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Abstract—Leading 3D object detectors for automated vehicles,
such as PIXOR, do not robustly account for noise and are
vulnerable to adversarial attacks. Existing attack methods do not
accurately simulate naturally occurring noise, as they attempt to
continuously on a discrete input space. In this paper, we propose
a novel attack method, which maximizes loss by making gradient-
informed, discrete changes. A subset of points within an image
move based on a percentage change between the original and
new gradient. We measure the validity of an attack based on its
visual similarity to the original point cloud and numeric metrics.

Index Terms—deep learning, autonomous vehicles, adversarial
attack, point cloud

I. INTRODUCTION

Transportation is an integral aspect of people’s lives; auto-
mobiles, more specifically, are indispensable to those residing
in the United States. According to the National Safety Council,
there were 42,338 automobile related fatalities in 2020 in the
United States, which is equivalent to 12.9 deaths per 100,000
people [1]. This number is a significant decrease compared
to 1970, in which the United States had 54,633 automobile
related deaths, or 26.8 deaths per 100,000 people [1].

This downward trend in fatalities can be attributed to ad-
vancements in technology—such as seat belts, cruise control,
and, more recently, the introduction of autonomous vehicles.
Autonomous vehicles not only contribute to a safer road in-
frastructure but allow for an increase in mobility and economic
stability [2].

While autonomous vehicles offer the prospect of increased
safety, they also raise concerns about liability and risk manage-
ment. Leading 3D object detectors for autonomous vehicles,
specifically using the KITTI Dataset have reached, at most,
a 96% accuracy on an easy difficulty and a 90% accuracy
on a hard difficulty [3]. These detectors have been shown
to be vulnerable to adversarial attacks and require further
development before deployment.
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We propose a novel attack methodology which aims to
represent naturally occurring noise seen on the road and verify
the robustness, or lack thereof, of PIXOR.

A. Related Works

Similar works create novel attack methodology for 3D
detectors [5] [6] and implement attack methodology on com-
monly used datasets [7]. However, there is a absence in
validating the robustness of specifically the KITTI dataset
using discrete detectors. For instance, the Fast Gradient Sign
Method (FGSM) [5] proposes that linearity is the cause
of neural networks’ vulnerability to adversarial attacks and
avoids applying worst-case perturbations to confidently lead
to a misclassification by the algorithm. This, however, is not
compatible with the PIXOR algorithm, as is used within this
paper. PIXOR’s input space, while represented by discrete
values, uses a container capable of storing real numbers.
Attacking PIXOR with FGSM does not simulate natural noise,
but instead attempts to continuously change discrete values.
Instead of points slightly shifting within the 3D space, the
attack shifts a discrete value by a user-defined decimal constant
in either the positive or negative direction. This incompatibility
between discrete and continuous data produces unreliable
metrics and cannot be qualified as an attack which adequately
simulates natural noise.

Other attack methods, such as the Joint Gradient Based
Attack (JGBA) [6] have demonstrated a similar incompatibility
with PIXOR. JGBA aims to break the common defense
strategy of removing statistical outliers by optimizing an attack
with mathematical consideration to both the original point
cloud and its corresponding outlier-removed version. JGBA
interacts with the PIXOR detector in a similar mannerism as
FGSM; the two attack methods attempt to continuously change
a discrete 3D tensor.

There is a lack of robustness verification for KITTI Dataset
detectors, as much literature concerning robustness is imple-
mented on datasets unrelated to autonomous vehicles. Datasets
such as ModelNet40 and ScanNet40 are often used and have
been previously attacked by both FGSM and JGBA [7]. This
past work does not extend fully to the realm of autonomous
vehicles and must be further explored before full road imple-
mentation.
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II. DATA
A. Dataset

We conducted our experiment with the KITTI Dataset [3],
which uses Light Detection and Ranging (LiDAR) to produce
a 3D point cloud. The dataset places objects on the road
into eight categories: cars, vans, trucks, pedestrians, sitters,
cyclists, trams, or miscellaneous. The 7,491 images provided
are split into 3,712 and 3,679 points for training and testing,
respectively. Each image comprises of at least 10,000 points,
Each point is represented by four real number values: the x-
y-z coordinates and the reflectance, which is the ratio of light
reflected back to the LiDAR sensor. The dataset also provides
camera calibration matrices and training labels of the object
data set.

B. Data Preparation

Before data can be given to the PIXOR classifier, it must
be quantized into a 3D tensor of floating-point values, with
dimension sizes 36, 800 and 700 for the z, y, and x dimension
respectively. Points are encoded with “1” in the corresponding
location in the 3D tensor, and all other tensor elements are set
to “0”. The increments defined by the tensor indices cannot
fully capture the continuous nature of the point cloud, and thus
the conversion is inevitably lossy; however, this conversion of
loss is consistent among the images.

III. METHODOLOGY

Our novel attack incorporates elements of FGSM to cre-
ate an attack compatible with discrete datasets. We utilize
information on the gradient from FGSM to maximize loss
to develop a new process that makes slight changes to the
positions, not the values, of elements in the 3D tensor.

FGSM’s attack adds the signs of the gradient multiplied
by a user-defined value to the original data. In contrast, we
begin by adding the gradient values themselves to the discrete
input data which are notated as tensor values (¢). Tensor values
are continuous values which range between (-1, 2) (Fig. 1:
Gradient Representation (a) Generate ¢ Values). Because of
the slight discrepancies and relatively small magnitudes of
gradient values in practice, it is sufficient to consider any t
value greater than 0.9 to be a point. All other ¢ values contain
only the gradient and are not points.

For each point in the tensor, we compare the raw gradient
value to the surrounding coordinates’ gradients in the 3x3 area.
Three of the following scenarios may occur when observing
these 26 gradient values:

1) All surrounding tensor values are identified to not con-
tain points
2) There is at least one surround tensor value which con-
tains a point
3) The original gradient value is the largest gradient value
within the 3x3 area
The initial situation requires we identify the maximum
surrounding gradient value and assign “1” said element. The
original point is then replace with a 07, finalizing the move

(Fig. 1: Gradient Representation (b) Replace Maximum Gra-
dient).

Points which have at least one surrounding tensor value
containing a point are not considered. The process then
resumes as described in the initial scenario.

If the largest gradient is equivalent to the initial point, the
point will maintain its position and not move.

Proceeding all three scenarios, all elements not equal to
“1” are set to “0”—which includes the original point (Fig. 1:
Gradient Representation (¢) Remove Gradients). This ensures
that the input is well-formed and will produce reliable metrics.
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Fig. 1: Gradient Representation

With this naive approach, which moves most points, it
becomes obvious to the human eye that artificial noise has
been introduced when the data is visualized. To better simulate
the effects of natural noise, it is necessary to limit the number
of points moved and quantify the total change between the
original and attacked image.

The measure used to vary the intensity of an attack is
identified as the threshold (eq. 1). The threshold measures the
percentage change between the maximum gradient value and
the center point’s gradient value. If the magnitude of this value
exceeds that of the specified threshold, the attack will move
the point. A smaller threshold allows more points to move
and results in a more visually apparent attack while a larger
threshold is less visually apparent and moves a fewer number
of points.
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g —g‘ 0

T = Threshold
g = Gradient of Original Point
¢’ = Maximum Gradient (within 3x3 domain)

We ran the experiment with 100 images for 10 different
threshold values: specifically, 0.5, 0.75, 1.0, 2.4, 3.0, 3.6, 4.2,
5.0, 10.0, 15.0.

We chose to not implement operations which consider the
placement of new points in high-gradient positions or removal
of points in negative-gradient positions, as this would create
complications when trying to measure and control the severity
of an attack.

IV. RESULTS

We measure the robustness of a classifier using metrics
and visual similarity between the attacked and original point
clouds. Ideal attacks simulate naturally occurring noise and
must still be representative of its respective environment.

An effective attack will lead to a misclassification by the
algorithm, as represented by a low average precision and high
loss while limiting the amount of perturbation to the attacked
image. The perturbation can be measured with a qualitative
visual analysis of each point cloud and a novel, quantitative
metric defined as “points moved per point” (MPP). MPP is
a ratio between the number of moves occurred and the total
number of points in each image (eq. 2). An implementational
nuance makes it possible, while unlikely, for a point to be
moved multiple times, so it is important to refer to the ratio as
“moves made per point” rather than “points moved per point.”
In the context of simulating natural noise, we do not find this
objectionable.

MPP = )

m
Dt
m = Successful Moves

p; = Total Number of Points

The table below shows the metrics of experiments con-
ducted at each threshold as well as the metrics of the non-
attacked 3D detector’s testing (Table I: Attack Evaluation
Metrics).

Threshold AP Precision  Recall Loss MPP
Testing 0.6070 0.5860 0.6715  0.2330  0.0000
15.0 0.5463 0.4444 0.6433  0.2079 0.0793
10.0 0.5564 0.4364 0.6520 0.2086 0.1184
5.0 0.5286 0.4096 0.6228 0.2129  0.2180
4.2 0.5096 0.3981 0.6170  0.2144  0.2506
3.6 0.4853 0.3864 0.5965 0.2150 0.2817
3.0 0.4569 0.3660 0.5789 0.2174 0.3211
24 0.4736 0.3734 0.5994  0.2201 0.3708
1.0 0.4226 0.3327 0.5526 0.2236  0.4943
0.75 0.2024 0.2259 0.3772  0.2466  0.9089
0.5 0.1783 0.1930 0.3793 0.2334  0.9383

TABLE I: Attack Evaluation Metrics

AP tends to decrease as the threshold decreases, which
confirms prior expectations; as more noise is added to a point
cloud, its average precision should trend down. There is an
inverse relationship between AP and MPP (Fig. 2. Metrics Vs
Threshold). MPP relates to the measure of an attack’s intensity,
where a high MPP will correspond to both a low threshold and
a low AP. The testing loss, however, is higher than most of
the corresponding loss values of the attacked datasets, which
defies expectations. In both these ways, the numeric results
may prove inconsistent based on the specific metric used.
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Fig. 2: Metrics VS Threshold

Equally important to the quantitative metrics is the visual
feedback of an attack. An ideal attack will replicate noise from
the real world, and hence will be unnoticeable to the human-
eye. Below are the graphed point clouds of an image attacked
at select threshold levels. (Fig. 3: Point Clouds Visualization
Based on Threshold). The original point cloud clearly shows 3
cars aligned on the road. These cars are also easily identifiable
when the threshold is equal to 10; however this produces an
undesirable, higher average precision. Certain thresholds such
as 3.0, 2.4, and 1.0 significantly lower the AP without distort-
ing the point cloud beyond human comprehension. Thresholds
below 1.0 contain unidentifiable clusters and are generally
unsuitable for analysis. Therefore, thresholds between 1.0 -
3.0 are most desirable for attacking a dataset.

V. LIMITATIONS

There are limitations and opportunities for further develop-
ment of our method. In addition to quantized point locations,
the 3D input tensors, as provided by the KITTI Dataset, also
contain information on the reflectance of points. In each tensor,
points are mapped to indices [0-34] along the z dimension,
while index 35 contains the average reflectance of all the
points within one column. Individual reflectance values for
each point are no longer available within the 3D tensor, and
we do not fully understand how the reflectance would change
when points are shifted. To ensure consistency in the results,
we set all the average reflectance values to zero.

The change in points’ location is biased. Because our
method moves points immediately following detection, mov-
ing a point in a certain direction will cause it to be detected
and possibly moved again in a future iteration. Movement is
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(a) Original, AP = 0.6070
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Fig. 3: Point Cloud Visualization Based on Threshold

therefore biased in the positive X, y, and z direction. Although
the bias is not manifest in our visualizations, we are currently
unable to quantify how often this occurs and how it affects
PIXOR’s classification.

Since this attack moves points based on the locally deter-
mined percentage change of the gradient (eq. 1), all points
are treated as equally important regardless of their magnitude
in relation to other points within the global scope. It may be
possible to lower PIXOR’s AP without increasing the MPP if
points are sorted based on their gradients and priority is given
to moving the points with the smallest gradient values. This
would allow for more precise control of the number of points
moved and maximize the loss gained from each iteration.

The above limitations may be contributing to the discrep-
ancies in the results. More work is needed to measure their
significance and find solutions.

VI. CONCLUSION

The robustness of 3D detectors must be verified, especially
when concerning autonomous vehicles. PIXOR, a 3D detector
used on the KITTI dataset, is not adequately robust and
does not successfully defend against adversarial attacks. Other
existing attack methods such as FGSM and JGBA do not
adequately simulate natural noise on the PIXOR detector and
cannot be used to verify robustness. We recommend our novel
attack methodology to be integrated on data represented as
a 3D tensor array. We anticipate our attack method will aid
in making future 3D detectors more robust and fit for real
life application. We specifically encourage using a threshold
of percentage change in gradients between 1.0 - 3.0, as
demonstrated by the 13.34 - 18.44% decrease between training
and the respective thresholds.
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