
SampleMine: A Framework for Applying Random Sampling to
Subgraph Pattern Mining through Loop Perforation

Peng Jiang

The University of Iowa

Iowa City, Iowa, USA

peng-jiang@uiowa.edu

Yihua Wei

The University of Iowa

Iowa City, Iowa, USA

yihua-wei@uiowa.edu

Jiya Su

Illinois Institute of Technology

Chicago, Illinois, USA

jsu18@hawk.iit.edu

Rujia Wang

Illinois Institute of Technology

Chicago, Illinois, USA

rwang67@iit.edu

Bo Wu

Colorado School of Mines

Golden, Colorado, USA

bwu@mines.edu

ABSTRACT
Subgraph Pattern Mining (SPM) is an important class of graph ap-

plications that aim to discover structural patterns in a graph. Due to

the enormous exploration space, SPM is in general computationally

challenging. To accelerate SPM, many random sampling techniques

have been proposed. While the existing sampling techniques are

effective for conventional SPM tasks such as motif counting and

frequent subgraph mining, they cannot be easily adapted for new

applications.

In this work, we propose SampleMine, a framework for applying

random sampling to any non-listing SPM task. Our main idea is

to express subgraph exploration as a nested loop and sample the

subgraphs with loop perforation. We first propose a two-vertex

exploration technique to accelerate the subgraph exploration pro-

cedure. Then, we provide two sampling strategies under the loop

perforation framework and show that they can achieve good results

for counting and frequent subgraph mining tasks. The experimental

results show that our system achieves significant speedups against

the state-of-the-art graph mining systems with little accuracy loss.

CCS CONCEPTS
•Mathematics of computing→ Approximation algorithms;
Graph algorithms.

KEYWORDS
Subgraph Pattern Mining, Loop Perforation

ACM Reference Format:
Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu. 2022. SampleMine:

A Framework for Applying Random Sampling to Subgraph Pattern Mining

through Loop Perforation. In International Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’22), October 8–12, 2022, Chicago, IL,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3559009.

3569658

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PACT ’22, October 8–12, 2022, Chicago, IL, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9868-8/22/10.

https://doi.org/10.1145/3559009.3569658

1 INTRODUCTION
Subgraph Pattern Mining (SPM) is widely used for retrieving infor-

mation from graph-structured data in various application domains,

including bioinformatics [34, 45], computer vision [16], and social

network analysis [44]. An example SPM task is frequent subgraph

mining, which is to discover subgraph patterns with supports larger

than a threshold. Another example query could be ‘counting the

subgraphs with at least one vertex of label x’.

Many algorithms and systems have been proposed for different

SPM tasks such as motif counting [5, 7, 8, 22, 36, 39, 46, 48] and fre-

quent subgraph mining [3, 6, 18, 20, 27, 37, 38]. These works usually

include task-specific optimizations and cannot be easily adopted

for new applications. In recent years, there is a growing interest in

designing general-purpose SPM systems [17, 24, 31, 43, 47]. These

systems aim to cover different SPM tasks with a general compu-

tation pattern and provide a flexible API to the users. However,

due the enormous exploration space, the existing systems have

difficulty in mining large patterns on large graphs.

Random sampling is a commonly used technique to reduce the

computational complexity of SPM tasks that do not require an

exhaustive listing of subgraphs [3, 9, 11, 19, 37, 38]. Most of the

existing sampling methods are task-specific. For instance, graph

coloring has proven to be effective for unlabeled motif counting [9],

while support estimation is more suitable for frequent subgraph

mining [37]. How to enable efficient sampling for an arbitrary

mining task is still an open problem. Previous SPM systems have

adopted neighbor sampling [23, 32, 35], but they only work for

counting tasks and have limited support for user-defined queries.

In this work, we aim to provide a general framework for applying

random sampling to various SPM tasks. Our solution is based on

the observation that the subgraph exploration procedure can be

expressed as a nested loop and the sampling of subgraphs can be

achieved by simply perforating the loops. For subgraph exploration,

we propose a novel two-vertex approach. The idea is to extend a

subgraph by joining it with its neighboring size-3 subgraphs on a

common vertex in each exploration step. We prove that two-vertex

exploration can discover all subgraphs of any size and show that

it has smaller time complexity than the traditional single-vertex

exploration.

For subgraph sampling, we provide two loop perforation strate-

gies and show that they can achieve good estimation results for

counting and frequent subgraph mining tasks. Compared with the

https://doi.org/10.1145/3559009.3569658
https://doi.org/10.1145/3559009.3569658
https://doi.org/10.1145/3559009.3569658

PACT ’22, October 8–12, 2022, Chicago, IL, USA Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

neighbor sampling technique in the existing SPM systems [23, 32],

our sampling strategy can quick find the most important patterns

and return more accurate counts with the same amount of compu-

tation. For frequent subgraph mining, our sampling strategy can

discover most of the frequent patterns with only a small portion

of the execution time of accurate mining. Besides subgraph count-

ing and frequent subgraph mining, our sampling technique can be

easily applied to non-conventional, user-defined mining tasks. Our

system also provides a simple API for the users to define their own

sampling strategies.

In summary, we make the following contributions in this paper.

• We propose a two-vertex approach for subgraph exploration

and show its advantage over single-vertex exploration.

• We propose a loop-perforation-based sampling framework

for arbitrary SPM tasks.

• We provide two sampling strategies under the loop perfora-

tion framework and show that they can achieve good per-

formance and accuracy for various SPM tasks.

We perform extensive evaluation of our system and compare

with five state-of-the-art graph mining systems: AutoMine [31],

Peregrine [24], Pangolin [15], ASAP [23], and ScaleMine [3]. For

subgraph counting, our system achieves an average (geometric

mean) of 16.3x speedup against AutoMine, and 129.7x speedup

against Peregrine, with little accuracy loss. For frequent subgraph

mining, our system achieves an average of 34.7x speedup against

AutMine, 8.3x speedup against Peregrine, 10.7x speedup against

Pangolin, and 18.7x speedup against ScaleMine, while returning

more than 80% of the frequent patterns. Our system can also return

good estimation results for tasks that the existing systems do not

support or cannot return in a reasonable amount of time.

2 BACKGROUND
This section gives some background on SPM and the existing sys-

tems for SPM.

2.1 Graph Basics
A graph 𝐺 is defined as 𝐺 = (𝑉 , 𝐸, 𝐿) consisting of a set of vertices

𝑉 , a set of edges 𝐸 and a labeling function 𝐿 that assigns labels to

the vertices and edges. A graph 𝐺 ′ = (𝑉 ′, 𝐸 ′, 𝐿′) is a subgraph of

graph 𝐺 = (𝑉 , 𝐸, 𝐿) if 𝑉 ′ ⊆ 𝑉 , 𝐸 ′ ⊆ 𝐸 and 𝐿′(𝑣) = 𝐿(𝑣),∀𝑣 ∈ 𝑉 ′
.

A subgraph 𝐺 ′ = (𝑉 ′, 𝐸 ′, 𝐿′) is vertex-induced if all the edges in

𝐸 that connect the vertices in 𝑉 ′
are included 𝐸 ′. A subgraph is

edge-induced if it is connected and is not vertex-induced.

Definition 1 (Isomorphism). Two graphs 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎, 𝐿𝑎) and
𝐺𝑏 = (𝑉𝑏 , 𝐸𝑏 , 𝐿𝑏) are isomorphic if there is a bijective function 𝑓 :

𝑉𝑎 ⇒ 𝑉𝑏 such that (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝑎 if and only if (𝑓 (𝑣𝑖), 𝑓 (𝑣 𝑗)) ∈ 𝐸𝑏 .

We say two (sub)graphs have the same pattern if they are isomor-

phic. The pattern is a template for the isomorphic subgraphs, and a

subgraph is an instance (also called embedding) of its pattern. To de-

termine the pattern of a subgraph, a canonical form of the subgraph

can be computed. The subgraphs with the same canonical form are

isomorphic. There are various tools and algorithms available for

graph isomorphism check [25, 33, 49]. All of these algorithms have

exponential complexity. We use bliss [25] for isomorphism check in

our system as it is fast in practice and is widely used in the existing

systems [24, 43, 47]. Isomorphisms from a graph to itself are called

automorphisms.

2.2 Subgraph Pattern Mining Tasks
Our system supports conventional SPM tasks as well as user-defined

tasks. Some examples are:

• Subgraph Counting (SC). The task is to count the embeddings

of different subgraph patterns and find the patterns with the largest

counts.

• Frequent Subgraph Mining (FSM). The task is to obtain all

frequent subgraph patterns from a labeled input graph. A pattern is

considered frequent if it has a support above a threshold. Different
from the counts, the support of a pattern usually needs to have

the anti-monotone property, i.e., the support of a pattern can not

be larger than the support of it subpatterns. The most commonly

used support measure for FSM is the minimum image based (MNI)

support [10].

Definition 2 (MNI Support). Given a pattern 𝑃 = (𝑉𝑝 , 𝐸𝑝 , 𝐿𝑝) and
an input graph𝐺 = (𝑉 , 𝐸, 𝐿), if 𝑃 has𝑚 embeddings {𝑓1, 𝑓2, . . . , 𝑓𝑚}
in 𝐺 , the minimum image based (MNI) support of 𝑃 in 𝐺 is defined

as

𝜎𝑀𝑁𝐼 (𝑃,𝐺) = min

𝑣∈𝑉𝑝
|{𝑓𝑖 (𝑣) : 𝑖 = 1, 2, . . . ,𝑚}|.

The set of nodes in 𝑉 that are assigned to 𝑣 ∈ 𝑉𝑝 , i.e, {𝑓𝑖 (𝑣) : 𝑖 =
1, 2, . . . ,𝑚} is the domain of 𝑣 on 𝐺 , denoted as 𝐷𝑜𝑚(𝑣,𝐺). With

a support measure 𝜎 , the frequent subgraph mining problem is

defined as finding all patterns {𝑃𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐿𝑖)} in a graph 𝐺 such

that |𝑉𝑖 | = 𝑠 and 𝜎 (𝑃𝑖 ,𝐺) ≥ 𝑡 where 𝑠 is the given pattern size and 𝑡

is the given support threshold. Depending on the applications, the

users may require listing the subgraphs of the frequent patterns.

We focus on finding the frequent patterns in this work. With the

frequent patterns, the frequent subgraphs can be easily obtained

with any graph pattern matching procedure.

• User-Defined Queries. In addition to the conventional SPM

tasks, we may be interested in finding subgraphs that meet certain

constraints. For example, one might be interested in ‘the number

of size-7 subgraphs that have at least two vertices with label 𝑥 ’.

Another query example is ‘finding all the frequent subgraphs that

have at least one vertex with label 𝑥 or label 𝑦’.

2.3 Systems for Subgraph Pattern Mining
There are mainly two approaches to generic subgraph mining

taken by the existing systems. Some SPM systems are subgraph-
centric [15, 17, 43, 47]. They enumerate all the subgraphs and filter

out the unwanted subgraphs. The enumeration is performed in a

vertex-by-vertex manner. The subgraphs of size 𝑙 are extended with

one vertex in each step to obtain subgraphs of size 𝑙+1. The other

systems take a pattern-based approach [3, 18, 24, 31]. The idea is

to enumerate the patterns, filter out the unwanted patterns, and

match the remaining patterns on input graph. The pattern-based

systems are efficient for small-pattern queries because there are

not many small patterns and they can exploit the well-optimized

pattern matching techniques. However, when the query pattern is

large, enumerating the patterns becomes expensive as the number

of patterns grows exponentially. To accelerate generic subgraph

mining, many task-independent optimizations have been proposed.

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation PACT ’22, October 8–12, 2022, Chicago, IL, USA

For example, Fractal [17] proposes a hierarchical work-stealing

mechanism to achieve better load balance for parallel subgraph

enumeration. AutoMine [31] searches the matching orders of ver-

tices to achieve the most pruning of exploration space.

3 NESTED LOOP FOR SUBGRAPH
EXPLORATION

Our system takes the subgraph-centric approach. The most impor-

tant task of a subgraph-centric system is to enumerate all subgraphs

of size 𝑛 without knowing the exact patterns. All the existing SPM

systems use single-vertex exploration for this task. We find that

limiting the step size to one is not necessary. In this section, we

propose a two-vertex exploration technique and show its advantage

over single-vertex exploration.

3.1 Two-Vertex Exploration
Figure 1a shows the procedure of single-vertex exploration adopted

by the existing SPM systems. The exploration starts from all edges

in the graph. In each loop level, the subgraphs are extended by

their neighboring edges. The extension continues until the desired

size is reached. Single-vertex exploration ensures that all the size-𝑛

subgraphs can be discovered in the innermost loop.

Figure 1b illustrates the idea of our two-vertex exploration. We

first obtain all the size-3 subgraphs in the input graph. Then, the

exploration starts from the size-3 subgraphs. It extends a subgraph

by joining it with its neighboring size-3 subgraphs in each loop

level. We call it two-vertex exploration because the subgraph size

is increased by two in each join step. We find that two-vertex

exploration also ensures the exhaustive enumeration of subgraphs.

Theorem 1. For any 𝑛 > 3, all of the size-𝑛 subgraphs can be dis-
covered by joining the size-(𝑛−2) subgraphs with the size-3 subgraphs
on a common vertex.

Proof. To prove Theorem 1, we only need to show that any size-

𝑛 subgraph can be dissected into a connected size-(𝑛 − 2) subgraph

and a connected size-3 subgraph on one vertex. Because the size-

(𝑛 − 2) and size-3 subgraphs are joined in all possible ways, if a

dissection exists for a size-𝑛 subgraph, it will be discovered by the

join operation. Suppose any size-𝑛 subgraph can be dissected into

a size-(𝑛 − 2) and a size-3 subgraph. There are only two way a

size-(𝑛 + 1) subgraph can be constructed from a size-𝑛 subgraph:

1) the new vertex is connected with the size-(𝑛 − 2) subgraph,
and in this case, the size-(𝑛 + 1) subgraph can be dissected in the

same way as the size-𝑛 subgraph (Figure 2a); 2) if the new vertex

is only connected with the size-3 subgraph, we can always pick

three connected vertices as the new dissection (Figure 2bcd). As the

base case, all the six size-4 patterns can be dissected into a size-3

subgraph and an edge. The proof finishes by induction. □

Note that subgraph exploration is different from subgraph enu-

meration for a given pattern considered in previous works [28, 29].

These works propose to decompose the pattern and join the em-

beddings of the smaller subpatterns to find the embeddings of

the original pattern. These pattern decomposition methods do not

work for subgraph exploration because the patterns are unknown.

Figure 3: A graph that
cannot be discovered
by three-vertex explo-
ration.

In fact, for subgraph exploration, the

step size cannot be larger than two. As

an example, the graph in Figure 3 can-

not be discovered by three-vertex ex-

ploration because it cannot be obtained

by joining two connected size-4 sub-

graphs on a common vertex. For sub-

graph exploration, previous works have

also proposed to merge smaller patterns

to explore larger ones [26, 27]; however, their step size is one (e.g.,

FSG [26] joins two size-𝑘 subgraphs to obtain a size-(𝑘 + 1) sub-

graph).

Two-vertex exploration can be either vertex-induced or edges

induced. For vertex-induced exploration, we add all the connecting

edges between the two joining subgraphs to the resulting subgraph.

For edge-induced exploration, we enumerate all possible combina-

tions of the connecting edges between the joining subgraphs and

generate a resulting subgraph for each combination.

Compared to single-vertex exploration, two-vertex exploration

has smaller time complexity for the same subgraph mining task.

Intuitively, because the combination of two edges is precomputed

and stored in the size-3 subgraphs, two-vertex exploration needs

fewer join operations to obtain subgraphs of a certain size. More

rigorously, suppose the maximum degree of the input graph is 𝑑 ,

the maximum number of size-3 subgraphs associated with a vertex

is 𝐷 , the number of vertices is 𝑁 , and the subgraph size is 𝑛. The

time complexity of the nested loop in Figure 1a is𝑂 ((1 ·2 ·3 · · · (𝑛−
1))𝑁𝑑 (𝑛−1))). The time complexity of the nested loop for two-

vertex exploration in Figure 1b is𝑂 ((1·3·5 · · · (𝑛−2))·𝑁𝐷 (𝑛−1)/2) if
𝑛 is odd and𝑂 ((1 ·3 ·5 · · · (𝑛−1)) ·𝑁𝐷 (𝑛−2)/2𝑑) if𝑛 is even. Because

𝐷 < 𝑑2 and 2𝑖 − 1 < 𝑖 (𝑖 + 1),∀𝑖 ≥ 1, the time complexity of two-

vertex exploration is smaller than that of single-vertex exploration.

3.2 Avoiding Redundant Subgraphs
The exploration procedure in Figure 1 can produce redundant sub-

graphs. As a simple example, a size-3 subgraph composed of two

edges (𝑎, 𝑏) and (𝑏, 𝑐) can be discovered twice. It is discovered when
𝑒1 is assigned to (𝑎, 𝑏) and 𝑒2 is assigned to (𝑏, 𝑐). It is discovered
again when 𝑒1 is assigned to (𝑏, 𝑐) and 𝑒2 is assigned to (𝑎, 𝑏). In
many cases, we want to eliminate the redundant subgraphs. Pre-

vious systems have adopted a canonicality checking technique

for redundancy removal [43]. This canonicality check, however,

does not work for two-vertex exploration. We propose a smallest-
vertex-first dissection method to achieve redundancy removal for

two-vertex exploration.

Our method is based on the following observation: for any sub-

graph, there is only one way to divide it into two smaller subgraphs

with both subgraphs being connected and one of them having the

smallest spanning vertex indices. Thus, we can eliminate redun-

dancy by finding this unique dissection of {{𝑠}, 𝑡} and checking

if the dissected subgraphs are the same as 𝑠 and 𝑡 . The checking

is performed each time we extend 𝑠 with its neighboring size-3

subgraph 𝑡 (i.e., in the 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 function in Figure 1b). The proce-

dure is shown in Algorithm 1. For a pair of subgraphs {{𝑠}, 𝑡}, we
first check if there are any other identical vertices except for the

joining vertex. If yes, 𝑠 and 𝑡 cannot form a valid subgraph, and

PACT ’22, October 8–12, 2022, Chicago, IL, USA Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

// iterate over all edges in the graph
for 𝑒! ∈ 𝐸
𝑠" = {𝑒!};
if (𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑠") == false) continue;
// iterate over all neighboring nodes of 𝑠!
for 𝑒" ∈ 𝑁"(𝑠")

// join 𝑠" with its neighbor edge
𝑠# = {{𝑠"}, 𝑒"};
// check if the intermediate subgraph is valid
if (𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑠#) == false) continue;

for 𝑒$%! ∈ 𝑁" 𝑠$%!
𝑠$ = {{𝑠$%!}, 𝑒$%!};
if (𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑠$) == false) continue;

…

(a) Single-vertex exploration. The first loop iter-
ates over all edges. The following loops iterate over
neighboring edges of intermediate subgraph.𝑁2 (𝑠)
represents the edges that have one and only one
common vertex with 𝑠 .

// iterate over all size-3 subgraphs
for 𝑡! ∈ 𝑆"
𝑠" = {𝑡!};
if (𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑠") == false) continue;
// iterate over all neighboring size-3 subgraphs of 𝑠"
for 𝑡# ∈ 𝑁"(𝑠")
𝑠$ = {{𝑠"}, 𝑡#};
// check if the intermediate subgraph is valid
if (𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑠$) == false) continue;

// if n is odd, last loop iterates over size-3 subgraphs
// if n is even, last loop iterates over edges

for 𝑡 ⁄('(!) # ∈ 𝑁" 𝑠'(#
𝑠' = {{𝑠'(#}, 𝑡 ⁄'(! #};
if (𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑠') == false) continue;

…
(b) Two-vertex exploration. The first loop iterates over
all size-3 subgraphs. The following loops iterate over
neighboring size-3 subgraphs of intermediate subgraph.
𝑁3 (𝑠) represents size-3 subgraphs that have one and
only one common vertex with 𝑠 .

Figure 1: Subgraph exploration implemented as a nested loop.

size-(n-2)

size-(n-1)

size-(n-2)
size-(n-2)

size-3
size-(n-1)

(a)

size-(n-1)

(b)

(c)

new nodenode in the original size-n subgraph

(d)

size-(n-2)

size-(n-1)

Figure 2: Two-vertex exploration can discover all subgraphs.
Suppose all size-𝑛 subgraphs can be obtained by joining size-
(𝑛 − 2) with size-3 subgraphs. For any size-(𝑛 + 1) subgraph,
the new node is either connected to the size-(𝑛 − 2) part as in
(a), or connected to the size-3 part in three different ways as
in (b,c,d). Each case has a valid dissection into a size-(𝑛 − 1)
and a size-3 subgraph. Thus, all size-(𝑛 + 1) subgraphs can be
discovered by two-vertex exploration.

the function returns false. If no, we give the combined subgraph

to a dissection procedure that divides the subgraph into two small

subgraphs 𝑙 and 𝑟 . From the vertex with the smallest index, the dis-

section procedure finds three connected vertices with the smallest

indices and stores them in 𝑙 . Next, the algorithm checks if the re-

maining vertices can constitute a connected subgraph 𝑟 with any of

the vertices in 𝑙 . If yes, the dissection procedure stops and returns 𝑙

and 𝑟 . The algorithm returns as soon as the first dissection is found,

and it will always return because of Theorem 1. Once we have the

smallest dissection 𝑙 and 𝑟 , we check if they are the same as 𝑡 and 𝑠 .

If yes, the function returns the true, indicating that the combined

subgraph {{𝑠}, 𝑡} is valid and is not automorphic to any previously

discovered subgraph.

Algorithm 1: Automorphism check for two-vertex explo-

ration.

Input : subgraph 𝑠 ; subgraph 𝑡 ; joining vertex 𝑘

Output : combined subgraph 𝑠′

1 func dissect(𝑠′):
2 foreach 𝑣 in 𝑠′ in ascending order do
3 𝑙 = the first three vertices visited by starting from 𝑣 and

spanning to the smallest vertex at each step;

4 𝑟 ′ = the unvisited vertices in 𝑠′;

5 foreach 𝑣′ in 𝑙 in ascending order do
6 𝑟 = 𝑟 ′ ∪ 𝑣′;

7 if 𝑟 is connected then return 𝑙, 𝑟 ;

8 if 𝑠 and 𝑡 have same vertices other than 𝑘 then return false;

// 𝑠′ is a valid subgraph joined by 𝑠 and 𝑡

9 𝑠′ = 𝑠 ∪ 𝑡 ;

// find the smallest dissection of 𝑠′

10 𝑙, 𝑟 = dissect(𝑠′);

// if the two joining subgraphs correspond to the smallest

dissection, return 𝑠′

11 if 𝑙 == 𝑡 and 𝑟 == 𝑠 then return true;

12 else return false;

A Running Example: Figure 4 shows a graph with all of its size-3

subgraphs (including wedges and triangles). Let us consider the

size-5 subgraph ‘34257’. Without redundancy removal, the nested

loop in Figure 1b will discover the subgraph multiple times (when

𝑡1 = (3, 7, 2) and 𝑡2 = (5, 4, 3), 𝑡1 = (3, 4, 2) and 𝑡2 = (3, 7, 5), and
𝑡1 = (3, 5, 2) and 𝑡2 = (3, 7, 4)). A straightforward way to avoid

redundancy is to store all the subgraphs in a no-duplicate set. This

method, however, is inefficient due to the large lookup overhead,

especially when the loop is executed in parallel. With our smallest-

vertex-first dissection method, we can eliminate redundancy with-

out explicitly storing the subgraphs. In this example, the smallest

vertex of subgraph ‘34257’ is 2, so the dissection procedure starts

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation PACT ’22, October 8–12, 2022, Chicago, IL, USA

0

1
2

8

5

4

3

7

6

:

230
231
280
281
342
352
372

374
375
384
385
387
563
564

: 210
543

832

pattern subgraphs

Figure 4: An example graph with its size-3 subgraphs. The
size-5 subgraph ‘34257’ can be discovered multiple times by
the nested loop in Figure 1b with different 𝑡1 and 𝑡2.

from vertex 2 (line 2 in Algorithm 1). Then, It finds the neighbor of

2 in ‘34257’ with the smallest index, which is 3. Then, it spans vertex

2 and 3 to their smallest index neighbors. The vertices adjacent to

2 and 3 in the subgraph are 4, 5, 7. Because 4 is the smallest, 4 is

added to 𝑙 in the next step. This gives us three vertices 2, 3, 4 in 𝑙

(line 3). The unvisited vertices are 5 and 7 (line 4). We check if any

of 2, 3, 4 can form a connected graph with 5, 7 (line 5). Since 3 is the

smallest vertex that connects 5 and 7, the dissection procedure stops

and returns 𝑙 = {2, 3, 4} and 𝑟 = {3, 5, 7} (line 7). By checking if

the joining subgraphs match the dissection (line 11), the algorithm

ensures that the subgraph ‘34257’ is generated only once.

4 APPROXIMATE SUBGRAPH MININGWITH
LOOP PERFORATION

To further accelerate subgraph pattern mining, we apply random

sampling to the subgraph exploration procedure. The idea is simply

executing a subset of the iterations of each loop in Figure 1. This

technique is also known as loop perforation and is widely used

for approximate computing [30, 41]. Compared with the existing

task-specific sampling techniques, loop perforation is general – it

can be applied to the nested loop for any arbitrary SPM task. The

main challenge is how to perforate the loops in an efficient way so

that important subgraphs can be obtained and small error bounds

can be achieved. We now present two sampling strategies under

this framework and show that they can achieve good performance

for counting and frequent subgraph mining tasks.

4.1 Sampling for Counting Tasks
In many applications, we are interested in counting the subgraphs

that meet certain constraints. For such counting tasks, a straight-

forward sampling strategy is to sample a fixed proportion of the

iterations in each loop level. This proportional sampling strategy
achieves a uniform sampling of the entire outcome space. To see

this, we can consider the probability of executing one iteration of

the innermost loop in Figure 1a. Suppose the loop has 𝑛 − 1 lev-

els for exploring subgraphs of 𝑛 vertices and the explored edges

from the outermost to the innermost loop are 𝑒1, 𝑒2, . . . , 𝑒𝑛−1. The
probability of executing one innermost iteration is

Pr[𝑒1, 𝑒2, . . . , 𝑒𝑛−1] = Pr[𝑒1] Pr[𝑒2 |𝑒1] . . . Pr[𝑒𝑛 |𝑒1, 𝑒2, . . . , 𝑒𝑛−2]
where Pr[𝑒𝑙 |𝑒1, 𝑒2, . . . , 𝑒𝑙−1] is the probability of 𝑒𝑙 being sampled

in the 𝑙th loop. Proportional sampling ensures that this probability

is a fixed number in each loop level, and thus, Pr[𝑒1, 𝑒2, . . . , 𝑒𝑛−1]

is the same for all execution paths. The argument also applies

to two-vertex exploration in Figure 1b. This sampling strategy

is most suitable for large motif counting tasks where exhaustive

enumeration of the patterns is infeasible. Since all subgraphs in the

outcome space have the same sampling probability, we can quickly

obtain subgraphs of the patterns that have the most embeddings.

Figure 5c shows an example of proportional sampling. For simple

illustration, we consider the discovery of size-3 subgraphs by single-

vertex exploration. The nested loop has two levels. The first loop

iterates over all edges in the graph, and the second loop iterates

over the neighboring edges of the first edge. Suppose we set the

sampling probability of the first edge to 1/3 and the probability of

the second edge to 1. Let us consider the sampling of subgraphs

of the two patterns in Figure 5a. For 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1, node-0 has three

edges and one of them (edge (0, 1)) is sampled in the first loop.

In the second loop, because the sampling probability is 1, both

the neighbors of node-1 are sampled. This gives us two sampled

subgraphs (‘014’ and ‘015’). For 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2, node-4,5,6 have six edges

in total and one third of them (edge (4, 2) and (5, 3)) are sampled in

the first loop. In the second loop, (2, 6) is the neighboring edge of
(4, 2), and (3, 6) is the neighboring edge of (5, 3). Both of them are

sampled, and we obtain two sampled subgraphs (‘426’ and ‘536’).

We can see that the number of sampled subgraphs of a pattern

is in expectation proportional to its subgraph count as shown in

Figure 5b.

For any user-defined counting task, suppose there are𝑚 sampled

subgraphs that meet the query constraints and the sampling proba-

bility of each subgraph is 𝑝 . We can obtain an unbiased estimation

of the total number of inquired subgraphs as𝑚/𝑝 . For the example

in Figure 5c, the estimated number of subgraphs of both 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1

and 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2 is 2/(1/3) = 6, which is the same as the actual count.

More generally, let us denote all subgraphs that meet the query

constraints as 𝑄 , all subgraphs in the outcome space as 𝑂 , and the

sampled subgraphs that meet the query constraints as 𝑆 . With any

sampling method, the size of 𝑄 can be estimated

𝑐 =
∑︁
𝑠∈𝑆

1

𝑝𝑠
(1)

where 𝑝𝑠 = Pr[𝑠1, 𝑡2, 𝑡3, . . . , 𝑡𝑛] is the sampling probability of sub-

graph 𝑠 .

Theorem 2. Suppose 𝑐 = |𝑄 | is the number of subgraphs that
meet the query constraints, and 𝑐 is an estimation of 𝑐 from (1), we
have

E[𝑐] = 𝑐. (2)

If we further assume that the subgraphs are sampled independently,
then we have

Var[𝑐] =
∑︁
𝑠∈𝑄

1 − 𝑝𝑠

𝑝𝑠
. (3)

The proof can be found in the supplementary material. When

proportional sampling is used, i.e., 𝑝𝑠 = 𝑝,∀𝑠 ∈ 𝑂 , Theorem 2 leads

to the following error bounds.

Corollary 2.1. If we define the estimation error as

𝑒𝑟𝑟 =
|𝑐 − 𝑐 |
𝑐

, (4)

PACT ’22, October 8–12, 2022, Chicago, IL, USA Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

0

1 2 3

4 5 6

(b) Embeddings of the
patterns

014
015
024

026
035
036

count = 6
MNI = 1

415
426
536

514
624
635

count = 6
MNI = 3

0

1 2 3

4 5 6

0

1 2 3

4 5 6

(c) Proportional sampling
Pr[e1] = 1/3, Pr[e2|e1] = 1

e1

e2

e1

e2

0

1 2 3

4 5 6

0

1 2 3

4 5 6

(d) Budget sampling
B[e1] = 1, B[e2] = 1

014
015

426
536

014

415
426
536

(a) An input graph &
two subgraph patterns

Pattern1

Pattern2

Figure 5: An example of subgraph sampling with loop perforation. We consider the input graph and the sampling of subgraphs
of two patterns in (a). All the embeddings of the two patterns are listed in (b). The count is the number of embeddings. With
proportional sampling (c), two subgraphs are sampled for both 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1 and 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2, the number of sampled subgraphs is
proportional to the count of the pattern. With budget sampling (d), one subgraph is sampled for 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1 and three subgraphs
are sampled for 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2, more subgraphs are sampled for the pattern with larger MNI support.

then we have

E[𝑒𝑟𝑟] ≤
√︁
Var[𝑐]
𝑐

=

√︄
(1 − 𝑝)
𝑝𝑐

, (5)

Pr [𝑒𝑟𝑟 ≥ 𝜖] ≤exp
(
−𝜖2𝑐𝑝

3

)
(6)

for any 0 < 𝜖 < 1 and 0 < 𝜇 < 1.

Formula (5) is obtained by setting 𝑝𝑠 = 𝑝 in (3) and applying

the inequality E[
√
𝑋] ≤

√︁
E[𝑋]. The formula suggests that 1) for

a particular query, the larger sampling probability 𝑝 we use, the

smaller estimation error we achieve; 2) for queries with larger 𝑐 ,

we can apply more aggressive sampling (i.e., smaller 𝑝) to preserve

the same estimation error.

Formula (6) is a direct application of Chernoff bound [21]. The

formula indicates that the chance of the estimation error exceeding

a threshold is exponentially small. While the loop perforation idea

seems simple, we find that the error bound matches the bound

of the state-of-the-art graph-coloring-based technique for motif

counting (See Theorem 3 in [7]). This increases our confidence that

loop perforation can be used as a general and efficient sampling

technique for subgraph mining if appropriate perforation strategies

are used.

In practice, because 𝑐 is unknown, it is hard to configure 𝑝 and

achieve good estimation in one execution. We can use a small 𝑝 to

obtain a quick estimation and run the sampling procedure multiple

times until the average of the estimated counts converges to certain

accuracy.

4.2 Sampling for Finding Frequent Subgraphs
In some applications, we are interested in finding the most frequent

subgraph patterns that meet certain constraints. The frequency is

defined based on certain support measures. The support measures

are different from the counts because they need to have the anti-

monotone property (explained in §2.2). A pattern with a large count

may have a small support if most of its embeddings overlap. For

example, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1 in Figure 5 has six embeddings, but its MNI

support is 1 because all the embeddings have the first vertexmapped

to node-0 in the input graph. In contrast, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2 has the same

number of embeddings, but its MNI support is 3. The proportional

sampling method described above cannot find the frequent patterns

efficiently. For such queries, we propose a budget sampling strategy.
The basic idea is to set a limit on the number of sampled subgraphs

associated with each vertex so that the number of overlapping

samples is limited. Specifically, for single-vertex exploration, we

group the edges of each vertex according to their patterns, and

we sample a fixed number of edges from each group in each loop

level. For two-vertex exploration, we group the neighboring size-3

subgraphs of each vertex according to their patterns and sample a

fix number of size-3 subgraphs from each group.

Figure 5d shows an example of budget sampling. For the two

subgraph patterns in Figure 5a, we set the sampling budgets for both

𝑒1 and 𝑒2 to 1. For 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1, suppose edge (0, 1) is sampled in the

first loop and edge (1, 4) is sampled in the second loop, we obtain

one sampled subgraph ‘014’. For 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2, one edge is sampled for

each of node-4,5,6 in the first loop. Suppose the sampled edges are

(4, 1), (5, 3) and (6, 2). In the second loop, edge (1, 5) is sampled as

a neighbor of (4, 1), edge (3, 6) is sampled as a neighbor of (5, 3),
and edge (2, 4) is sampled as a neighbor of (6, 2). We obtain three

subgraphs ‘415’, ‘536’ and ‘624’. Compared to proportional sampling,

budget sampling returns more subgraphs of 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2 which has

larger MNI support.

4.3 Sampling for Large Graphs
When the input graph is large, there may be a large number of

size-3 subgraphs which cannot be entirely stored in memory. In

such cases, we can perform sampling when obtaining the size-3

subgraphs. For counting tasks, we use single-vertex exploration

with proportional sampling to obtain the size-3 subgraphs. Suppose

the sampling probability of each size-3 subgraph is 𝑞. The estima-

tion of the subgraph counts is similar to the procedure described

in §4.1, only with the 𝑝 replaced by 𝑝 · 𝑞 (𝑛−1)/2 if 𝑛 is odd and

replaced by 𝑝 ·𝑞 (𝑛−2)/2 if 𝑛 is even. For FSM, we can sample a fixed

number of size-3 subgraphs around each vertex in order to have

subgraphs evenly distributed over all vertices. This can be done by

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation PACT ’22, October 8–12, 2022, Chicago, IL, USA

struct SmpRes {
double prob; // sampling probability of current iteration
bool skip; // skip the current iteration or not };

struct Sampler {
virtual SmpRes smp_prob(Subgraph s, Subgraph t, int x, int l) {

return { 1.0; false; } // no sampling by default };

Figure 6: The interface for defining a sampler: 𝑠 is the inter-
mediate subgraph, 𝑡 is the joining size-3 subgraph (or edge
if single-vertex exploration is used), 𝑥 is the joining vertex
that 𝑠 and 𝑡 have in common, and 𝑙 is the loop level. The
sampler returns two values for each loop iteration: 𝑝𝑟𝑜𝑏 is
the sampling probability, and 𝑠𝑘𝑖𝑝 is the sampling outcome.

struct BudgetSampler: Sampler {
// W[i][j] stores the number of subgraphs containing
// node i and of pattern j
map<int, map<int, double>> W;

// B[l] is the sampling budget in loop level l
vector<double> B;
SmpRes smp_prob(Subgraph s, Subgraph t, int x, int l) {

double p = B[l] / W[x][t.pat_id];
double r = uniform(0, 1);
return {p, r >= p} };

Figure 7: Implementation of budget sampling.

incorporating sampling into a subgraph matching procedure. We

adapted AutoMine [31] for this task.

4.4 Programming Interface
Our system provides a simple interface for defining different sam-

pling strategies, as shown in Figure 6. The 𝑠𝑚𝑝_𝑝𝑟𝑜𝑏 function ac-

cepts as input the intermediate subgraph 𝑠 , the joining size-3 sub-

graph (or edge) 𝑡 , the joining vertex 𝑥 , and the loop level 𝑙 . It returns

two values for each iteration in the 𝑙th loop level. The first value

𝑝𝑟𝑜𝑏 is the sampling probability of the current iteration, and the

second value 𝑠𝑘𝑖𝑝 is the sampling outcome, indicating whether the

current iteration should be skipped or not. The users can inherit the

Sampler class and define their own 𝑠𝑚𝑝_𝑝𝑟𝑜𝑏 function. By default,

the function returns 𝑝𝑟𝑜𝑏 = 1 and 𝑠𝑘𝑖𝑝 = 𝑓 𝑎𝑙𝑠𝑒 , meaning that no

sampling is performed.

Figure 7 shows the implementation of budget sampling with

our API. Before the exploration procedure, we aggregate the size-3

subgraphs (or edges if single-vertex exploration is used) according

to their patterns and store a pattern index for each size-3 subgraph.

We then group the neighboring size-3 subgraphs of each vertex

according to their patterns and store the number of size-3 subgraphs

in each group. For each vertex 𝑖 , the number of its neighboring size-

3 subgraphs of pattern 𝑗 is stored in𝑊 [𝑖] [𝑗]. The BudgetSampler
computes the sampling probability of a joining size-3 subgraph

𝑡 as 𝐵 [𝑙]/𝑊 [𝑥] [𝑡 .𝑝𝑎𝑡_𝑖𝑑] where 𝐵 [𝑙] is the sampling budget in

loop level 𝑙 and 𝑡 .𝑝𝑎𝑡_𝑖𝑑 is the pattern index of 𝑡 . The sampling

probability is compared with a random number between 0 and 1. If

the random number is greater than the sampling probability, we

skip the current iteration.

Due to space limit, we leave the implementation of proportional

sampling in the supplementary material.

Input:
data graph G,
Pattern size s,

query constraints

Is
counting

task?

Join edges with
themselves

Match size-3 subgraphs

YesNo

Two-vertex exploration

Filter with constraints

All size-3 subgraphs and edges

Size-3 subgraphs and edges that
meet the constraints

Output:
Estimated counts or

frequent patterns

Sampling plan

Figure 8: Workflow of SampleMine.

4.5 Putting It Together
We summarize the workflow of SampleMine in Figure 8. Given a

data graph, a target pattern size, and query constraints, it starts by

collecting the size-3 subgraphs. If the task is to count subgraphs, we

obtain the size-3 subgraphs by joining the edges with themselves;

if the task is to find frequent patterns, we use AutoMine to match

the size-3 subgraphs. Both approaches return the same set of size-

3 subgraphs if no sampling is used. For large graphs, we apply

random sampling to the joining or matching procedure as described

in §4.3. After obtaining all the size-3 subgraphs, we filter out the

unwanted ones based on the query constraints. The constraints can

be a support threshold for frequent subgraph mining tasks, or they

can be any user-defined constraints. The filtered size-3 subgraphs

are given to the two-vertex exploration procedure in Figure 1b to

find subgraphs of target size. As discussed in this section, we can

accelerate the exploration procedure by randomly sampling the

loop iterations. Finally, the subgraph counts are estimated or the

frequent patterns are returned for the query.

5 EXPERIMENTAL RESULTS
This section presents our experimental setup and performance

comparison with the existing graph mining systems.

5.1 Experimental Setup
Platform: We run all the experiments on a workstation with an

Intel Xeon W-3225 CPU containing 8 physical cores (16 logical

cores) and 192GB memory. We use GCC 7.3.1 for compilation with

optimization level O2 enabled.

Datasets: Table 1 lists the graphs used in our experiments. CI and

MI are labeled; the other four are unlabeled. We randomly assign

20 labels to the vertices in OK graph and 30 labels to UK and FR.

PACT ’22, October 8–12, 2022, Chicago, IL, USA Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

Table 1: Graph datasets.

Graph #vertices #edges Max_degree
CiteSeer (CI) [18] 3,264 4,536 99

MiCo (MI) [18] 100K 1.1M 1,359

Orkut (OK) [2] 3.1M 117.2M 33,313

UK-2005 (UK) [1] 39M 936M 1,776,858

Friendster (FR) [50] 65M 1.8B 5,214

Tasks: We evaluate our system with subgraph counting (SC), fre-

quent subgraph mining (FSM), and user-defined queries. FSM and

SC are two standard SPM tasks and have been described in §2.2.

We consider labeled subgraphs for SC which is more challenging

than unlabeled motif counting. We also test with five user-defined

queries:

• Q1: count subgraphs with at least one vertex of label 1 and one

vertex of label 2;

• Q2: count subgraphs with at least two vertices of label 1;

• Q3: count subgraphs that contain triangles with label 1;

• Q4: count subgraphs that do not contain squares with label 1;

• Q5: find subgraphs with label 1 or 2 and return the frequent

patterns among them with MNI support greater than a threshold.

For most of the user-defined queries, we check the query con-

straints and filter out the unwanted subgraphs in the innermost

loop. For example, Q1 computes the number of vertices with label

1 and 2 in the subgraph. If both numbers are 0, the subgraph is

discarded. Q2 performs filtering in both the innermost loop and the

second last loop. If the subgraph does not have label 1 in the second

last loop, it cannot have at least two label 1’s, so we can filter it

out early. Q5 checks the query constraints in the innermost loop

before assigning the vertices to the domains, so the MNI support

is calculated only with the subgraphs that meet the constraints.

We consider vertex-induced subgraphs for SC, Q1, Q2, Q4, Q5, and

edge-induced subgraphs for FSM and Q3.

Baselines: We compare our system with three state-of-the-art

systems for general-purpose subgraph mining: Peregrine (PR) [24],
AutoMine (AM) [31] and Pangolin (PG) [15], an approximate sys-

tem specialized for subgraph counting: ASAP [23], and a sampling-

based system specialized for frequent subgraph mining: ScaleMine

(SA) [3]. Pangolin supports unlabeled vertex-based extension or

labeled edge-based extension. It cannot enumerate labeled vertex-

induced subgraphs for SC, so we only compare with Pangolin for

FSM. The source code of ASAP is not available. We implement

its neighbor sampling method into AutoMine. ASAP samples one

subgraph at a time. When sampling the subgraph, it starts from a

random edge in the graph and gradually extends the subgraph by

randomly selecting a neighbor of the previous node. If the sampled

subgraph belongs to a pattern, ASAP estimates the total number

of embeddings of that pattern as the reciprocal of the sampling

probability. ASAP runs this sampling procedure for a sufficient

number of times and uses the average over executions as the final

estimation. The main difference between this neighbor sampling

method and our proportional sampling method is that neighbor

sampling always samples one edge from a neighbor list. It cannot

ensure a higher sampling probability for patterns with more em-

beddings. ASAP does not support MNI-based FSM. It has limited

support for user-defined queries. The users can perform "all" or

Table 2: Sampling ratios for counting tasks.

Graph CI MI OK UK FR

1/𝑠𝑟1 1 1 8 1024 32

{1/𝑠𝑟2 , 1/𝑠𝑟3} {2, 4} {8, 64} {32, 1024} {512, 1024} {8, 32}

Table 3: Execution time (in seconds) of subgraph counting.
Systems: SampleMine using two-vertex explorationwith sam-
pling (TV-smpl) and without sampling (TV-acc), SampleMine
using single-vertex exploration with sampling (SV-smpl) and
without sampling (SV-acc), AutoMine (AM), and Peregrine
(PR). ‘T’ represents timeout after 24 hours of execution. ‘F’
execution failure due to insufficient memory.

Size Gr. TV-smpl SV-smpl TV-acc SV-acc AM PR
4

CI

0.45 0.78 0.89 1.03 0.90 4.6

5 1.8 3.0 19 26 20 332

6 23 38 530 688 525 26,605

7 470 585 17,808 21,523 17,994 T

4 MI 321 447 19,931 24,856 19,270 F

"atleast-one" predicate subgraph matching, but it does not support

the more general queries used in our experiments.

Sampling Ratios: Table 2 lists the sampling ratios for counting

tasks in our experiments. Here, 𝑠𝑟1 the sampling ratio of edges for

obtaining size-3 subgraphs, 𝑠𝑟2 and 𝑠𝑟3 are the sampling ratios of

edges and size-3 subgraphs for two-vertex exploration. The sam-

pling ratios are determined by the following procedure. First, 𝑠𝑟1
is set to ensure that the size-3 subgraphs can be stored in memory.

We use 𝑁𝑑2 (𝑁 is the number of vertices, 𝑑 is the maximum degree)

as an upper bound of the number of size-3 subgraphs. Since we

know all size-3 subgraph of MI can be stored in memory on our

machine (i.e., 𝑠𝑟1 can be set to 1 on MI), we calculate 𝑠𝑟1 for larger

graphs with 𝑁𝑀𝐼𝑑
2

𝑀𝐼
= 𝑁𝐺 (𝑑𝐺/𝑠𝑟1)2 and round it to the closest

power of 2. Next, we determine 𝑠𝑟3 based on an upper bound of

the number of size-5 subgraphs (i.e., 𝑁𝐷2
where 𝐷 is the maxi-

mum degree of size-3 subgraphs). Since we know 𝑠𝑟3 = 1/64 can
obtain good results for MI, we calculate 𝑠𝑟3 for larger graphs with

𝑁𝑀𝐼 (𝐷𝑀𝐼 /64)2 = 𝑁𝐺 (𝐷𝐺/𝑠𝑟3)2. Finally, given 𝑠𝑟3, we use 𝑁𝑑𝐷 as

an upper bound of the number of size-4 subgraphs and calculate

𝑠𝑟2 with 𝑁𝑀𝐼 (𝑑𝑀𝐼 /8) (𝐷𝑀𝐼 /64) = 𝑁𝐺 (𝑑𝐺/𝑠𝑟2) (𝐷𝐺/𝑠𝑟3).
Parallelization: We use 16 threads for parallel execution for all

systems. For our system, the outermost loop is parallelized with

OpenMP using dynamic scheduling. For ASAP, since the sampling

of subgraphs are independent, we use 16 threads to sample sub-

graphs at the same time.

5.2 Results for Subgraph Counting
Table 3 shows the execution time of SC with different systems. We

list the results of tasks for which at least one of the systems can

return accurate results in 24 hours. The execution time of two-vertex

exploration includes both the time of the nested loop and the time

for obtaining size-3 subgraphs. Without sampling, our system has

almost the same execution time as AutoMine and is 5x to 50x faster

than Peregrine. This is mainly because Peregrine needs to maintain

all the labeled patterns and it is expensive when the number of

patterns is large. To show the benefit of two-vertex exploration, we

configure our system to run single-vertex exploration. Two-vertex

exploration is 1.2x to 1.4x faster than single-vertex exploration. We

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation PACT ’22, October 8–12, 2022, Chicago, IL, USA

17

21

8

3
1

Error Range

[0
.0

0,
 0

.0
3]

(0
.0

3,
 0

.0
6]

(0
.0

6,
 0

.0
9]

(0
.0

9,
 0

.1
2]

(0
.1

2,
 0

.1
5]

Pa

tt
er

ns

0

5

10

15

20

25

(a) 4-SC on CI

28

15

3
1

3

Error Range

[0
.0

0,
 0

.0
4]

(0
.0

4,
 0

.0
8]

(0
.0

8,
 0

.1
3]

(0
.1

3,
 0

.1
7]

(0
.1

7,
 0

.2
1]

0

5

10

15

20

25

30

(b) 5-SC on CI

24

19

5
1 1

Error Range

[0
.0

1,
 0

.0
4]

(0
.0

4,
 0

.0
7]

(0
.0

7,
 0

.1
0]

(0
.1

0,
 0

.1
3]

(0
.1

3,
 0

.1
6]

0

5

10

15

20

25

30

Pa

tt
er

ns

(c) 6-SC on CI

29

14

4 2 1

Error Range

[0
.0

0,
 0

.0
3]

(0
.0

3,
 0

.0
6]

(0
.0

6,
 0

.0
9]

(0
.0

9,
 0

.1
2]

(0
.1

2,
 0

.1
5]

0
5

10
15
20
25
30
35

(d) 7-SC on CI

8

15

25

2

Error Range

[0
.0

2,
 0

.0
3]

(0
.0

3,
 0

.0
4]

(0
.0

4,
 0

.0
6]

(0
.0

6,
 0

.0
7]

0

5

10

15

20

25

30

(e) 4-SC on MI

Figure 9: Histogram of estimation errors of SampleMine for
the top-50 patterns with most embeddings.

Table 4: Number of patterns returned by SampleMine (SM)
and ASAP with the same execution time. Tot# is the total
number of patterns. SM/ASAP-tot is the number of patterns
returned by SampleMine/ASAP. SM/ASAP-50 is the number
of top-50 patterns returned by SampleMine/ASAP.

Size Gr. Tot# SM-tot SM-50 ASAP-tot ASAP-50
4

CI

1,141 614 50 225 0

5 7,048 3,028 50 945 37

6 45,917 15,572 50 2,900 0

7 323,794 93,781 50 5,646 0

4 MI 855,010 752,561 50 165,327 0

then apply proportional sampling to these tasks with the sampling

ratios listed in Table 2. The sampling brings 2x to 37.9x speedups

on CI and a 62.1x speedup on MI. The average (geometric mean)

speedup of TV-smpl over AutoMine is 16.3, and the average speedup

over Peregrine is 129.7.

Figure 9 shows the histogram of estimation errors for the top-50

patterns with most embeddings for the above tasks. We use the

definition of estimation error in (4). The results show that, with

the above sampling configuration, our system returns estimation of

small errors – for most patterns the estimation error is smaller than

0.06, and the average error over the 50 patterns is smaller than 0.05.

Comparing 4-SC on CI and MI graph, we can see that the estimation

error on MI graph is smaller than on CI graph even with a smaller

sampling ratio. This is because MI has much more size-4 subgraphs

than CI. The top-50 labeled size-4 patterns in MI have 1.57 × 10
7
to

2.36 × 10
9
embeddings, while the top-50 size-4 patterns in CI have

only 434 to 1.47 × 10
5
embeddings. According to Corollary 2.1, the

more subgraphs a query returns, the more aggressive sampling we

can use to preserve the same accuracy.

Table 5: Execution times of subgraph counting in hours with
SampleMine.

Size Gr. Time per exec Max_err
5 MI 1.9 0.02

5 OK 5.4 0.04

4 UK 4.3 0.05

4 FR 5.9 0.03

Table 6: Execution times of frequent subgraph mining in
seconds with different systems.

Size Sup. Gr. SM TV-acc SV-acc AM PR PG SA

4

0.001

CI

0.45 0.82 1.3

1.8

5.4 5.5 1.5

0.005 0.45 0.82 1.3 4.8 4.8 1.5

0.01 0.38 0.77 1.2 3.4 3.7 1.4

0.05 0.27 0.69 0.93 1.1 2.8 1.1

4

0.001

MI

505 54,903 62,062

78,244 F F

57,754

0.005 489 42,695 49,179 45,820

0.01 387 31,115 38,989 30,475

0.05 252 25,719 30,063 25,223

5

0.001

CI

3.2 35 46

68 F F

40

0.005 2.6 27 40 37

0.01 2.2 25 39 27

0.05 1.7 23 32 23

6

0.001

CI

54 1,135 1,482

1,924 F F

1,096

0.005 39 1,047 1,443 1,030

0.01 37 1,052 1,420 1,025

0.05 22 749 1,076 804

We run ASAP for the same amount of time as our system and

compare the estimation accuracy. Table 4 lists the number of pat-

terns returned by SampleMine and ASAP. The total number of

patterns returned by SampleMine (SM-tot) is 2.7x to 16.6x that of

ASAP (ASAP-tot). For the top-50 patterns, our system returns all

the 50 patterns (SM-50), while ASAP returns none for most tasks

and returns 37 patterns for 5-SC on CI graph. For the 37 patterns

that ASAP finds, the average error is 15.7, the maximum error is

430, the minimum error is 0.05, and the median error is 0.9. The

results show that our system is more effective in finding significant

patterns and obtains more accurate estimations than ASAP.

Table 5 shows the execution time of tasks on larger graphs for

which we cannot obtain accurate results in 24 hours. We apply

proportional sampling with ratios as listed in Table 2. Since the

actual counts are unknown, we run the experiment for 10 times and

calculate the empirical error by replacing 𝑐 in (4) with the average

count of the 10 runs. The maximum error of the 10 runs for the

top-50 patterns is listed in the last column of Table 5. For all the

testcases, the errors are smaller than 0.05. Again, we are able to

apply aggressive sampling to these large graphs because they have

a large number of subgraphs.

5.3 Results for Frequent Subgraph Mining
Table 6 lists the execution times of FSM for which at least one of the

systems can return result within 24 hours. We find that Peregrine

and Pangolin abort for most tasks. Peregrine paper [24] only reports

results of 3-FSM. Pangolin [15] reports results mostly for 3-FSM. It

reports 4-FSM for only one graph using large support thresholds,

but it fails to give result for MI. For the only one testcase (4-FSM on

CI) that Peregrine and Pangolin do return, our system (TV-acc) is

1.6x to 6.8x faster without any sampling. AutoMine is able to return

results for these tasks. However, because it matches the patterns

in a depth-first order, it cannot benefit from the anti-monotone

PACT ’22, October 8–12, 2022, Chicago, IL, USA Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

112x

68x 56x
46x

84x

62x 51x 44x

80x

60x 47x 46x
Speedup=

102x

95x 86x 76x

0%

20%

40%

60%

80%

100%

4 6 8 10

Di

sc
ov

er
ed

 P
at

te
rn

s /
 T

ot
. P

at
te

rn
s

Sampling Budget

sup=0.001
sup=0.005
sup=0.01
sup=0.05

Figure 10: Number of discovered size-4 frequent patterns on
MI graph with different support thresholds and different
sampling budgets. Sampling budget 𝑥 means that the size-
3 and size-2 subgraphs are sampled with budget 𝑥2 and 𝑥

during the exploration procedure.

property (i.e., it does not run faster for larger support thresholds).

Our system prunes the infrequent size-3 subgraph before the ex-

ploration procedure, and it runs 1.6x to 3.2x faster than AutoMine

without sampling. Compared with ScaleMine (SA) [3] which uses

node sampling for support estimation, our system (TV-acc) achieves

almost the same performance without using any sampling.

We then configure our system to run budget sampling with

budget 4
2
and 4 for size-3 and size-2 subgraphs on CI, and budget

6
2
and 6 for size-3 and size-2 subgraphs on MI. The execution times

are listed in column ‘SM’ in Table 6. Our system runs 4.1x to 310x

faster than the compared systems while returning more than 80%

of the frequent patterns for all these tasks. The average (geometric

mean) speedup is 34.7 against AutoMine, 8.3 against Peregrine,

10.7 against Pangolin, and 18.7 against ScaleMine. Figure 10 shows

the number of size-4 frequent patterns found by our system with

different support thresholds and different sampling budgets on MI

graph. The speedups over non-sampling execution (TV-acc) are

labeled on the lines. The total number size-4 frequent patterns on

this graph is 249140, 54164, 12241 and 9 for support threshold of

0.001𝑁 , 0.005𝑁 , 0.01𝑁 and 0.05𝑁 where𝑁 is the number of vertices.

When the sampling budget is set to 4, our system returns all the 9

patterns with support 0.05𝑁 using only 1/102 of the total execution
time. When the sampling budget increases to 6, our system returns

more than 80% of the frequent patterns for all support thresholds

with about 1/60 of the total execution time. When the sampling

budget increases to 10, our system still achieves more than 40x

speedups while obtaining more than 98% of the frequent patterns

for all support thresholds.

Table 7 lists the results of 5-FSM on UK graph with our system.

Since the size-3 subgraphs cannot be entirely stored in memory,

we perform sampling during the matching phase as described in

§4.3. The matching procedure takes a large proportion of the total

execution time. Once the size-3 subgraph are sampled, we can find

size-5 frequent patterns in a relatively short time. None of the

compared systems (including the sampling-based ScaleMine [3])

can return results for this task within 24 hours. This shows the main

advantage of our system against previous sampling-based systems:

while our system does not guarantee to find all the frequent patterns,

Table 7: Results of 5-FSM on UK graph with different sam-
pling budgets and support thresholds. ‘M. sb’ is the number of
size-3 subgraphs sampled from each vertex by the match pro-
cedure. ‘M. time’ is the time for obtaining size-3 subgraphs.
‘J. sb’ is the sampling budget for loops that iterate over size-3
subgraphs in two-vertex exploration. ‘J. time’ is the execu-
tion time of the nested loop.

Sup. M. sb M. time (sec) J. sb J. time (sec) # patterns

0.0001

2 2,254

4 140 76

16 288 143

4 2,530

4 185 105

16 505 188

0.0005

2 2,254

4 105 1

16 235 3

4 2,530

4 138 8

16 421 14

error=
0.004

0.01
0.03 0.004

0.08

0.04

0.09 0.01

1

2

4

8

16

32

64

Q1 Q2 Q3 Q4

Sp
ee
du
p

sr=1/2 sr=1/4

(a) size-7 on CI

error=
0.05

0.03

0.06 0.050.07

0.05

0.08 0.07

1

2

4

8

16

32

64

Q1 Q2 Q3 Q4

sr=1/32 sr=1/64

(b) size-4 on MI

Figure 11: Speedups for user-defined counting tasks with
different sampling ratios: ‘𝑠𝑟 = 1/𝑥 ’ means that two-vertex
exploration uses sampling ratio 1/𝑥 for loops that iterate
over size-3 subgraphs and 1/

√
𝑥 for loops that iterate over

edges.

71x

24x 11x 6.7x

speedup=
151x

91x
73x 68x

40%

60%

80%

100%

4 6 8 10

Di

sc
ov

er
ed

 P
at

te
rn

s
/ T

ot
. P

at
er

ns

Sampling Budget

7-CI
4-MI

Figure 12: Speedups for Q5 with different sampling budgets.

it is able to return the most frequent patterns quickly, which are of

most interest in real-world applications.

5.4 Results for User-Defined Queries
We first run Q1∼Q5 on CI and MI graph where accurate results

are available. Figure 11 shows speedups for Q1∼Q4 with different

sampling ratios. We can see that the queries run 3.8x to 7.3x faster

for size-7 subgraphs on CI with 𝑠𝑟 = 1/2 and 14.5x to 49.2x faster

with 𝑠𝑟 = 1/4. For size-4 subgraphs on MI, the queries run 2.6x to

26.9x faster with 𝑠𝑟 = 1/32 and 2.7x to 44.4x faster with 𝑠𝑟 = 1/64.
The speedups for Q2 are smaller than for other queries because Q2

has a relatively small exploration space as the subgraphs without

label 1 are pruned in the second last loop. The estimation errors are

labeled in the figure. The errors are smaller than 0.1 for all tasks.

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation PACT ’22, October 8–12, 2022, Chicago, IL, USA

Table 8: Execution times of user-defined queries in hours
with SampleMine.

Task Gr. Time per exec Err.
5-Q1 MI 3.5 0.02

5-Q1 OK 10.1 0.03

4-Q1 UK 4.4 0.05

4-Q1 FR 5.8 0.04

5-Q2 OK 8.3 0.04

4-Q2 UK 2.3 0.05

4-Q2 FR 3.1 0.05

Figure 12 shows the speedups for Q5 with different sampling

budgets. As expected, the number of discovered patterns increases

with the sampling budget. When the budget is set to 6, our system

can obtain 98.7% of the frequent patterns with only 1/24 of the

total execution for size-7 subgraphs on CI, and obtain 93.7% of the

frequent patterns with only 1/91 of the total execution time for

size-4 subgraphs on MI.

We then run Q1 and Q2 on larger graphs with the sampling ratios

listed in Table 2. Table 8 shows the execution time of different tasks

on different graphs. Because the accurate results are unknown, we

run the experiments for 10 times and compute the empirical estima-

tion error. For all the tasks, our system returns estimation of high

accuracy. The same as for subgraph counting, we are able to apply

aggressive sampling to these user-defined queries on large graphs

because the subgraph counts are large. (The estimated counts are

from 10
12

to 10
20
.) It is possible that for some user-defined queries

with stricter constraints there are not many output subgraphs. For

such queries, we cannot use a small 𝑝 with proportional sampling.

Formula (3) suggests that the estimation error can be reduced by

assigning higher sampling probabilities to subgraphs in 𝑄 . For ex-

ample, if the task is to count the number of subgraphs with label 1,

a better sampling strategy might be assigning higher probabilities

to the edges or size-3 subgraphs that contain label 1. We leave it for

future work to investigate more sophisticated sampling strategies

(e.g. adaptive sampling) under the loop-perforation framework.

6 RELATEDWORK
There is a growing interest in supporting general-purpose subgraph

pattern mining in recent year. Many systems and task-independent

optimizations have been proposed.

Subgraph-Centric Systems: Arabesque [43] is a distributed sys-

tem that enumerates all possible embeddings in multiple rounds

and uses a filter-process model to generate the results. RStream [47]

is the first single-machine, out-of-core graph mining system. It sup-

ports a rich programming model that exposes relational algebra for

developers to express various mining tasks and a runtime engine

that can efficiently compute the relational operations. Pangolin

[15] also targets single-machine but provides GPU acceleration.

DistGraph [42] and G-miner [12] are distributed graph mining

systems that adopt breadth-first exploration. DistGraph focuses

on reducing the communication of distributed computing when

each node can only have a portion of the graph. G-miner proposes

a block-based graph partitioning technique and uses work steal-

ing to achieve good load balance. These systems use breadth-first

exploration and need to store all intermediate results. The large

memory consumption prevents them from efficiently mining for

large graphs. Fractal [17] addresses the memory consumption is-

sue by implementing depth-first exploration. All of the existing

subgraph-centric systems are based on single-vertex exploration.

Our system is the first to use two-vertex subgraph exploration.

Pattern-Based Systems: AutoMine [31] is a single-machine graph

mining system that features compiler-based optimizations. Their

main idea is to enumerate all unlabeled patterns of a particular size

and match them one-by-one on a graph. Because the patterns are

given, AutoMine is able to search an optimal matching strategy and

combine matching procedures of multiple patterns. Peregrine [24]

is another pattern-based system. Instead of enumerating all patterns

before matching, it discovers patterns based on the subgraphs it has

explored and maintains a list of the patterns. DwavesGraph [13]

lists all the unlabeled patterns and uses pattern decomposition for

fast matching of the patterns. Similar to AutoMine, it needs to know

all the unlabeled patterns in advance. Sandslash [14] supports both

subgraph-centric and pattern-based exploration. To achieve both

high productivity and high efficiency, it provides a high-level API

for specifying the graph mining problems and performing subgraph

enumeration automatically, and a low-level API that allows users

to express algorithm-specific optimizations.

Approximate Subgraph Pattern Mining: Random sampling has

beenwidely used to reduce the computational complexity of SPM [3,

9, 11, 19, 37, 38]. Motivo uses graph coloring and adaptive sampling

to accelerate motif counting [9]. ScaleMine proposes a sampling

technique to accelerate FSM by estimating the MNI support of a

patternwithout enumerating all of its embeddings [3]. Sampling has

also been used for accelerating FSM in a database of graphs [4, 40].

The main idea of these works is to perform random walk in the

space of all patterns. By carefully setting the sampling probability

at each step, they ensure that patterns of higher supports are more

likely to be sampled [4]. These sampling techniques are task-specific

and cannot be easily adopted for new applications. Sampling has

been adopted in pattern-based graph mining systems [23, 32]. The

idea is to sample edges in the graph based on the given patterns and

estimate the actual results with the sampled results. These systems

are good at counting subgraphs of a given pattern. However, as

we show in the experiments, when the pattern is unknown, such

neighbor sampling technique is not effective in finding the patterns

with the most embeddings.

7 CONCLUSION
In this work, we propose a framework for applying random sam-

pling to general-purpose subgraph pattern mining. Our system is

designed with two novel techniques: two-vertex subgraph explo-

ration and loop-perforation-based subgraph sampling. We show

that two-vertex exploration accelerates subgraph exploration pro-

cedure by extending the subgraph by two vertices in each step. We

also show that our loop-perforation-based sampling technique is

flexible and can be used for designing efficient sampling strategies

for different SPM tasks. The experiments show that our system

significantly outperforms other state-of-the-art subgraph pattern

mining systems for different tasks on various input graphs.

ACKNOWLEDGEMENTS
This work was supported by NSF award CCF-2028825.

PACT ’22, October 8–12, 2022, Chicago, IL, USA Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu

REFERENCES
[1] Dataset for "Statistics and Social Network of YouTube Videos" . http://netsg.cs.

sfu.ca/youtubedata/.

[2] Orkut social network. http://snap.stanford.edu/data/com-Orkut.html.

[3] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad

Jamour. Scalemine: Scalable parallel frequent subgraph mining in a single large

graph. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 716–727. IEEE, 2016.

[4] Mohammad Al Hasan and Mohammed J Zaki. Output space sampling for graph

patterns. Proceedings of the VLDB Endowment, 2(1):730–741, 2009.
[5] Suman K Bera and C Seshadhri. How to count triangles, without seeing the

whole graph. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 306–316, 2020.

[6] Vandana Bhatia and Rinkle Rani. Ap-fsm: A parallel algorithm for approximate

frequent subgraphmining using pregel. Expert Systems with Applications, 106:217–
232, 2018.

[7] M. Bressan, Stefano Leucci, and A. Panconesi. Motivo: Fast motif counting via

succinct color coding and adaptive sampling. Proc. VLDB Endow., 12:1651–1663,
2019.

[8] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. Motif counting beyond five nodes. ACM Transactions on Knowledge
Discovery from Data (TKDD), 12(4):1–25, 2018.

[9] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. Motivo: fast mo-

tif counting via succinct color coding and adaptive sampling. arXiv preprint
arXiv:1906.01599, 2019.

[10] Björn Bringmann and Siegfried Nijssen. What is frequent in a single graph? In

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 858–863.
Springer, 2008.

[11] Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet, and Meriem Bouz-

bila. Sampling informative patterns from large single networks. Future Generation
Computer Systems, 106:653–658, 2020.

[12] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.

G-miner: an efficient task-oriented graph mining system. In Proceedings of the
Thirteenth EuroSys Conference, pages 1–12, 2018.

[13] Jingji Chen and Xuehai Qian. Dwarvesgraph: A high-performance graph mining

system with pattern decomposition, 2020.

[14] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.

Sandslash: a two-level framework for efficient graph pattern mining. In Pro-
ceedings of the ACM International Conference on Supercomputing, pages 378–391,
2021.

[15] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Pangolin:

An efficient and flexible graph mining system on cpu and gpu. Proc. VLDB Endow.,
13(8):1190–1205, April 2020.

[16] Wei-Ta Chu and Ming-Hung Tsai. Visual pattern discovery for architecture

image classification and product image search. In Proceedings of the 2nd ACM
International Conference on Multimedia Retrieval, ICMR ’12, New York, NY, USA,

2012. Association for Computing Machinery.

[17] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira, and Srini-

vasan Parthasarathy. Fractal: A general-purpose graph pattern mining system.

In Proceedings of the 2019 International Conference on Management of Data, SIG-
MOD ’19, page 1357–1374, New York, NY, USA, 2019. Association for Computing

Machinery.

[18] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.

Grami: Frequent subgraph and pattern mining in a single large graph. Proc. VLDB
Endow., 7(7):517–528, March 2014.

[19] Ruohan Gao, Huanle Xu, Pili Hu, and Wing Cheong Lau. Accelerating graph

mining algorithms via uniform random edge sampling. In 2016 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2016.

[20] Shayan Ghazizadeh and Sudarshan S Chawathe. Seus: Structure extraction

using summaries. In International Conference on Discovery Science, pages 71–85.
Springer, 2002.

[21] Michel Goemans. Chernoff bounds, and some applications. https://math.mit.edu/

~goemans/18310S15/chernoff-notes.pdf.

[22] Guyue Han and Harish Sethu. Waddling random walk: Fast and accurate mining

of motif statistics in large graphs. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pages 181–190. IEEE, 2016.

[23] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir

Braverman, and Ion Stoica. ASAP: Fast, approximate graph pattern mining at

scale. In 13th USENIX Symposium onOperating Systems Design and Implementation
(OSDI 18), pages 745–761, Carlsbad, CA, October 2018. USENIX Association.

[24] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A pattern-aware

graph mining system. In Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, New York, NY, USA, 2020. Association for Computing

Machinery.

[25] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool

for large and sparse graphs. In David Applegate, Gerth Stølting Brodal, Daniel

Panario, and Robert Sedgewick, editors, Proceedings of the Ninth Workshop on

Algorithm Engineering and Experiments and the Fourth Workshop on Analytic
Algorithms and Combinatorics, pages 135–149. SIAM, 2007.

[26] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In

Proceedings 2001 IEEE international conference on data mining, pages 313–320.
IEEE, 2001.

[27] Michihiro Kuramochi and George Karypis. Grew-a scalable frequent subgraph

discovery algorithm. In Fourth IEEE International Conference on Data Mining
(ICDM’04), pages 439–442. IEEE, 2004.

[28] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph enumera-

tion in mapreduce: a cost-oriented approach. The VLDB Journal, 26(3):421–446,
2017.

[29] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu Yang.

Scalable distributed subgraph enumeration. Proceedings of the VLDB Endowment,
10(3):217–228, 2016.

[30] Shikai Li, Sunghyun Park, and Scott Mahlke. Sculptor: Flexible approximation

with selective dynamic loop perforation. In Proceedings of the 2018 International
Conference on Supercomputing, pages 341–351, 2018.

[31] Daniel Mawhirter and BoWu. Automine: Harmonizing high-level abstraction and

high performance for graph mining. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 509–523, New York, NY, USA,

2019. Association for Computing Machinery.

[32] Daniel Mawhirter, Bo Wu, Dinesh Mehta, and Chao Ai. Approxg: Fast approxi-

mate parallel graphlet counting through accuracy control. In 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages
533–542. IEEE, 2018.

[33] Brendan D McKay et al. Practical graph isomorphism. Department of Computer

Science, Vanderbilt University Tennessee, USA, 1981.

[34] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. Network motifs: simple building blocks of complex networks.

Science, 298(5594):824–827, 2002.
[35] Aduri Pavan, Srikanta Tirthapura, et al. Counting and sampling triangles from a

graph stream. 2013.

[36] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting all

5-vertex subgraphs. In Proceedings of the 26th international conference on world
wide web, pages 1431–1440, 2017.

[37] Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato. Maniacs:

Approximate mining of frequent subgraph patterns through sampling. KDD ’21,

page 1348–1358, New York, NY, USA, 2021. Association for ComputingMachinery.

[38] Sumit Purohit, Sutanay Choudhury, and Lawrence B Holder. Application-specific

graph sampling for frequent subgraph mining and community detection. In 2017
IEEE International Conference on Big Data (Big Data), pages 1000–1005. IEEE,
2017.

[39] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando

Silva. A survey on subgraph counting: Concepts, algorithms, and applications to

network motifs and graphlets. ACM Computing Surveys (CSUR), 54(2):1–36, 2021.
[40] Tanay Kumar Saha and Mohammad Al Hasan. Fs3: A sampling based method

for top-k frequent subgraph mining. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 8(4):245–261, 2015.

[41] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.

Managing performance vs. accuracy trade-offs with loop perforation. In Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 124–134, 2011.

[42] Nilothpal Talukder and Mohammed J Zaki. A distributed approach for graph

mining in massive networks. Data Mining and Knowledge Discovery, 30(5):1024–
1052, 2016.

[43] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos Siganos, Mo-

hammed J Zaki, and Ashraf Aboulnaga. Arabesque: a system for distributed graph

mining. In Proceedings of the 25th Symposium on Operating Systems Principles,
pages 425–440, 2015.

[44] Johan Ugander, Lars Backstrom, and Jon Kleinberg. Subgraph frequencies: Map-

ping the empirical and extremal geography of large graph collections. In Proceed-
ings of the 22nd International Conference on World Wide Web, WWW ’13, page

1307–1318, New York, NY, USA, 2013. Association for Computing Machinery.

[45] A Vazquez, R Dobrin, D Sergi, J-P Eckmann, Zoltan N Oltvai, and A-L Barabási.

The topological relationship between the large-scale attributes and local inter-

action patterns of complex networks. Proceedings of the National Academy of
Sciences, 101(52):17940–17945, 2004.

[46] Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan. Ef-

ficient sampling algorithms for approximate temporal motif counting. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 1505–1514, 2020.

[47] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry

Xu. Rstream: Marrying relational algebra with streaming for efficient graph

mining on a single machine. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 763–782, 2018.

[48] Pinghui Wang, John CS Lui, Don Towsley, and Junzhou Zhao. Minfer: A method

of inferring motif statistics from sampled edges. In 2016 IEEE 32nd international
conference on data engineering (ICDE), pages 1050–1061. IEEE, 2016.

http://netsg.cs.sfu.ca/youtubedata/
http://netsg.cs.sfu.ca/youtubedata/
http://snap.stanford.edu/data/com-Orkut.html
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation PACT ’22, October 8–12, 2022, Chicago, IL, USA

[49] Xifeng Yan and Jiawei Han. gspan: graph-based substructure pattern mining.

In 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pages
721–724, 2002.

[50] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities

based on ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Basics
	2.2 Subgraph Pattern Mining Tasks
	2.3 Systems for Subgraph Pattern Mining

	3 Nested Loop for Subgraph Exploration
	3.1 Two-Vertex Exploration
	3.2 Avoiding Redundant Subgraphs

	4 Approximate Subgraph Mining with Loop Perforation
	4.1 Sampling for Counting Tasks
	4.2 Sampling for Finding Frequent Subgraphs
	4.3 Sampling for Large Graphs
	4.4 Programming Interface
	4.5 Putting It Together

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results for Subgraph Counting
	5.3 Results for Frequent Subgraph Mining
	5.4 Results for User-Defined Queries

	6 Related Work
	7 Conclusion
	References

