

Type-II Band Alignment for Atomic Layer Deposited HfSiO₄ on α -Ga₂O₃

Running title: Type-II Band Alignment for HfSiO₄ on α -Ga₂O₃

Running Authors: Xia et al.

Xinyi Xia¹, Jian-Sian Li¹, Zhuoqun Wen², Kamruzzaman Khan², Md Irfan Khan³, Elaheh Ahmadi³, Yuichi Oshima⁴, David C. Hays⁵, Fan Ren¹ and S.J. Pearton^{6a)}

¹ Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 USA

² Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 USA

³ Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA

⁴ Optical Single Crystals Group, National Institute for Materials Science, 1-1 Namiki, 305-0044 Tsukuba, Japan

⁵ Nanoscale Research Facility, University of Florida, Gainesville, FL 32611 USA

⁶ Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA

^{a)} Electronic mail: spear@mse.ufl.edu

There is increasing interest in α -polytype Ga₂O₃ for power device applications, but there are few published reports on dielectrics for this material. Finding a dielectric with large band offsets for both valence and conduction bands is especially challenging given its large bandgap of 5.1 eV. One option is HfSiO₄ deposited by Atomic Layer Deposition (ALD), which provides conformal, low damage deposition and has a bandgap of 7 eV. The valence band offset of the HfSiO₄/Ga₂O₃ heterointerface was measured using X-Ray Photoelectron Spectroscopy. The single-crystal α -Ga₂O₃ was grown by Halide Vapor Phase Epitaxy on sapphire substrates. The valence band offset was 0.82 eV \pm 0.20 eV (staggered gap, type II alignment) for ALD HfSiO₄ on α -Ga₂O₃. The corresponding

conduction band offset was -2.72 ± 0.45 eV, providing no barrier to electrons moving into the Ga_2O_3 .

I. INTRODUCTION

There is significant interest in power device applications of metastable corundum α - Ga_2O_3 due to its even larger bandgap than the stable β -polymorph and the ability to grow it on large area, inexpensive, isomorphous sapphire (α - Al_2O_3) substrates⁽¹⁻²⁹⁾. In terms of thermal stability, epitaxial films of α -polytype Ga_2O_3 grown on m-plane sapphire are stable up to 600 °C, allowing significant opportunity for practical device fabrication⁽²⁵⁾. This metastable polymorph is found to convert to the β -phase after annealing at 800 °C⁽²⁹⁾. Alloying to form α -($\text{Al}_x\text{Ga}_{1-x}$)₂ O_3 allows varying the bandgap up to 8.6 eV. This has huge potential for increasing breakdown voltage for power electronics and should be even more radiation-hard against displacement damage than α - Ga_2O_3 due to the higher average bond strength. The current crystal growth issues include lattice mismatch and reduction of defect concentrations⁽³⁰⁻³³⁾.

Development of dielectrics for α - Ga_2O_3 is challenging due to the large bandgap, which limits the choice of options⁽³⁴⁾. A starting point is that the dielectric should have a band gap of at least 2 eV larger given the general rule of thumb of desirably having 1 eV offset in both conduction and valence bands⁽³⁴⁻⁴⁰⁾. One candidate is HfSiO_4 , with a bandgap of ~ 7 eV. This has advantages in terms of the large dielectric constant of HfO_2 and the wide bandgap of SiO_2 . It is typical to use alternating layers of these dielectrics to form HfSiO_4 ^(39,40). HfSiO_4 has an advantage over pure SiO_2 because of its larger dielectric constant. This allows for use of thicker dielectrics while maintaining an equivalent capacitance to lower dielectric constant materials and has

advantages in MOS device performance. Additionally, by altering the $\text{HfO}_2:\text{SiO}_2$ ratio, the bandgap and dielectric constant can be tuned for $\text{Hf}_{1-x}\text{Si}_x\text{O}_4$ ⁽³⁹⁾. With selection of a gate dielectric, as discussed above, generally at least a 1 eV difference between the insulating material on the gated area and the channel semiconductor is preferred for performance, as that difference will provide a sufficient energy barrier to hole and electron leakage current. In terms of how to deposit the dielectric, Atomic Layer Deposition (ALD) is a preferred option because compared to Physical Vapor Deposition (PVD) methods, it has less disruption to the surface and less chance of contamination⁽⁴⁰⁾.

To obtain the band alignment, the standard method is based on precise X-Ray Photoelectron Spectroscopy (XPS) measurement of a core level and the valence band edge for each material investigated and measurement in the shift of the core levels when the two materials have formed the heterojunction⁽³⁵⁻³⁸⁾. The conduction band offset is then obtained from the difference between that and the bandgaps of the dielectric and semiconductor.

In this paper, we report on the determination of the band alignment in the $\text{HfSiO}_4/\alpha\text{-Ga}_2\text{O}_3$ heterostructure, in which the HfSiO_2 was deposited by ALD on $\alpha\text{-Ga}_2\text{O}_3$ grown by Halide Vapor Phase Epitaxy (HVPE). The valence band offset was obtained from XPS measurements using the Kraut method. The band alignment is type II, staggered gap, meaning the conduction band of the HfSiO_4 is above that of the Ga_2O_3 and does not provide electron confinement. The result for HfSiO_4 on α -polymorph Ga_2O_3 contrasts with that on β -polymorph, where a type I band alignment with valence band offset of $0.02 \text{ eV} \pm 0.003 \text{ eV}$ and a conduction band offset of $2.38 \pm 0.50 \text{ eV}$ were measured⁽⁴¹⁾.

II. EXPERIMENTAL

The α -Ga₂O₃ layers were grown by halide vapor phase epitaxy on (0001) sapphire substrates at 590°C ^(42,43). The growth precursors were O₂ and Ga metal reacted with Hydrochloric acid (HCl) gas to form GaCl and GaCl₃. The partial pressures of the precursors were GaCl: 0.25 kPa, O₂: 1.00 kPa and additional HCl: 0.25 kPa, respectively. The additional HCl was supplied to suppress parasitic gas-phase reaction of the precursors by converting a part of GaCl to GaCl₃. The carrier gas was N₂. The precursor purities were as follows: Ga metal: > 7N, HCl: > 5N and O₂: > 6.5N. The thicknesses of the α -Ga₂O₃ epilayers were 3-5 μ m, and the growth rate was ~28 μ m/h. Figure 1 shows an atomic force microscopy (AFM) scan over 5 μ m \times 5 μ m of the α -Ga₂O₃. This height profile was in a range of \pm 8.0nm. The root mean square (RMS) surface roughness was measured to be 3.71nm. The 2 Θ - Ω X-ray data from the films is given in Figure 2, showing the 0006 reflection and its proximity to the corresponding Al₂O₃ reflection from the substrate. The α -Ga₂O₃ 10-12 pole figure is shown in Figure 3, confirming the excellent crystal quality of the films ^(42,43).

The ALD HfSiO₄ layers were deposited as described previously ⁽³⁹⁾. This involved a method of alternating cycles of HfO₂ and SiO₂ deposited at 200°C in a plasma-assisted Cambridge Nano Fiji 200 system onto the α -Ga₂O₃ ⁽³⁴⁾. Both thick (150 nm) and thin (1.5 nm) layers of the dielectrics were deposited ⁽⁴¹⁾. This enabled measurements of both bandgaps of the dielectric and semiconductor and the change in core levels of the thin dielectric on the α -Ga₂O₃. The Inductively Coupled Plasma source power during ALD was 300 W. We used a continuous power application. We have found

it advantageous to use this remote plasma source mode ALD, which reduces the deleterious effects of contaminants and ion induced damage in the films. The deposition sequence was initiated by deposition of HfO₂ using Tetrakis (dimethylamido) hafnium (IV) and O₂ at a rate of 0.9 Å/cycle⁽³⁴⁾. The second part of the cycle involved deposition of SiO₂ layers using Tris (dimethylamino) silane and O₂ at a rate of 0.6 Å/cycle. To achieve the targeted Hf_{0.5}Si_{0.5}O₄ composition, three SiO₂ cycles (1.8 Å) were followed by two HfO₂ cycles (1.8 Å) to keep the desired 1:1 ratio. A schematic of a heterostructure sample of HfSiO₄ deposited on the α -Ga₂O₃ is shown in Figure 4.

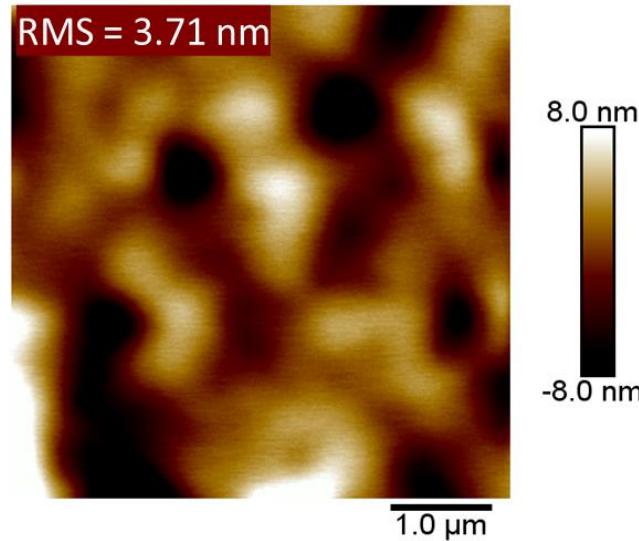


Fig. 1. 5 μ m \times 5 μ m AFM image of the α -Ga₂O₃. This height profile is in a range of \pm 8.0 nm. The root mean square (RMS) surface roughness is 3.71 nm.

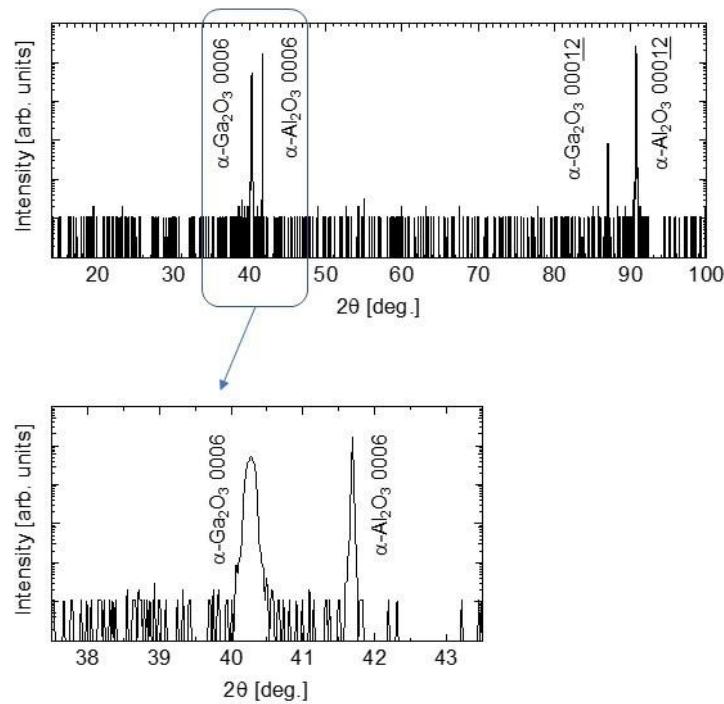


Fig. 2. $2\Theta-\Omega$ XRD scan profile from the α -Ga₂O₃ film.

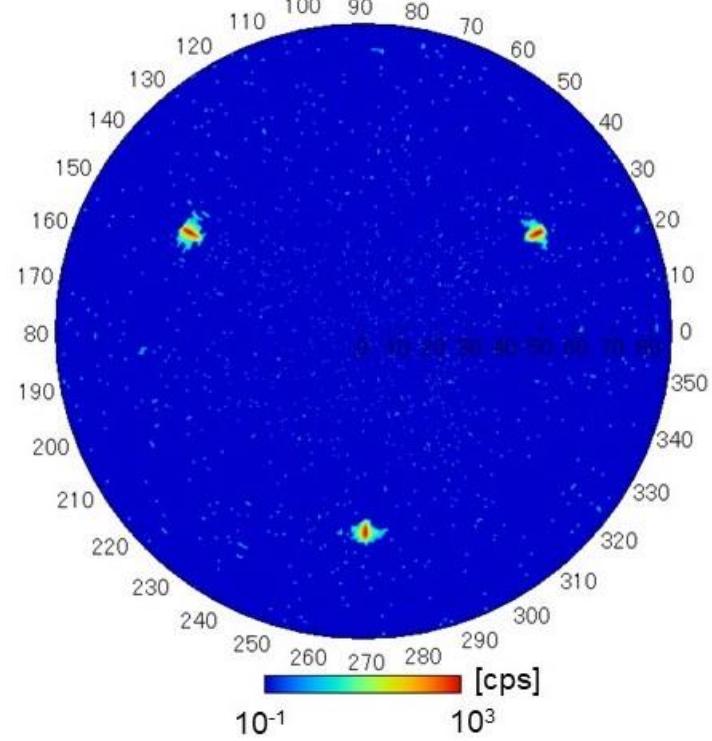


Fig. 3. α -Ga₂O₃ 10-12 pole figure from the α -Ga₂O₃ film.

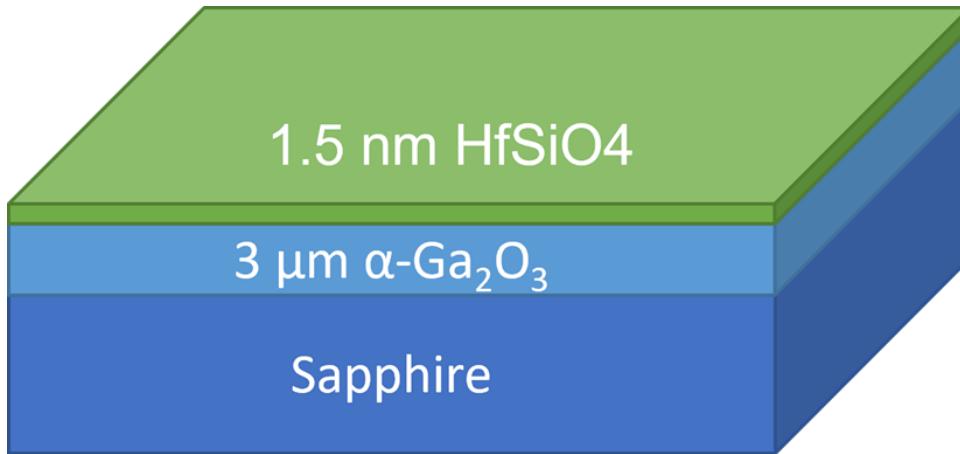


Fig. 4. Schematic of α - Ga_2O_3 epi layer structure used.

The band alignments were determined using the Kraut method⁽³⁵⁾, based on X-Ray Photoelectron Spectroscopy (XPS) measurements of the shift of core levels and valence band maxima (VBM) in a thick (60 nm) HfSiO_4 layer and in the epitaxial α - Ga_2O_3 . The shift in these same core level locations (ΔE_{CL}) in the $\text{HfSiO}_4/\alpha\text{-}\text{Ga}_2\text{O}_3$ heterojunction allows an accurate determination of the valence band offset (ΔE_V) from (35,40)

$$\Delta E_V = \Delta E_{CL} + (E_{Core} - E_{VBM})_{Ref. \text{ } HfSiO_4} - (E_{Core} - E_{VBM})_{Ref. \text{ } Ga_2O_3}$$

XPS measurements were performed on a Physical Instruments ULVAC PHI system. This employs an Al x-ray source (energy 1486.6 eV) with x-ray source power of 300W. The data on all samples was collected from a 100 μm diameter analysis region at a take-off angle of 50° and acceptance angle of ± 7 degrees. The electron pass energy was 23.5 eV on high-resolution scans. We estimated the total energy resolution was 0.5 eV, with an accuracy for the binding energies of 0.03 eV. Numerous recent reviews have shown that with adequate precautions⁽³⁶⁻³⁸⁾, XPS is the most accurate way of obtaining band alignments and is not subject to the surface and interfacial defect problems that

complicate current or capacitance-based methods⁽³⁶⁻³⁸⁾. We did not observe differential charging and the bandgaps of the HfSiO₄ and the α -Ga₂O₃ were consistent with literature values, meaning the determination of valence band offsets is clear-cut.

The bandgap of the α -Ga₂O₃ was obtained using the onset of the plasmon loss feature in O 1s photoemission spectrum. While this technique works well to bandgaps up to \sim 5 eV, it is less accurate for ultra large bandgap materials and for obtaining the bandgap of the HfSiO₄, we used the technique of Reflection Electron Energy Loss Spectroscopy (REELS)^(34,40). This enables a direct measurement of bandgap energy from a linear fit to the leading plasmon peak and finding its zero energy with the background. These spectra were obtained with a 1 kV electron beam and hemispherical electron analyzer.

III. RESULTS AND DISCUSSION

From Figure 5, the bandgap of the α -Ga₂O₃ was determined to be 5.1 ± 0.3 eV, from XPS O1s based electron energy plasmon loss measurements. The measured band gap for the HfSiO₄ was 7.0 ± 0.35 eV from the REELS^(34,39). Both of these are consistent with literate values^(1,40). The difference in bandgaps between HfSiO₄ and β -Ga₂O₃ is therefore 1.9 eV.

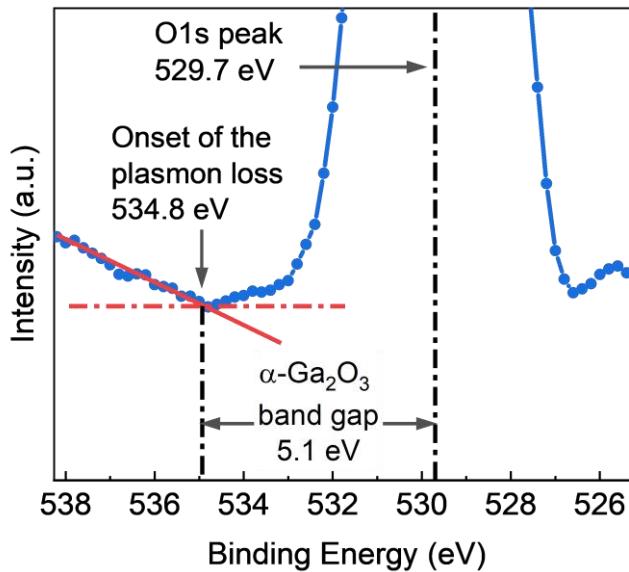


Fig. 5. Bandgap of α -Ga₂O₃ determined using the onset of the plasmon loss feature in O 1s photoemission spectrum.

To determine how this difference is portioned between valence and conduction bands, XPS was performed. XPS survey scans of the three different sample types (α -Ga₂O₃, thick HfSiO₄ and the α -Ga₂O₃/HfSiO₄ heterostructure) showed the presence of only the lattice constituents. High resolution XPS spectra of the VBM-core delta region are shown in Figure 6 for the α -Ga₂O₃ and Figure 7 shows the XPS spectra for the α -Ga₂O₃ to HfSiO₄ core delta regions of the heterostructure samples. These values are summarized in Table I and were then used to calculate ΔE_V . The valence band maximum (VBM) was determined by linearly fitting the leading edge of the valence band and the flat energy distribution from the XPS measurements and finding the intersection of these two lines^(35,36). The VBMs were measured to be 3.5 ± 0.2 eV for α -Ga₂O₃ and 3.32 ± 0.4 eV for the HfSiO₄.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

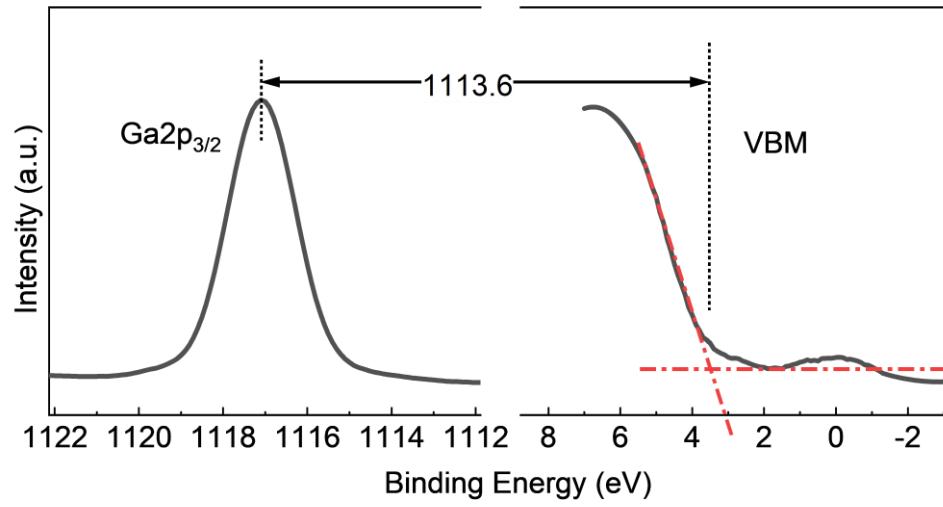


Fig. 6. XPS spectra of core levels to valence band maximum for α -Ga₂O₃.

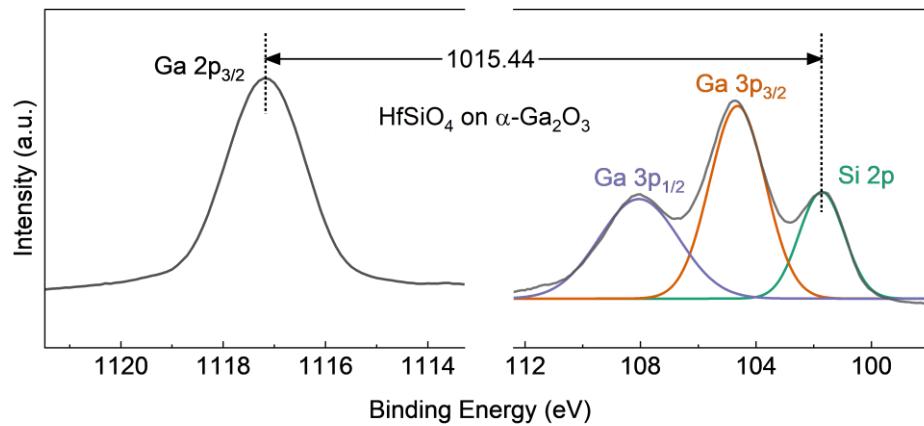


Fig. 7. High resolution XPS spectra for the α -Ga₂O₃ to HfSiO₄ core delta regions.

Table I. Valence band maximum and core level data used to calculate the valence band offset of HfSiO₄ on α -Ga₂O₃ (eV).

Reference α -Ga ₂ O ₃			
Core Level	VBM	Core Level Peak	Core-VBM
Ga 2p _{3/2}	3.50	1117.10	1113.60
Reference HfSiO ₄			
Core Level	VBM	Core Level Peak	Core-VBM
Si 2p	3.32	102.30	98.98
Thin HfSiO ₄ on α -Ga ₂ O ₃			
Δ Core Level (Ga 2p _{3/2} - Si 2p)		Valence Band Offset	
	1015.44		0.82

The band alignment and valence and conduction band offsets were obtained from these core level spectra and are shown in Table 1. It is important to use a well-defined core level since the offsets are small compared to the core level energy and more deviation is expected at higher core level energies.

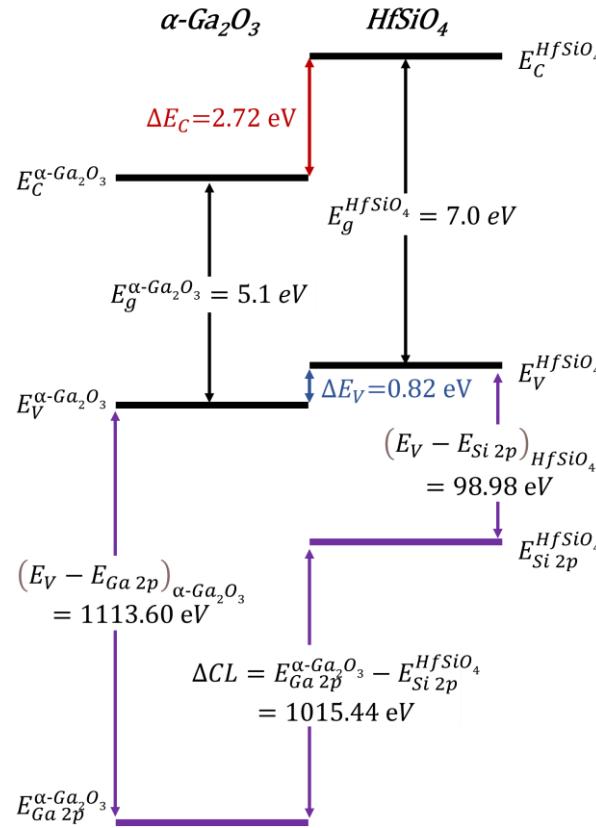


Fig. 8. Band diagrams for the HfSiO₄ / α -Ga₂O₃ heterostructure in which the HfSiO₄ was deposited by ALD. The valence band offset was determined to be 0.82 eV for ALD HfSiO₄ on α -Ga₂O₃. The conduction band offset was 2.72 eV.

Figure 8 shows the extracted band alignment of the HfSiO₄/ α -Ga_{0.86}O₃ heterostructure. This is a staggered gap, type II system with a valence band offset of 0.82 \pm 0.20 eV and conduction band offset of -2.72 \pm 0.45 eV. The valence band offset is smaller than the 1 eV magnitude discussed earlier, so that hole confinement would be less efficient than desired. The negative conduction band offset means there is no electron confinement at all, with the band alignment actually conducive to electron injection. The corresponding values for the HfSiO₄/ β -Ga₂O₃ are $\Delta E_V = 0.02$ eV and $\Delta E = 2.38$ eV.⁽³⁴⁾ The results for the alpha polytype are in contrast to β -Ga₂O₃, where HfSiO₄ provides

good electron confinement, but essentially no hole confinement. HfSiO₄ is still an option for surface passivation of α -GaO₃.

IV. SUMMARY AND CONCLUSIONS

The band alignment at HfSiO₄/ α -Ga₂O₃ heterojunctions is a staggered gap (type II). The valence band offset was 0.82 ± 0.20 eV and the conduction band offset was -2.72 ± 0.45 eV. The conduction band offset does not provide any electron confinement, while even the valence band offset is marginal for hole confinement. Since the dielectric constant of the HfSiO₄ is attractive compared to some alternatives, it could still be a component in multi-level gate stacks on transistor structures to increase the capacitance. It could also be a suitable candidate as a surface passivation layer to protect the α -Ga₂O₃. There have not yet been detailed published studies on the sensitivity of the α -Ga₂O₃ surface to environmental exposure or processing steps, but results from the β -polytype shows that such protection is needed ^(44,45).

ACKNOWLEDGMENTS

The authors would like to thank the Research Service Center (RSC) staff at the University of Florida for their help in the fabrication and characterization of these materials. The work at UF was performed as part of Interaction of Ionizing Radiation with Matter University Research Alliance (IIRM-URA), sponsored by the Department of the Defense, Defense Threat Reduction Agency under award HDTRA1-20-2-0002. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. The work at UF was

also supported by NSF DMR 1856662 (James Edgar). The work at UMichigan was supported by Naval Research Office under Contract N00014-19-1-2225.

The authors would like to thank Cindy Lee for the AFM and XRD.

AUTHOR DECLARATIONS

The authors have no conflicts to disclose.

DATA AVAILABILITY

All data that support the findings of this study are included within the article.

REFERENCES

- ¹E. Ahmadi and Y. Oshima, *J. Appl. Phys.* **126**, 160901 (2019).
- ²Takuya Maeda, Mitsuru Okigawa, Yuji Kato, Isao Takahashi, and Takashi Shinohe, *AIP Adv.* **10**, 125119 (2020).
- ³A. Hassa, P. Storm, M. Kneiß, D. Splith, H. von Wenckstern, M. Lorenz and M. Grundmann, *Phys. Stat. Solidi B*, **258**, 2000394 (2021).
- ⁴H. Zhang, L. Yuan, X. Tang, J. Hu, J. Sun, Y. Zhang, Y. Zhang, and R. Jia, *IEEE T Power Electr.* **35**, 5157 (2020).
- ⁵A. Y. Polyakov, V. I. Nikolaev, E. B. Yakimov, F. Ren, S. J. Pearton, and J. Kim, *J. Vac. Sci. Technol. A* **40**, 020804 (2022).
- ⁶Zhengpeng Wang, Xuanhu Chen, Fang-Fang Ren, Shulin Gu and Jiandong Ye, *J. Phys D: Appl Phys*, **54**, 043002 (2021).
- ⁷I. Cora, Z. Fogarassy, R. Fornari, M. Bosi, A. Rečnik, and B. Pecz, *Acta Mater.* **183**, 216 (2020).
- ⁸A. F. M. A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Sarker, M. Zhu, M. R. Karim, B. Mazumder, J. Hwang, and H. Zhao, *APL Mater.* **8**, 031104 (2020).
- ⁹M. Hilfiker, U. Kilic, M. Stokey, R. Jinno, Y. Cho, H. G. Xing, D. Jena, R. Korlacki, and M. Schubert, *Appl. Phys. Lett.* **119**, 092103 (2021).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

¹⁰K. Uno, R. Jinno, and S. Fujita, *J. Appl. Phys.* **131**, 090902 (2022).

¹¹J. A. Spencer, A. L. Mock, A. G. Jacobs, M. Schubert, Y. Zhang, and M. J. Tadjer, *Appl. Phys. Rev.* **9**, 011315 (2022).

¹²Y. J. Zhang, Z. P. Wang, Y. Kuang, H. H. Gong, J. G. Hao, X. Y. Sun, F.-F. Ren, Y. Yang, S. L. Gu, Y. D. Zheng, R. Zhang, and J. D. Ye, *Appl. Phys. Lett.* **120**, 121601 (2022).

¹³D. Yang, B. Kim, T. H. Eom, Y. Park, and H. W. Jang, *Electron. Mater. Lett.* **18**, 113 (2022).

¹⁴Andrew Venzie, Amanda Portoff, Michael Stavola, W. Beall Fowler, Jihyun Kim, Dae-Woo Jeon, Ji-Hyeon Park, and Stephen J. Pearton, *Appl. Phys. Lett.* **120**, 192101 (2022).

¹⁵R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, *Appl. Phys. Express* **8**, 011101 (2015).

¹⁶M. Kracht, A. Karg, M. Feneberg, J. Bläsing, J. Schörmann, R. Goldhahn, and M. Eickhoff, *Phys. Rev. Appl.* **10**, 024047 (2018).

¹⁷A. Polyakov, V. Nikolaev, S. Stepanov, A. Almaev, A. Pechnikov, E. Yakimov, B. O. Kushnarev, I. Shchemerov, M. Scheglov, A. Chernykh, A. Vasilev, A. Kochkova, and S. J. Pearton *J. Appl. Phys.* **131**, 215701 (2022).

¹⁸Y. Oshima, K. Kawara, T. Shinohe, T. Hitora, M. Kasu, and S. Fujita, *APL Mater.* **7**, 022503 (2019).

¹⁹Matthew Hilfiker, Rafał Korlacki, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Ufuk Kilic, Megan Stokey, Mathias Schubert, *Appl. Phys. Lett.* **118**, 6, (062103), (2021).

²⁰V.I. Nikolaev A.Y. Polyakov, S.I. Stepanov, A.I. Pechnikov, E.B. Yakimov, A.V. Chernykh, A.A. Vasilev, I.V. Shchemerov, A.I. Kochkova, L. Guzilova, M.P. Konovalov and S.J. Pearton, *ECS J. Solid State Sci. Technol.* **11**, 115002 (2022).

²¹K. Kawara, Y. Oshima, M. Okigawa, and T. Shinohe, *Appl. Phys. Express* **13**, 075507 (2020).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

²²Andrew Venzie, Amanda Portoff, W. Beall Fowler, Michael Stavola, Dae Woo Jeon, Jihyun Kim and S. J. Pearton, *Appl. Phys. Lett.* **120**, 192101 (2022).

²³Alexander Y. Polyakov, Vladimir I. Nikolaev, Igor N. Meshkov, Krzysztof Siemek, Petr B. Lagov, Eugene B. Yakimov, Alexei I. Pechnikov, Oleg S. Orlov, Alexey A. Sidorin, Sergey I. Stepanov, Ivan V. Shchemerov, Anton A. Vasilev, Alexey V. Chernykh, Anton A. Losev, Alexandr D. Miliachenko, Igor A. Khrisanov, Yu.S. Pavlov, U.A. Kobets and S. J. Pearton, *J. Appl. Phys.* **132**, 035701 (2022).

²⁴A. Sharma and U. Singisetti, *Appl. Phys. Lett.* **118**, 032101 (2021).

²⁵Riena Jinno, Kentaro Kaneko and Shizuo Fujita, *Jpn. J. Appl. Phys.* **60**, SB, (SBBD13), (2021).

²⁶A. Segura, L. Artus, R. Cusco, R. Goldhahn, and M. Feneberg, *Phys. Rev. Mater.* **1**, 024604 (2017).

²⁷M. Hilfiker, R. Korlacki, R. Jinno, Y. Cho, H. G. Xing, D. Jena, U. Kilic, M. Stokey, and M. Schubert, *Appl. Phys. Lett.* **118**, 062103 (2021).

²⁸M. Feneberg, J. Nixdorf, M. D. Neumann, N. Esser, L. Artus, R. Cusco, T. Yamaguchi, and R. Goldhahn, *Phys. Rev. Mater.* **2**, 044601 (2018).

²⁹M. Stokey, R. Korlacki, M. Hilfiker, S. Knight, S. Richter, V. Darakchieva, R. Jinno, Y. Cho, G. H. Xing, D. Jena, Y. Oshima, K. Khan, E. Ahmadi, and M. Schubert, *Phys. Rev. Mater.* **6**, 014601 (2022).

³⁰A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, E. B. Yakimov, V. I. Nikolaev, S. I. Stepanov, A. I. Pechnikov, A. V. Chernykh, K. D. Shcherbachev, A. S. Shikoh, A. Kochkova, A. A. Vasilev, and S. J. Pearton, *APL Materials* **7**, 051103 (2019)

³¹S. I. Kan, S. Takemoto, K. Kaneko, I. Takahashi, M. Sugimoto, and T. Shinohe, *Appl. Phys. Lett.* **113**, 212104 (2018).

³²J. G. Hao, H. H. Gong, X. H. Chen, Y. Xu, F. F. Ren, and S. L. Gu, *Appl. Phys. Lett.* **118**, 261601 (2021).

³³J. P. McCandless, C. S. Chang, K. Nomoto, J. Casamento, V. Protasenko, P. Vogt, D. Rowe, K. Gann, S. T. Ho, W. Li, R. Jinno, Y. Cho, A. J. Green, K. D. Chabak, D. G.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

Schlom, M. O. Thompson, D. A. Muller, H. G. Xing, and D. Jena, *Appl. Phys. Lett.* **119**, 062102 (2021).

³⁴Patrick H. Carey, Fan Ren, David C. Hays, Brent P. Gila, Stephen J. Pearton, Soohwan Jang and Akito Kuramata, *Jpn. J. Appl. Phys.* **56**, 071101 (2017).

³⁵E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, *Phys. Rev. Lett.*, **44**, 1620 (1980).

³⁶Scott A. Chambers, Le Wang, and Donald R. Baer, *J. Vac. Sci Technol A* **38**, 061201 (2020).

³⁷Grzegorz Greczynski and Lars Hultman, *J. Appl. Phys.* **132**, 011101 (2022).

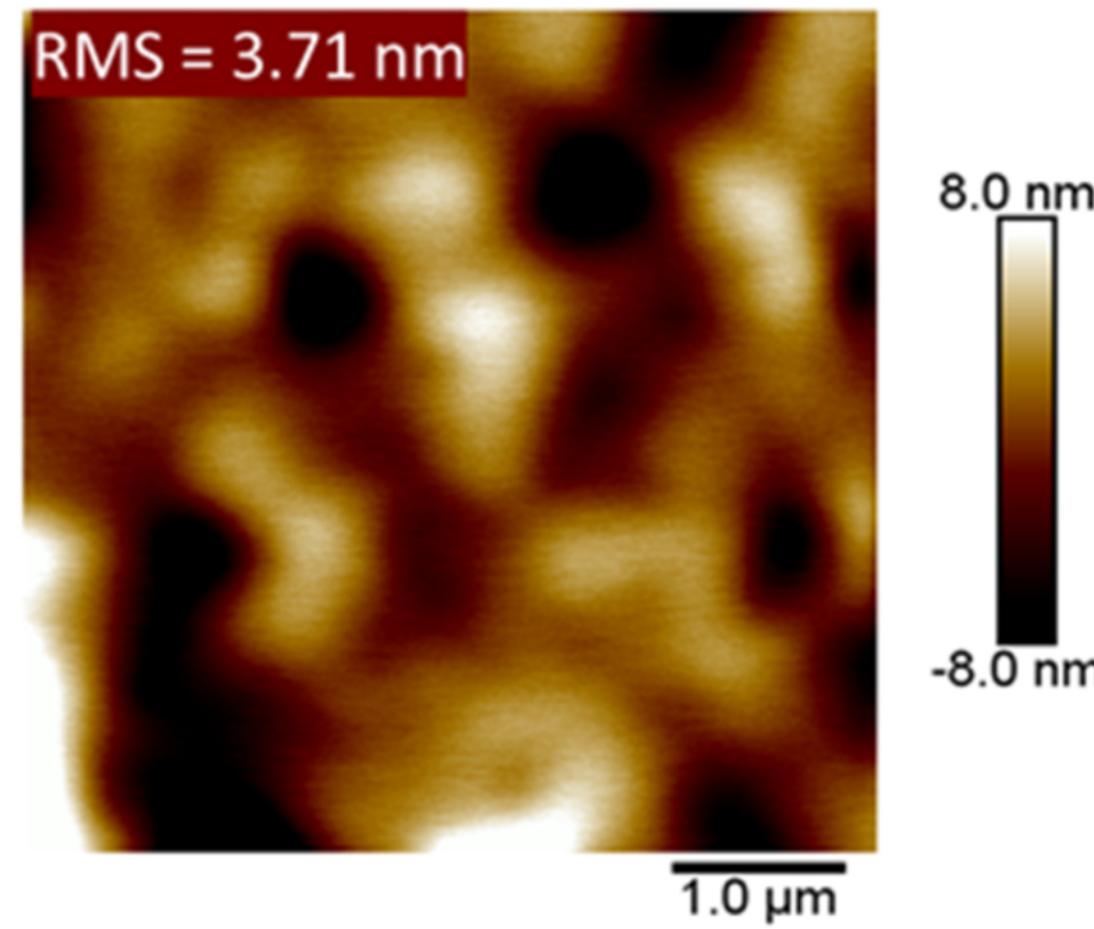
³⁸Grzegorz Greczynski, Lars Hultman, *Science Talks* **1**, 100007 (2022).

³⁹C. Fares, F. Ren, Max Knessl, H. von Wenckstern, M. Grundmann and S.J. Pearton, chapter 9 in *Wide Bandgap Semiconductor Based Electronics*, ed F. Ren and S.J. Pearton (IOP Publishing, Bristol, (2020).

⁴⁰D. C. Hays, B.P. Gila, S. J. Pearton and F. Ren, *Appl. Phys. Rev.*, **4**, 021301 (2017).

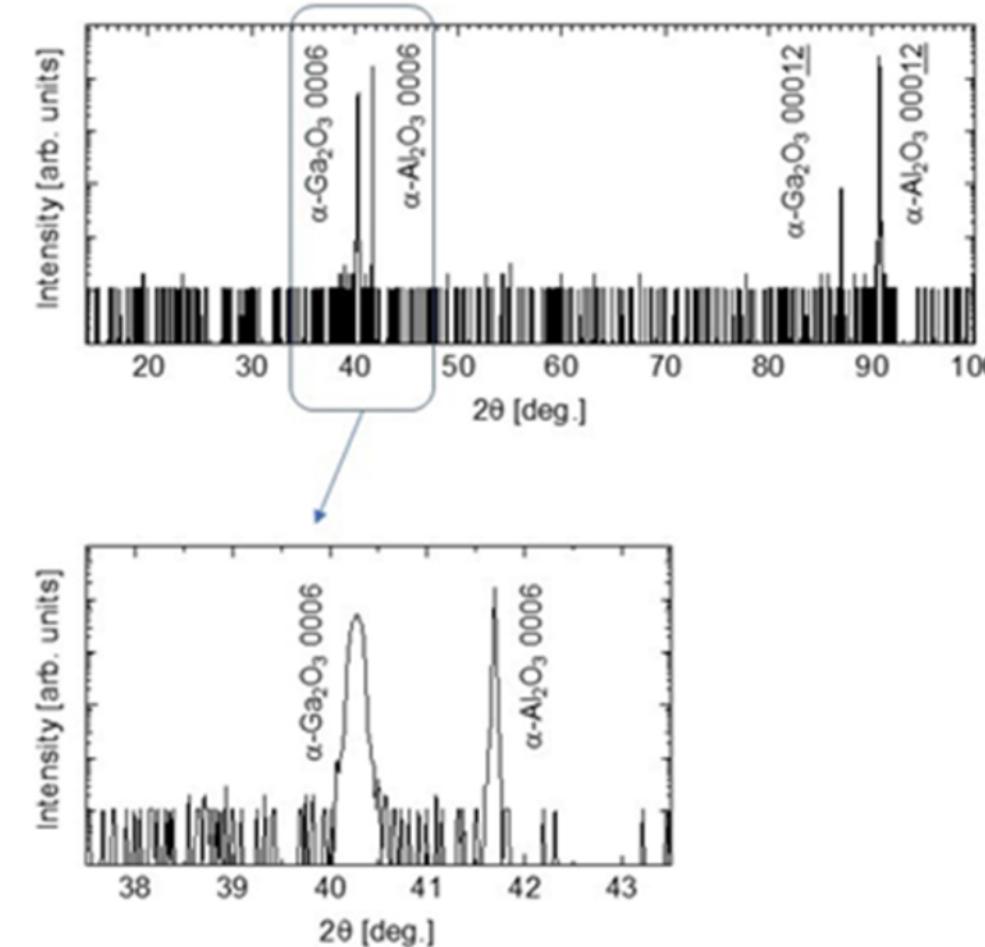
⁴¹Xinyi Xia, Nahid Sultan Al Mamun, Maxwell Wetherington, Fan Ren, Aman Haque and S.J. Pearton, *J. Vac. Sci. Technol. A* **40**, 053403 (2022).

⁴²Yuichi Oshima, Katsuaki Kawara, Takayoshi Oshima, Mitsuru Okigawa and Takashi Shinohe, *Semicond. Sci. Technol.* **35**, 055022 (2020).

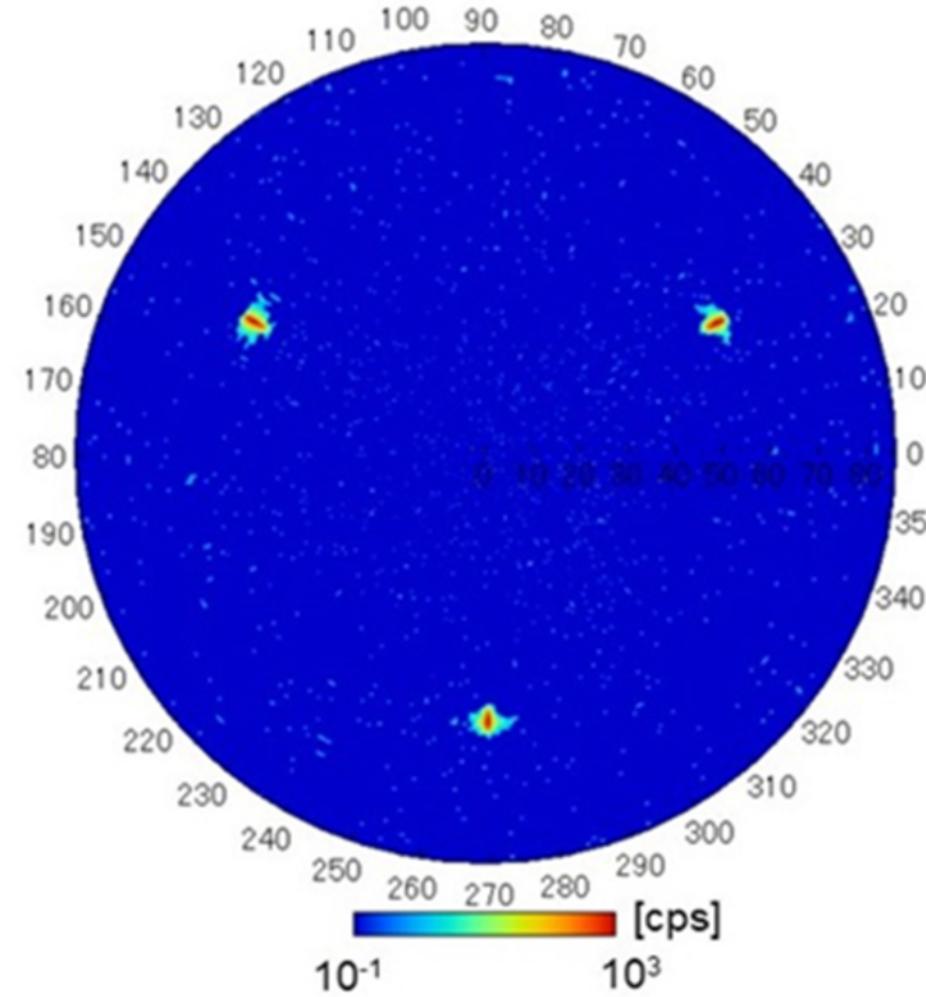

⁴³Yuichi Oshima, Encarnación G. Víllora, and Kiyoshi Shimamura, *Appl. Phys. Expr.* **8**, 055501 (2015).

⁴⁴J. Kim, F. Ren and S.J. Pearton, *Nanoscale Horizons* **4**, 1251(2019).

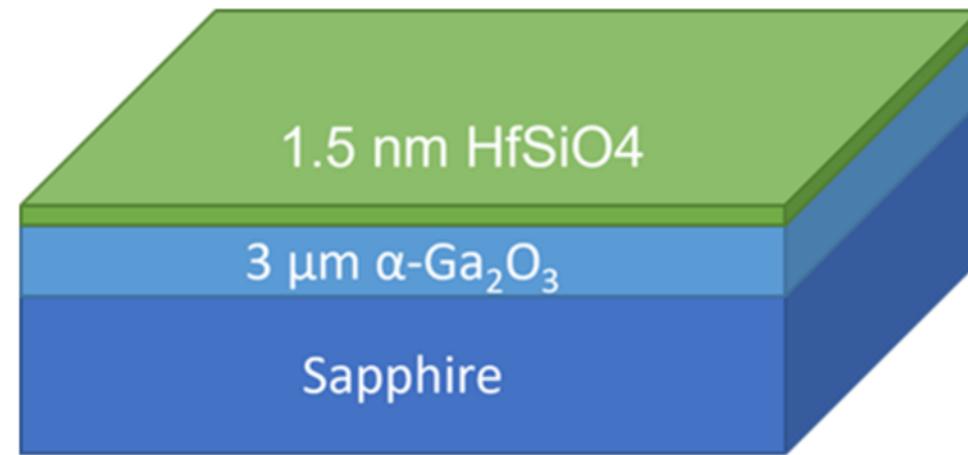
⁴⁵J. E. N. Swallow, J. B. Varley, L. A. H. Jones, J. T. Gibbon, L. F. J. Piper, V. R. Dhanak, and T. D. Veal, *APL Materials* **7**, 022528 (2019).


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

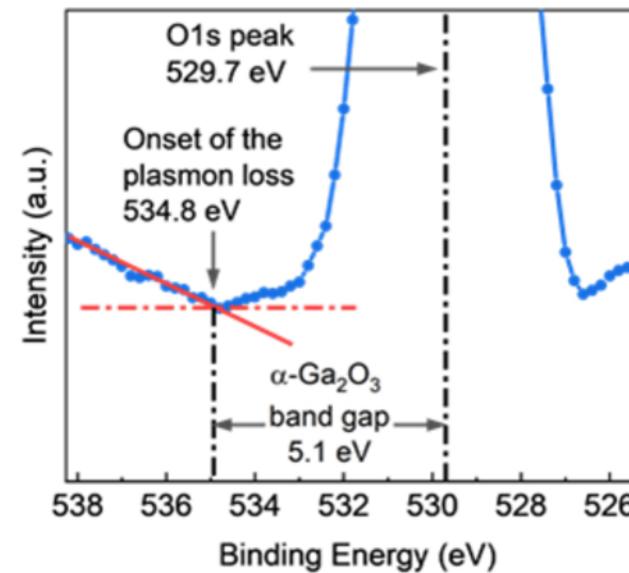

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

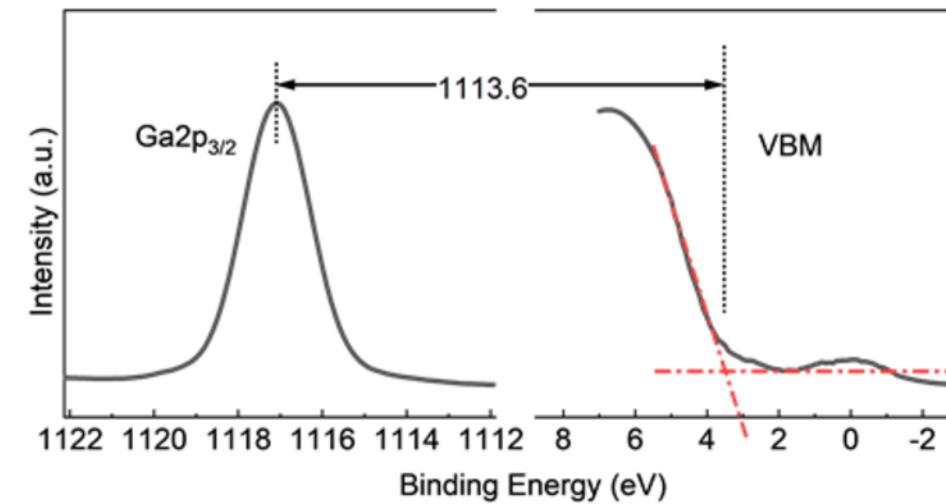


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

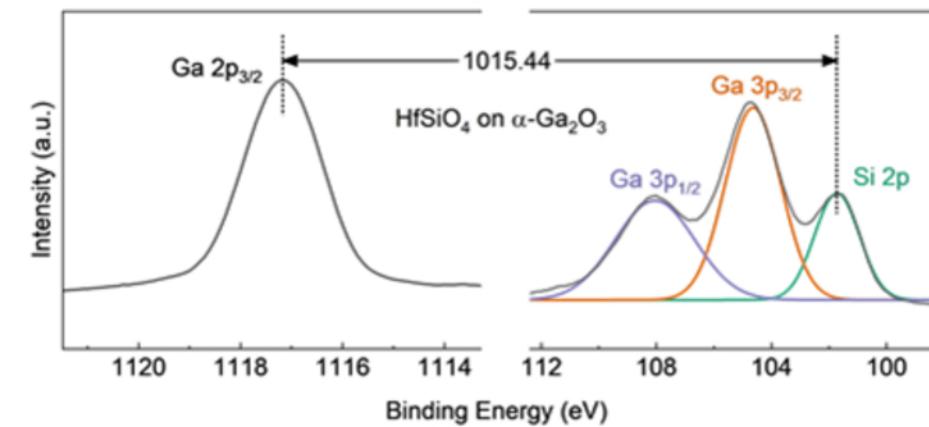
PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

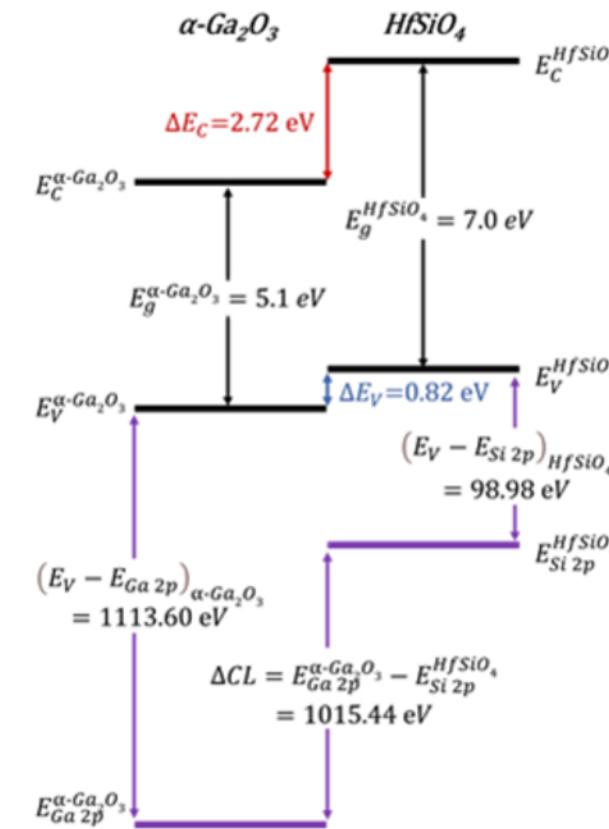


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.


PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1116/6.0002453

