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ABSTRACT Microbiomes play essential roles in the health and function of animal and

plant hosts and drive nutrient cycling across ecosystems. Integrating novel trait-based

approaches with ecological theory can facilitate the prediction of microbial functional

traits important for ecosystem functioning and health. In particular, the yield-acquisition-

stress (Y-A-S) framework considers dominant microbial life history strategies across gra-

dients of resource availability and stress. However, microbiomes are dynamic, and spatial

and temporal shifts in taxonomic and trait composition can affect ecosystem functions.

We posit that extending the Y-A-S framework to microbiomes during succession and

across biogeographic gradients can lead to generalizable rules for how microbiomes

and their functions respond to resources and stress across space, time, and diverse eco-

systems. We demonstrate the potential of this framework by applying it to the micro-

biomes hosted by the carnivorous pitcher plant Sarracenia purpurea, which have clear

successional trajectories and are distributed across a broad climatic gradient.
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A FUNCTIONAL TRAIT-BASED PERSPECTIVE FOR MICROBIAL ECOLOGY

U
nderstanding general processes controlling the structure and function of micro-

biomes is a holy grail in microbial ecology. A functional trait-based perspective

offers potential to elucidate microbial impacts on ecosystems through space and time

to reveal such generalities (1–4). However, a challenge that microbial ecologists face is

that trait-based classifications of microorganisms are historically conceptualized from

theory generated for plants and animals. For example, the fast-growing, low-yield copi-

otroph and slow-growing, high-yield oligotroph life histories (5–7) are rooted in the r-

and K-selection of Pianka (8), which categorizes plants and animals into two functional

groups based on life span (short for r and long for K) and reproductive effort (large for

r and small for K). Whereas a recent genomic analysis provides support for the copio-

troph-oligotroph continuum for microorganisms (9), this division fails to encapsulate

the metabolic plasticity of microbes that acquire complex resources or the stress toler-

ance of microbes adapted to extreme environments, which are prevalent in soils and

other systems (10, 11). More recently, several microbial studies (12–14) have adapted

Grime’s competitor-stress-ruderal (C-S-R) framework, which juxtaposes three life history

strategies for plants: competitors (C) capitalize on resource acquisition in productive

and undisturbed environments, stress tolerators (S) thrive under sustained stress and

low resources, and ruderals (R) exist in recently disturbed but less stressful habitats
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(15). However, applying this framework to microbes presents challenges because pho-

totrophic plant traits are not fully comparable to traits for heterotrophic microbes

whose reliance on external sources of carbon and energy from the environment drive

metabolic and allocation tradeoffs (16). Furthermore, stress responses of microbes to

disturbance, which are linked to the amount, availability, and quality of resources, are

likely different for heterotrophs compared to plants (16).

The shortcomings of previous functional trait-based frameworks have hindered pro-

gress toward a unifying theory of microbiome functional spatiotemporal dynamics.

One promising recent framework developed for soil microbiomes advances Grime’s C-

S-R theory to conceptualize the functional space of microbial assemblages as a triangle

where each corner represents a dominant life history strategy, defined by microbiome-

centric functional traits (16). One corner represents the microbial high-yield strategy

(Y), exhibiting traits central to carbon metabolism, biosynthesis, and high biomass

accumulation, with low investment in alternative nutrient acquisition or stress toler-

ance strategies (16). Another corner represents microbial resource acquisition strat-

egies (A), with defining traits including chemotaxis and the production of extracellular

enzymes and siderophores as well as uptake systems and transporters (17). The third

corner represents the microbial stress tolerance strategy (S), including traits such as

sporulation, damage repair, and maintenance of cellular integrity (Fig. 1). Based on

Y-A-S trade-offs, each strategy is successful at different points along the gradients of

two important drivers of microbial assembly, resource availability, and stress.

While the Y-A-S framework was proposed to characterize soil microbiome function,

using it to confront ecological theory on succession and biogeography holds promise for

transforming our understanding of microbiome dynamics across systems. Succession and

biogeography of ecological assemblages depend on how organisms respond to temporal

and spatial gradients, respectively. We argue that these gradients can be contextualized

within two axes, stress and resources, which are linked to the function of microbial assemb-

lages through the Y-A-S trait-based life history strategies. Thus, if we understand how gra-

dients of stress and resources change through time and space, we should be able to predict

the successional trajectory and biogeographic relationships of microbiome function.
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FIG 1 Hypothetical successional trajectories of microbiomes within the Y-A-S framework. (A) A successional trajectory

where each gray dot represents a temporal sample. Low initial resource conditions result in a microbiome composed

predominantly of nutrient acquisition (A) traits. Resources accumulate over time, and the microbiome shifts in

functional composition toward high-yield (Y) traits before biotic and/or abiotic stressors start to favor stress tolerance

(S) traits at the end of the successional trajectory. (B) Successional trajectories for tropical (red line) and temperate

(blue line) microbiomes, which under the latitudinal diversity gradient hypothesis would have greater resources in

the tropics. The tropical trajectory (red line) starts at a higher resource level and thus with the predominance of (Y)

traits, while the temperate system begins in low-resource conditions with a greater representation of (A) traits. The

tropical trajectory maintains a greater prevalence of (Y) traits than the temperate trajectory as resources accumulate

through time until both trajectories increase in stress tolerator (S) traits toward the end of succession.
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To illustrate the temporal aspect (Fig. 1A), a hypothetical successional trajectory

begins with a microbiome composed predominantly of nutrient acquisition (A) traits in

response to low initial resource conditions. Over time, resources accumulate and the

microbiome shifts in functional composition toward high-yield (Y) traits before factors

such as predation and anaerobic, oxidative, or climatic stress start to favor stress toler-

ance (S) traits at the end of the successional trajectory. Microbiomes can take many

successional trajectories through the Y-A-S triangle depending on how resource avail-

ability and stress change through time in the system. For example, microbiomes in

ecosystems with stressful conditions (e.g., deserts, hot springs) may have successional

trajectories that begin with a greater proportion of stress tolerator traits (S) (18, 19).

Alternatively, ecosystems in which resources decline drastically in the later stages of

succession will likely have increased competition and show a predominance of nutrient

acquisition (A) traits toward the end of the successional trajectory.

TRAIT-BASED APPROACHES WITH MACROECOLOGICAL THEORY

Further extending the Y-A-S framework across a biogeographical gradient, we con-

sider the latitudinal diversity gradient (LDG), where decreases in species richness from

the equator to the poles have been well-established for many plants and animals (20,

21), although there is mixed support for microbes (22, 23). Hypotheses for the LDG

(e.g., greater productivity, more stable climate, warmer temperatures in the tropics,

etc.) can be reframed along axes of stress and resource availability to enable predic-

tions for how microbiome functional succession can change with latitude in the Y-A-S

framework (24). Using the hypothetical successional trajectory from Fig. 1A and the

LDG hypothesis of greater resources (i.e., productivity) in the tropics (20, 25, 26), the

tropical trajectory (Fig. 1B, red line) starts at a higher resource level and thus consists

primarily of (Y) life history traits, whereas the temperate system (Fig. 1B, blue line)

begins in low-resource conditions with greater predominance of (A) traits. Both trajec-

tories have an increase in the proportion of (Y) life history traits as resources accumu-

late through time, but the tropical trajectory maintains a greater prevalence of (Y) traits

than the temperate trajectory due to greater resource availability in the tropics. Finally,

both trajectories increase in stress tolerator (S) traits toward the end of succession as

competition and higher cell density lead to abiotic and biotic stress (Fig. 1B). This stress

may include reduced supply of readily usable organic carbon sources, build-up of toxic

by-products, pH changes, and declining oxygen concentrations (27, 28), as well as

increased viral load and grazing pressure by invertebrates (29).

EFFECTIVE APPLICATION OF THE Y-A-S FRAMEWORK

The Y-A-S framework will be most useful when researchers can accurately quantify

microbial population and community traits across systems. This poses significant chal-

lenges, as methodological differences and informative traits for each life-history strategy

will likely vary depending on the system. For example, the current metrics for yield-

based traits, like microbial growth efficiency (MGE) and carbon use efficiency (CUE), can

be quantified using several methods that differ in technical variability and make cross-

study and cross-system comparison more difficult (30). In addition to physiological meas-

ures for traits (i.e., MGE and enzyme activity), genomic data will help to advance how we

estimate and model community function. For example, a shotgun metagenomic analysis

makes it possible to estimate the functional potential of a whole community, while

metatranscriptomic data can provide a snapshot of gene expression reflecting current

function. While recent evidence supports quantifying yield- and stress-based traits by

genomic metabolic markers (i.e., osmoregulation, sporulation, cell repair) and genome

size (31–33), significant challenges remain for using metagenomic and transcriptomic

data due to incomplete functional databases and gene annotations.

The existing, abundant amplicon (e.g., 16S rRNA) sequencing data can be used as a

proxy for functional potential (34), although additional difficulties arise. For example,

16S rRNA copy number could help predict life strategies and growth rates of bacterial
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taxa (4, 35, 36). Furthermore, bacterial composition paired with known taxon functions

have been used to extrapolate to human microbiome functions (37). However, 16S

rRNA estimations are often poorly correlated with functional profiles from shotgun

metagenomes, particularly outside human data sets (38). The paucity of functional in-

formation for environmental taxa means that more direct functional assessments using

metagenome and metatranscriptome approaches will likely provide more detailed

community profiling (39) to enable cross-system trait-based inquiry to microbiome

functional dynamics over space and time.

Analyzing metagenomic and metatranscriptomic data within the Y-A-S framework will

allow ecologists to improve functional trait databases and understand microbial functional

patterns that span large spatial and temporal gradients (36, 40). Furthermore, continued

collaboration between microbial ecologists and macrobiologists (e.g., through the

National Science Foundation’s emerging Center for Advancement and Synthesis of

Open Environmental Data and Sciences) will help define the key ecological proc-

esses driving microbiome assembly.
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FIG 2 (A) Distribution of S. purpurea in red (Noah Elhardt, public domain) with a pitcher (inset; photograph by L. Bittleston). (B) An example

of how S. purpurea pitcher microbiomes move through the Y-A-S functional space during succession. This ternary plot uses PICRUSt2

functional output of 16S rRNA data averaged over 10 pitchers in a single wetland population in Wisconsin (black star in panel A). Dots are

samples from 3, 7, 14, 28, and 62 days after pitcher-opening, and arrows indicate the direction of time. The white lines connect the data from

each pitcher, while the black line shows the mean across all 10 pitchers. For this preliminary test, we chose single traits to represent each

strategy. For motility, we summed the normalized abundances of all genes at the KO level that contained “chemotaxis protein” in their

descriptions. Similarly, for sporulation, we summed all that contained “sporulation protein.” For a community measure of rRNA copy number,

we weighted the estimated rRNA copy number for each amplicon sequence variant (ASV) by its relative abundance. We recognize that rRNA

copy number is not an ideal trait to represent the Y strategy, as it is correlated with maximum growth rate, which does not always translate

to higher yield (4, 16); furthermore, it is often not accurately predicted by 16S data (48). A measure of microbial growth efficiency would be

a better Y trait; however, it was not available for these data. Data and code are available at https://doi.org/10.7910/DVN/Z0FQK7.

BOX 1: SARRACENIA PURPUREA MICROBIOME CASE STUDY

The Sarracenia purpurea microbiome is an ideal model system for incorporating

succession and biogeography into the Y-A-S framework (Fig. 2). This plant species

grows in nutrient-poor habitats and relies on the microbiomes that inhabit its water-

filled, pitcher-shaped leaves to transform captured insect prey into usable mineral

nutrients. The food web is composed of bacteria, protozoa, rotifers, and dipteran

larvae, and the microbiome is thought to provide essential “ecosystem services” for

the host plant via degradation of prey (29, 41–44). The leaves of the plant are sterile
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