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ABSTRACT
In the Stokes–Einstein picture, diffusion of a Brownian particle or a molecule in a liquid solvent is caused by unbalanced fluctuations
of osmotic forces on different sides of the particle. When the particle carries a charge or a higher multipolar moment, this picture is
amended by fluctuations of electrostatic forces producing dielectric friction. Dielectric friction slows down both the translational and rota-
tional diffusion. While this picture is well established and is physically sound, standard theories grossly overestimate the magnitude of
dielectric friction for small dipolar solutes and larger colloidal particles, such as proteins. Motivated by recent simulation studies, this Per-
spective discusses the interplay between osmotic (van der Waals) and electrostatic forces in promoting molecular and colloidal diffusion.
Much can be learned about microscopic friction mechanisms from statistical and dynamical correlations between osmotic and electrostatic
forces.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098506

I. INTRODUCTION

The Stokes–Einstein mechanism of diffusivity1,2 in liquids is
based on the idea that random motions of a tagged (Brownian) par-
ticle are caused by stochastic bombardment by the liquid molecules.
Even though restated in many textbooks, this picture is hardly
accurate when diffusion in liquids is concerned. Single-molecule col-
lisions are not possible in dense liquids, and one has to view random
walks of a tagged particle as caused by collective excitations of the
liquid producing force imbalances on different sides of the parti-
cle. This is the view of diffusivity interrogated here. This Perspective
aims at constructing a physical picture of how two major forces
present in polar liquids, nonpolar van der Waals (vdW) and elec-
trostatic forces, come in peace with each other to establish zero force
at mechanical equilibrium, but have to compete with each other to
produce random kicks responsible for translational and rotational
diffusion.

The vdW interactions are universal as they act between all types
of atoms of the tagged particle and the surrounding medium. They
are also relatively short-ranged and induce forces and torques act-
ing on the particle surface. Their imbalances on different sides of

the particle are caused by uncompensated density fluctuations, in
contrast to individual molecular collisions. This is the picture of
Brownian motion originally advocated by Einstein. In his follow-
up paper on Brownian motion published in 1908,3 he noted that
the physical driving force of macroscopic diffusion is the micro-
scopic osmotic pressure. It arises from a lower chemical potential
of the solvent on the side of a diffusing particle facing higher con-
centration of solutes. Molecules of the solvent rushing toward the
lower chemical potential enhance the local density on the corre-
sponding side of the particle. The resulting density gradient leads to
osmotic pressure pushing the particle down the concentration gradi-
ent. This argument equally applies to a single Brownian particle for
which compression and decompression density fluctuations, caused
by thermal agitation, are responsible for random forces observed as
irregular Brownian motion.

The notion of osmotic pressure needs clarification when
applied at the molecular scale, but it provides a physically sound
picture of local density augmentation as the force generation
mechanism. However, electrostatics was not a part of Einstein’s
argument. This omission was corrected by Born in 1920.4 He
noted that dipoles changing their orientations in response to the
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displacement of an ion are characterized by their own rotational
relaxation times, which must cause retardation of polar response.
According to fluctuation–dissipation arguments,5 retarded response
implies dissipation. This mechanism was viewed as capable of pro-
ducing friction on ion’s motion, which was termed the dielectric
friction.6–8

Returning to Einstein’s argument, the notion of osmotic pres-
sure driving diffusivity and random Brownian displacements can be
extended to include the interfacial polarization of a polar solvent.
An asymmetric distribution of charge at the diffusing particle creates
asymmetry of the electric field at different locations on the dividing
surface separating the particle from the polar medium. Such unequal
electric fields cause a gradient of the local chemical potential of the
liquid according to the following equation9,10 (Gaussian units):

�(E) = �(0) − (E2�8π)(@��@ρ)T. (1)

An inhomogeneous electric (Maxwell) field E compresses the
liquid and alters its local dielectric constant � as expressed by the
isothermal density derivative (@��@ρ)T . The local chemical poten-
tial becomes spatially inhomogeneous at the particle surface, making
liquid molecules rush to the region with a lower chemical potential.
In electromechanics of continuous media, this physics is expressed
by the Korteweg–Helmholtz force density,9,11 which, in the absence
of free charges and applied to homogeneous liquids, is given by the
gradient of the chemical potential10,12

fKH = −ρ∇�(E), (2)

where �(E) is from Eq. (1).
The electrostatic pull alters the local liquid density andmodifies

the corresponding vdW force. The electrostatic and vdW forces bal-
ance each other off (stay in peace) at mechanical equilibrium when
gradients in local pressure9,12

�p � ��(E2�8π)ρ(@��@ρ)T� (3)

compensate electrostatic forces from the polarized medium. The
condition of mechanical equilibrium also imposes constraints on
small deviations from equilibrium, leading to general statistical and
dynamical relations between cross correlations of different types of
forces and their self-variances, as discussed below. Understanding
the statistics and dynamics of force fluctuations around equilibrium,
and the role of such fluctuations in promoting diffusion, is the main
focus of this Perspective.

Einstein and Born arguments concerning the physical origin of
random forces acting on the diffusing particle need to be converted
to closed-form relations for the translational and rotational diffusion
constants. The starting point here is the Einstein equation relating
the translational diffusion constant Dt to the friction coefficient ζ

Dt = (βζ)−1, (4)

where β = (kBT)−1 is the inverse temperature. The rotational
diffusion constant

Dr = (2τr)−1 (5)

is given13,14 in terms of the first-rank rotational relaxation time τr . It
is defined as the integral of the time autocorrelation function

Cr(t) = �û(t) ⋅ û(0)� (6)

describing the dynamics of the unit vector û(t) along the sym-
metry axis of a tagged particle (assuming axial symmetry for
simplicity).

In contrast to the general Einstein equation that is not specific
in terms of physical mechanisms of friction, the Stokes–Einstein for-
mulation seeks the origin of translational and rotational friction in
hydrodynamics. Retardation of both types of motion is viewed in
terms of equations of fluid dynamics, with a common dissipation
mechanism through shear viscosity η. When hydrodynamic equa-
tions are used to calculate both Dt and the rotational relaxation time
τr for a spherical solute with the radius a, one obtains the following:
Dt = (6πβηa)−1 and τr = 4πβηa3. The product of Dt and τr depends
solely on the particle size

Dtτr = 2
3
a2. (7)

This is the Stokes–Einstein–Debye (SED) equation15 and the
product Dtτr is the SED product.

The concept of dielectric friction modifies the Stokes–Einstein
paradigm. The main fundamental insight of Born’s perspective is to
demonstrate that hydrodynamics cannot be the sole friction mecha-
nism for mobility in polar liquids. Dissipation of energy to rotations
and translations of liquid multipoles needs to be included. Quali-
tative arguments incorporating polarization of the liquid–particle
interface into the force balance equation clearly demonstrate that
the simplistic picture of hydrodynamic friction is bound to fail for
the mobility of particles carrying charges and dipoles in polar liq-
uids. Even overall neutral colloidal particles are typically stabilized
in solution by surface solvation16 of ionic sites located close to the
polar interface. In that case as well, collective fluctuations of den-
sity, dipolar orientations of polar molecules, and ions of electrolyte,
mostly uncorrelated on different sides of a large colloidal particle,
jointly produce random forces responsible for Brownian motion.

Analytical formulations17 combining the Stokes–Einstein and
Born friction mechanisms have been mostly based on the assump-
tion that electrostatic and hydrodynamic forces can be viewed as
statistically independent. Our discussion below shows that Born’s
framework substantially overestimates friction produced by a polar
solvent on a small dipolar particle and on a protein molecule dis-
solved in water, while qualitatively correct trends are predicted
for small ions. For instance, standard theories predict electrostatic
friction so exceptionally high that diffusion of proteins in water
is not allowed. The resolution of the paradox is found by allow-
ing strong statistical and dynamical correlations between osmotic
(vdW) and electrostatic forces acting on the diffusing particle.18–21
The new physical reality that arises in the course of revision of
basic theory assumptions also permits some simplifications and
general formulas addressing the statistics of forces acting on a
tagged particle. Dynamical correlations between the components
forces are also very essential: they strongly reduce the relaxation
time of the total force compared to relaxation of component
forces.
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II. DIELECTRIC FRICTION
Standard models of mobility in the Stokes–Einstein paradigm

and in Born’s picture both operate in terms of friction experi-
enced by a particle drifting under an applied force. One, therefore,
needs a link between thermally fluctuating forces and energy dissi-
pation (friction). This link is provided by the fluctuation–dissipation
theorem, which states that collective motions of the thermal bath
coupled to a tagged particle that fluctuate the most are those that
produce most friction.22,23

The connection between fluctuation–dissipation arguments
and the friction coefficient is given by the Kirkwood equation for
the translational diffusion constant Dt in terms of the fluctuating
stochastic force F acting on the particle,24

Dt = �(β2�3)�(δF)2�τF�−1. (8)

This equation yields friction as a product of the force variance�(δF)2�, δF = F − �F�, and the integral relaxation time τF of the
force–force time autocorrelation function

CF(t) = �δF(t) ⋅ δF(0)�. (9)

The Kirkwood equation is an approximation since the mem-
ory time should replace τF in the exact result.25 Deviations from the
exact formula follow from a series expansion in the square root of the
ratio of the solvent and solute masses.26 Recent molecular dynam-
ics (MD) simulations have shown that the expansion starts with the
second-order term and the first nonvanishing correction scales as
the ratio of the solvent and solute masses.27

The total force acting on the tagged particle is a sum of the vdW
and electrostatic components

F = FvdW + FE. (10)

These two forces were viewed as statistically independent in the orig-
inal Born formulation4 and in many modern analytical theories of
dielectric friction extending the Born model.7,8,17,28 If vdW and elec-
trostatic forces are statistically uncorrelated, the friction experienced
by the tagged particles is additive8,29

ζ = ζvdW + ζE. (11)

This relation breaks down dramatically for molecular solutes in
water. Specific cases of spherical solutes carrying charge and dipole
multipoles at the solute center are considered in sequence below
to illustrate general difficulties with Born’s additivity assumption
leading to Eq. (11). These model cases are followed with a more
general configuration of translational and rotational diffusion of an
off-center ionic solute modeling diffusivity of proteins and other
colloidal particles with asymmetric charge distribution. Our discus-
sion is limited to electrostatic interactions of multipolar solutes with
the polar solvent and does not include electrostatics from electrolyte
ions.

A. Ion
The electrostatic force FE = qEs acting from the medium on an

ion carrying the charge q is the product of q and the medium electric

field Es. The Kirkwood equation [Eq. (8)] yields the dielectric fric-
tion as a product of the electric field variance �(δEs)2� and the field
relaxation time τE,

ζE = βq2

3
τE�(δEs)2�, (12)

where τE is the integral relaxation time

τE = � ∞
0

dtCE(t)�CE(0) (13)

of the electric field time autocorrelation function

CE(t) = �δEs(t) ⋅ Es(0)�. (14)

The Born picture next assumes that the non-electrostatic fric-
tion is produced by non-electrostatic forces, which are statistically
independent from FE and can be collected into the Stokes drag. The
resulting friction coefficient for translational diffusion

ζ = 6πηa + βq2

3
τE�(δEs)2� (15)

applies to a liquid characterized by shear viscosity η and the ion with
the radius a (stick hydrodynamic boundary conditions2,30). Dielec-
tric friction carries both statistical and dynamical information in
terms of the product of the force relaxation time and the force vari-
ance. It disappears if the response of molecular dipoles is very fast.
A sluggish electrostatic field means more electrostatic drag imposed
on an ion. As we discuss below, this result puts too much friction
on a diffusing protein characterized by a slowly relaxing electric
field. The assumption of components additivity in the force vari-
ance, leading to Eq. (15), needs to be revised to achieve agreement
with observations.

The variance of the electrostatic field can also be connected
to the field susceptibility, i.e., the ratio of the average field of the
medium in response to a small probe solute dipole to the dipolemag-
nitude.31 This link between fluctuations and response (static limit
of the fluctuation–dissipation theorem) carries the same physical
meaning as the displacement variance �(δx)2� = kBT�κ of a har-
monic oscillator in contact with the medium at temperature T. The
displacement variance is determined by the reciprocal force constant
κ−1, which also specifies the displacement �x = κ−1 fext in response
to a small externally applied force fext. Following the arguments
advanced by Nee and Zwanzig,17 one can define the reaction-field
susceptibility32,33 based on the field variance

χR = β
6
�(δEs)2�. (16)

The susceptibility χR is accessible from solvation and spectro-
scopic experiments. Spectroscopy yields χR through the solvent-
induced Stokes shift14,34 h�νSt = �ESt of a dipolar optical dye
changing its dipole moment by �m upon optical excitation

�ESt = 2χR�m2. (17)

This relation establishes direct experimental access to dielectric
friction experienced by charge q,

ζE = (�ESt��m2)q2τE, (18)
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where τE can now be associated with the average relaxation time
of time-resolved Stokes-shift dynamics.14,34 The product τE�ESt is
given by the time integral of the unnormalized Stokes-shift time
correlation function CSt(t),

τE�ESt = β� ∞
0

dtCSt(t). (19)

The Stokes-shift correlation function describes the dynamics of the
fluctuating energy gap �E(t) between the ground and excited states
of an optical dye35

CSt(t) = �δ�E(t)δ�E(0)�, (20)

where δ�E(t) = �E(t) − ��E�.
Equation (18) is formally exact when the linear medium

response is adopted. It provides an experimental route to the electro-
static friction component. However, its usefulness for defining the
mobility is limited given a strong coupling between electrostatic and
non-electrostatic forces violating the assumption of their statistical
independence required to arrive at Eq. (15). Nevertheless, measur-
ing both the mobility and the Stokes-shift dynamics of a charged
chromophore could be very useful in identifying key components of
dielectric friction.

Solvation theories can be alternatively used to gain access to
the reaction-field susceptibility through the average field R = �Ẽs�= 2χRm created by the medium in response to a small dipole m
placed at the solute, where Ẽs refers to the solvent field projected
on the direction of the solute dipole in the body frame of reference36
(see below). The average field �Ẽs� is known as the Onsager reac-
tion field37 in dielectric theories.38 The Onsager equation applies to
a spherical solute with the radius a and the dipole momentm placed
in the dielectric with the dielectric constant �s,

χcR = 1
a3

�s − �∞
2�s + �∞ , (21)

where the superscript “c” refers to the continuum (dielectric) limit
and the infinite-frequency dielectric constant �∞ accounts for the
solvent electronic polarizability.

Dielectric theories14,39 also provide the field relaxation time τE
in Eqs. (12) and (13) in terms of the Debye relaxation time of the
solvent τD (specified by the peak of the dielectric loss spectrum40,41)

τcE = 3�∞
2�s + �∞ τD. (22)

The combination of macroscopic hydrodynamics with macroscopic
dielectric theories leads to the following equation for the trans-
lational friction coefficient within Born’s framework of statistical
decoupling between vdW and electrostatic fluctuating forces:

ζ = 6πηa + 6q2�∞
a3

�s − �∞(2�s + �∞)2 τD. (23)

Slightly different versions of this result were listed in classical papers
by Zwanzig, Onsager and co-workers.7,17,28

Formulations leading to the Kirkwood equation [Eq. (8)] and
dielectric solvation theories [e.g., Eq. (21)] fall under a general
umbrella of the linear response approximation17,25 (LRA) address-
ing the response of themedium to a weak interaction with the solute.

Weakness of the solute–solvent electrostatic interaction implies little
change to the medium structure induced by it. Another conse-
quence of the LRA is the invariance of the electrostatic field vari-
ance in respect to the solute multipolar moment (charge or dipole
moment).

For an ionic solute, the LRA implies independence of �(δEs)2�
of the solute charge.43 The reaction-field susceptibility χR in Eq. (16)
must be a constant and can be calculated for a single charge state of
the ion. This turns out to be mostly correct when the ionic charge of
a Lennard-Jones (LJ) solute in SPC/E water is varied in the range−3 ≤ (q�e) ≤ 3 in MD simulations42 [Fig. 1(a)]. The agreement is
nearly perfect for anions, but an increase in χR above the LRA pre-
diction is seen for cations. This is related to restructuring of the
hydration shell around a cation pulling water’s oxygens closer to
the solute and forcing the corresponding O–H bonds to reorient
into the bulk. The ability of the dielectric theories [Eq. (21)] to esti-
mate χR is strongly affected by the definition of the ionic radius a.
When the microscopic solute–solvent density profile is incorporated
in a microscopic solvation theory, the agreement with MD is very
good in the range of charges where LRA still holds33 [dashed line in
Fig. 1(a)].

The field relaxation time τE is also supposed to be independent
of the ionic charge in the LRA framework. τE from MD simula-
tions mostly follows the prediction of dielectric theories [Eq. (22)]
for spherical ions, as indicated by filled circles and the dashed line
in Fig. 1(b). Both τE and the relaxation time of the total force τF
are nearly independent of the ionic charge, as anticipated by the
LRA. This outcome is drastically distinct from a strong retarda-
tion of rotational and field dynamics with increasing magnitude
of the solute dipole discussed below. The relaxation time τF is the

FIG. 1. (a) The reaction-field susceptibility χR [Eq. (16)] from MD simulations42 of
Lennard-Jones ions in SPC/E water vs the ionic charge q. The horizontal dashed
line marks the microscopic calculation from Ref. 33. (b) Relaxation times of the
electric field τE [Eq. (13), filled circles, E] and the total force τF [Eq. (9), open
circles, F]. The dashed line indicates the dielectric relaxation time τcE from Eq. (22).
Reprinted with permission from J. Chem. Phys. 156, 204501 (2022). Copyright
2022 AIP Publishing LLC.42
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integral relaxation time for the force correlation function CF(t) in
Eq. (9). Importantly, τF is significantly lower than τE. This outcome
implies strong dynamic correlations between vdW and electrostatic
forces making the overall force much faster than the component
forces. This result becomes particularly prominent for translational
mobility of proteins discussed below.

A weak dependence of τF on q [Fig. 1(b)] implies that the
dependence of translational diffusion on the ionic charge must arise
from the force variance. The Born picture suggests that a linear
dependence ofD−1t (q) on q2 comes from the electrostatic force vari-
ance [Eq. (15)]. A more general view in terms of the Kirkwood
equation includes all three terms entering the force variance through
Eqs. (8) and (10),

�(δF)2� = �(δFE)2� + �(δFvdW)2� + 2�δFE ⋅ δFvdW�. (24)

In contrast to the Born assumption, assigning the term ∝ q2
in Eq. (23) to the electrostatic force, MD simulations show that
all terms in Eq. (24) scale linearly with q2 for simple LJ ions in
SPC/E water (Fig. 2). A surprisingly simple result was found to hold
for the vdW-E cross-correlation term for small dipolar solutes,44
proteins,45,46 and colloidal nanoparticles.47 The cross-correlation is
negative and nearly coincides in magnitude with the electrostatic
force variance

�δFE ⋅ δFvdW� � −�(δFE)2�. (25)

From this formula, the variance of the total force acting on a
tagged particle comes as the result of subtraction of the vdW and
electrostatic self-components

�(δF)2� � �(δFvdW)2� − �(δFE)2�. (26)

This equation replaces the additivity of self-variances in the Born
picture leading to Eqs. (11) and (15).

The empirical result of Eq. (25) holds well for LJ cations as
shown in Fig. 2. On the other hand, the asymmetry between anionic
and cationic solvation48–50 leads to a somewhat different result for LJ
anions46

�(δF)2� � �(δFvdW)2�. (27)

FIG. 2. Components of the force variance β2�(δFa)2�, a = E, vdW vs q2: vdW
(black triangles), electrostatic (red circles), and the negative of cross vdW-
electrostatic (blue squares).42 The results for anions are plotted vs −q2. The
dashed lines are linear fits through the points (note the logarithmic scale). Adapted
with permission from J. Chem. Phys. 156, 204501 (2022). Copyright 2022 AIP
Publishing LLC.42

Nevertheless, both anions and cations maintain a linear scaling of
D(q)−1 with q2: diffusion becomes slower for charged ions because
of a rising variance of the total force acting on the solute.

An increase in the vdW variance with the ionic charge is a
consequence of compression of the hydration shell induced by the
ion. Anions are more efficient in compressing water since closer
packing and higher density are achieved in this case by releasing dan-
gling O–H bonds51 pointing toward the negative charge of the ion.
Distinct shell compression between cations and anions leads to sol-
vation asymmetry48–50 and extends to asymmetry of linear transport
coefficients: according to the Kirkwood equation, cations should
diffuse faster than anions of the same size and charge magnitude.

B. Dipole
Solutes with asymmetric distribution of molecular charge

might carry multipolar moments, most importantly the dipole
moment. Dielectric friction affects both translational and
rotational17,52,53 diffusion for these charge configurations. We
start with simple arguments explaining why electrostatic effects
can discriminate between translational and rotational dynamics.
This distinction leads to a substantial violation of the SED equation
[Eq. (7)] in high-temperature polar solvents.

Random torques is the source of rotational diffusion and fric-
tion imposed by the medium on a tagged dipole m. Following the
fluctuation–dissipation arguments discussed above, stronger torque
fluctuations mean higher rotational friction. The electric component
of the torque is caused by the electric field E� perpendicular to the
dipole (Fig. 3)

TE = m × Es. (28)

Thermal fluctuations of E� cause random rotations, and the time
scale of field relaxation sets up the dissipation mechanism. This
phenomenology is fully analogous to Born’s model for ionic transla-
tions. The rotational relaxation time of a dipole τr retraces17 Eq. (15)
for translational diffusion of an ion once the assumption of statistical
independence between vdW and electrostatic forces is adopted,

τr = τ0r + (βm)2
6

τE�(δEs)2�. (29)

Here, τ0r is the relaxation time related to random torques of non-
electrostatic origin. The coefficient of rotational diffusion Dr of a
molecule with axial symmetry13 follows from τr according to Eq. (5).

FIG. 3. Effect of electrostatic solute–solvent interactions on a spherical ion (charge
q) and a spherical dipole (dipole moment m). There is a fluctuating electrostatic
force δFE acting on the ion, but there is no electrostatic torque. In contrast, the
force acting on the dipole is zero, but there is a nonzero electrostatic torque
inducing rotations if the solvent field has a projection δE� perpendicular to the
dipole m.
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When dielectric theories are used for the reaction-field sus-
ceptibility [Eq. (21)] and the field relaxation time [Eq. (22)], the
rotational time becomes

τcr = τ0r + τD
3βm2�∞

a3
�s − �∞(2�s + �∞)2 . (30)

In addition, the link between the reaction-field susceptibility χR and
the Stokes-shift dynamics14,34 [Eqs. (17) and (19)] relates the incre-
ment in the rotational time �τr = τr − τ0r caused by electrostatics to
the Stokes shift dynamics31

�τr = m2

2�m2 β�E
StτE, (31)

where �EStτE is given by Eq. (19).53,54
Equation (31) offers two significant advantages over Eq. (30).

First, no specific solvation model is required. Second, corrections of
the dipole moment due to chromophore’s polarizability53,55 cancel
out in the ratiom2��m2. A linear relation �τr ∝ �EStτE was indeed
observed experimentally.53,55,56 However, the linear slope was found
to be grossly inconsistent with expectations based on the known
dipole moments. This dramatic failure was related to the breakdown
of the assumption of friction additivity inherent to the Born picture
[Eqs. (11) and (15)] and to its extension17 in terms of Eq. (30). Strong
cross correlations between vdW and electrostatic torques have also
been detected by MD simulations.44,57

The vdW-electrostatic cross correlations are significant for the
torque variance

�(δT)2� = �(δTE)2� + �(δTvdW)2� + 2�δTE ⋅ δTvdW�. (32)

Simulations of diatomic solutes composed of two fused LJ spheres
with charges ±q placed at their corresponding geometric centers44
(Fig. 4) have shown that the remarkable relation connecting cross
correlation of force components to the electrostatic self-variance
[Eq. (25)] extends to torques (Fig. 5)

−�δTE ⋅ δTvdW� � �(δTE)2�. (33)

FIG. 4. Schematic drawing of the fused dumbbell diatomic with charges ±q placed
at the geometric centers of two Lennard-Jones spheres. The shaded areas are
parts of the water shell structurally arrested by electrostatic pull from the charge
sites. The anionic end of the solute produces a denser hydration shell �ρa com-
pared to the cation with �ρc . The average vdW and electrostatic forces in the body
frame are along the symmetry axis indicated with the unit vector û. The orthogonal
direction is indicated with the unit vector û�.

FIG. 5. Variances of torques acting from water on fused dumbbell solutes with vary-
ing charge ±q placed at two LJ centers (Fig. 4). MD results44 show the vdW (black
triangles) and electrostatic (red circles) self-variances and the negative of the
vdW-electrostatic cross correlations (blue squares) vs the solute dipole moment
squared. The dashed lines are linear fits through the points (note the logarithmic
scale).

The variance of the torque acting on the dipole comes as subtrac-
tion of the vdW and electrostatic self-components in close analogy
to Eq. (26),

�(δT)2� � �(δTvdW)2� − �(δTE)2�. (34)

One can observe from Fig. 5 that Eqs. (33) and (34) are sat-
isfied only for sufficiently high solute dipole moments. Therefore,
compensation relations for forces and torques apply only when the
hydration shell of an ion or a dipole is sufficiently altered by the
electrostatic pull of the solute. The result of this modification is
the formation of a thin, structurally arrested layer of the solvent at
the solute surface. This layer is distinct from Frank–Evans iceberg
model58 introduced to account for the loss of entropy in hydropho-
bic solvation. In this view, water molecules around a hydrophobic
solute are translationally constrained by a strong interfacial network
of hydrogen bonds producing a cage. In contrast, the arrested struc-
ture invoked here applies only to the orientational manifold: the
water molecules nearly freely exchange with the bulk but arrive to
the arrested layer with the distribution of orientations dictated by the
local electrostatic fields. A similar picture has emerged in the prob-
lem of the loss of dielectric strength by interfacial water (see below):
the surface layer displaying lower dielectric susceptibility is arrested
only in terms of orientations of water molecules. Their translational
mobility is nearly unaffected and they keep exchanging with the
bulk.59 To sum up, only orientations of the solvent molecules are
affected in the thin surface layer rotating together with the solute.
This physical picture provides a qualitative explanation for the com-
pensation relations. It can be converted to mathematical arguments
that provide a plausible explanation of the simulation results and can
potentially lead to the development of a rigorous theory.

To understand the origin of compensation relations, one has to
distinguish the component forces in the frame of the solute (body
frame, marked with tildes) and in the laboratory frame (without
tildes). If one assigns the unit vector û along the symmetry axis of
the solute (assuming axial symmetry for simplicity), the force com-
ponents F̃a (a = vdW,E) projected on û in the body framewill rotate
with the solute in the laboratory frame. Fluctuations of the force in
the laboratory frame become a sum of rotations of the average force
and fluctuations of the body-frame force
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δFa = �F̃a�û + δF̃a. (35)

The fluctuations occur around the total average force applied from
the solvation layer to the solute and directed along the solute
symmetry axis in the body frame

�F̃� = �F̃E� + �F̃vdW�. (36)

This situation is illustrated in Fig. 4 for a diatomic dumbbell made
of two fused LJ spheres with opposite charges ±q placed at their geo-
metrical centers.44 Even though the radii of two spheres are equal,
the asymmetry in the compression of the water shell next to the pos-
itive and negative ends of the solute (shown with the shaded areas)
creates nonzero vdW and electrostatic forces in the body frame.

Assume next that the total force in the body frame �F̃� is zero
(we show below that this is not always the case) and that the arrested
molecular orientations in the solvation shell do not allow fluctu-
ations of the electrostatic force in the body frame (δF̃E = 0). The
electrostatic fluctuations observed in the laboratory frame (without
tildes) are only allowed through random rotations of the unit vector
û specifying the solute orientation and one can write

δFE = �F̃E�û. (37)

At �F̃� = 0, the average projection of the vdW force along û balances�F̃E�. Since fluctuations of density are allowed in the solvation shell,
they will produce fluctuations of the vdW force both along û and in
the direction û� orthogonal to û (see Fig. 4),

δFvdW = −�F̃E�û + δFvdWû + δF�vdWû�. (38)

The compensation relation [Eq. (25)] immediately follows when
this condition is satisfied. This formula also ensures �(δFvdW)2�> �(δFE)2� required for the overall force variance to be positive in
Eq. (26). The assumption that electrostatic forces from the arrested
layer show no fluctuations in the body frame is therefore sufficient
to explain the compensation result. While these mathematical argu-
ments are consistent with statistical averages produced byMD simu-
lations, a fully quantitative theory of the compensation phenomenon
is still missing.

The formation of a tightly bound interfacial layer is also
reflected in changes of the electric-field relaxation time τE with the

FIG. 6. Relaxation time τE calculated from MD simulations44 (open points) and
from the microscopic solvation theory33 (filled points). The dashed-dotted line
refers to the dielectric formula in Eq. (22). The dashed line is a linear fit through
the MD points (note the logarithmic scale): τE = 0.230 + 0.106 × m2 ps, and m is
in D.

solute dipolem. The relaxation time τE shows very little change with
the ionic charge q [Fig. 1(b)] since the rotations are irrelevant for
a spherically symmetric ion. A very different result is found for the
dipole in SPC/E water:44 τE increases linearly with m2 and reaches
the retardation factor of ∼800 in the range of dipole moments
shown in Fig. 6. A structurally arrested water layer slows down both
the rotational and field dynamics. This is, in fact, expected since
Eq. (37) also stipulates the following relation between the electric
field [Eq. (6)] and rotational [Eq. (14)] time correlation functions:

CE(t) = �F̃ E�2Cr(t). (39)

A goodmatch between τE and τr required by this formula was indeed
found inMD simulations of solutes carrying large dipole moments44
and off-center charges.46

Adding dipolar solutes to a polar liquid also strongly affects
the solution viscosity.60,61 Even though viscosity can be a nonlinear
function of the solute concentration, the rotational relaxation time of
the solute is often found to follow the standard hydrodynamic pre-
dictions.60 These observations are challenging to both the traditional
theories of dielectric friction and to the more recent simulation
results discussed here. There is still room for an extension of theories
of rotational diffusion to connect to experimental measurements of
solution viscosity.

From the experimental standpoint, the retardation effect of
the solute dipole on the electric field dynamics translates to slower
Stokes-shift dynamics for excited-state chromophores35,62 usually
carrying higher molecular dipoles. This observation also suggests
slower field and rotational dynamics in highly polar liquids and
slower field dynamics inside solutes carrying large dipole moments,
such as solvated proteins discussed below.

Bulk water is a good example of this general phenomenology.
Simulations44 of τE(T) of SPC/E water at different temperatures
are compared in Fig. 7 to the continuum result from Eq. (22) and
to the Debye relaxation time τD(T) from simulations63 and exper-
iment.64 The Nee–Zwanzig equation for rotational dielectric fric-
tion [Eq. (29)] strongly overestimates the rotational time for water
molecules confirming again that the neglect of vdW-electrostatic
correlations is not justified for rotational dynamics in bulk polar liq-
uids. At the same time, the continuum estimate τE = τcE [Eq. (22)]

FIG. 7. τE from MD simulations44 at different temperatures (filled circles) com-
pared to the Debye relaxation time τD of SPC/E water63 (dashed line, Debye) and
to the continuum estimate of the relaxation time τcE from Eq. (22) (solid line, Contin-
uum). Also shown are single-molecule rotational relaxation times τr [Eq. (6)] (open
diamonds)65 and experimental Debye relaxation times64 τD(T) (open triangles).
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falls much below τE from MD simulations. This outcome comes in
stark contrast to a reasonable performance of dielectric theories in
estimating τE for spherical LJ ions [Fig. 1(b)].

The phenomenology of a dipole rotating together with its
arrested solvation layer is responsible for the failure of dielectric the-
ories when applied to the electric field dynamics. The relaxation time
deviates significantly upward from τcE(T) approaching τD(T).63,64
It is important to note that single-particle rotational dynamics of
water are non-diffusional, involving a sequence of jumps activated
by rearrangement of hydrogen bonds to the nearest neighbors.66
Nevertheless, relaxation of electric field is a collective process, sim-
ilarly to the Debye dielectric relaxation,67 and should average out
individual molecular jumps through participation of many water
molecules. Simulations still find a good match between the rota-
tional,65 τr , and field, τE,44 relaxation times (compare filled circles
to open diamonds in Fig. 7) in support of Eq. (39). An equally good
match was found in MD simulations of glycerol68 [Fig. 8; the solid
line indicates dielectric τD(T) data69]. This match extends through
the dynamical crossover signaled by a change in the Arrhenius slope
of the relaxation time also observed in recent scattering experi-
ments for glycerol,70 although at longer times. One anticipates that
the Debye picture of rotational diffusion71 made of small rotational
jumps applies better to glycerol than to water, but the phenomenol-
ogy τr � τE [Eq. (39)] seems to hold for both hydrogen-bonding
liquids.

The single-particle rotational relaxation time τr can also be
linked to the collective Debye relaxation time τD. The connection
in terms of the static Kirkwood correlation factor38 gK(T) was
introduced long ago by Keyes and Kivelson72 and Kivelson and
Madden,73

τD(T) = gK(T)τr(T). (40)

The derivation of this equation involves some approximation and
it has long remained a conjecture. However, recent experiments74,75
and MD simulations76,77 have produced evidence in support of its
accuracy. Also MD simulations of relaxation times and Kirkwood
factors of SPC/E and TIP3P water models at different temperatures
have attested to its high accuracy.65

FIG. 8. Relaxation times τr and τE from MD simulations of glycerol. The solid
line refers to the dielectric relaxation time69 τD(T) obtained by fitting dielectric
loss spectra at different temperatures to the Cole–Davidson function. The dashed
line is a regression drawn through τE points. Tc (dotted vertical line) indicates
the crossover temperature at which the Arrhenius slope changes. Adapted with
permission from S. Seyedi, D. R. Martin, and D. V. Matyushov, Phys. Rev. E 94,
012616 (2016). Copyright 2016 American Physical Society.68

C. SED violation
Retardation of translational and rotational dynamics by dielec-

tric friction affects yet another iconic result of single-particle dynam-
ics in liquids, the SED equation15,78–82 [Eq. (7)]. The effect of elec-
trostatics on translational and rotational diffusion must be entirely
different for a spherical ion and a spherical dipole. Figure 3 illustrates
the distinction for two spherical solutes: (i) an ion with charge q at
its center and (ii) a point dipolem at the solute center. Fluctuations
of the electrostatic force applied to an ion contribute a term∝ q2 to
translational friction [Eq. (15)], but there is no electrostatic torque.
Electrostatics, thus, affects Dt of an ion but does not affect τr and
one anticipates violation of the SED relation. Just an opposite situ-
ation applies to a point dipole. If the electric field is uniform within
the solute, there is no electrostatic force, but there is an electrostatic
torque responsible for retardation of rotations. One anticipates devi-
ations from hydrodynamics for τr while maintaining Dt consistent
with hydrodynamics.

SED violation was indeed found in MD simulations of dipolar
solutes in SPC/E water.44 Instead of being a constant, as predicted by
Eq. (7), the SED product becomes a linear function of m2, where m
is the solute dipole moment. The dependence of the SED product on
temperature is even more instructive.

The strength of the dipole–water electrostatic interactions
enters the system partition function through the dimensionless
parameter (m∗)2 = βm2�σ30s, where σ0s is the solute–solvent inter-
action distance, which is typically slightly below the position of
the first peak of the solute–solvent pair distribution function. The
dimensionless interaction parameter m∗ can be increased by either
increasing the solute dipole, as is done in simulations and in optical
excitation experiments, or by lowering temperature. For a dipolar
solute, simulations indicate a sharp rise of the SED product with
lowering temperature following a plateau region at higher tempera-
tures (Fig. 9). Such a kink in the temperature dependence of the SED
product is often reported for single-particle dynamics of supercooled
molecular glass-formers.79,82,83

SED violation is often attributed to heterogeneous
dynamics,79,81,84,85 i.e., temporal coexistence of domains with
fast and slow dynamics in a homogeneous medium. Dynamic
heterogeneity becomes a signature of nonergodicity in respect to
measurements of structural α-relaxation. Distributed α-relaxation
times, leading to dispersed dynamics,81,83,84 are a consequence of

FIG. 9. SED product [Eq. (7)] vs inverse temperature for a fused dumbbell solute
(Fig. 4) with the dipole moment listed in the plot.44 The points denote MD simula-
tion results, and the dashed lines are linear fits through the corresponding portions
of data. The dotted line refers to the hydrodynamic SED product in Eq. (7).
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a slower dynamical process relaxing heterogeneous domains and
restoring ergodicity on a time scale much longer than the time of
α-relaxation. SED violation is then explained by the observation that
translational diffusion is dominated by fast states, while slow states
mostly contribute to rotational diffusion84 (this view was disproved
in simulations of SPC/E water82). There are obviously no such
distributed states in simulations of a single solute, but SED product
still increases either with increasing the solute dipole moment or
with lowering temperature (Fig. 9). Electrostatic interactions, which
increase in importance with lowering temperature, might offer an
alternative explanation for SED violation.

III. COMPLEX MOLECULAR/COLLOIDAL SOLUTES
The configuration of a spherical ion considered in the original

work of Born and carried over to many subsequent studies is highly
unrealistic when applied to large molecular solutes. For a charged
solute, such as a solvated protein, atomic charges are distributed
inside the molecule and over its surface. The center of charge often
does not coincide with the molecular center of mass. The solute
electric field is anisotropic and the interfacial polarization produces
both the electrostatic force affecting center-of-mass translations
and torques inducing rotations. Translations and rotations become
highly coupled, through the electrostatic solute–solvent interactions,
with the observable consequences discussed here.

When the center of molecular charge is shifted relative to the
center of mass, as is illustrated in Fig. 10, the imbalance of the chemi-
cal potential on different sides of the particle is caused by asymmetry
of the electric field [Eq. (1)]. The gradient of the chemical potential
is compensated by density augmentation leading to the vdW force
directed oppositely to the electrostatic force (compare to Fig. 4). If
one now assigns the unit vector û to the z-axis in the body frame
connecting the center of mass to the center of charge, one can write
the force components F̃a (a = vdW,E)measured in the body frame

FIG. 10. Schematic drawing of a colloidal particle with the center of mass marked
with an open dot and the center of charge q with the filled dot; s is their sepa-
ration. An asymmetric electrostatic field induces the electrostatic force F̃E and a
density augmentation �ρ responsible for the van der Waals (vdW) force F̃vdW in
the body reference frame with the z-axis along the line connecting centers of mass
and charge. The lower portion schematically shows the solute–solvent vdW inter-
action potential. The vdW and electrostatic forces are balanced off for the solvent
molecules in the interface; a is the radius of the sphere representing the solute
(dashed line).

rotating with the solute according to Eq. (35). Fluctuations of forces
in the laboratory frame become sums of rotations of the average
force and fluctuations of the body-frame forces.

The average electrostatic force along the z-axis in the body
frame can be calculated by surface integration of the Maxwell stress
tensor Tzβ, contracted with the Cartesian components n̂β of the
outward unit vector normal to the surface9,10,86

�F̃E� = � Tzβn̂βdS, (41)

where dS is the surface area differential and summation runs over
the common Cartesian indices. Dielectric theories used to estimate
the integral in Eq. (41) yield9,46 the body-frame electrostatic force in
the form

�F̃E�∝ sq2

�2a3
�� + ρ�@�

@ρ
�
T
�, (42)

where s is the distance between the centers of mass and charge
(Fig. 10). The physical reason for this result is that liquid dipoles
are drawn to the region with a higher electric field as long as liquid’s
compressibility permits a density contraction. The force is caused by
changes of the dielectric constant by interfacial density contraction.
The derivative ρ(@��@ρ)T is close in magnitude to � for many polar
liquids,12 and the force in Eq. (42) scales as ∝ �−1 with the dielec-
tric constant when �� 1. Equation (42) is derived assuming that
no tangential electrostatic stress is allowed at the particle surface. If
both the tangential and normal stresses are allowed, the term in the
brackets in Eq. (42) is replaced by ρ(@��@ρ)T .

The question of what is the dielectric constant to be used
in Eq. (42) is far from trivial. A number of recent computer
simulations59,87,88 and experiments89,90 have shown that an effective
dielectric constant, significantly reduced compared to the bulk, is
required to characterize interfacial polarization of water and other
liquids.91 The exact reduction from the bulk value of � � 78 for water
at standard conditions has not been established, but values in the
range � 2–10 have been reported. Comparing the electrostatic force
fromMD simulations of a solute with the off-center charge (Fig. 10)
to Eq. (42) requires46 � � 5, which is consistent with the anticipated
reduction of the interfacial dielectric response.92

If the hydration shell is in mechanical equilibrium, vdW and
electrostatic forces in the laboratory frame average out to zero such
that �F̃E� = −�F̃vdw�. When applied to Eq. (35), this assumption leads
to Eq. (38) and the compensatory relation between cross and self-
variances [Eq. (25)]. This is indeed found in simulations of charge
mutants of proteins for which the compensation relation [Eq. (25)] is
satisfied with great accuracy.45 The distributions of the body-frame
force components shown in Fig. 11(a) for the q = −2 mutant of
azurin are shifted symmetrically around zero overall force but show
different widths required to reach an overall nonzero variance in
Eq. (26). Such an exact compensation does not, however, occur for
a spherical LJ solute with an off-center charge dissolved in SPC/E
water.46 The vdW force in this case is both greater on average and
produces a greater force variance. The average force along the sym-
metry axis of the solute is nonzero in the body frame, but it averages
out to zero by solute rotations in the laboratory frame. The total
solute–solvent force is zero in the laboratory frame at sufficiently
long observation times as required for mechanical equilibrium.
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FIG. 11. Normalized distributions of vdW (black), electrostatic (red), and total (mus-
tard) force projected on the symmetry axis of azurin protein carrying the charge
q = −2e [oxidized state (a)] and of a spherical LJ solute with the off-center charge
q = 1.5e (b). Adapted with permission from T. Samanta, S. M. Sarhangi, and D.
V. Matyushov, J. Phys. Chem. Lett. 12, 6648 (2021). Copyright 2021 American
Chemical Society.46

The existence of a nonzero average force in the solute body
frame leads to non-Gaussian force statistics in the laboratory frame
because the average force component �F̃a� (a = vdW,E) rotates with
the solute. This is illustrated in Fig. 12 for the distribution of the
electric field from SPC/E water at the center of a dumbbell solute
shown in Fig. 4.44 The Gaussian distribution in the body frame is
transformed, by rotations of the solute, to a step-wise distribution
in the laboratory frame. It arises from all possible orientations of
the Onsager reaction field R = �Ẽs� indicated by the position of the
distribution peak in the body frame (Fig. 12). Any observable prop-
erty sensitive to the electric field in the laboratory frame should be
affected by this non-Gaussian statistics.

An illuminating application of this general result is a long-
known observation that an ensemble of independently rotating
dipoles yields a non-zero nonlinear dielectric response experimen-
tally observed through the dependence of the dielectric constant on
the applied electric field.38 This effect, which requires non-Gaussian
statistics of the macroscopic dipole moment of the sample,41 is

FIG. 12. Distributions of the electric field created by SPC/E water (T = 300 K)
at the geometrical center of a fused dumbbell solute (Fig. 4) in the laboratory
(blue squares) and body (red circles) frames of reference. The MD results refer
to charges q = ±1.5e placed at two geometric centers of a fused LJ diatomic.44

allowed by non-Gaussian statistics of individually rotating dipoles.
The remarkable accuracy of the compensation relation

[Eq. (25)] found for proteins45 suggests a strong correlation between
vdW and electrostatic forces driving translational and rotational
diffusion. We have already noted the failure of dielectric friction
theories in describing rotations of molecular dipoles in bulk water
(Fig. 6). For proteins, the failure of traditional theories is particularly
dramatic.

Dielectric friction is estimated in standard theories in terms of
the product of the electric field variance and the field relaxation time
[Eqs. (15) and (29)]. For proteins, the field relaxation time turns
out to be substantially longer than the dielectric time τcE � 0.3 ps
in Eq. (22). This can be anticipated already from the results for a
model dipolar solute shown in Fig. 6, where the retardation factor of∼180 was reached for the largest dipole moment � 15 D. Dielectric
experiments have shown that proteins carry large dipole moments
of the order of several hundreds of Debye units as defined rela-
tive to the center of mass for proteins possessing net charge.95–97
Such large dipoles cause nonlinear retardation of the electric field
dynamics from the subpicosecond domain predicted by dielectric
theories [Eq. (22)] and confirmed for simple ions [Fig. 1(a)] to the
nanosecond time domain shown for three globular proteins93,94 in
Fig. 13. The retardation factor of the electric field dynamics reaches
an astonishing value of four orders of magnitude for proteins.

The correlation functions CE(t) [Eq. (14)] in Fig. 13 were
determined in the frame of the simulation box (laboratory frame).
Consistent with Eq. (39), the long-time decay of CE(t) parallels the
rotational correlation function Cr(t) (black triangles in Fig. 14). The
decay of the correlation function is somewhat faster, and the relax-
ation time is somewhat lower in the body frame (Fig. 14), but still sig-
nificantly exceeds τcE and the results for simple ions. Spectroscopic,
optical or vibrational,98 probes sensitive to the solvent-induced elec-
tric field (solvatochromism) rotate together with the protein and
thus report on the field dynamics and statistics in the body frame.
In contrast, rotational and translational diffusion are affected by the
dynamics and statistics of the solvent electric field in the laboratory
frame of reference.

FIG. 13. Normalized time correlation functions CE(t)�CE(0) [Eq. (14)] of the elec-
tric field from water at the center of mass of the protein calculated from 1 �s MD
trajectories of lysozyme (Lys, black circles) and ubiquitin (Ubiq, red triangles).93
The dashed lines are fits to weighted sums of exponential and stretched exponen-
tial decay functions. Also shown is the time correlation function of the electric field
at the active site of the oxidized form of azurin (green circles, Azurin).94 The aver-
age relaxation times are 6.3 ns (Lys), 4.4 ns (Ubiq), and 8.5 ns (Azurin). Adapted
with permission from M. Heyden and D. V. Matyushov, J. Phys. Chem. B 124,
11634 (2020). Copyright 2020 American Chemical Society.93
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FIG. 14. Normalized time correlation functions CE(t)�CE(0) [Eq. (14)] of the elec-
trostatic force acting from water on azurin in the reduced state45 in the laboratory
(blue squares) and body (red circles) frames. The integral relaxation times are
τE = 6.7 ns (lab) and τE = 1.1 ns (body). The dashed line is a fit to a weighted sum
of single exponential and stretched exponential relaxation functions. Also shown
is the normalized rotational time correlation function45 [black triangles, Eq. (6)].

A dramatic signature of slow electric field dynamics in proteins
is seen in a sharp decrease of the bandwidth of vibrational lines of
spectroscopic probes placed inside proteins compared to the same
probes dissolved in water.98,99 The overall broadening, due to elec-
tric field fluctuations, is similar in water and in protein. However,
much slower dynamics of the electric field inside the protein do not
allow reaching full equilibrium line broadening on the lifetime of the
vibrational probe.94

When relaxation the time τE and the field variance �(δEs)2�
specific for proteins are used in Eq. (15), one finds that electro-
static friction exceeds the hydrodynamic friction by a factor of � 106.
The standard theories of dielectric friction, thus, prohibit protein
diffusion in water. Direct simulations of protein mutants show
essentially no dependence of translational diffusivity on the net
protein charge,45 in agreement with experimental evidence.100–103

The failure of standard recipes comes from the neglect of vdW-
electrostatic correlations, which impact both the force statistics and
dynamics. First, instead of additivity of the component variances,
one obtains their subtraction in the total force variance [Eq. (26)].
Second, and more important, relaxation of the total force [Eq. (10)]
is much faster than relaxation of the component forces (Fig. 15). The
total force decays, through oscillations, on the time scale of � 0.01

FIG. 15. Normalized force–force time correlation functions [Eq. (9)] for the vdW
(black triangles), electrostatic (red circles), and total (mustard squares) forces act-
ing from water on azurin carrying the total charge of q = −2e (oxidized state). The
dashed lines are fits to analytical functions. Reprinted with permission from S. M.
Sarhangi and D. V. Matyushov, J. Phys. Chem. Lett. 11, 10137 (2020). Copyright
2020 American Chemical Society.45

ps, while relaxation of the vdW and electrostatic forces occurs on
the time scale of 5–6 ns (note the logarithmic scale in Fig. 15). The
component forces are retarded compared to the total force by nearly
six orders of magnitude. Dynamical cross-correlations between the
component forces eliminate retardation of the total force.

IV. DISCUSSION
Common to all diffusion phenomena is the gradient of osmotic

pressure3 allowing either a steady flux of solutes down the con-
centration gradient in Fickian diffusion or random force kicks in
Brownian motion. When the tagged particle carries a charge or
higher multipolar moments, mechanical equilibrium is established
by density augmentation on the side of the particle where the liq-
uid experiences a stronger electrostatic field [Eq. (1)]. The resulting
enhancement of the vdW force either balances the electrostatic force
completely or allows an uncompensated force in the body frame,
which averages out to zero by particle rotations.

Mechanical equilibrium is established by balancing the vdW
and electrostatic forces acting on a single molecule in the solvation
layer. Even when the average total force in the body frame is nonzero
[Fig. 11(b)], the average force f̃ acting on a molecule in the arrested
solvation layer is close to zero. This requires δf̃ E = −δf̃ vdW for the
fluctuations of single-particle forces [see Eqs. (35) and (38) for a full
description of total forces]. This simple constraint makes thermal
fluctuations of the component forces strongly correlate and leads to
compensation relations in the force variance.

Reaching mechanical equilibrium in the solvation layer
requires a sufficiently strong electrostatic pull from the solute
charges close to the interface to allow the emergence of a structurally
arrested solvation shell. The arrest applies only to the orientational
manifold, still preserving the dynamical exchange of the solvent
molecules between the solvation shell and the bulk. Compensation
relations [Eqs. (26) and (27)] is a phenomenological signature of
this new physical reality. It requires a new description of mobility,
which, due to its specific physical nature, also allows some simplifi-
cations and general predictions. The destructive interference of the
component forces shrinks the effective breadth of force fluctuations
responsible for random kicks on a tagged particle. The arrested sol-
vation layer is thus less noisy. The ensuring reduction of friction
brings about higher diffusivity.

Tweaking the destructive interference between the component
forces can potentially enhance diffusion.104 Specifically, a chemi-
cal reaction instantaneously altering the solute charge distribution
might induce a temporary shift of the balance between electrostatic
and vdW forces and lead to a transient nonzero body-frame force�F̃�t similar to the one observed for off-center solutes [Fig. 11(b)].
If the equilibration time for �F̃�t → 0 is sufficiently long, one
can potentially observe jerks in solute displacements analogous to
enhanced mobility found for active matter.105–107

V. OUTLOOK
Moving forward, dielectric friction, while conceptually sound,

turned out to be more complex phenomenologically than originally
anticipated in Born’s picture.4 The effect of vdW-electrostatic cross
correlations on the force variance is accounted for by the concept of
arrested solvation layer and the balance between component forces
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acting on the solute. The effect of cross correlations on the dynamics
is much harder to describe theoretically. A significant speedup of the
total force dynamics compared to the component forces is observed
for both simple LJ ions [Fig. 1(b)] and proteins (Fig. 15). In the lat-
ter case, the speedup of the force dynamics by nearly six orders of
magnitude presents a real challenge to theory. However, our under-
standing of dielectric friction is incomplete without a proper account
for this phenomenology given that friction is overestimated bymany
orders of magnitude by traditional theories.

Translational diffusion turns out to be highly affected by the
ionic charge for simple ions, but altering charge makes little effect
on protein diffusion. The transition from high sensitivity of trans-
lational diffusion to the ionic charge for small ions to the lack of
such sensitivity for colloidal particles, and the description of the
intermediate length scale, will remain the subject for future studies.
On a larger scale, establishing a clear link between statistical aver-
ages produced by atomistic simulations and standard parameters of
continuousmedia used in colloidal science (slip plane, zeta potential,
electromechanical forces, etc.) still remains an outstanding challenge
for theory. The same note applies to nonlinear transport coefficients,
such as dielectrophoresis.108

Much of the discussion here has focused on ionic and dipo-
lar solutes in water since this is a much studied and practically
important problem.18–21 However, other polar solvents show simi-
lar phenomenology57 and one anticipates that the general principles
discussed here extend to other polar media.
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