to	be	able	to	grow	rather	than	die	out.	Similarly,	β4	(inhibition	of	CTL	
cells	by	MDSCs)	was	important,	but	less	so	than	β3	as	the	CTL	population	is	initially	small	thus	less	
important	 for	 initial	 growth	 of	 the	 tumor	 (see	 CTL	 cells	 in	 Figure	 1B-E	 and	 Eqn.	 (6d)).	 For	
consideration	of	the	model	in	a	CTL-abundant	environment,	see	the	final	section	of	the	Results.	Figure	
2E	and	2F	show	the	effects	of	parameter	β3	(inhibition	of	NK	cells	by	MDSCs)	on	the	tumor	steady	
state	at	both	ends	of	the	range	studied.	We	saw	that	small	values	of	β3	(Figure	2E)	resulted	in	small	
tumors	(tumor	steady	state	approx.	2.5×102),	whereas	large	values	of	β3	(Figure	2F)	resulted	in	much	
larger	tumors	(tumor	steady	state	approx.	9.9	×	106).	

Comparison	 of	 MDSC-specific	 parameters	 (hexagons)	 with	 non-MDSC-specific	 parameters	
(circles,	Figure	2D)	showed	that	α2,	α3,	α1,	η,	β3,	ζ3,	β4,	ζ4,	γ2,	and	γ3	were	positively	correlated	with	the	
tumor	population	steady	state;	all	other	parameters	were	negatively	correlated.	The	most	important	
parameters	(as	measured	by	their	effect	on	the	tumor	steady	state)	were	α6,	β1,	β2,	β3	and	β4.	α6	is	the	
rate	of	CTL	stimulation	by	tumor-NK	cell	interaction,	β1	and	β2	are	inhibition	rates	of	tumor	cells	by	
NK	and	CTL	cells,	 and	β3	and	β4	are	 inhibition	 rates	of	NK	and	CTL	cells	by	MDSCs	 (see	Table	1).	
Therefore,	 model	 dynamics	 are	 predominantly	 influenced	 by	 inhibition/stimulation	 between	 the	
competing	populations	(see	Figure	1A	for	schematic).	This	reinforces	recent	literature	that	highlights	
these	tumor–immune	interactions	(especially	in	the	context	of	MDSCs)	as	important	determinants	of	
outcomes	(1,	8,	10,	17,	20,	21,	42).	
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Stochastic	dynamics	of	metastatic	growth	and	establishment	
We	next	analyzed	the	stochastic	dynamics	of	the	model.	Given	the	seeding	of	metastases	by	one	or	a	
few	cells,	stochastic	effects	are	likely	to	play	a	large	role	in	the	system.	In	order	to	study	metastatic	
tumor	establishment	and	viability	we	simulated	the	SDDE	model	(Eqns.	(3a)-(3d)),	with	MDSC	delay	
τ	≥	0.	

Stochastic	 simulations	 allowed	 for	 the	probabilistic	 analysis	 of	 “successful	metastases.”	 In	 the	
deterministic	setting,	using	the	parameters	defined	in	Table	1,	a	metastatic	tumor	is	always	formed	
(G	>	0).	In	the	stochastic	setting,	this	is	no	longer	the	case.	Model	outcomes	vary	even	for	identical	
initial	conditions	due	to	noise	in	the	system	(10,	70,	71).	Although	we	did	not	study	the	sources	of	
biological	 noise	 here,	 we	 expect	 the	 major	 component	 to	 result	 from	 noise	 in	 the	 intercellular	
signaling	processes,	i.e.	extrinsic	noise	(72).	

To	study	the	probability	that	a	small	number	of	pioneering	cells	will	establish	a	new	metastasis,	
we	implemented	simulations	that	started	with	two	tumor	cells	(see	Supplementary	Text	Section	S6	
and	Supplementary	Figure	S6	for	larger	initial	conditions),	and	denoted	a	metastasis	successful	if	the	
number	of	tumor	cells	did	not	drop	below	one	(i.e.	⌊𝑥$(𝑡)⌋	>	0)	in	a	one-year	timespan	(t	∈	[0,365]	
days).	We	note	that	the	number	of	 initial	 tumor	cells	 is	a	constant	parameter	 in	our	model	and	is	
independent	of	 any	other	 tumors	 that	may	be	present	 in	 the	 individual	 (as	we	only	 consider	 the	
potential	establishment	of	a	new	metastasis).	Figure	3	shows	examples	of	both	successful	metastatic	
tumors	(panels	A	and	C)	and	unsuccessful	metastatic	tumors	(panels	B	and	D)	for	different	values	of	
the	MDSC	delay	τ	(see	Supplementary	Text	Section	S7	for	further	description).	For	more	examples	of	
successful	 and	 unsuccessful	 tumors	 see	 Supplementary	 Figures	 S7	 and	 S8,	 respectively.	While	 a	
metastatic	 tumor	can	become	unsuccessful	at	any	time	point	(and	all	 tumors	will	be	unsuccessful	
almost	surely	as	t	→	∞),	we	found	that	the	tumor	population	is	most	likely	to	drop	below	one	near	
the	beginning	of	the	simulation	(i.e.	soon	after	metastatic	tumor	seeding)	when	the	tumor	population	
is	small	(Supplementary	Figures	S9	and	S10).	

	
Delays	in	MDSC	recruitment	decrease	the	probability	of	metastasis	and	the	size	of	
metastatic	tumors	
Analysis	 of	 the	 probability	 of	 metastasis	 under	 different	 assumptions	 of	 MDSC–tumor–immune	
interactions	 for	 thousands	 of	 tumors	 studied	 in	 silico	 revealed	 striking	 dependencies	 of	 tumor	
outcomes	 on	 MDSC	 dynamics	 (Figure	 4).	 Through	 joint	 analysis	 of	 the	 effects	 of	 the	 number	 of	
circulating	MDSCs	(α2)	and	the	size	of	the	MDSC	delay	(τ),	we	found	that	the	probability	of	successful	
metastatic	tumor	establishment	and	the	average	size	of	metastatic	tumors	were	positively	correlated	
with	the	 level	of	circulating	MDSCs,	and	negatively	correlated	with	the	size	of	 the	MDSC	delay.	As	
more	MDSCs	became	 available	 at	 or	 near	 the	 site	 of	 the	nascent	metastasis,	 the	NK-cell	 and	CTL	
populations	became	more	suppressed,	resulting	in	a	greater	likelihood	of	tumor	growth	(Figure	4A-
B).	The	data	indicate	that	the	positive	feedback	loop	(tumor	cells	are	able	to	activate	more	MDSCs)	
reinforces	the	tumor’s	ability	to	grow,	even	in	a	“hot”	tumor	microenvironment.	

We	found	that	our	model	provides	a	biologically-driven	way	to	determine	exactly	what	can	be	
inferred	 from	 levels	 of	 circulating	MDSCs.	Given	 the	 relative	difficulty	 of	 defining	MDSCs	 and	 the	
relative	ease	of	sampling	circulating	cells	this	has	clinical	relevance	(19).	We	saw	that	if	the	baseline	
level	of	circulating	MDSCs	(α2)	was	high,	MDSC	activation	delays	had	little	effect	on	the	metastasis	
establishment	probability	 (Figure	4A-B),	but	 the	MDSC	delay	still	had	a	pronounced	effect	on	 the	
resulting	sizes	of	the	metastases	that	grew	(Figure	4C-D	and	Supplementary	Figure	S11).	Recall	that	
we	used	a	liberal	definition	for	a	successful	metastasis:	a	population	of	>	1	tumor	cells	that	survives	
for	a	year.	Differences	in	the	sizes	of	these	nascent	metastases	from	tens	to	thousands	of	cells	bear	
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direct	 clinical	 relevance.	 Further	 statistics	 on	 metastatic	 survival	 and	 size	 can	 be	 found	 in	
Supplementary	Table	S1.	Relative	to	a	MDSC	delay	of	0	days,	a	MDSC	delay	of	365	days	led	to	a	2-fold	
decrease	in	the	probability	of	successful	metastasis,	a	21-fold	decrease	in	the	mean	tumor	size	(of	
successful	tumors),	and	a	4.6-fold	increase	in	the	mean	time	to	extinction	of	unsuccessful	metastases	
(Figure	4E-F).	

Supplementary	Figure	S12	shows	the	effect	of	the	rate	of	MDSC	inhibition	of	NK	cells	(β3)	and	
Supplementary	Figure	S13	shows	the	effect	of	the	rate	of	MDSC	inhibition	of	CTL	cells	(β4).	In	these	
analyses,	we	found	that	more	effective	MDSCs	(i.e.	more	inhibitory	against	antitumor	populations)	
meant	 NK-cell	 and	 CTL	 populations	 were	 more	 inhibited,	 resulting	 in	 a	 larger	 tumor	 burden.	
However,	if	the	level	of	inhibition	of	NK	cells	(β3)	was	high	enough,	delays	in	recruitment	of	more	
MDSCs	(τ)	had	little	effect	on	the	probability	of	successful	metastatic	tumors	(as	the	tumor	population	
will	grow	to	very	large	levels	very	quickly,	independently	of	a	large	increase	in	the	number	of	MDSCs)	
but	still	affected	 the	average	size,	as	 fewer	NK	cells	 resulted	 in	more	 tumor	cells	 (Supplementary	
Figure	S12).	Since	there	are	initially	zero	CTL	cells	and	the	CTL	population	does	not	reach	extremely	
high	levels	relative	to	other	populations	(see	for	instance	Figure	1B-E,	blue	lines)	changing	β4	did	not	
have	 a	 large	 effect	 on	 the	 probability	 of	 successful	 metastasis	 (Supplementary	 Figure	 S13A-B).	
However,	 increasing	β4	 resulted	 in	 a	 small	 increase	 in	 the	 average	 size	 of	 successful	 tumors	 (see	
Figure	S13C-D).	We	contrast	this	with	analysis	of	a	CTL-abundant	environments	below	in	the	Section	
titled	“Analysis	of	tumor—MDSC	dynamics	in	a	CTL-abundant	environment”.	

MDSCs	can	be	sub-divided	into	one	of	two	states:	monocytic	MDSCs	(M-MDSCs;	typically	assumed	
to	be	more	immunosuppressive)	and	granulocytic/poly-mononuclear	(G-	or	PMN-MDSCs)	(1,	3,	6).	
The	relative	proportion	of	G-	to	M-MDSCs	can	alter	the	immunosuppressive	properties	of	the	tumor	
microenvironment	(15,	73).	For	example,	if	the	relative	proportion	of	G-	to	M-MDSCs	skews	toward	
M-MDSCs,	we	would	expect	larger	effects	of	MDSC	delays	(as	seen	in	Figure	4),	whereas	the	opposite	
would	 be	 expected	 if	 G-MDSCs	 dominate.	 Extensions	 of	 the	 current	model	 include	 separating	M-
MDSCs	and	G-MDSCs,	with	for	instance	β3M-MDSCs	>	β3G-MDSCs	and	β4M-MDSCs	>	β4G-MDSCs,	see	the	Discussion	
for	further	details.	

To	summarize	the	results	of	this	section,	we	have	identified	two	crucial	effects	of	MDSC	delays	on	
the	stochastic	tumor	dynamics.	First,	that	MDSC	delays	always	resulted	in	significantly	smaller	tumor	
sizes.	 This	 effect	 became	more	 pronounced	 as	 MDSCs	 became	more	 immunesuppressive	 (in	 the	
model:	when	β3,	β4	were	large).	Under	these	conditions,	the	increase	in	MDSCs	allowed	the	tumor	to	
outcompete	the	antitumor	populations	and	reach	large	sizes.	However	if	the	MDSCs	were	so	powerful	
as	to	completely	inhibit	the	NK-cell	and	CTL	populations,	then	increasing	β3,	β4	had	no	further	effect.	
The	 effect	 of	 MDSC	 delay	 on	 tumor	 size	 was	 less	 pronounced	 when	 the	 MDSCs	 were	 less	
immunesuppressive	(i.e.	when	β3,	β4	are	small):	in	this	case	increases	in	the	number	of	MDSCs	did	not	
have	significant	effects	on	the	long	term	dynamics	of	the	other	populations.	

Second,	that	MDSC	delays	could	result	in	drastically	decreased	probabilities	of	a	successful	new	
metastasis.	This	effect	was	most	pronounced	when	the	initial	level	of	circulating	MDSCs	(α2)	was	not	
too	high,	and	when	the	MDSCs	were	not	too	immunesuppressive	of	the	NK-cell	population	(large	β3).	
This	was	due	to	the	greater	 likelihood	of	extinction	of	stochastic	 tumors	(⌊𝑥$(𝑡)⌋	<	1)	early	 in	the	
simulation.	 If	 the	 level	 of	 circulating	MDSCs	 (α2)	was	high,	 offering	 the	nascent	 tumor	protection	
against	CTL	and	NK-cell	responses,	 then	the	effects	of	delays	 in	recruitment	of	more	MDSCs	were	
lessened.	Similarly,	if	the	MDSCs	were	strongly	immunesuppressive	(particularly	against	NK	cells),	
then	 the	 tumor	was	 likely	 to	grow	 to	a	 large	 size	quickly,	negating	 the	 impact	of	delays	 in	MDSC	
recruitment	 on	 the	 probability	 of	 successful	 establishment	 of	 a	 new	 metastasis.	 These	 results	
establish	how	MDSC	plasticity,	as	defined	by	their	different	suppressive	functions	and	environments	
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(i.e.	circulation	throughout	the	body	or	within	a	tumor),	differentially	contribute	to	tumor	growth	
and	progression	of	disease	from	a	primary	tumor	location	to	a	distant	metastatic	site.	
	

Bayesian	parameter	inference	reveals	the	clinical	importance	of	MDSC–NK	cell	
interactions	in	the	lung	microenvironment	
To	assess	more	rigorously	the	variability	and	uncertainty	with	which	we	know	model	parameters,	we	
performed	Bayesian	parameter	inference	using	clinical	data	on	tumor	progression	as	defined	through	
RECIST	(38).	We	fit	the	model,	initialized	in	a	lung	microenvironment	(Figure	5A)	to	data	from	six	
individual	 tumors	 that	 spanned	 possible	 response	 outcomes	 (Figure	 5B).	 We	 selected	 a	 three-
dimensional	free	parameter	space	(see	Methods),	consisting	of	the	tumor	growth	rate,	the	NK-cell	
inhibition	rate	by	MDSCs,	and	the	rate	of	CTL	stimulation	by	tumor–NK	cell	interactions.	Successful	
fits	were	obtained	for	each	of	the	tumors	fit	(Figure	5C-D	and	Supplementary	Figures	S14	and	S15).	

To	analyze	the	parameters	that	give	rise	to	different	response	dynamics,	we	plotted	parameters	
sampled	from	the	posteriors	of	each	tumor	fit	(Figure	5E-G).	We	saw	a	clear	trend	towards	larger	
values	of	tumor	growth	rate	(α1)	and	NK-cell	inhibition	rate	by	MDSCs	(β3)	for	tumors	that	did	not	
respond	to	treatment	(tumors	5	&	6)	compared	to	those	that	did	respond	to	treatment	(tumors	1	&	
2)	 (Figure	 5E).	 This	 can	 be	 understood	 in	 light	 of	 the	 previously	 characterized	 effects	 these	
parameters	 have	 on	 tumor	 growth	 (see	 e.g.	 Figure	 2D).	 Furthermore,	 strong	 correlations	 were	
observed	 for	 these	 parameters.	 The	 correlation	 between	 the	 two	 parameters	 was	 steeper	 for	
increasing	 tumors,	 suggestive	 of	 the	 discriminative	 ability	 of	 this	 parameter	 pair	 for	 quantifying	
tumor	 outcomes	 (i.e.	 whether	 tumors	 will	 grow	 or	 decay	 upon	 the	 initiation	 of	 treatment).	 In	
comparison,	no	correlations	nor	distinct	effects	on	tumor	outcomes	were	observed	for	the	other	two	
parameter	pairs	(Figure	5F-G).	

We	tested	the	discriminative	power	of	different	combinations	of	posterior	parameters	by	training	
decision	trees	to	classify	tumor	responses	as	either	decreasing	(i.e.	tumors	1	&	2)	or	increasing	(i.e.	
tumors	5	&	6)	over	time.	Supplementary	Table	S2	gives	the	cross	validation	scores	for	decision	trees	
(maximum	depth	three)	trained	on	different	sets	of	posterior	parameters	as	features.	In	line	with	the	
joint	 marginal	 posterior	 distributions	 observed	 (Figure	 5E)	 we	 saw	 that	 the	 best	 discriminative	
power	was	obtained	using	both	the	tumor	growth	rate	(α1)	and	the	NK-cell	inhibition	rate	by	MDSCs	
(β3)	as	features	(81.5%	mean	accuracy).	When	constrained	to	using	one	feature,	the	NK-cell	inhibition	
rate	by	MDSCs	(69.1%	mean	accuracy)	was	a	better	predictor	than	the	tumor	growth	rate	(62.8%	
mean	accuracy),	even	though	the	tumor	growth	rate	was	intricately	tied	to	the	classification	outcome	
(43).	Interest	in	interactions	between	MDSCs	and	NK	cells	has	been	growing	in	recent	years	(20,	21,	
24);	our	results	strongly	suggest	that	more	investigation	is	warranted.	

Given	that	the	clinical	data	did	not	capture	immune	dynamics,	and	the	relative	simplicity	of	the	
tumor	dynamics	in	response	to	treatment,	we	expected	to	obtain	fits	to	different	individual	tumor	
outcomes	with	the	model.	However,	the	relative	importance	of	parameters	that	the	fits	revealed	were	
unexpected.	 The	 strength	 of	 immunesuppressiveness—as	 controlled	 by	 NK-cell	 inhibition	 by	
MDSCs—was	identified	as	the	most	 important	parameter	 in	determining	outcome.	This	has	direct	
clinical	implications:	while	it	may	not	yet	be	possible	to	directly	modulate	this	parameter	in	a	clinical	
setting,	it	highlights	the	importance	of	interventions	targeting	properties	of	MDSCs	in	and	around	the	
tumor	site.	Moreover,	successful	fitting	of	various	tumor	responses	to	tumor—MDSC	dynamics	and	
the	stratification	of	rate	parameters	that	resulted	demonstrates	our	ability	to	build	and	fit	patient-
specific	tumor	growth	models	(74),	with	which	to	predict	metastatic	outcomes.	
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Analysis	of	tumor—MDSC	dynamics	in	a	CTL-abundant	environment	
To	complement	the	analysis	thus	far	of	tumor–MDSC	dynamics	in	NK	cell–abundant	environments,	
we	studied	how	outcomes	change	if	we	considered	an	environment	with	relatively	few	NK	cells	but	
which	was	abundant	in	CTLs	(see	parameter	in	Methods	and	Figure	6A).	Simulation	of	the	DDE	model	
for	different	MDSC	delays	in	the	CTL-abundant	environment	Supplementary	(Figure	S16)	showed	a	
dramatic	increase	in	the	steady	state	value	of	the	CTL	population,	and	declines	in	the	NK	population,	
relative	to	the	NK	cell–abundant	environment	(Figure	1B-E).	Since	CTL	cells	must	be	activated	before	
they	act	against	the	tumor	(Eqn.	(1d)),	and	since	simulations	start	from	the	tumor-free	steady	state	
(initially	 zero	CTL	 cells,	 (Eqn.	 (6d)),	 then	 in	 the	CTL-abundant	 environment	 small	 changes	 in	 the	
MDSC	delay	had	negligible	effects	on	the	probability	of	establishing	a	new	tumor	(Figure	6B-C	and	
Supplementary	Figure	S17).	This	highlights	the	importance	of	the	environment:	whereas	small	delays	
in	 MDSC	 recruitment/activation	 will	 impact	 tumor	 growth	 in	 the	 case	 that	 there	 are	 already	
circulating	immune	cells	at	the	tumor	site,	this	is	not	the	case	when	the	dominant	immune	component	
must	be	activated	to	respond	to	tumor	growth.	

We	went	on	to	fit	the	model	to	clinical	response	data,	similar	to	above,	but	not	assuming	a	CTL-
abundant	environment	and	adjusting	the	parameters	accordingly.	We	observed	an	increase	 in	the	
influence	of	α6	(CTL	stimulation	by	tumor–NK	cell	interaction)	in	classifying	tumor	outcomes	(Figure	
6D-F	and	Supplementary	Table	S3,	see	also	Supplementary	Figures	S18	and	S19	for	model	fits),	thus	
CTL-related	parameters	became	more	 important	 in	 this	context	 (although	note	 that	 the	results	of	
parameter	inference	in	this	setting	are	not	directly	comparable	to	those	above	due	to	differences	in	
the	prior	distributions).	The	relative	increase	in	importance	makes	sense	intuitively:	the	increase	in	
the	 CTL	 population	 size	 in	 a	 CTL-abundant	 environment	 can	 be	 expected	 to	 lead	 to	 greater	
prominence	of	this	population	in	regulating	tumor	outcomes,	and	thus	the	predictive	power	of	 its	
parameters	for	classification.	We	observed	a	corresponding	drop	in	the	importance	of	NK	cell–related	
parameters:	the	tumor	growth	rate	was	now	the	most	 important	single	parameter	 in	determining	
tumor	outcome	(Supplementary	Table	S3);	whereas	previously	the	NK-cell	inhibition	rate	by	MDSCs	
was	ranked	highest.	

Discussion	
Cancer	dynamics	are	complex,	and	understanding	cancer–immune	dynamics	is	a	complex	systems	
biology	problem	(10,	28,	29,	39,	43).	Modeling	how	tumors	interact	with	the	immune	system	is	critical	
for	 understanding	 treatment	 responses	 and	predicting	 the	best	 possible	 therapeutic	 strategies	 in	
response	to	metastasis.	MDSCs	have	been	identified	in	various	tumor	microenvironments	(8,	9,	15),	
where	they	can	exert	strong	immunosuppressive	effects	leading	to	worse	outcomes	(12,	17,	37),	yet	
a	 rigorous	 theoretical	 characterization	 of	 MDSC	 dynamics	 in	 the	 tumor	 microenvironment	 has	
remained	lacking.	Here,	through	the	introduction	of	a	SDDE	model	with	which	to	study	tumor–MDSC	
dynamics,	we	have	provided	means	to	characterize	the	plasticity	of	MDSCs	and	their	effects	on	tumor	
progression	and	outcome.	

With	this	model	we	began	by	studying	outcomes	under	simple,	idealized	circumstances,	such	as:	
how	large	do	tumors	grow	in	the	presence	of	MDSCs?	What	is	their	likelihood	of	persistence	in	the	
stochastic	case?	We	discovered	that	delays	in	MDSC	recruitment/activation	had	striking	effects	on	
metastatic	growth	and	establishment.	Under	certain	conditions	(lower	levels	of	circulating	MDSCs),	
strategies	 that	 block	 MDSC	 recruitment	 to	 the	 site	 of	 the	 tumor	 are	 likely	 to	 greatly	 improve	
metastatic	 outcomes	 and	 hinder	 growth.	 We	 also	 demonstrated	 through	 model	 analyses	 how	
strategies	 that	decrease	 the	 immunosuppressive	properties	of	MDSCs	are	 likely	 to	have	dramatic	



14	

antitumor	 effects.	 Via	 Bayesian	 parameter	 estimation	 using	 data	 from	 tumor	 growth	 in	 vivo,	 we	
identified	correlations	between	the	tumor	and	the	MDSC	response	parameters,	again	demonstrating	
the	potential	of	inhibition	of	MDSCs	as	a	desirable	drug	target.	

Our	 inference	 results	 showed	 that	 in	NK	cell–abundant	environments	 such	as	 the	 lung,	MDSC	
inhibition	of	NK	cells	was	a	crucial	parameter	determining	outcomes;	more	important	even	than	the	
tumor	 growth	 rate.	We	 also	 found	 important	 differences	 between	 tumor	microenvironments:	we	
focused	primarily	on	MDSC	dynamics	in	the	lung,	an	NK	cell–rich	environment	(24,	46),	however	we	
contrasted	this	with	analysis	of	a	CTL-abundant	environments,	i.e.	one	in	which	CTL	cells	are	greater	
in	number	than	NK	cells.	In	such	a	CTL-abundant	environment,	we	observed	a	rise	in	prominence	of	
the	 role	 of	 CTL	 activation	 (75,	 76).	 Future	work,	where	prompted	by	data,	may	need	 to	 examine	
intermediate	environments,	where	CTL	and	NK-cell	population	sizes	are	more	closely	matched.	Here,	
we	might	expect	to	see	both	NK-cell	and	CTL	parameters	to	be	important	in	informing	tumor	growth	
outcomes.	

These	results	suggest	that	the	identification	of	effective	anti-MDSC	treatment	strategies	to	control	
cancer	 growth	and	 spread	ought	 to	be	more	highly	prioritized	 (8,	 13,	17,	24).	 In	particular,	 drug	
treatments	that	block	MDSC	recruitment	to	tumor	sites	and/or	target	MDSCs	in	the	lymphoid	organs	
might	be	expected	to	be	most	highly	effective	in	preventing	metastasis,	but	their	effects	are	likely	to	
be	 lessened	 if	 the	 level	 of	 circulating	MDSCs	 is	 low	 or	 if	MDSCs	 are	 less	 effective	 at	 suppressing	
antitumor	 populations.	 Since	 the	 level	 of	 circulating	 MDSCs	 (as	 well	 as	 the	 level	 of	 MDSC-
immunosuppression)	 is	 likely	 to	 be	 highly	 variable	 within	 patients	 (20,	 77),	 effective	 treatment	
strategies	ought	to	be	informed	by	patient-specific	biomarkers	(74,	78).	In	addition,	evaluation	of	the	
phenotype	of	 circulating	MDSCs	may	not	 fully	 reflect	 the	 immunosuppressed	state	within	 tumors	
enough	to	predict	potential	response	to	immunotherapy,	which	may	be	determined	in	part	by	further	
mathematical	 and	 data-driven	 modeling.	 Towards	 this	 end,	 we	 have	 shown	 via	 tumor-specific	
parameter	 inference	 that	 we	 can	 train	 machine	 learning	 models	 using	 posterior	 parameters	 to	
classify	 metastatic	 outcomes.	 Future	 work,	 informed	 by	 more	 data	 (such	 as	 richer	 dynamic	
information	or	single-cell	gene	expression	data)	will	provide	additional	means	to	classify	treatment	
outcomes.	 In	 this	 context	 it	will	be	 important	 to	consider	 the	prediction	of	 responses	 in	different	
tumor	microenvironments	and	under	different	treatment	regimes.	

MDSCs	cannot	be	assumed	to	be	a	homogeneous	population.	Although	we	have	assumed	as	such	
here—for	lack	of	data	with	which	to	quantify	subpopulation-specific	MDSC	rate	parameters—future	
models	ought	to	consider	MDSC	heterogeneity.	MDSCs	are	typically	classified	into	one	of	two	possible	
cell	types,	M-MDSCs	and	G-/PMN-MDSCs,	which	exhibit	different	levels	of	immunosuppression	(1,	3,	
15).	M-MDSCs	in	metastatic	breast	cancer	patients	resemble	monocytes	isolated	from	patients	with	
sepsis,	indicating	fascinating	similarities	between	the	immunosuppression	capability	of	the	MDSCs	
present	 in	metastatic	 (but	perhaps	not	primary)	breast	cancer	patients	and	 those	 involved	 in	 the	
immunosuppressive	 sepsis	 response	 (79).	 Further	 measurement	 of	 MDSC	 subtype–specific	
immunosuppression	 in	 vivo	will	 likely	 yield	 substantial	 new	 insight	 into	 their	 activity.	Moreover,	
these	additional	data	will	permit	the	fitting	of	more	detailed	mathematical	models	that	are	able	to	
describe	patient-specific	(or	even	tumor	site-specific)	dynamics	and	quantify	the	possible	benefits	of	
treatments	targeting	MDSCs.	Current	knowledge	suggests	that	shifting	MDSC	phenotypes	towards	G-
MDSCs	is	beneficial	as	this	state	is	less	immunosuppressive	(1,	15),	however	further	characterization	
of	these	states	is	needed.	

The	models	we	have	developed	of	MDSCs	in	the	tumor	microenvironment	do	not	consider	space,	
although	of	 course	 spatial	 architectures	play	 an	 important	 role	 in	 tumor	progression	 (28,	 32),	 in	
primary	growth	as	well	as	for	circulating	tumor	cells	that	seed	metastases	(34,	80).	The	role	of	spatial	
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aspects	of	cancer	niches	 in	regulating	MDSC–tumor	dynamics	will	be	an	 important	topic	 in	 future	
work	 (81).	 Here,	 carefully	 fitting	 models	 to	 appropriate	 data	 ought	 to	 include	 both	 single-cell-
resolved	characterization	of	the	tumor	microenvironment	(15)	and	explicit	spatial	characterizations	
(82,	83).	Furthermore,	non-immunological	mechanisms	of	MDSC	suppression	(e.g.	tissue	remodeling,	
angiogenesis,	priming	the	metastatic	niche	(1))	may	be	important	to	consider	in	future	models.	Given	
our	 preclinical	 and	 clinical	 results	 (15),	 one	 current	 avenue	 of	 investigation	 is	 defining	 which	
mechanisms	of	MDSC	suppression	are	affected	by	the	epigenetic	modulating	drug	entinostat,	which	
sensitizes	 the	 lung	metastatic	 tumor	microenvironment	and	as	 such	considers	both	 immune-	and	
non-immune-mediated	mechanisms	of	suppression.	In	addition,	the	level	of	suppression	imparted	by	
MDSCs	 within	 a	 tumor	 is	 not	 only	 directly	 affected	 by	 the	 signaling	 cascades	 and	 subsequent	
mechanism	 of	 suppression	 engaged	 (i.e.	 metabolic	 via	 amino	 acid	 depletion	 vs.	 immunologic	
suppression	by	IL10),	but	also	indirectly	affected	by	the	surrounding	microenvironments	in	which	
immune	cell	infiltration	greatly	varies.	These	are	questions	we	hope	to	address	in	future	work.	

There	 is	 an	 urgent	 need	 to	 understand	 the	 role	 of	MDSC	dynamics	 during	 tumor	 growth	 and	
metastasis.	Here,	we	discovered	an	essential	and	remarkable	role	for	MDSC	recruitment/activation	
in	dictating	growth	outcomes	in	the	context	of	new	metastases.	This	is	but	the	first	step.	To	make	
progress,	 further	 conceptual	model	 development	 tightly	 linked	 to	 inference	 and	 the	 gathering	 of	
higher-resolution	 data	 on	 MDSC	 phenotypes	 in	 vivo	will	 be	 crucial.	 Mathematical	 modeling	 will	
continue	to	play	an	integral	part	in	discovery	as	it	allows	us	to	account	for	the	numerous	and	dynamic	
factors	 controlling	 MDSC	 plasticity	 and	 its	 impact	 of	 tumor	 responses	 in	 a	 way	 that	 traditional	
biologic	biomarkers	alone	cannot.	Only	by	developing	theory	and	gathering	data	hand-in-hand	can	
we	hope	to	gain	an	understanding	of	the	dynamics	of	MDSCs	in	the	tumor	microenvironment,	and	in	
turn,	develop	new	therapies	for	metastatic	disease.	
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Notation	 Description	 Value	 Units	 Reference	 Range	
xT(t),t	≤	0	 initial	condition	for	tumor	cells	 1	or	2	 -	 -	 -	
xMDSC(0)	 initial	condition	for	MDSCs	 α2/ζ2	 -	 -	 -	
xNK(0)	 initial	condition	for	NK	cells	 	 -	 -	 -	
xCTL(0)	 initial	condition	for	CTL	cells	 0	 -	 -	 -	
τ	 delay	parameter	for	MDSCs	 varies	 days	 -	 -	
α1	 tumor	growth	rate	 10−1,	varies	 days−1	 (40,	84,	85)	 [10−2,5	×	10−1]	
η	 tumor	maximum	size	 107,	varies	 -	 estimated	 [106,108]	
β1	 tumor	cells	inhibition	rate	by	NK	cells	 3.5	×	10−6	 days−1	 (40,	84,	85)	 [10−7,10−6]	
β2	 tumor	cells	inhibition	rate	by	CTL	cells	 1.1	×	10−7	 days−1	 (84)	 [10−7,10−6]	
ζ1	 tumor	cell	death	rate	 0,	varies	 days−1	 (30)	 [0,0.1]	
α2	 MDSCs	circulating	rate	 102,	varies	 days−1	 estimated	(77)	 [0,103]	
α3	 MDSCs	expansion	coefficient	 108	 days−1	 (23,	30,	86)	 [107,109]	
ζ2	 MDSCs	death	rate	 0.2	 days−1	 (87,	88)	 [0,1]	
α4	 NK	cells	circulating	rate	 1.4	×	104,	varies	 days−1	 (84)	 [103,105]	
α5	 NK	cells	expansion	coefficient	 2.5	×	10−2	 days−1	 (40,	84,	85)	 [10−2,10−1]	
β3	 NK	cells	inhibition	rate	by	MDSCs	 4	×	10−5,	varies	 days−1	 (30)	 [10−5,10−4]	
ζ3	 NK	cells	death	rate	 4.12	×	10−2	 days−1	 (84)	 [10−2,10−1]	
α6	 CTL	stimulation	by	tumor-NK	cell	interaction	 1.1	×	10−7,	varies	 days−1	 (89,	90)	 [10−7,10−6]	
α7	 CTL	expansion	coefficient	 10−1	 days−1	 (91)	 [5	×	10−2,10−1]	
β4	 CTL	inhibition	rate	by	MDSCs	 10−4,	varies	 days−1	 (30)	 [5	×	10−5,5	×	10−4]	
ζ4	 CTL	death	rate	 2	×	10−2	 days−1	 (40,	89)	 [10−2,10−1]	
γ1	 steepness	of	MDSC	production	 1010	 -	 (30,	86)	 [109,1011]	
γ2	 steepness	of	NK	production	 2.02	×	107	 -	 (40,	84)	 [106,108]	
γ3	 steepness	of	CTL	production	 2.02	×	107	 -	 (40,	84,	85)	 [106,108]	

	

Table	1:	Description	of	model	parameters	and	values.	Estimated	from	the	literature,	see	in	particular	(40,	
77,	84,	86).	Cell	populations	are	measured	in	terms	of	cell	numbers	and	are	non-dimensionalized.	The	first	
column	is	the	parameter	notation,	the	second	column	is	the	parameter	description,	the	third	column	is	the	
parameter	estimated	value,	the	fourth	column	is	the	parameter	units	(if	applicable),	the	fifth	column	is	the	
citation	of	the	reference	for	the	parameter	estimate,	and	the	sixth	column	is	the	parameter	range	used	for	the	
global	stability	analysis	(see	Methods).	

	

Figure	Legends	

Figure	1:	Larger	MDSC	delays	result	in	significantly	altered	tumor	growth	dynamics.	A:	Model	diagram.	
The	myeloid-derived	suppressor	cell	(MDSC),	natural	killer	(NK)	cell,	and	cytotoxic	T	(CTL)	populations	are	all	
signaled	to	proliferate	in	the	presence	of	a	metastatic	tumor.	The	MDSC	population	inhibits	the	NK-cell	and	CTL	
populations,	 and	 the	 NK-cell	 and	 CTL	 populations	 inhibit	 the	 tumor	 population.	 B-D:	 Simulations	 of	 the	
deterministic	(DDE)	system	(Eqns.	(3a)-(3d),	g	=	0)	over	one	year,	with	one	 initial	 tumor	cell	and	different	
MDSC	delay	parameter	τ.	See	Methods	for	simulation	details.	(B);	τ	=	0.	(C);	τ	=	10.	(D);	τ	=	50.	(E);	τ	=	365.	

Figure	2:	Dependencies	of	tumor	growth	characteristics	on	model	parameters.	Simulations	of	the	ODE	
system	(Eqns.	(3a)-(3d),	g	=	τ	=	0)	with	one	initial	tumor	cell.	A-C:	Different	tumor	growth	thresholds	G	(Eqn.	
(8)).	(A);	G	≈	0.8	(parameters	as	in	Table	1).	(B);	G	≈	0	(ζ1	=	0.81).	(C);	G	≈	−0.2	(ζ1	=	1).	D:	Morris	global	sensitivity	
analysis	(GSA)	for	the	steady	state	of	the	tumor	population	for	all	model	parameters.	Green	denotes	parameters	
that	are	positively	correlated	with	the	tumor	size	at	steady	state;	red	denotes	negatively	correlated.	Hexagons	
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represent	MDSC-specific	parameters;	circles	represent	non-MDSC-specific	parameters.	E-F:	Effects	of	the	NK-
cell	inhibition	rate	by	MDSCs	(β3),	for	β3	=	10−5,	the	minimum	of	the	GSA	range	(E);	the	tumor	size	at	steady	state	
is	2.5	×	102.	And	for	β3	=	10−4,	the	maximum	of	the	GSA	range	(F);	The	tumor	size	at	steady	state	is	9.9	×	106.	

	

Figure	3:	Stochastic	effects	influence	the	growth	and	probability	of	establishment	of	metastatic	tumors.	
Examples	of	simulations	of	the	SDDE	system	(Eqns.	(3a)-(3d))	over	one	year,	with	two	initial	tumor	cells	and	
different	values	of	the	MDSC	delay	parameter,	τ	(all	other	parameters	not	explicitly	defined	otherwise	are	as	in	
Table	1).	A	“successful”	metastatic	 tumor	 is	one	that	does	not	drop	below	a	size	of	one	tumor	cell	over	the	
simulation	period.	A:	τ	=	0;	successful.	B:	τ	=	10;	unsuccessful.	C:	τ	=	50;	successful.	D:	τ	=	365;	unsuccessful.	

Figure	 4:	 Effects	 of	 MDSC	 properties	 on	 the	 probability	 of	 metastatic	 establishment.	 Stochastic	
simulations	run	for	a	period	of	one	year.	Each	point	is	the	mean	over	at	least	105	simulations.	All	parameters	
not	 explicitly	 defined	 otherwise	 are	 as	 in	 Table	 1.	 Ribbons	 (shaded	 area)	 represent	 the	 standard	 error.	A:	
Probability	of	new	tumor	establishment	over	a	period	of	one	year,	for	different	values	of	the	level	of	circulating	
MDSCs	(α2)	and	the	MDSC	delay	(τ).	B:	As	for	A	with	τ	plotted	on	log	scale.	C:	Of	the	new	metastases	that	are	
successfully	established,	the	distribution	of	their	means	sizes	is	given.	D:	As	for	C	with	τ	plotted	on	log	scale.	E:	
Of	the	new	metastases	that	go	extinct,	the	distribution	of	the	mean	times	to	extinction	is	given.	F:	As	for	E	with	
τ	plotted	on	log	scale.	

Figure	 5:	 Interactions	 between	 MDSCs	 and	 NK	 cells	 control	 clinical	 tumor	 growth	 outcomes.	 All	
parameters	 not	 explicitly	 defined	 otherwise	 are	 as	 in	 Table	 1.	A:	 Schematic	 diagram	 of	 NK	 cell–abundant	
environment.	B:	Relative	change	in	tumor	size	from	the	baseline	assessment	for	six	tumors	from	non-small	cell	
lung	 cancer	 patients	 undergoing	 treatment	with	 anti–PD-L1.	 Tumors	 are	 ordered	 (1–6)	 by	 their	 response,	
compared	to	baseline	assessment.	C:	Tumor	2	model	trajectories	based	on	the	relative	change	in	the	tumor	
population	with	the	black	dots	representing	the	data,	the	purple	line	representing	the	fit	from	using	the	median	
of	the	posterior	distribution	for	each	parameter,	and	the	shaded	area	denoting	the	90%	credible	interval	(where	
90%	of	the	posterior	trajectories	lie).	D:	Same	as	B	for	tumor	5.	E-G:	Samples	from	the	posterior	distribution	of	
each	of	the	six	tumors,	8×103	samples	plotted	for	pairs	of	model	parameters.	E:	NK-cell	inhibition	rate	by	MDSCs	
(β3)	versus	tumor	growth	rate	(α1).	F:	NK-cell	inhibition	rate	by	MDSCs	(β3)	versus	CTL	stimulation	by	tumor–
NK	cell	interaction	(α6)	G:	CTL	stimulation	by	tumor–NK	cell	interaction	(α6)	versus	tumor	growth	rate	(α1).	

Figure	6:	The	impact	of	CTL	parameters	on	tumor	growth	increases	in	a	CTL-abundant	environment.	A:	
Schematic	diagram	of	CTL-abundant	environment.	B:	Stochastic	simulations	run	for	a	period	of	one	year.	Each	
point	is	the	mean	over	at	least	105	simulations.	Ribbons	(shaded	area)	represent	the	standard	error.	Probability	
of	new	tumor	establishment	over	a	period	of	one	year,	for	different	values	of	the	level	of	circulating	MDSCs	(α2)	
and	the	MDSC	delay	(τ).	C:	As	for	A	with	τ	∈	[0,10].	Simulations	use	parameters	as	defined	in	the	final	section	
of	the	Methods,	all	other	parameters	not	explicitly	defined	otherwise	are	as	in	Table	1.	D-F:	Samples	from	the	
posterior	distribution	of	each	of	the	six	tumors,	8	×	103	samples	plotted	for	pairs	of	model	parameters.	D:	NK-
cell	inhibition	rate	by	MDSCs	(β3)	versus	tumor	growth	rate	(α1).	E:	NK-cell	inhibition	rate	by	MDSCs	(β3)	versus	
CTL	stimulation	by	tumor–NK	cell	interaction	(α6)	F:	CTL	stimulation	by	tumor–NK	cell	interaction	(α6)	versus	
tumor	growth	rate	(α1).	

	


