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Effective Brain Connectivity Extraction by Frequency-Domain
Convergent Cross-Mapping (FDCCM) and its Application in
Parkinson’s Disease Classification
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Abstract— Objective: Inferring causal or effective con-
nectivity between measured timeseries is crucial to under-
standing directed interactions in complex systems. This
task is especially challenging in the brain as the under-
lying dynamics are not well-understood. This paper aims
to introduce a novel causality measure called frequency-
domain convergent cross-mapping (FDCCM) that utilizes
frequency-domain dynamics through nonlinear state-space
reconstruction. Method: Using synthesized chaotic time-
series, we investigate general applicability of FDCCM at
different causal strengths and noise levels. We also apply
our method on two resting-state Parkinson’s datasets with
31 and 54 subjects, respectively. To this end, we construct
causal networks, extract network features, and perform
machine learning analysis to distinguish Parkinson’s dis-
ease patients (PD) from age and gender-matched healthy
controls (HC). Specifically, we use the FDCCM networks
to compute the betweenness centrality of the network
nodes, which act as features for the classification mod-
els. Result: The analysis on simulated data showed that
FDCCM is resilient to additive Gaussian noise, making it
suitable for real-world applications. Our proposed method
also decodes scalp-EEG signals to classify the PD and
HC groups with approximately 97% leave-one-subject-out
cross-validation accuracy. We compared decoders from
six cortical regions to find that features derived from the
left temporal lobe lead to a higher classification accuracy
of 84.5% compared to other regions. Moreover, when the
classifier trained using FDCCM networks from one dataset
was tested on an independent out-of-sample dataset, it
attained an accuracy of 84%. This accuracy is significantly
higher than correlational networks (45.2%) and CCM net-
works (54.84%). Significance: These findings suggest that
our spectral-based causality measure can improve classifi-
cation performance and reveal useful network biomarkers
of Parkinson’s disease.

Index Terms—Brain networks, convergent cross-
mapping, frequency-domain convergent cross-
mapping, classification, effective connectivity,

electroencephalography, functional connectivity, machine
learning, Parkinson’s disease

[. INTRODUCTION

The human brain is an efficient organization of 100 bil-
lion (10'') neurons anatomically connected by about 100
trillion (10'%) synapses over multiple scales of space and
functionally interactive over multiple scales of time [1]. The
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recent mathematical and conceptual development of network
science combined with the technological advancement of
measuring neuronal dynamics motivated the field of network
neuroscience. Network science provides a particularly appro-
priate framework to study several mechanisms in the brain
by treating neural elements (a population of neurons, a sub-
region) as nodes in a graph and neural interactions (synaptic
connections, information flow) as its edges. The central goal
of network neuroscience is to link macro-scale human brain
network topology to cognitive functions and clinical disorders.
It is established that neurological disorders and cognitive phe-
nomena can be described as aberrant patterns of interactions
between neural elements in a large-scale brain network [2]—
[S].

Apart from the anatomical/structural connectivity, measured
neural dynamics can be used to estimate functional and effec-
tive networks. While functional connectivity is defined as a
statistical dependence between the neurophysiological signals,
effective connectivity characterizes patterns of causal interac-
tions [6]. While the underlying anatomical pathways between
brain regions or populations of neurons are bidirectional, we
cannot assume that the connectivity is symmetrical. Although
there are several linear and nonlinear measures of undirected
correlation, estimating the directionality in brain networks is
an important and largely unaddressed issue [7]. This paper
proposes a novel approach to estimate causal connectivity that
can be applied to different types of electrophysiological brain
recordings.

Data-driven effective connectivity measures can vary from
linear to nonlinear, model-based to model-free, and time-
domain to frequency-domain [8], [9]. Majority of the existing
measures are based on Granger’s approach [9]-[11]. However,
these Granger-based measures such as Granger causality, di-
rected transfer function (DTF), and partial directed coherence
(PDC) are only applicable to strongly-coupled, linear, and
stochastic systems [12], [13]. Granger causality is also model-
based and does not always reveal causal interactions [13], [14].

A newly developed method of assessing causation between
timeseries, convergent cross-mapping (CCM) [14], has been
shown to identify causal relationships that Granger causality
may miss due to nonlinearity or deterministic nature. CCM has
been applied in a limited number of studies to characterize
neurological disorders [15]-[18]. CCM is based on time-
domain dynamics and does not include spectral information.
Frequency-based methods such as PDC [19], DTF [20] and
dynamic causal modeling [21] have been shown to be useful in



detecting brain disorders [22]-[26]. However, these methods
are derived using Granger’s approach and are model-based
[27]. This paper introduces the first frequency-based causality
measure that can infer nonlinear causal interactions between
neuronal populations without requiring any model estimation.

The proposed method called frequency-domain convergent

cross-mapping (FDCCM) is a nonlinear state-space recon-
struction technique similar to CCM. For two causally coupled
neuronal dynamics, the rationale behind causal inference using
FDCCM is based on the following intuition. Since the cause-
variable influences the effect-variable, we can reconstruct
the causal timeseries by finding its signature in the power
spectrum of the effect timeseries. In other words, we utilize
the mapping between the power spectra of the two timeseries
to estimate the causal influence of one on the other. We first
illustrate the principle of our approach on simple synthesized
data, coupled logistic maps, and show that FDCCM reliably
estimates interactions. Next, we apply the method to real-world
datasets and evaluate its performance in detecting biomarkers
for Parkinson’s disease using resting-state EEG.

The specific contributions of the paper are outlined below:

1) We introduce a spectral measure of causality called
frequency-domain convergent cross-mapping or FD-
CCM. Unlike existing spectral measures of effective
connectivity, FDCCM is model-free and can infer non-
linear interactions.

2) We describe the algorithm and validate our method on a
synthesized dataset. We illustrate the effect of coupling
strength and noise on the quality of causal inference,
and demonstrate that FDCCM is more robust to external
noise than CCM.

3) We apply our method on resting-state scalp EEG record-
ings from two Parkinson’s datasets. We employ graph
analysis to showcase the difference in betweenness cen-
trality between the patients and controls.

4) We demonstrate that machine learning classifiers based
on FDCCM causal networks can differentiate between
Parkinson’s patients and demographically matched
healthy controls. The performance of FDCCM is shown
to be better than correlational networks and CCM net-
works on both datasets.

Il. DATA DESCRIPTION

Three datasets are used in this analysis. The first is a
synthesized dataset that simulates nonlinear causal interactions
between two variables. The second and third datasets contain
experimental resting-state scalp EEG recordings from Parkin-
son’s patients and healthy controls.

A. Synthesized Data

The logistic map is a well-established nonlinear dynamic
equation that generates periodic and chaotic behavior [28].
Despite its mathematical simplicity, a logistic map exhibits a
high degree of complexity. Two logistic maps with chaotic
dynamics can be coupled to create a complex system akin to
biological systems. Two timeseries in a coupled logistic map
can be correlated, uncorrelated, or anti-correlated at different

times [14]. The coupled logistic maps timeseries X and Y
were synthesized using the following equations:

2t +1) = z(B)[r2(1 = x(t)) = Bayy(t)]
y(t+1) = y(@)[ry(1 = y(t)) — Bya(t)]-

The variables X and Y have a nonlinear dependence on
their own past values parameterized by the growth rates r,
and r,. The coupling constants 3, and j3,, characterize the
coupling strengths from X to Y and from Y to X, respectively.
The variables have chaotic dynamics at values of 7, and r,
above 3.57. We chose the r, = 3.65 and r, = 3.77, so we
are in the chaotic regime of the logistic map [29].

)

B. Parkinson’s Data

1) Subjects: We used two Parkinson’s datasets in this study.
The first dataset includes EEG data from 15 PD patients (mean
age 63.2 4+ 8.2 years) and 16 healthy, age-matched control
participants (mean age 63.5 + 9.6 years). The PD and control
groups include eight and nine females, respectively. All PD
patients were diagnosed by a movement disorder specialist at
Scripps Clinic in La Jolla, California. All participants provided
written consent as per the Institutional Review Board of the
University of California, San Diego, and the Declaration of
Helsinki. Additional information about this data can be found
in [30], [31].

The second dataset includes scalp EEG recordings from 27
patients with PD who were recruited from the Albuquerque,
New Mexico community and an equal number of demograph-
ically matched (sex and age) controls. The PD and control
groups did not differ on education or premorbid intelligence
measurements. All participants were evaluated using Mini-
Mental State Exam (MMSE) and achieved a score above
26. All procedures were approved by the University of New
Mexico Office of the Institutional Review Board, and the
participants were paid $20/hour. The data were also reported
in previous studies [32]-[34], and can be downloaded from
[35].

Both datasets include data collected from PD patients in ‘on
medication’ (PD-ON) and ‘off medication’ (PD-OFF) states.
Data from on and off medication were collected on different
days. The patients discontinued their dopaminergic medicines
at least 12 hours before the experiment for the PD-OFF phase.

2) EEG Recordings: In PD dataset-1, EEG data were ac-
quired using a 32-channel BioSemi ActiveTwo system, sam-
pled at 512 Hz. Resting data were recorded for at least 3
min while the participants were told to fixate on a cross
presented on a screen. PD dataset-2 consists of EEG signals
recorded via Ag/AgCl electrodes with a sampling rate of 500
Hz on a 64-channel Brain Vision system. The signals were
referenced with respect to the ‘CPz’ channel, resulting in 63
timeseries. This analysis considers resting-state EEG signals of
one-minute duration recorded while the participants had their
eyes closed (unlike PD dataset-1). The EEG channel locations
in the two datasets are depicted in Fig. S1 (see Supplementary
Information).

We high-pass filtered the signals at 0.5 Hz cut-off to
remove low frequency drift. We also filtered all signals using



a 6th order IIR filter, to remove the power-line noise and its
harmonics. We used two-way (bidirectional) filtering to avoid
any phase shifting that can affect causal inference between the
signals.

[1l. METHODS
A. Convergent Cross-Mapping (CCM)

In dynamical systems, causally interacting variables (e.g.,
two electrode recordings) share a trajectory in the underlying
state-space called ‘attractor’ space. In other words, each time-
point corresponds to a location in this space. Mathematical
theorems guarantee that the temporal sequence of a single
variable has sufficient information about the entire system’s
dynamics. Accordingly, the dynamics of one variable constrain
the dynamics of other variables, and can be used to reconstruct
the original global attractor topology.

Consider two timeseries, X and Y, part of a deterministic
dynamical system denoted by M. We can then express the
temporal dynamics of X in a delay-coordinate state-space that
consists of the set of D-dimensional state vectors: x(t) =
{z(t),z(t — 1),...,2(t — (D — 1))}. The time delays are
assumed to be 1 for simplicity. This transformed state-space
of X is called its attractor manifold Mx. This process of
transforming a sequence into its delay-coordinate space is
called time-delay embedding. As proven by Takens theorem
[36], a general principle in dynamical systems is that the states
of the global attractor M have a one-to-one mapping to the
local attractors M x and My . Consequently the local attractors
(also known as shadow manifolds) M x and My have a one-
to-one correspondence with each other.

Based on this property, a protocol for inferring causation
in complex systems was proposed by Sugihara et. al., using
K-nearest-neighbor state-space reconstruction [14]. To under-
stand the intuition behind this method, called convergent cross-
mapping (CCM), consider two variables X and Y with asym-
metric interaction. That is, X influences Y but not vice-versa.
The aim is to infer the causal interactions from observational
timeseries X and Y. Since there is a causal connection from
X to Y, the history of Y has information about X. In other
words, a local neighborhood in My  corresponds to a local
neighborhood in My . Therefore the ‘cause-variable’ X can
be accurately reconstructed using the nearest neighbors in the
shadow manifold My, if and only if there is causal connection
from X to Y. As the causal influence of X on the dynamics
of Y increases, more information about X is encoded in the
manifold My constructed from a fixed number of observations
of Y. This rationale acts as the basis for causal inference using
CCM.

B. Frequency-Domain Convergent Cross-Mapping
(FDCCM)

1) The Basic Concept: In the proposed frequency-domain
convergent cross-mapping (FDCCM), we extend the idea of
causal inference using nonlinear state-space reconstruction to
the frequency-domain. Intuitively, any linear transformation
of a manifold should preserve its topology: a corollary of
random projection theory [37]. For a given frequency, Fourier

transform is a linear transformation. Hence, we can preserve
the geometry by transforming the delay-coordinate space to
frequency space, by computing the power spectrum of x(t).
This transformation is equivalent to computing short-time
Fourier transform (STFT) with pre-defined frequency bands.
The time-delayed embedding in CCM is now replaced by
spectrograms, such that each point in the resultant attrac-
tor manifold (Mx) is x(t) = {zy, (t), x5, (t),..., x5, ()},
where the subscripts represent D different frequency bands
of equal bandwidth. This embedding frequency space is illus-
trated in Fig. 1(a). Before outlining the algorithm of FDCCM,
we describe two key ingredients of the method: cross-mapping
and convergence.

2) Cross-Mapping in FDCCM: If X has a causal influence
on Y, then, X will influence the frequency dynamics of Y.
This ‘imprint’ of X on Y means that topology of My obtained
from Y can be used to estimate values of X. This estimate at a
given time instant ¢ is called the cross-map of z(t) given My,
and is denoted Z(¢)| My . If X and Y are causally coupled, then
each point x(t) in My can be mapped to a unique point in
My [14].

To compute the cross-mapped estimates Z(t)| My, we use
simplex-projection algorithm as described by (2) and (3). We
first obtain a small region around y(t), represented by its k
nearest neighbors: {y1(t),y2(t),...,yx(t)}. This neighbor-
hood is then mapped to a set of points in My, represented
as {x1(t),x2(t),...,xk(t)}. To form a bounding simplex in
D-dimensional space, we need k > D+ 1. The weighted mean
of {x1(t),x2(t),...,xk(t)} provides the estimate of x(t) as
shown in the equation,

D+1

B(t)| My = wix(t). 2)

The weighting w; is based on the distance between y(t)
and its 7*" nearest neighbor y;(t) as given by the equations,

D+1
w; = u;/ Z Uy,
w — exn | 25 (®) ¥i(t) (3)
: p[ Ay (6),y2 (¢ } and

where d(.,.) represents the Euclidean distance.

The cross-mapping was implemented for L points in the
timeseries X algorithm. The total number of time points (L),
i.e., the ‘library’ of points in the attractors used for cross-
mapping is called library length. The correlation coefficient
between the original timeseries and the estimated timeseries,
i.e., pxx 1s used as an indicator of the influence of X on Y.
The cross-mapping §(t)|Mx can be estimated analogously.
Fig. 1 illustrates the cross-mapping at time instant ¢ for a bi-
variate example where X influences Y, but there is no causal
link from Y to X. The state-space reconstruction of X using
My (i.e., Z(t)|My) would be accurate due to the effect X has
on Y, but not vice-versa.
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Fig. 1: Mlustration of embedding and cross-mapping between
X and Y when X influences Y but Y has no (or minimal)
effect on X. Note that the cross-mapping from My to Mx is
accurate unlike the cross-mapping from Mx to My-.

3) Convergence: For practical application, the cross-
mapping estimates of timeseries are evaluated using correla-
tion coefficient, mean absolute error, or similar metrics. We use
absolute correlation coefficient (p) as the accuracy metric in
this study. The total number of time points, i.e., the ‘library’ of
points in the attractors used for cross-mapping is called library
length (L). As L increases, attractors get more dense in the
state-space, resulting in closer nearest neighbors, and more
accurate estimation. This increasing cross-mapping accuracy
with increase in L is a key property for causal interactions
[14]. We use the cross-mapping accuracy at L = 1000. We
noticed the exact value of L does not have a notable impact
on the estimates unless it is assumed to be too small.

4) Algorithm: Here, we outline the main steps in computing
FDCCM between two timeseries. For a given library length
L, the basic algorithm for cross-mapping X using the shadow
attractor My is given by:

o Compute the time-frequency spectrograms M x and My .

Note that L is the number of time windows and D is the
number of frequency bands.

e For each time index ¢t = 1to L, find D + 1 nearest
neighbors of y(t) in My.

o Generate weights w; according to (3).

o Estimate Z(¢)| My using (2).

o Calculate the absolute correlation coefficient p XMy be-
tween X = {z(t) : 1 <t < L} and X = {&(t)|My :
1<¢t< L}

C. Parkinson’s Classification

1) Network Features: The analysis for Parkinson’s data
consists of three steps: construct networks, compute node
centrality of every node in the network, and learn HC vs.
PD classifiers using the node centralities as features. Each of
these steps is described below.

First, we construct networks using thirty-second epochs
of the EEG signals. We split the recordings into multiple
thirty-second epochs with 90% overlap. Since each subject
PD dataset-1 has signals of duration three minutes, there
are 51 such epochs per subject leading to 51 networks. In
the case of PD dataset-2, the one-minute recordings produce
11 networks. Note that each recording is 3 minutes and 1
minute in dataset-1 and dataset-2, respectively. The average
of these networks defines the resting-state connectivity for
each subject. Each network was estimated using three network
measures: correlation coefficient, CCM (time-domain) and
FDCCM.

To construct networks using FDCCM, we determine the
spectrograms (time-frequency matrices) for each EEG record-
ing. Fig. 2 presents spectrograms associated with two different
electrodes from a PD patient in PD dataset-1. To generate the
spectrograms, we compute power spectrum with 0.5-second
sliding windows with 95% overlap. The frequency resolution
used was 5 Hz, up to 200 Hz. We use information up to
200 Hz as they attained better results empirically (see Table
S5 in the supplementary Information). High frequency bands
such as broadband gamma (50-150 Hz) activity in scalp
EEG have been shown to detect biomarkers of Parkinson’s
in previous studies [38]-[40]. These spectrograms are then
used to estimate the causal connectivity between all pairs of
channels.

Thus, each healthy control subject has a representative
functional or effective connectivity graph. Each PD patient
has two graphs (on and off medication). We then compute
betweenness centrality of the nodes in these graphs. For a
subject with N channels, effective networks can have up to
N(N — 1) connections. That is, 992 connections if N = 32,
and 3906 connections if N = 63. Node centrality is a
way to extract interpretable information from the networks,
while reducing the number of features. Betweenness centrality
measures the extent to which a given node falls in the shortest
path between any two other nodes [6]. Therefore, it is a
measure of importance of the node acting as a bridge between
other nodes in the graph.

2) Channel-Level Feature Selection and Classification: We
train separate classifiers to differentiate PD-ON and PD-OFF
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Fig. 2: Example time-frequency representations (spectrogram)
derived from two arbitrarily chosen channels. The spectro-
grams correspond to a Parkinson’s patient from PD dataset-
1. Time resolution: 0.5-second windows with 95% overlap.
Frequency resolution: 5Hz, up to 200 Hz.

from controls. Betweenness centrality of the nodes in each
network are used as features. Sequential forward selection
was employed to select the optimal features/channels that
maximize leave-one-subject-out cross-validation accuracy. We
employ Naive Bayes classifiers with Gaussian kernels which
learns a nonlinear decision boundary between the two classes.
We observed that these models perform better than other
linear models such as support-vector machines (SVM) and
linear discriminant analysis; and nonlinear models such as
polynomial SVM and decision trees (see Tables S1 — S4 in
the Supplementary Information). The cross-validation prevents
overestimating the accuracy due to over-fitting of training data
and ensures the models were evaluated on all subjects. .

3) Region-Level Classification: We perform further analysis
by merging the channels into six regions: frontal, central,
parietal, occipital, left temporal, and right temporal, as de-
picted in Fig. 3. In each region, we average the betweenness
centrality features of the corresponding channels. This merging
of features into six regions served as a way to consolidate
and reduce the number of features, thereby eliminating the
need for additional feature selection. We then train separate
classifiers (decision trees) for each region using the resultant
averaged betweenness centrality. We evaluate these classifiers
on independent ‘in-sample’ and ‘out-of-sample’ test sets and
compare the performance of the six brain regions.

IV. RESULTS
A. Synthesized Data Analysis

1) Convergence: We synthesized coupled logistic maps,
X and Y, using (1) with parameters: r, = 3.65,r, =
3.77,Bzy = 0.05, and 3y, = 0.5. 25,000 samples were
generated and the first 10,000 were discarded to avoid the
effects of transient behaviour of the model. The remaining
15,000 points were used for the analysis, assuming a 500
Hz sampling rate — a total duration of thirty seconds. To
estimate spectrograms and FDCCM, we used a SHz frequency
resolution, up to 200 Hz, analogous to the Parkinson’s data.
Fig. 4 illustrates how the cross-mapping accuracy between X
and Y grows with increasing library length L. The increasing
trend of p XMy and Py | My validate the causal influence from
X toY and Y to X, respectively. It can be observed that the
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Fig. 3: EEG channels divided into six regions over scalp
as frontal, central, parietal, occipital, right temporal and left
temporal.
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Fig. 4: Correlation coefficients of the two estimated timeseries,
X | My and )7|M x, with respect to library length (L). Cou-
pling strengths: 3;, = 0.05 and 3,, = 0.5. X | My represents
the influence X — Y, and Y|M x represents the influence
Y — X computed using FDCCM.

difference p XMy ~ P My is always positive, supporting the
fact that By, > Bzy-

2) Effect of Coupling Strength: We denote the difference
Px\My — PY My by pgirs, which is a measure of relative
causal influence from X to Y. To test how the relative
causality varies with coupling strength, we fix 3., at 0.5, and
estimate pg; ¢y at different values of 3,,. Fig. 5 demonstrates
that pg;rs increases with increasing f3,,. More importantly,
when B, < 0.5 = By, paifs is negative. Each value in
the plot is the average result of 100 simulations. Although
the direction of causality is correct, the magnitude of causal
strength is not reliable when there is weak coupling. Note
that there is a monotonous increase in pg; ¢ only for coupling
strengths higher than 0.35.

3) Effect of Noise: Since real-world signals such as elec-
trophysiological data are affected by environmental and mea-
surement noise, it is important to study the effect of noise. It
is known that cross-mapped estimates of CCM deteriorate as
more noise is present in the data [14], [29]. To characterize
the effect of noise on FDCCM, we simulate noisy timeseries
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Fig. 5: Difference between px_,y and py_,x (denoted by
paifr) as a function of coupling strength 3,,. B, = 0.5.

given by the equations,

w(t+1) = 2()[ra(1 — (1)) = Beyy ()] + €2 ()
y(t+1) = y(O)ry(1 = y(t)) = Byaw(t)] + (1)

Here, €, and ¢, are the noise terms, that were modeled
as additive Gaussian noise with zero mean and standard
deviation o. We repeated the simulations at different signal-
to-noise ratios (SNR), and different coupling strengths 3,, =
{0.6,0.7,0.8,0.9}. Note that 3, was kept constant 0.5. We
evaluated (time-domain) CCM and FDCCM by quantifying the
effect of noise level on pg;7r. This effect of noise on CCM
and FDCCM is presented in Fig. 6.

For By, > 0.5, we expect pgiry > 0, as demonstrated
in Fig. 1. Additionally, we expect pg;rs to be higher for
higher values of f3,, as the influence of X on Y becomes
stronger. When the noise is high, i.e., SNR is zero (dB), the
two timeseries become uncorrelated resulting in pg;rr = 0.
As the SNR increases, and the signal tends to dominate the
noise, we notice that pg; sy converges to more accurate values
that are greater than zero. We can observe that both methods
showcase the expected trend at high SNR: pgirs o< Bya.
However, empirical data often contains a moderate level of
noise. It is, therefore, important to determine the threshold at
which the methods become unreliable. As shown in Fig. 6(a),
when the SNR is less than 16 dB, CCM does not perform
as expected at different coupling strengths. Fig. 6(b) shows
that as long as the SNR is not too low, i.e., for SNR > 3
dB FDCCM results in reliable estimates of pg;r¢. These plots
illustrate that FDCCM is more robust to noise.

“4)

B. Parkinson’s Disease Classification

We employ three network connectivity measures: func-
tional (correlational) networks based on Pearson’s correlation
coefficient, and effective (causal) networks based on CCM
and FDCCM. We compare the three methods by evaluating
their performance in differentiating PD patients from healthy
controls. We report the receiver operation characteristic (ROC)
curves for the classifiers based on the three network types and
compared them. The ROC curves plot true-positive rates vs.
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Fig. 6: The effect of noise on CCM and FDCCM estimates.
pdiff as a function of increasing signal-to-noise ratio (SNR)
for different coupling strengths 3.

false-positive rates for a given binary classifier at different
model thresholds. As classifiers attain higher true-positive
rates and lower false-positive rates, the curve moves closer
to the top-left corner of the plot. In other words, classifiers
that lean more towards the top-left corner of the ROC plot are
more desirable.

1) Using Channel-Level Features: Betweenness centrality of
the nodes in each network are used as features. Fig. 7 and Fig.
8 illustrate this distinction between patients and healthy age-
matched controls on the two independent resting-state datasets.
The scalp topographical maps of average betweenness cen-
trality in each group— HC, PD-ON and PD-OFF— show that
the spatial distribution of betweenness centrality vary between
the HC and PD groups. The HC controls have higher node
centrality in the mid-frontal regions while, the PD groups show
higher values in mid-parietal regions. Note that these scalp
maps are derived from FDCCM networks.

The differences visualized in Fig. 7 and Fig. 8 were qualified
using classifiers. Fig. 9 and Fig. 10 present the accuracy of
theses classifiers in the form of ROC curves for PD dataset-1
and PD dataset-2, respectively, for all three network measures.
We also report the leave-one-patient-out cross-validation ac-



(a) HC

Fig. 7: Scalp topographical maps of average betweenness centralities of healthy controls (HC) and PD patients (ON and OFF)

from PD dataset-1.

(a) HC

Fig. 8: Scalp topographical maps of average betweenness centralities of healthy controls (HC) and PD patients (ON and OFF)

from PD dataset-2.

curacy, sensitivity and specificity of the models in Table I.
The ROC curves show that FDCCM outperforms the CCM
and correlation as the preferred connectivity measure, which is
also indicated by higher AUC values in Table I. In PD dataset-
1, FDCCM-based decoders can distinguish PD patients (both
on and off medication) with 96.8% accuracy (AUC=0.98): a
substantial improvement over the other two methods. Note that
these decoders are based on sequential feature selection that
maximizes the cross-validation accuracy. The optimal features
selected by the feature selection process correspond to EEG
electrodes F7 and PO4, for HC vs. PD-ON; and CP5, Ol,
and Oz, for HC vs. PD-OFF. The optimal features and the
decoding performance vary depending on the connectivity
measure used. In PD dataset-2, FDCCM achieves 96.23%
accuracy (AUC=0.96) and 88.68% accuracy (AUC=0.92) for
HC vs. PD-ON and HC vs. PD-OFF, respectively.

2) Using Region-Level Features: For region-level analysis,
we combined both datasets to increase the size of the data. We
evaluate the classifiers using ‘in-sample’ and ‘out-of-sample’
testing. In the first approach, we train the models using the
features from both datasets and evaluate them using leave-
one-subject-out testing. In the second approach (out-of-sample
testing), we train the models using dataset-2 (since it has
more subjects) and test on dataset-1. We also observed that
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TABLE |: Summary of HC vs. PD channel-level validation results evaluated using leave-one-patient-out cross-validation scheme.
The table presents classification accuracy, sensitivity (PD accuracy), specificity (HC accuracy) and AUC for each of the three
network construction methods. Random label-assignment would result in a baseline accuracy of 50%. The highest values

between the three methods are shown in bold.

PD Dataset-1 from UCSD. Npp = 16 and Ngc = 15
Classifier — HC vs. PD-ON HC vs. PD-OFF
Connectivity | | Acc. | Sens. | Spec. | AUC (0-1) | Selected Channels | Acc. | Sens. | Spec. | AUC (0-1) Selected Channels
Correlation |70.97(46.67| 93.7 0.51 CP1 87.1 |86.67| 87.5 0.78 C3, Oz
CCM 80.64| 80 |81.25 0.75 FCl, O1 70.97| 60 |81.25 0.55 P3, Pz
FDCCM 96.8 | 93.3 | 100 0.98 F7, PO4 96.8 | 93.3 | 100 0.98 CP5, O1, Oz
PD Dataset-2 from UNM. Npp = 27 and Ngco = 27
Correlation | 71.7 [81.48|61.54 0.73 FC1, CP1 84.91(85.18(84.62 0.86 FC1, P7, CP2, AF7
CCM 79.24|88.89(69.23| 0.745 FC2, PO3 86.79|85.18 |88.46 0.84 FT9,C3,P4,FC2,AF7,PO4,P6
FDCCM  [96.23| 96.3 | 96.15 0.96 CP1, Oz, FCz, C5|88.68 |81.48|96.15 0.92 FC1, TP9, F4, P2
HC = Healthy controls, PD = Parkinson’s disease, Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, AUC = Area under the ROC curve.
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Fig. 11: Comparison of HC vs. PD classification between the

Six regions.

the average of the features from PD-ON and PD-OFF, i.e.,
(PD-ON + PD-OFF)/2, differentiates the two classes better
than just PD-ON or PD-OFF.

In Fig. 11, we present the leave-one-subject-out classi-
fication accuracy using the data from both datasets based
on FDCCM. The results show that the average betweenness
centrality of the temporal lobe channels, especially the left
temporal lobe, distinguishes PD patients with higher accuracy.
The accuracy using all six features is 73.8% (AUC=0.76).
However, using features from the left temporal lobe results in a
substantially higher accuracy of 84.5% (AUC=0.82), followed
by the right temporal lobe (Acc.=76.2% and AUC=0.72). We
also observed that temporal lobe features outperformed the
other regions in individual datasets.

We also compared the three connectivity measures using
features from the left-temporal lobe. Table II presents the in-
sample testing results from dataset-1, dataset-2 and combined
data. In all three cases, it can be observed that FDCCM outper-
forms correlation and CCM. For in-sample leave-one-out test-
ing on the combined dataset, the FDCCM networks resulted
in 84.52% (AUC=0.82) accuracy, while correlational networks
and CCM networks result in 63.1% (AUC=0.52) and 51.2%
(AUC=0.44), respectively. For out-of-sample testing of clas-
sifiers trained on dataset-2 and tested on dataset-1, FDCCM
networks lead to 83.9% accuracy, a substantial improvement

over correlational networks (Acc.=45.16%, and AUC=0.44)
and CCM networks (Acc.=54.8%, and AUC=0.51).

V. DISCUSSION

A. Implications for Causal Network Analysis

Graph theory offers a powerful framework for detecting,
tracking, and predicting patterns of disease in brain disorders
[2], [41]. The clinical application of brain network analysis
confirms that pathological patterns accumulate in network
hubs and their spread/neurodegeneration are constrained by
the network topology. Identifying dysfunctional brain circuits
can aid in diagnosis and help improve therapeutic efficacy
of invasive and noninvasive brain stimulation therapies. In
particular, therapeutic efficacy is critically related to the
connectivity of its target site or target brain region [42].
Although interactions between any two neural elements are
inherently asymmetrical, there are relatively few techniques
characterizing directional/causal connectivity. Moreover, the
existing methods are limited by model assumptions.

True causality is often difficult to estimate from a model
or a set of equations because one’s intuitive understanding
of causality becomes inherently constrained when one tries
to build a model. The heterogeneity of neural interactions
makes it difficult to determine a unifying causal model. There
are two distinct ways (at the least) to define causality [21].
First, in terms of time-precedence, i.e., causes precede their
effects: the intuition behind Granger’s prediction [10]. Second,
in terms of physical influence/control, i.e., changing one (the
cause) changes the other (the effect). In this paper, we adopt
the latter definition, and develop a state-space reconstruction
technique that infers causality using the spectral dynamics
of electrophysiological recordings. Our method is based on
the rationale used in convergent cross-mapping (CCM) to
infer dynamic causality, as introduced by Sugihara in [14].
While CCM relies on time-delay embedding a timeseries into
a higher dimensional space, the proposed method, FDCCM,
incorporates spectral information through time-frequency em-
bedding of timeseries. By using power spectra instead of
raw time-domain data, FDCCM blurs the effect of noise as
illustrated in Fig. 6. Thus, FDCCM overcomes a prominent
weakness of CCM [29].



TABLE II: Summary of HC vs. PD region-level classification results evaluated using leave-one-patient-out testing and out-
of-sample testing. All classifiers were trained using left-temporal lobe features. The table presents classification accuracy,
sensitivity (PD accuracy), specificity (HC accuracy) and AUC for each of the three network construction methods. Random

label-assignment would result in a baseline accuracy of 50%.

The highest values between the three methods are shown in bold.

Leave-one-subject-out testing Out-of-sample testing
Dataset — PD Dataset-1 PD Dataset-2 Both Datasets Test Set = Dataset-1
Connectivity | | Acc. | Sens. | Spec. | AUC (0-1)| Acc. | Sens. | Spec. |AUC(0-1) | Acc. | Sens. | Spec. | AUC(0-1) | Acc. | Sens. | Spec. | AUC(0-1)
Correlation |51.61{46.67|56.25 0.43 64.15[59.26169.23| 0.62 [63.10(57.14|69.05 0.52 [45.16] 0 | 875 0.44
CCM 58.06 |46.67 | 68.75 0.45 60.38(62.96|57.69| 0.52 [51.19]50.00(52.38| 0.44 |54.84(13.33|93.75 0.51
FDCCM 80.65|73.33(87.50 0.69 79.25(81.48(76.92| 0.78 |84.52/90.48|78.57| 0.82 |83.87/86.67(81.25| 0.85

HC = Healthy controls, PD = Parkinson’s disease, Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, A

B. Implications for Parkinson’s Research

Most PD patients develop dementia in 15-20 years. Accu-
racy of existing clinical diagnosis of PD is only about 80%
and has not improved in the last 30 years [43]. Existing studies
on Parkinson’s were either limited to functional magnetic
resonance imaging (fMRI) data [44]-[47], or focused on
spectral features [32], [48]-[51]. However, these approaches
do not consider simultaneous interactions between multiple
brain areas. We believe that network analysis may hold the
key to identify biomarkers for early diagnosis, monitor disease
progression, and establish efficacious therapies.

Modern neuroscience has shown that human brain networks
exhibit high levels of clustering, a pattern indicative of a
small-world architecture [52], [53]. In other words, some
nodes (hub nodes) play a more important role in information
transfer between different regions. This node importance can
be measured using node centrality metrics such as between-
ness centrality. Modulated betweenness centrality has been
implicated in a wide variety of neurological disorders such as
Alzheimer’s, Schizophrenia and Epilepsy [2], [54]-[56]. Some
prior studies on PD also showed an altered hub organization
between PD and HC subjects. In particular, they showed
that important nodes, i.e., nodes with higher betweenness
centrality, lost significance and the nodes with a less central
role have become more important [5], [57]-[59].

We quantify these changes in node centrality by building
classifiers that accurately differentiate the two groups. Classi-
fiers that use the proposed connectivity metric, i.e., FDCCM
networks, consistently outperformed correlational networks
and CCM networks as shown in Tables I and II. We further
perform a region-wise comparison by averaging the network
features in each brain region. The comparison demonstrated
that temporal lobe features have a higher discriminating power.
It has been shown in [60] that PD patients exhibit a decreased
causal connectivity between the substantia nigra and the
temporal lobe, which may explain our findings. Prior studies
have also reported a link between Parkinson’s disease and
grey matter atrophy in the temporal lobe [61]. The proposed
connectivity method, FDCCM, also aids in differentiating PD
patients from healthy controls in a transfer learning setup,
where the classifiers trained on one dataset are tested on
an independent dataset. Our results indicate that FDCCM
can detect the underlying network patterns associated with
the neuropathological mechanisms of PD better than existing
connectivity measures.

C = Area under the ROC curve.

C. Limitations and Future Directions

There is no universal model or metric to infer causality in
complex networks such as the brain. Hence, it is helpful to
be aware of the shortcomings of choosing a method for a
given problem. As observed from Fig. 5, FDCCM may not
be reliable at low coupling strengths; this lack of reliability
at certain coupling strengths is also an issue with CCM
[29]. In the current form FDCCM is a bi-variate measure of
relative causality. Further research is required to extend it to a
multivariate measure, that can infer the causal effect between
more than one timeseries, e.g., multiple channels in a brain
region [18], [62].

The neural activity analyzed here was recorded from the
scalp, which is affected by confounding factors such as
volume conduction [63]. Also, compared to fMRI, EEG has
a lower spatial resolution, making it difficult to localize the
source of the activity. Table I shows that the optimal EEG
channels selected by our algorithm can change depending on
the classification problem and the connectivity metric used.
Additionally, it can be observed that there are some differences
in the scalp topographical maps between dataset-1 and dataset-
2 (see Fig. 7 and Fig. 8). These differences may be attributed
to the difference in the number of electrodes between the
two datasets. As brain network estimation depends on the
electrode density [64], it is ideal to use a higher density
EEG montage (128 or 256 channels) to obtain accurate brain
networks. Future research can be focused on network analysis
of source-localized EEG signals or invasive recordings such as
local field potentials to gain more insight into the underlying
neural mechanisms of PD. A benefit of using EEG is that it
can sample neural activity at 100-1000x higher time resolution
than fMRI, making it more suitable to assess temporal dynam-
ics. While more research is necessary to develop clinically
applicable decoders for PD diagnosis, our work indicates that
FDCCM characterizes separability between PD patients and
controls.

VI. CONCLUSION

In conclusion, this study provides a novel strategy for con-
structing causal networks by utilizing the spectral dynamics
of electrophysiological signals. We showed that our method
could be applied to recognize altered network patterns in
patients with PD. We conducted graph analysis and classifica-
tion analysis, and demonstrated that FDCCM helps quantify
these changes between patients and healthy controls. Given its
excellent classification performance in distinguishing between



healthy individuals and PD patients, FDCCM could detect
abnormalities and track disease progression using EEG signals.
These decoders, in combination with graph theory, can also be
used to develop interventional therapies such as adaptive deep-
brain stimulation or transcranial direct-current stimulation
[65]. Due to its non-invasiveness and wide availability, scalp
EEG is also optimal for clinical, commercial, and research
purposes. Further research on causal connectivity of cortical
activity and comparison with source-level connectivity can
help understand the underlying pathophysiology of neurode-
generative and neuropsychiatric disorders.
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Figure S1: EEG channel locations plotted on a 2-D head diagram. Channels plotted beyond
the head limit extend below the head center’s horizontal plane. PD dataset-1 has 32 electrodes

and PD dataset-2 has 63 electrodes.



S2 Classification Results Using Linear Support Vector Machines

Table S1: Summary of HC vs. PD classification results evaluated using leave-one-patient-out
cross-validation scheme. The table presents classification accuracy, sensitivity (PD accuracy),
specificity (HC accuracy) and AUC for each of the three network construction methods. Random
label-assignment would result in a baseline accuracy of 50%. The highest values between the
three methods are shown in bold.

PD Dataset-1
Classifier — HC vs. PD-ON HC vs. PD-OFF
Connectivity || Acc. | Sens. | Spec. |AUC (0-1)| Acc. | Sens. | Spec. [AUC (0-1)
Correlation |83.87|100.00] 68.75 0.82 77.42180.00 |75.00 0.70
CcCM 70.97 | 60.00 |81.25 0.74 74.19 | 80.00 | 68.75 0.70
FDCCM 74.19 | 60.00 |87.50 0.62 77.42|86.67| 68.75 0.80
PD Dataset-2
Correlation | 72.22| 55.56 |88.89 0.68 70.37 | 55.56 | 85.19 0.69
CcCM 70.37 | 51.85 |88.89 0.68 77.78|62.96 |92.59 0.75

FDCCM 77.78| 85.19 | 70.37 0.84 77.7870.37| 85.19 0.79
HC = Healthy controls, PD = Parkinson’s disease, Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity,
AUC = Area under the ROC curve.
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Figure S2: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-1.
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Figure S3: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-2.

S3 Classification Results Using Linear Discriminant Analysis

Table S2: Summary of HC vs. PD classification results evaluated using leave-one-patient-out
cross-validation scheme. The table presents classification accuracy, sensitivity (PD accuracy),
specificity (HC accuracy) and AUC for each of the three network construction methods. Random
label-assignment would result in a baseline accuracy of 50%. The highest values between the
three methods are shown in bold.

PD Dataset-1
Classifier — HC vs. PD-ON HC vs. PD-OFF
Connectivity || Acc. | Sens. | Spec. |[AUC (0-1)| Acc. | Sens. | Spec. |[AUC (0-1)
Correlation |77.42|60.00 [93.75| 0.74 74.19 | 73.33 |'75.00 0.66
CCM 64.52 | 46.67 | 81.25 0.57 77.42193.33| 62.50 0.75
FDCCM  |77.42|93.33| 62.50 0.60 77.42|193.33| 62.50 0.63
PD Dataset-2
Correlation [74.07|74.07 | 74.07 0.74 |74.07|62.96 |85.19, 0.70
CCM 72.2251.85(92.59 0.71 68.52 | 51.85 |85.19 0.65

FDCCM 68.52 (92.59| 44.44 0.60 68.52 |77.78| 59.26 0.68
HC = Healthy controls, PD = Parkinson’s disease, Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity,
AUC = Area under the ROC curve.
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Figure S4: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-1.
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Figure S5: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-2.



S4 Classification Results Using Radial Basis Function Kernel
Support Vector Machines (RBF-SVM)

Table S3: Summary of HC vs. PD classification results evaluated using leave-one-patient-out
cross-validation scheme. The table presents classification accuracy, sensitivity (PD accuracy),
specificity (HC accuracy) and AUC for each of the three network construction methods. Random
label-assignment would result in a baseline accuracy of 50%. The highest values between the
three methods are shown in bold.

PD Dataset-1
Classifier — HC vs. PD-ON HC vs. PD-OFF
Connectivity || Acc. | Sens. | Spec. |[AUC (0-1)| Acc. | Sens. | Spec. |[AUC (0-1)
Correlation | 70.97 |86.67| 56.25 0.53 70.97 | 40.00 |100.00 0.40
CCM 74.19 | 60.00 |87.50 0.71 77.42 | 53.33 |100.00 0.69
FDCCM 80.65|86.67| 75.00 0.83 80.65|73.33| 87.50 0.90
PD Dataset-2
Correlation | 72.22(92.59| 51.85 0.60 72.22|70.37| 74.07 0.72
CCM 75.93| 77.78 | 74.07 0.65 77.78|66.67 | 88.89 0.66
FDCCM 70.37 1 59.26 |81.48 0.74 72.22(70.37| 74.07 0.74

HC = Healthy controls, PD = Parkinson’s disease, Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity,
AUC = Area under the ROC curve.
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Figure S6: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-1.
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Figure S7: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-2.

S5 Classification Results Using Decision Trees

Table S4: Summary of HC vs. PD classification results evaluated using leave-one-patient-out
cross-validation scheme. The table presents classification accuracy, sensitivity (PD accuracy),
specificity (HC accuracy) and AUC for each of the three network construction methods. Random
label-assignment would result in a baseline accuracy of 50%. The highest values between the
three methods are shown in bold.

PD Dataset-1
Classifier — HC vs. PD-ON HC vs. PD-OFF
Connectivity || Acc. | Sens. | Spec. |[AUC (0-1)| Acc. | Sens. | Spec. |AUC (0-1)
Correlation | 77.42|80.00 | 75.00 0.63 77.42|73.33 | 81.25 0.74
CcCM 77.42 |1 66.67 |87.50 0.68 87.10 |86.67| 87.50 0.81
FDCCM 80.65(86.67| 75.00 0.78 90.32|86.67|93.75 0.85
PD Dataset-2
Correlation |72.22(92.59| 51.85 0.60 72.22 |70.37| 74.07 0.72
CCM 75.93| 77.78 | 74.07 0.65 77.78| 66.67 |88.89 0.66

FDCCM 70.37 | 59.26 |81.48 0.74 72.22 70.37| 74.07 0.74
HC = Healthy controls, PD = Parkinson’s disease, Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity,
AUC = Area under the ROC curve.
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Figure S8: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-1.
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Figure S9: HC vs. PD receiver operating characteristic (ROC) curves - PD dataset-2.

S6 Classification Results Using signals limited to 50 Hz and 100
Hz

Table S5: Summary of HC vs. PD region-level classification results evaluated using leave-one-
patient-out testing using filtered data up to 50 Hz and 100 Hz from dataset-1. All classifiers were
trained using decision trees with left-temporal lobe features. The table presents classification
accuracy, sensitivity (PD accuracy), specificity (HC accuracy) and AUC for each of the three
network construction methods. Random label-assignment would result in a baseline accuracy
of 50%. The highest values between the three methods are shown in bold.

PD Dataset-1
Classifier — cutoff at 50 Hz cutoft at 100 Hz
Connectivity || Acc. | Sens. | Spec. |[AUC (0-1)| Acc. | Sens. | Spec. |AUC (0-1)
Correlation |51.61 |46.67 | 56.25 0.43 45.71 | 33.33 | 55.00 0.33
CCM 58.06 | 60.00 | 56.25 0.50 52.78 | 33.33 | 66.67 0.36

FDCCM 77.42|86.67|68.75 0.63 75.00/73.33|76.19 0.69
. HC = Healthy controls, PD = Parkinson’s disease, Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity,
AUC = Area under the ROC curve.
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