SampleMine: A Framework for Applying Random Sampling to
Subgraph Pattern Mining through Loop Perforation

Peng Jiang
The University of Iowa
Iowa City, Iowa, USA
peng-jiang@uiowa.edu

Rujia Wang
Ilinois Institute of Technology
Chicago, Illinois, USA
rwang67@iit.edu

ABSTRACT

Subgraph Pattern Mining (SPM) is an important class of graph ap-
plications that aim to discover structural patterns in a graph. Due to
the enormous exploration space, SPM is in general computationally
challenging. To accelerate SPM, many random sampling techniques
have been proposed. While the existing sampling techniques are
effective for conventional SPM tasks such as motif counting and
frequent subgraph mining, they cannot be easily adapted for new
applications.

In this work, we propose SampleMine, a framework for applying
random sampling to any non-listing SPM task. Our main idea is
to express subgraph exploration as a nested loop and sample the
subgraphs with loop perforation. We first propose a two-vertex
exploration technique to accelerate the subgraph exploration pro-
cedure. Then, we provide two sampling strategies under the loop
perforation framework and show that they can achieve good results
for counting and frequent subgraph mining tasks. The experimental
results show that our system achieves significant speedups against
the state-of-the-art graph mining systems with little accuracy loss.

CCS CONCEPTS

» Mathematics of computing — Approximation algorithms;
Graph algorithms.

KEYWORDS
Subgraph Pattern Mining, Loop Perforation

ACM Reference Format:

Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu. 2022. SampleMine:
A Framework for Applying Random Sampling to Subgraph Pattern Mining
through Loop Perforation. In International Conference on Parallel Architec-
tures and Compilation Techniques (PACT 22), October 8-12, 2022, Chicago, IL,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3559009.
3569658

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PACT ’22, October 8-12, 2022, Chicago, IL, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9868-8/22/10.

https://doi.org/10.1145/3559009.3569658

Yihua Wei
The University of Iowa
Iowa City, Iowa, USA
yihua-wei@uiowa.edu

Jiya Su
Illinois Institute of Technology
Chicago, Illinois, USA
jsul8@hawk.iit.edu

Bo Wu
Colorado School of Mines
Golden, Colorado, USA
bwu@mines.edu

1 INTRODUCTION

Subgraph Pattern Mining (SPM) is widely used for retrieving infor-
mation from graph-structured data in various application domains,
including bioinformatics [34, 45], computer vision [16], and social
network analysis [44]. An example SPM task is frequent subgraph
mining, which is to discover subgraph patterns with supports larger
than a threshold. Another example query could be ‘counting the
subgraphs with at least one vertex of label x’.

Many algorithms and systems have been proposed for different
SPM tasks such as motif counting [5, 7, 8, 22, 36, 39, 46, 48] and fre-
quent subgraph mining [3, 6, 18, 20, 27, 37, 38]. These works usually
include task-specific optimizations and cannot be easily adopted
for new applications. In recent years, there is a growing interest in
designing general-purpose SPM systems [17, 24, 31, 43, 47]. These
systems aim to cover different SPM tasks with a general compu-
tation pattern and provide a flexible API to the users. However,
due the enormous exploration space, the existing systems have
difficulty in mining large patterns on large graphs.

Random sampling is a commonly used technique to reduce the
computational complexity of SPM tasks that do not require an
exhaustive listing of subgraphs [3, 9, 11, 19, 37, 38]. Most of the
existing sampling methods are task-specific. For instance, graph
coloring has proven to be effective for unlabeled motif counting [9],
while support estimation is more suitable for frequent subgraph
mining [37]. How to enable efficient sampling for an arbitrary
mining task is still an open problem. Previous SPM systems have
adopted neighbor sampling [23, 32, 35], but they only work for
counting tasks and have limited support for user-defined queries.

In this work, we aim to provide a general framework for applying
random sampling to various SPM tasks. Our solution is based on
the observation that the subgraph exploration procedure can be
expressed as a nested loop and the sampling of subgraphs can be
achieved by simply perforating the loops. For subgraph exploration,
we propose a novel two-vertex approach. The idea is to extend a
subgraph by joining it with its neighboring size-3 subgraphs on a
common vertex in each exploration step. We prove that two-vertex
exploration can discover all subgraphs of any size and show that
it has smaller time complexity than the traditional single-vertex
exploration.

For subgraph sampling, we provide two loop perforation strate-
gies and show that they can achieve good estimation results for
counting and frequent subgraph mining tasks. Compared with the

https://doi.org/10.1145/3559009.3569658
https://doi.org/10.1145/3559009.3569658
https://doi.org/10.1145/3559009.3569658

PACT °22, October 8-12, 2022, Chicago, IL, USA

neighbor sampling technique in the existing SPM systems [23, 32],
our sampling strategy can quick find the most important patterns
and return more accurate counts with the same amount of compu-
tation. For frequent subgraph mining, our sampling strategy can
discover most of the frequent patterns with only a small portion
of the execution time of accurate mining. Besides subgraph count-
ing and frequent subgraph mining, our sampling technique can be
easily applied to non-conventional, user-defined mining tasks. Our
system also provides a simple API for the users to define their own
sampling strategies.

In summary, we make the following contributions in this paper.

e We propose a two-vertex approach for subgraph exploration
and show its advantage over single-vertex exploration.

e We propose a loop-perforation-based sampling framework
for arbitrary SPM tasks.

e We provide two sampling strategies under the loop perfora-
tion framework and show that they can achieve good per-
formance and accuracy for various SPM tasks.

We perform extensive evaluation of our system and compare
with five state-of-the-art graph mining systems: AutoMine [31],
Peregrine [24], Pangolin [15], ASAP [23], and ScaleMine [3]. For
subgraph counting, our system achieves an average (geometric
mean) of 16.3x speedup against AutoMine, and 129.7x speedup
against Peregrine, with little accuracy loss. For frequent subgraph
mining, our system achieves an average of 34.7x speedup against
AutMine, 8.3x speedup against Peregrine, 10.7x speedup against
Pangolin, and 18.7x speedup against ScaleMine, while returning
more than 80% of the frequent patterns. Our system can also return
good estimation results for tasks that the existing systems do not
support or cannot return in a reasonable amount of time.

2 BACKGROUND

This section gives some background on SPM and the existing sys-
tems for SPM.

2.1 Graph Basics

A graph G is defined as G = (V, E, L) consisting of a set of vertices
V, a set of edges E and a labeling function L that assigns labels to
the vertices and edges. A graph G’ = (V’,E’,L’) is a subgraph of
graph G = (V,E,L)if V' C V,E' C Eand L’(v) = L(v),Yo € V".
A subgraph G’ = (V’,E’,L’) is vertex-induced if all the edges in
E that connect the vertices in V’ are included E’. A subgraph is
edge-induced if it is connected and is not vertex-induced.

Definition 1 (Isomorphism). Two graphs G, = (Vg Eq, Lg) and
Gp = (W, Ep, L) are isomorphic if there is a bijective function f :
Va = V,, such that (v;,0;) € E, if and only if (f(0;), f(v)) € Ep,.

We say two (sub)graphs have the same pattern if they are isomor-
phic. The pattern is a template for the isomorphic subgraphs, and a
subgraph is an instance (also called embedding) of its pattern. To de-
termine the pattern of a subgraph, a canonical form of the subgraph
can be computed. The subgraphs with the same canonical form are
isomorphic. There are various tools and algorithms available for
graph isomorphism check [25, 33, 49]. All of these algorithms have
exponential complexity. We use bliss [25] for isomorphism check in
our system as it is fast in practice and is widely used in the existing

Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

systems [24, 43, 47]. Isomorphisms from a graph to itself are called
automorphisms.

2.2 Subgraph Pattern Mining Tasks

Our system supports conventional SPM tasks as well as user-defined
tasks. Some examples are:

« Subgraph Counting (SC). The task is to count the embeddings
of different subgraph patterns and find the patterns with the largest
counts.

« Frequent Subgraph Mining (FSM). The task is to obtain all
frequent subgraph patterns from a labeled input graph. A pattern is
considered frequent if it has a support above a threshold. Different
from the counts, the support of a pattern usually needs to have
the anti-monotone property, i.e., the support of a pattern can not
be larger than the support of it subpatterns. The most commonly
used support measure for FSM is the minimum image based (MNI)
support [10].

Definition 2 (MNI Support). Given a pattern P = (Vp, Ep, Lp) and
an input graph G = (V, E, L), if P has m embeddings {fi, f2, ..., fm}
in G, the minimum image based (MNI) support of P in G is defined
as

omni(P,G) = f};l‘? Hfitw):i=12...,m}|.
i4

The set of nodes in V that are assigned tov € Vj, ie, {fi(v) : i =
1,2,...,m} is the domain of v on G, denoted as Dom(v, G). With
a support measure o, the frequent subgraph mining problem is
defined as finding all patterns {P; = (V;, E;, L;) } in a graph G such
that |V;| = s and o(P;, G) > t where s is the given pattern size and ¢
is the given support threshold. Depending on the applications, the
users may require listing the subgraphs of the frequent patterns.
We focus on finding the frequent patterns in this work. With the
frequent patterns, the frequent subgraphs can be easily obtained
with any graph pattern matching procedure.

« User-Defined Queries. In addition to the conventional SPM
tasks, we may be interested in finding subgraphs that meet certain
constraints. For example, one might be interested in ‘the number
of size-7 subgraphs that have at least two vertices with label x’.
Another query example is ‘finding all the frequent subgraphs that
have at least one vertex with label x or label y’.

2.3 Systems for Subgraph Pattern Mining

There are mainly two approaches to generic subgraph mining
taken by the existing systems. Some SPM systems are subgraph-
centric [15, 17, 43, 47]. They enumerate all the subgraphs and filter
out the unwanted subgraphs. The enumeration is performed in a
vertex-by-vertex manner. The subgraphs of size [are extended with
one vertex in each step to obtain subgraphs of size [+1. The other
systems take a pattern-based approach [3, 18, 24, 31]. The idea is
to enumerate the patterns, filter out the unwanted patterns, and
match the remaining patterns on input graph. The pattern-based
systems are efficient for small-pattern queries because there are
not many small patterns and they can exploit the well-optimized
pattern matching techniques. However, when the query pattern is
large, enumerating the patterns becomes expensive as the number
of patterns grows exponentially. To accelerate generic subgraph
mining, many task-independent optimizations have been proposed.

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation

For example, Fractal [17] proposes a hierarchical work-stealing
mechanism to achieve better load balance for parallel subgraph
enumeration. AutoMine [31] searches the matching orders of ver-
tices to achieve the most pruning of exploration space.

3 NESTED LOOP FOR SUBGRAPH
EXPLORATION

Our system takes the subgraph-centric approach. The most impor-
tant task of a subgraph-centric system is to enumerate all subgraphs
of size n without knowing the exact patterns. All the existing SPM
systems use single-vertex exploration for this task. We find that
limiting the step size to one is not necessary. In this section, we
propose a two-vertex exploration technique and show its advantage
over single-vertex exploration.

3.1 Two-Vertex Exploration

Figure 1a shows the procedure of single-vertex exploration adopted
by the existing SPM systems. The exploration starts from all edges
in the graph. In each loop level, the subgraphs are extended by
their neighboring edges. The extension continues until the desired
size is reached. Single-vertex exploration ensures that all the size-n
subgraphs can be discovered in the innermost loop.

Figure 1b illustrates the idea of our two-vertex exploration. We
first obtain all the size-3 subgraphs in the input graph. Then, the
exploration starts from the size-3 subgraphs. It extends a subgraph
by joining it with its neighboring size-3 subgraphs in each loop
level. We call it two-vertex exploration because the subgraph size
is increased by two in each join step. We find that two-vertex
exploration also ensures the exhaustive enumeration of subgraphs.

THEOREM 1. For anyn > 3, all of the size-n subgraphs can be dis-
covered by joining the size-(n—2) subgraphs with the size-3 subgraphs
on a common vertex.

Proor. To prove Theorem 1, we only need to show that any size-
n subgraph can be dissected into a connected size-(n — 2) subgraph
and a connected size-3 subgraph on one vertex. Because the size-
(n — 2) and size-3 subgraphs are joined in all possible ways, if a
dissection exists for a size-n subgraph, it will be discovered by the
join operation. Suppose any size-n subgraph can be dissected into
a size-(n — 2) and a size-3 subgraph. There are only two way a
size-(n + 1) subgraph can be constructed from a size-n subgraph:
1) the new vertex is connected with the size-(n — 2) subgraph,
and in this case, the size-(n + 1) subgraph can be dissected in the
same way as the size-n subgraph (Figure 2a); 2) if the new vertex
is only connected with the size-3 subgraph, we can always pick
three connected vertices as the new dissection (Figure 2bcd). As the
base case, all the six size-4 patterns can be dissected into a size-3
subgraph and an edge. The proof finishes by induction. O

Note that subgraph exploration is different from subgraph enu-
meration for a given pattern considered in previous works [28, 29].
These works propose to decompose the pattern and join the em-
beddings of the smaller subpatterns to find the embeddings of
the original pattern. These pattern decomposition methods do not
work for subgraph exploration because the patterns are unknown.

PACT °22, October 8-12, 2022, Chicago, IL, USA

In fact, for subgraph exploration, the
step size cannot be larger than two. As
an example, the graph in Figure 3 can-
not be discovered by three-vertex ex-
ploration because it cannot be obtained
by joining two connected size-4 sub-
graphs on a common vertex. For sub-
graph exploration, previous works have
also proposed to merge smaller patterns
to explore larger ones [26, 27]; however, their step size is one (e.g.,
FSG [26] joins two size-k subgraphs to obtain a size-(k + 1) sub-
graph).

Two-vertex exploration can be either vertex-induced or edges
induced. For vertex-induced exploration, we add all the connecting
edges between the two joining subgraphs to the resulting subgraph.
For edge-induced exploration, we enumerate all possible combina-
tions of the connecting edges between the joining subgraphs and
generate a resulting subgraph for each combination.

Compared to single-vertex exploration, two-vertex exploration
has smaller time complexity for the same subgraph mining task.
Intuitively, because the combination of two edges is precomputed
and stored in the size-3 subgraphs, two-vertex exploration needs
fewer join operations to obtain subgraphs of a certain size. More
rigorously, suppose the maximum degree of the input graph is d,
the maximum number of size-3 subgraphs associated with a vertex
is D, the number of vertices is N, and the subgraph size is n. The
time complexity of the nested loop in Figure 1ais O((1-2-3--- (n—
1))Nd("=1)). The time complexity of the nested loop for two-
vertex exploration in Figure 1bis O((1-3:5- - - (n—2)) -ND(=1D/2yf
nisoddand O((1-3-5---(n—1)) -ND("_Z)/zd) if n is even. Because
D < d?and 2i — 1 < i(i+1),Vi > 1, the time complexity of two-
vertex exploration is smaller than that of single-vertex exploration.

Figure 3: A graph that
cannot be discovered
by three-vertex explo-
ration.

3.2 Avoiding Redundant Subgraphs

The exploration procedure in Figure 1 can produce redundant sub-
graphs. As a simple example, a size-3 subgraph composed of two
edges (a, b) and (b, c) can be discovered twice. It is discovered when
e is assigned to (a, b) and ey is assigned to (b, c). It is discovered
again when e is assigned to (b, c) and ey is assigned to (a, b). In
many cases, we want to eliminate the redundant subgraphs. Pre-
vious systems have adopted a canonicality checking technique
for redundancy removal [43]. This canonicality check, however,
does not work for two-vertex exploration. We propose a smallest-
vertex-first dissection method to achieve redundancy removal for
two-vertex exploration.

Our method is based on the following observation: for any sub-
graph, there is only one way to divide it into two smaller subgraphs
with both subgraphs being connected and one of them having the
smallest spanning vertex indices. Thus, we can eliminate redun-
dancy by finding this unique dissection of {{s}, ¢} and checking
if the dissected subgraphs are the same as s and t. The checking
is performed each time we extend s with its neighboring size-3
subgraph ¢ (i.e., in the is_valid function in Figure 1b). The proce-
dure is shown in Algorithm 1. For a pair of subgraphs {{s}, ¢}, we
first check if there are any other identical vertices except for the
joining vertex. If yes, s and ¢ cannot form a valid subgraph, and

PACT °22, October 8-12, 2022, Chicago, IL, USA

// iterate over all edges in the graph
fore; €EE
sz ={e};
if (is_valid(s,) == false) continue;
// iterate over all neighboring nodes of s;
for e, € Ny(s2)
// join s, with its neighbor edge
s3 = {{s2} 2}
// check if the intermediate subgraph is valid
if (is_valid(s3) == false) continue;

forep,—q € No(Sp—1)
Sp = {{Sn—l}' en—l};
if (is_valid(s,) == false) continue;

(a) Single-vertex exploration. The first loop iter-
ates over all edges. The following loops iterate over
neighboring edges of intermediate subgraph. N (s)
represents the edges that have one and only one
common vertex with s.

Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

// iterate over all size-3 subgraphs
fort; € S3
s3 = {t1};
if (is_valid(s3) == false) continue;
// iterate over all neighboring size-3 subgraphs of s;
for t, € N3(s3)
ss = {{ss}, t2};
// check if the intermediate subgraph is valid
if (is_valid(ss) == false) continue;

// if nis odd, last loop iterates over size-3 subgraphs
// if nis even, last loop iterates over edges
for t(n—l)/z € N3(Sn—2)
Sp = {{Sn—z}v tn—l/z};
if (is_valid(s,) == false) continue;

(b) Two-vertex exploration. The first loop iterates over
all size-3 subgraphs. The following loops iterate over
neighboring size-3 subgraphs of intermediate subgraph.
N3 (s) represents size-3 subgraphs that have one and
only one common vertex with s.

Figure 1: Subgraph exploration implemented as a nested loop.

® new node

@ node in the original size-n subgraph

(a) (b)

(© (d

Figure 2: Two-vertex exploration can discover all subgraphs.
Suppose all size-n subgraphs can be obtained by joining size-
(n — 2) with size-3 subgraphs. For any size-(n + 1) subgraph,
the new node is either connected to the size-(n — 2) part as in
(a), or connected to the size-3 part in three different ways as
in (b,c,d). Each case has a valid dissection into a size-(n — 1)
and a size-3 subgraph. Thus, all size-(n + 1) subgraphs can be
discovered by two-vertex exploration.

the function returns false. If no, we give the combined subgraph
to a dissection procedure that divides the subgraph into two small
subgraphs [and r. From the vertex with the smallest index, the dis-
section procedure finds three connected vertices with the smallest
indices and stores them in I. Next, the algorithm checks if the re-
maining vertices can constitute a connected subgraph r with any of
the vertices in I. If yes, the dissection procedure stops and returns /
and r. The algorithm returns as soon as the first dissection is found,
and it will always return because of Theorem 1. Once we have the
smallest dissection [/ and r, we check if they are the same as t and s.
If yes, the function returns the true, indicating that the combined
subgraph {{s}, ¢} is valid and is not automorphic to any previously
discovered subgraph.

Algorithm 1: Automorphism check for two-vertex explo-
ration.

Input : subgraph s;subgraph #;joining vertex k

Output: combined subgraph s’
1 func dissect(s’):

2 foreach v ins” in ascending order do

3 | = the first three vertices visited by starting from v and
spanning to the smallest vertex at each step;

4 r’ = the unvisited vertices in s’;

5 foreach ¢’ inl in ascending order do

6 r=r' udv;

7 L if r is connected then return [, r ;

s if s and t have same vertices other than k then return false;
// s is a valid subgraph joined by s and ¢
9 ' =sUt;
// find the smallest dissection of s’
10 [,r =dissect(s’);
// if the two joining subgraphs correspond to the smallest
dissection, return s’
11 if [==t and r == s then return true;
12 else return false;

A Running Example: Figure 4 shows a graph with all of its size-3
subgraphs (including wedges and triangles). Let us consider the
size-5 subgraph ‘34257°. Without redundancy removal, the nested
loop in Figure 1b will discover the subgraph multiple times (when
t1 = (3,7,2) and t3 = (5,4,3), t1 = (3,4,2) and £2 = (3,7,5), and
t1 = (3,5,2) and tp = (3,7,4)). A straightforward way to avoid
redundancy is to store all the subgraphs in a no-duplicate set. This
method, however, is inefficient due to the large lookup overhead,
especially when the loop is executed in parallel. With our smallest-
vertex-first dissection method, we can eliminate redundancy with-
out explicitly storing the subgraphs. In this example, the smallest
vertex of subgraph 34257’ is 2, so the dissection procedure starts

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation

pattern subgraphs

230 374
231 375

N 280 384
281 385
342 387
352 563
372 564
210 832

A 543

Figure 4: An example graph with its size-3 subgraphs. The
size-5 subgraph ‘34257’ can be discovered multiple times by
the nested loop in Figure 1b with different ¢; and f;.

from vertex 2 (line 2 in Algorithm 1). Then, It finds the neighbor of
21in ‘34257’ with the smallest index, which is 3. Then, it spans vertex
2 and 3 to their smallest index neighbors. The vertices adjacent to
2 and 3 in the subgraph are 4,5, 7. Because 4 is the smallest, 4 is
added to [in the next step. This gives us three vertices 2,3,4 in [
(line 3). The unvisited vertices are 5 and 7 (line 4). We check if any
of 2,3, 4 can form a connected graph with 5,7 (line 5). Since 3 is the
smallest vertex that connects 5 and 7, the dissection procedure stops
and returns [= {2,3,4} and r = {3,5,7} (line 7). By checking if
the joining subgraphs match the dissection (line 11), the algorithm
ensures that the subgraph ‘34257 is generated only once.

4 APPROXIMATE SUBGRAPH MINING WITH
LOOP PERFORATION

To further accelerate subgraph pattern mining, we apply random
sampling to the subgraph exploration procedure. The idea is simply
executing a subset of the iterations of each loop in Figure 1. This
technique is also known as loop perforation and is widely used
for approximate computing [30, 41]. Compared with the existing
task-specific sampling techniques, loop perforation is general - it
can be applied to the nested loop for any arbitrary SPM task. The
main challenge is how to perforate the loops in an efficient way so
that important subgraphs can be obtained and small error bounds
can be achieved. We now present two sampling strategies under
this framework and show that they can achieve good performance
for counting and frequent subgraph mining tasks.

4.1 Sampling for Counting Tasks

In many applications, we are interested in counting the subgraphs
that meet certain constraints. For such counting tasks, a straight-
forward sampling strategy is to sample a fixed proportion of the
iterations in each loop level. This proportional sampling strategy
achieves a uniform sampling of the entire outcome space. To see
this, we can consider the probability of executing one iteration of
the innermost loop in Figure la. Suppose the loop has n — 1 lev-
els for exploring subgraphs of n vertices and the explored edges
from the outermost to the innermost loop are ey, e, ..., e,—1. The
probability of executing one innermost iteration is

Prles,e2,...,en—1] = Pr[e1] Prlez]er] ... Prlenler, ez, ..., en—2]

where Pr[ejleq, ea, .. ., €;_1] is the probability of ¢; being sampled
in the Ith loop. Proportional sampling ensures that this probability
is a fixed number in each loop level, and thus, Pr[ey, ea, ..., en—1]

PACT °22, October 8-12, 2022, Chicago, IL, USA

is the same for all execution paths. The argument also applies
to two-vertex exploration in Figure 1b. This sampling strategy
is most suitable for large motif counting tasks where exhaustive
enumeration of the patterns is infeasible. Since all subgraphs in the
outcome space have the same sampling probability, we can quickly
obtain subgraphs of the patterns that have the most embeddings.

Figure 5c shows an example of proportional sampling. For simple
illustration, we consider the discovery of size-3 subgraphs by single-
vertex exploration. The nested loop has two levels. The first loop
iterates over all edges in the graph, and the second loop iterates
over the neighboring edges of the first edge. Suppose we set the
sampling probability of the first edge to 1/3 and the probability of
the second edge to 1. Let us consider the sampling of subgraphs
of the two patterns in Figure 5a. For Patternl, node-0 has three
edges and one of them (edge (0, 1)) is sampled in the first loop.
In the second loop, because the sampling probability is 1, both
the neighbors of node-1 are sampled. This gives us two sampled
subgraphs (‘014’ and ‘015°). For Pattern2, node-4,5,6 have six edges
in total and one third of them (edge (4, 2) and (5, 3)) are sampled in
the first loop. In the second loop, (2, 6) is the neighboring edge of
(4,2), and (3, 6) is the neighboring edge of (5, 3). Both of them are
sampled, and we obtain two sampled subgraphs (‘426 and ‘536’).
We can see that the number of sampled subgraphs of a pattern
is in expectation proportional to its subgraph count as shown in
Figure 5b.

For any user-defined counting task, suppose there are m sampled
subgraphs that meet the query constraints and the sampling proba-
bility of each subgraph is p. We can obtain an unbiased estimation
of the total number of inquired subgraphs as m/p. For the example
in Figure 5c, the estimated number of subgraphs of both Patternl
and Pattern2 is 2/(1/3) = 6, which is the same as the actual count.
More generally, let us denote all subgraphs that meet the query
constraints as Q, all subgraphs in the outcome space as O, and the
sampled subgraphs that meet the query constraints as S. With any
sampling method, the size of Q can be estimated

1
= — 8
é SZE; o

where ps = Pr[sy, 12, 13,. .., ty] is the sampling probability of sub-

graphs.

THEOREM 2. Suppose ¢ = |Q| is the number of subgraphs that
meet the query constraints, and ¢ is an estimation of ¢ from (1), we
have

E[¢] =c. 2)
If we further assume that the subgraphs are sampled independently,
then we have
1-—-
Var[e] = Y P8 (3)
s€Q Ps

The proof can be found in the supplementary material. When
proportional sampling is used, i.e., ps = p,Vs € O, Theorem 2 leads
to the following error bounds.

COROLLARY 2.1. If we define the estimation error as

c—c
err:| |, 4)
c

PACT °22, October 8-12, 2022, Chicago, IL, USA

Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

014
015

014

Patternl
. 014 026 count=6
: 015 035 pMNi=1
o 024 036
Pattern2
415 514 ount=6
€ 426 624 MNI =3
e, 536 635
(a) An input graph & (b) Embeddings of the
two subgraph patterns patterns

(c) Proportional sampling
Prle,] = 1/3, Presfe;] =1

®e
®

©
@® 26 415
o3e 426
536

(d) Budget sampling
Ble] =1, Ble;] =1

Figure 5: An example of subgraph sampling with loop perforation. We consider the input graph and the sampling of subgraphs
of two patterns in (a). All the embeddings of the two patterns are listed in (b). The count is the number of embeddings. With
proportional sampling (c), two subgraphs are sampled for both Patternl and Pattern2, the number of sampled subgraphs is
proportional to the count of the pattern. With budget sampling (d), one subgraph is sampled for Patternl and three subgraphs
are sampled for Pattern2, more subgraphs are sampled for the pattern with larger MNI support.

then we have

Elerr] <

Var[¢] [(1-p)
c B \} pc ©)

—e%cp
3

Pr[err > €] Sexp((6)

forany0 <e<land0<p<1.

Formula (5) is obtained by setting ps = p in (3) and applying
the inequality E[VX] < +/E[X]. The formula suggests that 1) for
a particular query, the larger sampling probability p we use, the
smaller estimation error we achieve; 2) for queries with larger c,
we can apply more aggressive sampling (i.e., smaller p) to preserve
the same estimation error.

Formula (6) is a direct application of Chernoff bound [21]. The
formula indicates that the chance of the estimation error exceeding
a threshold is exponentially small. While the loop perforation idea
seems simple, we find that the error bound matches the bound
of the state-of-the-art graph-coloring-based technique for motif
counting (See Theorem 3 in [7]). This increases our confidence that
loop perforation can be used as a general and efficient sampling
technique for subgraph mining if appropriate perforation strategies
are used.

In practice, because c is unknown, it is hard to configure p and
achieve good estimation in one execution. We can use a small p to
obtain a quick estimation and run the sampling procedure multiple
times until the average of the estimated counts converges to certain
accuracy.

4.2 Sampling for Finding Frequent Subgraphs

In some applications, we are interested in finding the most frequent
subgraph patterns that meet certain constraints. The frequency is
defined based on certain support measures. The support measures
are different from the counts because they need to have the anti-
monotone property (explained in §2.2). A pattern with a large count
may have a small support if most of its embeddings overlap. For
example, Patternl in Figure 5 has six embeddings, but its MNI
support is 1 because all the embeddings have the first vertex mapped

to node-0 in the input graph. In contrast, Pattern2 has the same
number of embeddings, but its MNI support is 3. The proportional
sampling method described above cannot find the frequent patterns
efficiently. For such queries, we propose a budget sampling strategy.
The basic idea is to set a limit on the number of sampled subgraphs
associated with each vertex so that the number of overlapping
samples is limited. Specifically, for single-vertex exploration, we
group the edges of each vertex according to their patterns, and
we sample a fixed number of edges from each group in each loop
level. For two-vertex exploration, we group the neighboring size-3
subgraphs of each vertex according to their patterns and sample a
fix number of size-3 subgraphs from each group.

Figure 5d shows an example of budget sampling. For the two
subgraph patterns in Figure 5a, we set the sampling budgets for both
e1 and ey to 1. For Patternl, suppose edge (0,1) is sampled in the
first loop and edge (1, 4) is sampled in the second loop, we obtain
one sampled subgraph ‘014’. For Pattern2, one edge is sampled for
each of node-4,5,6 in the first loop. Suppose the sampled edges are
(4,1), (5,3) and (6, 2). In the second loop, edge (1, 5) is sampled as
a neighbor of (4, 1), edge (3, 6) is sampled as a neighbor of (5, 3),
and edge (2,4) is sampled as a neighbor of (6, 2). We obtain three
subgraphs ‘415’, 536’ and ‘624’. Compared to proportional sampling,
budget sampling returns more subgraphs of Pattern2 which has
larger MNI support.

4.3 Sampling for Large Graphs

When the input graph is large, there may be a large number of
size-3 subgraphs which cannot be entirely stored in memory. In
such cases, we can perform sampling when obtaining the size-3
subgraphs. For counting tasks, we use single-vertex exploration
with proportional sampling to obtain the size-3 subgraphs. Suppose
the sampling probability of each size-3 subgraph is q. The estima-
tion of the subgraph counts is similar to the procedure described
in §4.1, only with the p replaced by p - q(”_l)/2 if n is odd and
replaced by p - q<”_2>/2 if n is even. For FSM, we can sample a fixed
number of size-3 subgraphs around each vertex in order to have
subgraphs evenly distributed over all vertices. This can be done by

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation

struct SmpRes {
double prob; // sampling probability of current iteration
bool skip; // skip the current iteration or not };

struct Sampler {
virtual SmpRes smp_prob(Subgraph s, Subgraph t, int x, int) {
return { 1.0; false; } // no sampling by default };

Figure 6: The interface for defining a sampler: s is the inter-
mediate subgraph, ¢ is the joining size-3 subgraph (or edge
if single-vertex exploration is used), x is the joining vertex
that s and t have in common, and !/ is the loop level. The
sampler returns two values for each loop iteration: prob is
the sampling probability, and skip is the sampling outcome.

struct BudgetSampler: Sampler {
// WI[il[j] stores the number of subgraphs containing
// node i and of pattern j
map<int, map<int, double>>W;
// B[l is the sampling budget in loop level /
vector<double> B;
SmpRes smp_prob(Subgraph s, Subgraph t, int x, int 1) {
double p = B[I] / W[x][t.pat_id];
double r = uniform(0, 1);
return {p, r>=p} };

Figure 7: Implementation of budget sampling.

incorporating sampling into a subgraph matching procedure. We
adapted AutoMine [31] for this task.

4.4 Programming Interface

Our system provides a simple interface for defining different sam-
pling strategies, as shown in Figure 6. The smp_prob function ac-
cepts as input the intermediate subgraph s, the joining size-3 sub-
graph (or edge) t, the joining vertex x, and the loop level /. It returns
two values for each iteration in the /th loop level. The first value
prob is the sampling probability of the current iteration, and the
second value skip is the sampling outcome, indicating whether the
current iteration should be skipped or not. The users can inherit the
Sampler class and define their own smp_prob function. By default,
the function returns prob = 1 and skip = false, meaning that no
sampling is performed.

Figure 7 shows the implementation of budget sampling with
our API. Before the exploration procedure, we aggregate the size-3
subgraphs (or edges if single-vertex exploration is used) according
to their patterns and store a pattern index for each size-3 subgraph.
We then group the neighboring size-3 subgraphs of each vertex
according to their patterns and store the number of size-3 subgraphs
in each group. For each vertex i, the number of its neighboring size-
3 subgraphs of pattern j is stored in W[i][j]. The BudgetSampler
computes the sampling probability of a joining size-3 subgraph
t as B[I]/W{x][t.pat_id] where B[l] is the sampling budget in
loop level I and t.pat_id is the pattern index of t. The sampling
probability is compared with a random number between 0 and 1. If
the random number is greater than the sampling probability, we
skip the current iteration.

Due to space limit, we leave the implementation of proportional
sampling in the supplementary material.

PACT °22, October 8-12, 2022, Chicago, IL, USA

Input:
data graph G,

Pattern size s, Sampling plan
query constraints
'
I
1
I
Is Yes |
counting !
task? !
i
I
I I ith
Match size-3 subgraphs ~ fa-------- I Join edges witl -
themselves

Filter with constraints

Size-3 subgraphs and edges that
meet the constraints

i
'
I
'

a
i
'
I
'
'
I

l All size-3 subgraphs and edges H
|
'
'
'
I
'
I
'
I
I
'
I
'

Two-vertex exploration [@-------------------4

Output:
Estimated counts or
frequent patterns

Figure 8: Workflow of SampleMine.

4.5 Putting It Together

We summarize the workflow of SampleMine in Figure 8. Given a
data graph, a target pattern size, and query constraints, it starts by
collecting the size-3 subgraphs. If the task is to count subgraphs, we
obtain the size-3 subgraphs by joining the edges with themselves;
if the task is to find frequent patterns, we use AutoMine to match
the size-3 subgraphs. Both approaches return the same set of size-
3 subgraphs if no sampling is used. For large graphs, we apply
random sampling to the joining or matching procedure as described
in §4.3. After obtaining all the size-3 subgraphs, we filter out the
unwanted ones based on the query constraints. The constraints can
be a support threshold for frequent subgraph mining tasks, or they
can be any user-defined constraints. The filtered size-3 subgraphs
are given to the two-vertex exploration procedure in Figure 1b to
find subgraphs of target size. As discussed in this section, we can
accelerate the exploration procedure by randomly sampling the
loop iterations. Finally, the subgraph counts are estimated or the
frequent patterns are returned for the query.

5 EXPERIMENTAL RESULTS

This section presents our experimental setup and performance
comparison with the existing graph mining systems.

5.1 Experimental Setup

Platform: We run all the experiments on a workstation with an
Intel Xeon W-3225 CPU containing 8 physical cores (16 logical
cores) and 192GB memory. We use GCC 7.3.1 for compilation with
optimization level O2 enabled.

Datasets: Table 1 lists the graphs used in our experiments. CI and
MI are labeled; the other four are unlabeled. We randomly assign
20 labels to the vertices in OK graph and 30 labels to UK and FR.

PACT °22, October 8-12, 2022, Chicago, IL, USA

Table 1: Graph datasets.

Graph | #vertices | #edges | Max_degree

CiteSeer (CI) [18 3,264 4,536 99
MiCo (MI) [18 100K 1.IM 1,359
Orkut (OK) [2 3IM | 117.2M 33,313
UK-2005 (UK) [1 39M 936M 1,776,858
Friendster (FR) [50 65M 1.8B 5,214

Tasks: We evaluate our system with subgraph counting (SC), fre-
quent subgraph mining (FSM), and user-defined queries. FSM and
SC are two standard SPM tasks and have been described in §2.2.
We consider labeled subgraphs for SC which is more challenging
than unlabeled motif counting. We also test with five user-defined
queries:

+ Q1: count subgraphs with at least one vertex of label 1 and one
vertex of label 2;

« Q2: count subgraphs with at least two vertices of label 1;

« Q3: count subgraphs that contain triangles with label 1;

+ Q4: count subgraphs that do not contain squares with label 1;

« Q5: find subgraphs with label 1 or 2 and return the frequent
patterns among them with MNI support greater than a threshold.

For most of the user-defined queries, we check the query con-
straints and filter out the unwanted subgraphs in the innermost
loop. For example, Q1 computes the number of vertices with label
1 and 2 in the subgraph. If both numbers are 0, the subgraph is
discarded. Q2 performs filtering in both the innermost loop and the
second last loop. If the subgraph does not have label 1 in the second
last loop, it cannot have at least two label 1’s, so we can filter it
out early. Q5 checks the query constraints in the innermost loop
before assigning the vertices to the domains, so the MNI support
is calculated only with the subgraphs that meet the constraints.
We consider vertex-induced subgraphs for SC, Q1, Q2, Q4, Q5, and
edge-induced subgraphs for FSM and Q3.
Baselines: We compare our system with three state-of-the-art
systems for general-purpose subgraph mining: Peregrine (PR) [24],
AutoMine (AM) [31] and Pangolin (PG) [15], an approximate sys-
tem specialized for subgraph counting: ASAP [23], and a sampling-
based system specialized for frequent subgraph mining: ScaleMine
(SA) [3]. Pangolin supports unlabeled vertex-based extension or
labeled edge-based extension. It cannot enumerate labeled vertex-
induced subgraphs for SC, so we only compare with Pangolin for
FSM. The source code of ASAP is not available. We implement
its neighbor sampling method into AutoMine. ASAP samples one
subgraph at a time. When sampling the subgraph, it starts from a
random edge in the graph and gradually extends the subgraph by
randomly selecting a neighbor of the previous node. If the sampled
subgraph belongs to a pattern, ASAP estimates the total number
of embeddings of that pattern as the reciprocal of the sampling
probability. ASAP runs this sampling procedure for a sufficient
number of times and uses the average over executions as the final
estimation. The main difference between this neighbor sampling
method and our proportional sampling method is that neighbor
sampling always samples one edge from a neighbor list. It cannot
ensure a higher sampling probability for patterns with more em-
beddings. ASAP does not support MNI-based FSM. It has limited
support for user-defined queries. The users can perform "all" or

Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

Table 2: Sampling ratios for counting tasks.

Graph CI MI OK UK FR
1/srq 1 1 8 1024 32
{1/sry, 1/sr3} | {2,4) | 8,64} | {32,1024) | {512, 1024} | {8,32}

Table 3: Execution time (in seconds) of subgraph counting.
Systems: SampleMine using two-vertex exploration with sam-
pling (TV-smpl) and without sampling (TV-acc), SampleMine
using single-vertex exploration with sampling (SV-smpl) and
without sampling (SV-acc), AutoMine (AM), and Peregrine
(PR). ‘T’ represents timeout after 24 hours of execution. ‘F’
execution failure due to insufficient memory.

Size | Gr. | TV-smpl | SV-smpl | TV-acc | SV-acc AM PR
4 0.45 0.78 0.89 1.03 0.90 4.6
5 1.8 3.0 19 26 20 332
6 CI 23 38 530 688 525 26,605
7 470 585 17,808 21,523 17,994 T
4 MI 321 447 19,931 24,856 19,270 F

"atleast-one" predicate subgraph matching, but it does not support
the more general queries used in our experiments.

Sampling Ratios: Table 2 lists the sampling ratios for counting
tasks in our experiments. Here, sr; the sampling ratio of edges for
obtaining size-3 subgraphs, srp and sr3 are the sampling ratios of
edges and size-3 subgraphs for two-vertex exploration. The sam-
pling ratios are determined by the following procedure. First, srq
is set to ensure that the size-3 subgraphs can be stored in memory.
We use Nd? (N is the number of vertices, d is the maximum degree)
as an upper bound of the number of size-3 subgraphs. Since we
know all size-3 subgraph of MI can be stored in memory on our
machine (i.e., sr; can be set to 1 on MI), we calculate sr; for larger
graphs with NMIdJZVH = Ng(dg/sr1)? and round it to the closest
power of 2. Next, we determine sr3 based on an upper bound of
the number of size-5 subgraphs (i.e., ND? where D is the maxi-
mum degree of size-3 subgraphs). Since we know sr3 = 1/64 can
obtain good results for MI, we calculate sr3 for larger graphs with
Nupr(Dpr/64)? = Ng(Dg/sr3)?. Finally, given sr3, we use NdD as
an upper bound of the number of size-4 subgraphs and calculate
sra with Nar(dar/8)(Dyr/64) = Ng(dg/sr2)(Dg/sr3).
Parallelization: We use 16 threads for parallel execution for all
systems. For our system, the outermost loop is parallelized with
OpenMP using dynamic scheduling. For ASAP, since the sampling
of subgraphs are independent, we use 16 threads to sample sub-
graphs at the same time.

5.2 Results for Subgraph Counting

Table 3 shows the execution time of SC with different systems. We
list the results of tasks for which at least one of the systems can
return accurate results in 24 hours. The execution time of two-vertex
exploration includes both the time of the nested loop and the time
for obtaining size-3 subgraphs. Without sampling, our system has
almost the same execution time as AutoMine and is 5x to 50x faster
than Peregrine. This is mainly because Peregrine needs to maintain
all the labeled patterns and it is expensive when the number of
patterns is large. To show the benefit of two-vertex exploration, we
configure our system to run single-vertex exploration. Two-vertex
exploration is 1.2x to 1.4x faster than single-vertex exploration. We

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation

(a) 4-SC on CI (b) 5-SC on CI

(c) 6-SC on CI

(e) 4-SC on MI

(d) 7-SC on CI

Figure 9: Histogram of estimation errors of SampleMine for
the top-50 patterns with most embeddings.

Table 4: Number of patterns returned by SampleMine (SM)
and ASAP with the same execution time. Tot# is the total
number of patterns. SM/ASAP-tot is the number of patterns
returned by SampleMine/ASAP. SM/ASAP-50 is the number
of top-50 patterns returned by SampleMine/ASAP.

Size Gr. Tot# SM-tot SM-50 ASAP-tot ASAP-50
4 1,141 614 50 225 0
5 o1 7,048 3,028 50 945 37
6 45,917 15,572 50 2,900 0
7 323,794 93,781 50 5,646 0
4 MI 855,010 752,561 50 165,327 0

then apply proportional sampling to these tasks with the sampling
ratios listed in Table 2. The sampling brings 2x to 37.9x speedups
on CI and a 62.1x speedup on MI. The average (geometric mean)
speedup of TV-smpl over AutoMine is 16.3, and the average speedup
over Peregrine is 129.7.

Figure 9 shows the histogram of estimation errors for the top-50
patterns with most embeddings for the above tasks. We use the
definition of estimation error in (4). The results show that, with
the above sampling configuration, our system returns estimation of
small errors — for most patterns the estimation error is smaller than
0.06, and the average error over the 50 patterns is smaller than 0.05.
Comparing 4-SC on CI and MI graph, we can see that the estimation
error on MI graph is smaller than on CI graph even with a smaller
sampling ratio. This is because MI has much more size-4 subgraphs
than CIL The top-50 labeled size-4 patterns in MI have 1.57 x 107 to
2.36 x 10° embeddings, while the top-50 size-4 patterns in CI have
only 434 to 1.47 x 10° embeddings. According to Corollary 2.1, the
more subgraphs a query returns, the more aggressive sampling we
can use to preserve the same accuracy.

PACT °22, October 8-12, 2022, Chicago, IL, USA

Table 5: Execution times of subgraph counting in hours with
SampleMine.

Size Gr. | Time per exec | Max_err
5 MI 1.9 0.02
5 OK 5.4 0.04
4 UK 43 0.05
4 FR 5.9 0.03

Table 6: Execution times of frequent subgraph mining in
seconds with different systems.

Size Sup. | Gr. SM | TV-acc | SV-acc AM | PR | PG SA
0.001 0.45 0.82 13 5.4 5.5 1.5
0.005 0.45 0.82 13 4.8 4.8 1.5

4 0.01 = 0.38 0.77 1.2 18 3.4 3.7 1.4
0.05 0.27 0.69 0.93 1.1 2.8 1.1

0.001 505 54,903 62,062 57,754
0.005 489 42,695 49,179 45,820

4 0.01 M 387 31,115 38,989 78,244 F F 30,475
0.05 252 25,719 30,063 25,223

0.001 3.2 35 46 40
0.005 2.6 27 40 37

5 0.01 a 2.2 25 39 68 F F 27
0.05 1.7 23 32 23

0.001 54 1,135 1,482 1,096
0.005 39 1,047 1,443 . 1,030

6 0.01 o 37 1,052 1,420 1.924 F F 1,025
0.05 22 749 1,076 804

We run ASAP for the same amount of time as our system and
compare the estimation accuracy. Table 4 lists the number of pat-
terns returned by SampleMine and ASAP. The total number of
patterns returned by SampleMine (SM-tot) is 2.7x to 16.6x that of
ASAP (ASAP-tot). For the top-50 patterns, our system returns all
the 50 patterns (SM-50), while ASAP returns none for most tasks
and returns 37 patterns for 5-SC on CI graph. For the 37 patterns
that ASAP finds, the average error is 15.7, the maximum error is
430, the minimum error is 0.05, and the median error is 0.9. The
results show that our system is more effective in finding significant
patterns and obtains more accurate estimations than ASAP.

Table 5 shows the execution time of tasks on larger graphs for
which we cannot obtain accurate results in 24 hours. We apply
proportional sampling with ratios as listed in Table 2. Since the
actual counts are unknown, we run the experiment for 10 times and
calculate the empirical error by replacing c in (4) with the average
count of the 10 runs. The maximum error of the 10 runs for the
top-50 patterns is listed in the last column of Table 5. For all the
testcases, the errors are smaller than 0.05. Again, we are able to
apply aggressive sampling to these large graphs because they have
a large number of subgraphs.

5.3 Results for Frequent Subgraph Mining

Table 6 lists the execution times of FSM for which at least one of the
systems can return result within 24 hours. We find that Peregrine
and Pangolin abort for most tasks. Peregrine paper [24] only reports
results of 3-FSM. Pangolin [15] reports results mostly for 3-FSM. It
reports 4-FSM for only one graph using large support thresholds,
but it fails to give result for MI. For the only one testcase (4-FSM on
CI) that Peregrine and Pangolin do return, our system (TV-acc) is
1.6x to 6.8x faster without any sampling. AutoMine is able to return
results for these tasks. However, because it matches the patterns
in a depth-first order, it cannot benefit from the anti-monotone

PACT °22, October 8-12, 2022, Chicago, IL, USA

95x 86x 76x

100% |------
Speedup= 68x
102x

80%

60% |--mnommno e S
112x

40% |--
80/

20% f---8A%-coooaaaaa-

~8-sup=0.001
sup=0.005

——sup=0.01
sup=0.05

Discovered Patterns / Tot. Patterns

0%

6 8 10
Sampling Budget

Figure 10: Number of discovered size-4 frequent patterns on
MI graph with different support thresholds and different
sampling budgets. Sampling budget x means that the size-
3 and size-2 subgraphs are sampled with budget x? and x
during the exploration procedure.

property (i.e., it does not run faster for larger support thresholds).
Our system prunes the infrequent size-3 subgraph before the ex-
ploration procedure, and it runs 1.6x to 3.2x faster than AutoMine
without sampling. Compared with ScaleMine (SA) [3] which uses
node sampling for support estimation, our system (TV-acc) achieves
almost the same performance without using any sampling.

We then configure our system to run budget sampling with
budget 42 and 4 for size-3 and size-2 subgraphs on CI, and budget
62 and 6 for size-3 and size-2 subgraphs on MI. The execution times
are listed in column ‘SM’ in Table 6. Our system runs 4.1x to 310x
faster than the compared systems while returning more than 80%
of the frequent patterns for all these tasks. The average (geometric
mean) speedup is 34.7 against AutoMine, 8.3 against Peregrine,
10.7 against Pangolin, and 18.7 against ScaleMine. Figure 10 shows
the number of size-4 frequent patterns found by our system with
different support thresholds and different sampling budgets on MI
graph. The speedups over non-sampling execution (TV-acc) are
labeled on the lines. The total number size-4 frequent patterns on
this graph is 249140, 54164, 12241 and 9 for support threshold of
0.001N, 0.005N, 0.01N and 0.05N where N is the number of vertices.
When the sampling budget is set to 4, our system returns all the 9
patterns with support 0.05N using only 1/102 of the total execution
time. When the sampling budget increases to 6, our system returns
more than 80% of the frequent patterns for all support thresholds
with about 1/60 of the total execution time. When the sampling
budget increases to 10, our system still achieves more than 40x
speedups while obtaining more than 98% of the frequent patterns
for all support thresholds.

Table 7 lists the results of 5-FSM on UK graph with our system.
Since the size-3 subgraphs cannot be entirely stored in memory,
we perform sampling during the matching phase as described in
§4.3. The matching procedure takes a large proportion of the total
execution time. Once the size-3 subgraph are sampled, we can find
size-5 frequent patterns in a relatively short time. None of the
compared systems (including the sampling-based ScaleMine [3])
can return results for this task within 24 hours. This shows the main
advantage of our system against previous sampling-based systems:
while our system does not guarantee to find all the frequent patterns,

Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

Table 7: Results of 5-FSM on UK graph with different sam-
pling budgets and support thresholds. ‘M. sb’ is the number of
size-3 subgraphs sampled from each vertex by the match pro-
cedure. ‘M. time’ is the time for obtaining size-3 subgraphs.
J. sb’ is the sampling budget for loops that iterate over size-3
subgraphs in two-vertex exploration. ‘J. time’ is the execu-
tion time of the nested loop.

Sup. | M.sb | M.time (sec) | J.sb | J.time (sec) | # patterns
4 140 76
2 2,254 16 288 143

0.0001
4 2530 4 185 105
> 16 505 188
2 2,254 4 105 1
16 235 3
0.0005 n 138 3
4 2,530 16 421 14

msr=1/2 [Msr=1/4 W sr=1/32 [sr=1/64

0:08 - \ rror=_0.07
0.05

0.08 0.07
0.06 0.05

errors,
0.004;

a @ a3 el a1 @ a3 [
(a) size-7 on CI (b) size-4 on MI

Figure 11: Speedups for user-defined counting tasks with

different sampling ratios: ‘sr = 1/x’ means that two-vertex

exploration uses sampling ratio 1/x for loops that iterate

over size-3 subgraphs and 1/+/x for loops that iterate over

edges.

100% 24x 11x 6.7x

71x 73x 68x
80%

0, speedup=
6% 151x —=7-a

4-M|

Discovered Patterns
/ Tot. Paterns

40%
4 6 8 10
Sampling Budget

Figure 12: Speedups for Q5 with different sampling budgets.

it is able to return the most frequent patterns quickly, which are of
most interest in real-world applications.

5.4 Results for User-Defined Queries

We first run Q1~Q5 on CI and MI graph where accurate results
are available. Figure 11 shows speedups for Q1~Q4 with different
sampling ratios. We can see that the queries run 3.8x to 7.3x faster
for size-7 subgraphs on CI with sr = 1/2 and 14.5x to 49.2x faster
with sr = 1/4. For size-4 subgraphs on MI, the queries run 2.6x to
26.9x faster with sr = 1/32 and 2.7x to 44.4x faster with sr = 1/64.
The speedups for Q2 are smaller than for other queries because Q2
has a relatively small exploration space as the subgraphs without
label 1 are pruned in the second last loop. The estimation errors are
labeled in the figure. The errors are smaller than 0.1 for all tasks.

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation

Table 8: Execution times of user-defined queries in hours
with SampleMine.

Task | Gr. | Time per exec | Err.
5-Q1 MI 3.5 0.02
5-Q1 OK 10.1 0.03
4-Q1 UK 44 0.05
4-Q1 FR 5.8 0.04
5-Q2 OK 8.3 0.04
4-Q2 | UK 2.3 0.05
4-Q2 FR 3.1 0.05

Figure 12 shows the speedups for Q5 with different sampling
budgets. As expected, the number of discovered patterns increases
with the sampling budget. When the budget is set to 6, our system
can obtain 98.7% of the frequent patterns with only 1/24 of the
total execution for size-7 subgraphs on CI, and obtain 93.7% of the
frequent patterns with only 1/91 of the total execution time for
size-4 subgraphs on ML

We then run Q1 and Q2 on larger graphs with the sampling ratios
listed in Table 2. Table 8 shows the execution time of different tasks
on different graphs. Because the accurate results are unknown, we
run the experiments for 10 times and compute the empirical estima-
tion error. For all the tasks, our system returns estimation of high
accuracy. The same as for subgraph counting, we are able to apply
aggressive sampling to these user-defined queries on large graphs
because the subgraph counts are large. (The estimated counts are
from 102 to 102°.) It is possible that for some user-defined queries
with stricter constraints there are not many output subgraphs. For
such queries, we cannot use a small p with proportional sampling.
Formula (3) suggests that the estimation error can be reduced by
assigning higher sampling probabilities to subgraphs in Q. For ex-
ample, if the task is to count the number of subgraphs with label 1,
a better sampling strategy might be assigning higher probabilities
to the edges or size-3 subgraphs that contain label 1. We leave it for
future work to investigate more sophisticated sampling strategies
(e.g. adaptive sampling) under the loop-perforation framework.

6 RELATED WORK

There is a growing interest in supporting general-purpose subgraph
pattern mining in recent year. Many systems and task-independent
optimizations have been proposed.

Subgraph-Centric Systems: Arabesque [43] is a distributed sys-
tem that enumerates all possible embeddings in multiple rounds
and uses a filter-process model to generate the results. RStream [47]
is the first single-machine, out-of-core graph mining system. It sup-
ports a rich programming model that exposes relational algebra for
developers to express various mining tasks and a runtime engine
that can efficiently compute the relational operations. Pangolin
[15] also targets single-machine but provides GPU acceleration.
DistGraph [42] and G-miner [12] are distributed graph mining
systems that adopt breadth-first exploration. DistGraph focuses
on reducing the communication of distributed computing when
each node can only have a portion of the graph. G-miner proposes
a block-based graph partitioning technique and uses work steal-
ing to achieve good load balance. These systems use breadth-first
exploration and need to store all intermediate results. The large
memory consumption prevents them from efficiently mining for

PACT °22, October 8-12, 2022, Chicago, IL, USA

large graphs. Fractal [17] addresses the memory consumption is-
sue by implementing depth-first exploration. All of the existing
subgraph-centric systems are based on single-vertex exploration.
Our system is the first to use two-vertex subgraph exploration.
Pattern-Based Systems: AutoMine [31] is a single-machine graph
mining system that features compiler-based optimizations. Their
main idea is to enumerate all unlabeled patterns of a particular size
and match them one-by-one on a graph. Because the patterns are
given, AutoMine is able to search an optimal matching strategy and
combine matching procedures of multiple patterns. Peregrine [24]
is another pattern-based system. Instead of enumerating all patterns
before matching, it discovers patterns based on the subgraphs it has
explored and maintains a list of the patterns. DwavesGraph [13]
lists all the unlabeled patterns and uses pattern decomposition for
fast matching of the patterns. Similar to AutoMine, it needs to know
all the unlabeled patterns in advance. Sandslash [14] supports both
subgraph-centric and pattern-based exploration. To achieve both
high productivity and high efficiency, it provides a high-level API
for specifying the graph mining problems and performing subgraph
enumeration automatically, and a low-level API that allows users
to express algorithm-specific optimizations.

Approximate Subgraph Pattern Mining: Random sampling has
been widely used to reduce the computational complexity of SPM [3,
9,11, 19, 37, 38]. Motivo uses graph coloring and adaptive sampling
to accelerate motif counting [9]. ScaleMine proposes a sampling
technique to accelerate FSM by estimating the MNI support of a
pattern without enumerating all of its embeddings [3]. Sampling has
also been used for accelerating FSM in a database of graphs [4, 40].
The main idea of these works is to perform random walk in the
space of all patterns. By carefully setting the sampling probability
at each step, they ensure that patterns of higher supports are more
likely to be sampled [4]. These sampling techniques are task-specific
and cannot be easily adopted for new applications. Sampling has
been adopted in pattern-based graph mining systems [23, 32]. The
idea is to sample edges in the graph based on the given patterns and
estimate the actual results with the sampled results. These systems
are good at counting subgraphs of a given pattern. However, as
we show in the experiments, when the pattern is unknown, such
neighbor sampling technique is not effective in finding the patterns
with the most embeddings.

7 CONCLUSION

In this work, we propose a framework for applying random sam-
pling to general-purpose subgraph pattern mining. Our system is
designed with two novel techniques: two-vertex subgraph explo-
ration and loop-perforation-based subgraph sampling. We show
that two-vertex exploration accelerates subgraph exploration pro-
cedure by extending the subgraph by two vertices in each step. We
also show that our loop-perforation-based sampling technique is
flexible and can be used for designing efficient sampling strategies
for different SPM tasks. The experiments show that our system
significantly outperforms other state-of-the-art subgraph pattern
mining systems for different tasks on various input graphs.

ACKNOWLEDGEMENTS
This work was supported by NSF award CCF-2028825.

PACT °22, October 8-12, 2022, Chicago, IL, USA

REFERENCES

[1] Dataset for "Statistics and Social Network of YouTube Videos" . http://netsg.cs.

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[21

[22

[23

[24

[25

]

]

]

]

]
]

]

sfu.ca/youtubedata/.

Orkut social network. http://snap.stanford.edu/data/com-Orkut.html.

Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad
Jamour. Scalemine: Scalable parallel frequent subgraph mining in a single large
graph. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 716-727. IEEE, 2016.
Mohammad Al Hasan and Mohammed J Zaki. Output space sampling for graph
patterns. Proceedings of the VLDB Endowment, 2(1):730-741, 2009.

Suman K Bera and C Seshadhri. How to count triangles, without seeing the
whole graph. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 306-316, 2020.

Vandana Bhatia and Rinkle Rani. Ap-fsm: A parallel algorithm for approximate
frequent subgraph mining using pregel. Expert Systems with Applications, 106:217—
232, 2018.

M. Bressan, Stefano Leucci, and A. Panconesi. Motivo: Fast motif counting via
succinct color coding and adaptive sampling. Proc. VLDB Endow., 12:1651-1663,
2019.

Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro
Panconesi. Motif counting beyond five nodes. ACM Transactions on Knowledge
Discovery from Data (TKDD), 12(4):1-25, 2018.

Marco Bressan, Stefano Leucci, and Alessandro Panconesi. Motivo: fast mo-
tif counting via succinct color coding and adaptive sampling. arXiv preprint
arXiv:1906.01599, 2019.

Bjorn Bringmann and Siegfried Nijssen. What is frequent in a single graph? In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 858—863.
Springer, 2008.

Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet, and Meriem Bouz-
bila. Sampling informative patterns from large single networks. Future Generation
Computer Systems, 106:653-658, 2020.

Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.
G-miner: an efficient task-oriented graph mining system. In Proceedings of the
Thirteenth EuroSys Conference, pages 1-12, 2018.

Jingji Chen and Xuehai Qian. Dwarvesgraph: A high-performance graph mining
system with pattern decomposition, 2020.

Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.
Sandslash: a two-level framework for efficient graph pattern mining. In Pro-
ceedings of the ACM International Conference on Supercomputing, pages 378-391,
2021.

Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Pangolin:
An efficient and flexible graph mining system on cpu and gpu. Proc. VLDB Endow.,
13(8):1190-1205, April 2020.

Wei-Ta Chu and Ming-Hung Tsai. Visual pattern discovery for architecture
image classification and product image search. In Proceedings of the 2nd ACM
International Conference on Multimedia Retrieval, ICMR ’12, New York, NY, USA,
2012. Association for Computing Machinery.

Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira, and Srini-
vasan Parthasarathy. Fractal: A general-purpose graph pattern mining system.
In Proceedings of the 2019 International Conference on Management of Data, SIG-
MOD 19, page 1357-1374, New York, NY, USA, 2019. Association for Computing
Machinery.

Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
Grami: Frequent subgraph and pattern mining in a single large graph. Proc. VLDB
Endow., 7(7):517-528, March 2014.

Ruohan Gao, Huanle Xu, Pili Hu, and Wing Cheong Lau. Accelerating graph
mining algorithms via uniform random edge sampling. In 2016 IEEE International
Conference on Communications (ICC), pages 1-6. IEEE, 2016.

Shayan Ghazizadeh and Sudarshan S Chawathe. Seus: Structure extraction
using summaries. In International Conference on Discovery Science, pages 71-85.
Springer, 2002.

Michel Goemans. Chernoff bounds, and some applications. https://math.mit.edu/
~goemans/18310S15/chernoff-notes.pdf.

Guyue Han and Harish Sethu. Waddling random walk: Fast and accurate mining
of motif statistics in large graphs. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pages 181-190. IEEE, 2016.

Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir
Braverman, and Ion Stoica. ASAP: Fast, approximate graph pattern mining at
scale. In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 745-761, Carlsbad, CA, October 2018. USENIX Association.
Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A pattern-aware
graph mining system. In Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys *20, New York, NY, USA, 2020. Association for Computing
Machinery.

Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool
for large and sparse graphs. In David Applegate, Gerth Stelting Brodal, Daniel
Panario, and Robert Sedgewick, editors, Proceedings of the Ninth Workshop on

[26

[27

[28

™~
29,

[30

[31

[32

@
&

[34

(35]

[36

[37

[38

[39

[40]

[41

[42

[43

[44]

[45

[46]

(47

(48

Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

Algorithm Engineering and Experiments and the Fourth Workshop on Analytic
Algorithms and Combinatorics, pages 135-149. SIAM, 2007.

Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In
Proceedings 2001 IEEE international conference on data mining, pages 313-320.
IEEE, 2001.

Michihiro Kuramochi and George Karypis. Grew-a scalable frequent subgraph
discovery algorithm. In Fourth IEEE International Conference on Data Mining
(ICDM’04), pages 439-442. TEEE, 2004.

Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph enumera-
tion in mapreduce: a cost-oriented approach. The VLDB Journal, 26(3):421-446,
2017.

Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu Yang.
Scalable distributed subgraph enumeration. Proceedings of the VLDB Endowment,
10(3):217-228, 2016.

Shikai Li, Sunghyun Park, and Scott Mahlke. Sculptor: Flexible approximation
with selective dynamic loop perforation. In Proceedings of the 2018 International
Conference on Supercomputing, pages 341-351, 2018.

Daniel Mawhirter and Bo Wu. Automine: Harmonizing high-level abstraction and
high performance for graph mining. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 509-523, New York, NY, USA,
2019. Association for Computing Machinery.

Daniel Mawhirter, Bo Wu, Dinesh Mehta, and Chao Ai. Approxg: Fast approxi-
mate parallel graphlet counting through accuracy control. In 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages
533-542. IEEE, 2018.

Brendan D McKay et al. Practical graph isomorphism. Department of Computer
Science, Vanderbilt University Tennessee, USA, 1981.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. Network motifs: simple building blocks of complex networks.
Science, 298(5594):824-827, 2002.

Aduri Pavan, Srikanta Tirthapura, et al. Counting and sampling triangles from a
graph stream. 2013.

Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting all
5-vertex subgraphs. In Proceedings of the 26th international conference on world
wide web, pages 1431-1440, 2017.

Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato. Maniacs:
Approximate mining of frequent subgraph patterns through sampling. KDD ’21,
page 1348-1358, New York, NY, USA, 2021. Association for Computing Machinery.
Sumit Purohit, Sutanay Choudhury, and Lawrence B Holder. Application-specific
graph sampling for frequent subgraph mining and community detection. In 2017
IEEE International Conference on Big Data (Big Data), pages 1000-1005. IEEE,
2017.

Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando
Silva. A survey on subgraph counting: Concepts, algorithms, and applications to
network motifs and graphlets. ACM Computing Surveys (CSUR), 54(2):1-36, 2021.
Tanay Kumar Saha and Mohammad Al Hasan. Fs3: A sampling based method
for top-k frequent subgraph mining. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 8(4):245-261, 2015.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 124-134, 2011.

Nilothpal Talukder and Mohammed J Zaki. A distributed approach for graph
mining in massive networks. Data Mining and Knowledge Discovery, 30(5):1024—
1052, 2016.

Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed] Zaki, and Ashraf Aboulnaga. Arabesque: a system for distributed graph
mining. In Proceedings of the 25th Symposium on Operating Systems Principles,
pages 425-440, 2015.

Johan Ugander, Lars Backstrom, and Jon Kleinberg. Subgraph frequencies: Map-
ping the empirical and extremal geography of large graph collections. In Proceed-
ings of the 22nd International Conference on World Wide Web, WWW 13, page
1307-1318, New York, NY, USA, 2013. Association for Computing Machinery.
A Vazquez, R Dobrin, D Sergi, J-P Eckmann, Zoltan N Oltvai, and A-L Barabasi.
The topological relationship between the large-scale attributes and local inter-
action patterns of complex networks. Proceedings of the National Academy of
Sciences, 101(52):17940-17945, 2004.

Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan. Ef-
ficient sampling algorithms for approximate temporal motif counting. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 1505-1514, 2020.

Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry
Xu. Rstream: Marrying relational algebra with streaming for efficient graph
mining on a single machine. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 763-782, 2018.

Pinghui Wang, John CS Lui, Don Towsley, and Junzhou Zhao. Minfer: A method
of inferring motif statistics from sampled edges. In 2016 IEEE 32nd international
conference on data engineering (ICDE), pages 1050-1061. IEEE, 2016.

http://netsg.cs.sfu.ca/youtubedata/
http://netsg.cs.sfu.ca/youtubedata/
http://snap.stanford.edu/data/com-Orkut.html
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation PACT ’22, October 8-12, 2022, Chicago, IL, USA

[49] Xifeng Yan and Jiawei Han. gspan: graph-based substructure pattern mining. [50] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
In 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pages based on ground-truth. Knowledge and Information Systems, 42(1):181-213, 2015.
721-724, 2002.

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Basics
	2.2 Subgraph Pattern Mining Tasks
	2.3 Systems for Subgraph Pattern Mining

	3 Nested Loop for Subgraph Exploration
	3.1 Two-Vertex Exploration
	3.2 Avoiding Redundant Subgraphs

	4 Approximate Subgraph Mining with Loop Perforation
	4.1 Sampling for Counting Tasks
	4.2 Sampling for Finding Frequent Subgraphs
	4.3 Sampling for Large Graphs
	4.4 Programming Interface
	4.5 Putting It Together

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results for Subgraph Counting
	5.3 Results for Frequent Subgraph Mining
	5.4 Results for User-Defined Queries

	6 Related Work
	7 Conclusion
	References

