Multiparticle orientational correlations are
responsible for the nonlinear dielectric
effect: Analysis of temperature-dependent
measurements for glycerol

Cite as: J. Chem. Phys. 157, 164501 (2022); https://doi.org/10.1063/5.0106766
Submitted: 30 June 2022 - Accepted: 27 September 2022 - Accepted Manuscript Online: 28
September 2022 « Published Online: 24 October 2022

Dmitry V. Matyushov

Chemical Physics

Y
o
©
c
-
=
O

ﬂ
Q

L

-

ARTICLES YOU MAY BE INTERESTED IN

Chemical design by artificial intelligence
The Journal of Chemical Physics 157, 120401 (2022); https://doi.org/10.1063/5.012328]1

The four-component DFT method for the calculation of the EPR g-tensor using a restricted
magnetically balanced basis and London atomic orbitals
The Journal of Chemical Physics (2022); https://doi.org/10.1063/5.0103928

Surface-enhanced crystal nucleation and polymorph selection in amorphous posaconazole
The Journal of Chemical Physics (2022); https://doi.org/10.1063/5.0117668

.

¥Ry Trailblazers.
_________ R N iv -mmmmsespessse-seeeeeee Meet the Lock-in Amplifiers that
1.8GHz s \\ R ! - 856Hz measure microwaves.
R m"fuv'v‘f'ufm-m'H' 2 \\ “i‘\d‘lMiiiM H l N # Zurich
RV Y B B | ) = | uric "
< ' T 7\ Instruments

J. Chem. Phys. 157, 164501 (2022); https://doi.org/10.1063/5.0106766 157, 164501

© 2022 Author(s).



The Journal
of Chemical Physics

ARTICLE scitation.orgljournalljcp

Multiparticle orientational correlations

are responsible for the nonlinear dielectric
effect: Analysis of temperature-dependent
measurements for glycerol

Cite as: J. Chem. Phys. 157, 164501 (2022);

Submitted: 30 June 2022 - Accepted: 27 September 2022 -

Published Online: 24 October 2022

Dmitry V. Matyushov

AFFILIATIONS

School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287, USA

Author to whom correspondence should be addressed:

ABSTRACT

The nonlinear dielectric effect (NDE) is traditionally viewed as originating from saturation of the response of individual dipoles in a strong
electric field. This mean-field view, mathematically described by the Langevin saturation function, predicts enhanced dielectric saturation at
lower temperatures. In contrast, recent experiments for glycerol have shown a sharp increase of the NDE with increasing temperature. The
formalism presented here splits the NDE into a sum of a term representing binary correlations of dipolar orientations and terms referring
to three- and four-particle orientational correlations. Analysis of experimental data shows that the contribution of three- and four-particle
correlations strongly increases at elevated temperatures. The mean-field picture of dielectric saturation as the origin of the NDE is inconsistent
with observations. A positive NDE (increment of the field-dependent dielectric constant) is predicted for low-concentration solutions of polar

molecules in nonpolar solvents. The dependence of the NDE on the concentration of the polar component is polynomial.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION

Nonlinear dielectric effects are traditionally viewed as the result
of saturation of the response of liquid dipoles when placed in a high
electric field. "~ The standard argument invokes the Langevin satu-
ration function specifying the average dipole of a single molecule
aligned along the external electric field,

(m)s = mL(BmyEo), L(x) = coth x — 1/x. (6Y)
Here, m is the gas-phase molecular dipole moment and the field
of external free charges E; is modified by a generally unknown
cavity-field susceptibility y. for a single molecule accounting for
the modification of the field by the polarized surrounding lig-
uid. The angular brackets (---)g refer to an ensemble aver-
age in the presence of the applied field and the energy of the
dipole is scaled with inverse temperature 8 = (kpT) . This means
that dielectric saturation becomes more pronounced at lower
temperatures.

The Langevin saturation picture predicts a decrement of the
dielectric constant with increasing electric field” as measured by the
field-dependent dielectric function eg = ¢(E) in nonlinear dielectric
experiments. The deviation of eg from the linear material dielectric
constant e is linear in the squared Maxwell field E in the lowest order.
The proportionality constant a is the Piekara coefficient,

A€ =€g—€= aF~. )

The Langevin picture predicts a < 0 (dielectric saturation), as indeed
observed in many cases with some notable exceptions.”* Molec-
ular dynamics simulations of water”~ and of dipolar fluids'' also
produced a < 0.

The Langevin picture is a mean-field view of dielectric phenom-
ena when the complexity of interactions of a given tagged dipole
with the surrounding liquid is replaced with a single parameter of
the cavity-field susceptibility ©~ x, in Eq. (1).The polarized liquid
is viewed as a collection of independent dipoles (m)g. Fluctua-
tions of the microscopic field and molecular cross-correlations are
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ignored in mean-field theories,'* even though they are known to
affect dielectric phenomena. In the case of the linear dielectric con-
stant, cross-correlations account for the deviation of the Kirkwood
factor from unity. The Kirkwood factor,

_ 1
~ Nm?

(M?) =1+ (e - &), 6)

i>1

8K

is defined through the variance of the dipole moment of a macro-
scopic sample M ({M) = 0) with N molecules (first equality). Alter-
natively, its deviation from unity comes from cross-correlations
between the direction of a tagged dipole, specified by the unit vector
ey, with the directions of the rest of the liquid dipoles specified by
the unit vectors e; (second equality). The angular brackets in Eq.
refer to an ensemble average in the absence of an external electric
field. The ensemble average on the left-hand side of Eq. (3) can be
written in terms of the binary correlation function of the isotropic
liquid A(1,2),

e e) = P

i>1 va?

[ d1d2 (e - e2)h(1,2). @

Here, p is the number density, 1,2 stand for orientational and spa-
tial coordinates,'® V is the liquid volume, and Q = 4 for linear
molecules. When no orientational cross-correlations are present, the
average in the above equation is zero and g, =1 in Eq. (3). The
neglect of cross-correlations between the liquid dipoles leads to the
Onsager mean-field result.'* For brevity, cross-correlations between
distinct dipoles in the liquid will be labeled in the rest of the article
as “correlations.”

It is important to stress that correlations responsible for g,
deviating from unity are binary, ie., two particles are involved
in each of the averages in Egs. and (4). The binary correla-
tion function of the liquid'® h(1,2) is sufficient to calculate g.
For dipolar fluids, i.e., liquids made of molecules carrying dipoles
and no higher multipolar moments, g, (y) is a strongly increas-
ing function of the dipolar density parameter of dielectric
theories™'” y = (47/9)Bm’p. However, g, does not strongly deviate
from unity for many polar liquids because of the competing effect
of molecular quadrupoles destroying orientational correlations.
Orientational correlations thus do not strongly affect the magnitude
of the linear dielectric constant, which is the reason for a relative
success of the Onsager theory”' assuming g, = 1."* A large dielec-
tric constant of water is related to its ability to hydrogen bond** and
thus to produce a substantial g, ~ 2.5-2.6. Similar values of g, are
found below for the low-temperature glycerol.

The question of the validity of Langevin’s mean-field picture
and the importance of correlations in the nonlinear dielectric effect
has not been sufficiently studied because of the lack of direct exper-
imental evidence, requiring a revision of this traditional view. How-
ever, the idea of the importance of correlations has been interro-
gated in the past and already Piekara considered binary correlations
between neighboring parallel and antiparallel dipoles to explain
a >0 observed for nitrobenzene® (a <0 for a sufficiently diluted
solution of nitrobenzene in benzene™”). The ideas of orientational
correlations and “cooperative regions” affecting the nonlinear
dielectric response have been recently extended to molecular glass
formers in an attempt to clarify the origin of their specific dynamics.
Third- and fifth-order dynamic susceptibilities are viewed as tools to

ARTICLE scitation.orgljournalljcp

access the thermodynamic length of order in low-temperature lig-
uids and amorphous materials.””"” Observations of a > 0 were also
labeled as signatures of “cooperativity,””’ although no quantitative
model of this phenomenon has been offered. Density dependence
a(p) for a dilute solution of dipolar molecules relevant to solution
measurements”’ is discussed below.

A direct scrutiny of the Langevin model is allowed by the tem-
perature dependence of the Piekara coefficient, which would test the
prediction of increasing dielectric saturation with lowering temper-
ature. Such data are mostly unavailable with the exception of recent
measurements by Thoms et al.,”® where the results for a(T) for
glycerol were presented in a broad range of temperatures from 230
to 320 K. Surprisingly, these data showed a strong increase in the
Piekara coefficient at temperatures above =~ 290 K, in disagreement
with the mean-field expectations. These measurements support the
suggestion that orientational correlations involving three and four
dipoles in the liquid are responsible for the nonlinear dielectric
effect.

The proposition that correlations must be essential for the non-
linear dielectric effect can be appreciated from the link between the
Piekara coefficient and the fourth-order cumulant of the macro-
scopic dipole moment of the sample. Assume an external
electric field is applied perpendicular to the planes of the dielectric
slab, as is commonly done in the plane capacitor setup of the dielec-
tric experiment. If the z-axis of the laboratory frame is perpendicular
to the slab’s planes, one finds from the perturbation expansion” that
the Piekara coefficient is proportional to the parameter involving
the fourth-order cumulant of the z-projection of the sample dipole
moment M,,

a o< N[1-(M;)/(3(M;)*)]. ®)

The term in the brackets is the Binder parameter used to quantify
deviations of the statistics of macroscopic thermodynamic vari-
ables from the Gaussian statistics near points of thermodynamic
instability.”> The Binder parameter tends to zero as N™' in the
thermodynamic limit when N — oo. This asymptote is eliminated
by multiplying the bracketed term with N in Eq. (5). The Piekara
coefficient thus quantifies the first-order correction to the Gaussian
statistics of an extensive thermodynamic variable [M; in Eq. (5)]
stipulated by the central limit theorem. One can anticipate that
deviations from this outcome should involve molecular correla-
tions, as is the case at the points of structural instability.”” The
Piekara coefficient, like the Kirkwood factor, must, therefore, quan-
tify statistical orientational correlations between dipoles in polar
liquids.

The expansion of the fourth-order cumulant (M) in Eq. (5) in
terms of individual unit vectors e; along molecular dipoles shows
that it contains both binary correlations, in terms of the Kirk-
wood factor g, and nontrivial third- and fourth-order correlations
between the dipoles not reducible to correlations of lower order
(see more details below). The question addressed here is whether
these higher-order correlations are essential for the nonlinear dielec-
tric effect or, alternatively, it can be reduced to binary correlations
described by gy, as is the case for the linear dielectric constant.
The present analysis thus does not offer a new theory of the non-
linear dielectric effect. It, instead, provides a formalism for sepa-
rating the experimental static nonlinear dielectric susceptibility into
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contributions from binary and higher-order orientational correla-
tions. The formulation is also limited to static nonlinear dielec-
tric effects and does not address nonlinear frequency-dependent
dielectric susceptibility.

The theoretical formalism is next applied to the experimental
data for the Piekara coefficient of glycerol by Thoms et al** The
static nonlinear susceptibility of glycerol close to the glass transi-
tion is often viewed as “trivial” and comparable to the response of
the ideal gas of dipoles.”””” It was previously noted’® that for most
polar liquids, the nonlinear dielectric susceptibility at higher tem-
peratures significantly exceeds the corresponding low-temperature
limit. However, direct measurements of the temperature depen-
dence of the Piekara coefficients were absent in the literature until
the recent method development’ that allowed collecting glycerol
data.”® The analysis of these data presented here shows that third-
and fourth-order correlations dominate in the Piekara coefficient
at elevated temperatures and are responsible for its sharp tempera-
ture rise. They cannot be neglected even at lower temperatures since
they exceed, in magnitude, the binary terms by a factor of two. The
“trivial” model ™" of the ideal gas of dipoles thus does not perform
quantitatively well even at the lowest temperatures analyzed here.

Overall, the nonlinear dielectric effect reflects multi-body
(binary and higher-order) orientational correlations in polar lig-
uids. Binary correlations, probed by linear dielectric techniques,
are insufficient to describe the nonlinear response. The mean-field
(Langevin) picture of dielectric saturation neglecting correlations
altogether is inconsistent with observations.

1. NONLINEAR DIELECTRIC EFFECT

The linear dielectric constant of dielectric theories establishes
the constitutive relation, D = ¢E (Gaussian units), connecting the
electric displacement D with the Maxwell electric field E, where no
anisotropy of the dielectric constant is required for isotropic polar
liquids.””" This definition is extended to nonlinear dielectrics in the
differential form

8D = €zdE, (6)

where D =D(E) is now an arbitrary function of E. In con-
trast, Booth,” Kusalik,'' and Scaife’’ used an alternative definition
er = € = D(E)[E; see a relevant discussion in Ref. 2. The definition
through Eq. (6) yields the capacitance of the plane capacitor equal
to C = Aeg/(4nd) in which eg replaces € in the standard equation
(A and d are the capacitor area and the distance between the plates,
respectively).

From Eq. (6), one draws the relation between e and the third-
order polarization susceptibility y,. It enters the series expansion of
the induced electric polarization (P)g in terms of E truncated after
the second expansion term,

(P)e = p(m)e = pE + :E. @

The relation between Aeg and the nonlinear cubic susceptibility y,
becomes

Aeg = 12my3E ®

This result applies to experiments in which a constant field bias is
applied to the dielectric sample. When, instead, an oscillatory field
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with amplitude E, is used, one needs to replace E* with EZ/4 in
Eq. (8)."" We next want to establish a connection between y, and
dipolar correlations in a polar liquid.

The response of a dielectric slab to an applied electric field is
anisotropic and requires separate consideration of the field applied
perpendicular to the slab planes (z-axis) and parallel to the planes
(x,y-axes). The two responses are then combined to obtain the rota-
tionally invariant variance of the vector dipole moment (M?), which
should be independent of the sample shape if the dielectric con-
stant is a material property. ~* In the derivation presented below,
we will assume that the nonlinear dielectric susceptibility is a local
property independent of the direction of the applied field such that
the precautions required for the linear polar response, related to
the long-range character of dipolar interactions, are not required
for the nonlinear dielectric response. The results obtained here,
stressing the importance of multiparticle correlations, support this
assumption.

Applying the field of external charges Eo along the z-axis, one
obtains from the statistical perturbation expansion®’ in terms of the

weak perturbation SM Eo,
M Kz
(P.)s - pEo ) )+(/3E)3 : ©)
where the fourth-order cumulant is
K§ = (Mz) - 3(M;)". (10)

Assuming isotropy (locality) of the fourth cumulant, K} can be writ-
ten in terms of the vector dipole moment 15K3 = 3(M*) — 5(M?)?
as appears in a number of formulations of the nonlinear dielectric
response. The isotropy assumption does not apply to the
second cumulant (M?2) in Eq. (9) and application of the external field
along z- and x-axes separately is required.

The fourth-order cumulant K} can be written in the form of
correlations of individual unit vectors e; specifying orientations of
the dipoles in the liquid,

m” —+Z[ eer) +4(eiey)]

t#]
2
+6 Z e,—zejzekz) + Z <eizejzekzemz)) (11)
i#j£k i#j+k#m

where e, is the z-projection of the unit vector of the molecular
dipole. The fourth-order cumulant separates into the component
involving binary correlations (second term) and nontrivial correla-
tions between three (third term) and four (last term) distinct dipoles.
The binary term can be explicitly evaluated”” with the higher-order
terms left unspecified. The result is

2miN
K: = "115 [H(Z) H§3)+H§“)], 12)
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where
H® =6(gk-1)+ ﬁ Yoy — 1,
HY = ﬁ Z (eiejeei.) — 5N(gk - 1), (13)
i#j+k
15 5N
H® = 2 Z (eizejzenzemz) —(glﬁ - 1)2.
‘ 2Ni¢j¢k¢m 2
In Eq. )
L _ <M§) _€_1 (14)
8= Nm2 = 3ye

is the longitudinal Kirkwood factor equal to the k=0 value,
St = §%(0), of the longitudinal dipolar structure factor and
ﬁflpxr is the k = 0 value of the density structure factor expressed
in terms of the liquid isothermal compressibility y,.. Identical equa-
tions were derived in Ref. 29. However, g, notation was incorrectly
used there in place of g as noted by Fulton.

The terms linear in N are included in H® and H® since
they must cancel out with the correlation terms reducible to
lower-order correlations. For instance, third-order correlations
in H® require the three-particle distribution function g(1,2,3),
where the numbers 1,2, 3 specify both positions and orientations
of molecules in the liquid. If the superposition approximation
£(1,2,3) ~ g(1,2)g(1,3)g(2,3), factorizing the three-particle dis-
tribution function into the product of binary functions, is applied,
the first and second terms in the equation for H® become equal
and this correlation vanishes. Therefore, only correlations of three
and four dipoles nonreducible to correlations of lower order con-
tribute to H® and H®. Overall, K; must scale as o«<N for the
induced polarization (P;)g in Eq. (9) to be an intensive thermody-
namic variable. This means that the terms linear in N in H® and
H™ must vanish. Because of the importance of nonreducible multi-
particle correlations, constructing approximate theories for the
nonlinear dielectric susceptibility is challenging. For instance, the
quadratic hypernetted chain closure for dipolar liquids™ produces
a > 0, through the account for electrostriction, in disagreement with
simulations.

Turning to the electric field applied along the x-axis, one
obtains the results identical to Eqgs. (9)- provided that the sub-
script z is replaced with the subscript x. Since probing a polar liquid
along the x-axis allows access to the transverse polar response,” the
x-projection of the binary term in the nonlinear susceptibility in
Eq. becomes

H® =6(gk - 1) + gﬁ*pxr— 1. (15)
Here, g& = (¢ —1)/(3y) is the transverse Kirkwood factor equal to
the k = 0 value of the transverse dipolar structure factor of the polar
liquid ™ = §7(0). Accordingly, gk in equations for H® in Eq.

is replaced with gZ in the corresponding equations for HEY. As
anticipated from standard dielectric theories,”” anisotropy of the

dielectric response applies to binary correlations related to longi-
tudinal and transverse projections of the Kirkwood factor.”’ For
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instance, the variances of z- and x-projections of the dipole moment
[the first term in Eq. (9)] are not equal """ and are related to the total
variance by the following formulas:

2 1

€
M) =
(M:) 2e+1

2e+1

(M), (M) =~ (M) (1)
Given that the x- and y-projections are equivalent in the slab
geometry, one can next combine the z- and x-projections of the
polarization field as (P;)g + 2(Px)E to arrive at the variance of the
total dipole moment of the sample M in the first term of the per-
turbation series in Eq. (9). This linear combination eliminates the
long-range, ocr>, component in the dipolar correlation function
and thus eliminates the dependence of the result on the sample shape
for the linear dielectric response.
The resulting linear combination of two Cartesian projections
is
(B +2(Ba)s = 850 ) 1 (g

17)
In this equation, the fourth-order cumulant is given as a sum of the
binary and higher-order correlation terms,

2N @) | 60
Ki= "0, [H +H ] (18)
The binary term in Eq. is given by a closed-form expres-
sion allowing direct calculation from experimentally accessible
parameters of polar liquids,

5. _
H® =6(gc-1) + 2B oyr - 1. (19)

Here, gk = (g% + 2g%) /3 is the Kirkwood factor [Eq.
the Kirkwood-Onsager equation,

] satisfying

(e-1)(2e+1) = 9yegx. (20)

As mentioned above, the higher-order correlations are assumed to
be independent of the sample shape and are collected into the term
H®Y in Eq. .

We note that the often employed replacement of (M?) in the
Kirkwood-Onsager equation with the dipole variance in the electric
field (M?)E as a starting point for developing a theory of the nonlin-
ear dielectric effect is not justified. For spherical samples, this type of
approximation amounts to assuming that the cavity field in a sample
is given by the solution of the linear boundary value problem with
an effective nonlinear dielectric constant ¢’ = D(E)/E [Eq. (7.31) in
Ref. 2]. The issue here is to construct a formalism eliminating the
long-range ocr~> dipolar correlations, making the result depend on
the sample shape.”” A combination of longitudinal (z-projection for
the slab) and transverse (x-projection for the slab) susceptibilities
constructed for a specific sample to achieve this goal within the linear
response approximation does not automatically extend to the case
of nonlinear response. A complete perturbation expansion in pow-
ers of the electric field should be used instead, either for a spherical
or slab samples. The use of slab geometry in the present framework
avoids the need for a cavity field” in a nonlinearly polarized dielec-
tric. It is also important to stress that this algorithm eliminates the
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shape-dependent long-range correlations in the binary term H®,
thus producing g, in Eq. affected by short-range correlations
only.

To connect the fourth-order cumulant to the third-order
dielectric susceptibility y,, one rewrites Eq. for two polariza-
tion projections by applying the boundary condition Eg = E to the
x-projection,

(P2)e = xiE +)(3E3,

(21)
(Px)E = y1Eo + XsES-

These equations are supplemented with € = 1 + 4my; and the con-
nection between E; = D and E when the field is applied along the
z-axis,

Eo = €E + 4my: E’. (22)

Note that the term cubic in the field was missing from the connection
between E, and E in the derivation presented by Kusalik.

By combining the polarization components from Eq.
according to the rule on the left-hand side of Eq. (17), one obtains

e-1 e B(M?)
= = 23
M= 4n T 2e+1 Vv 23
and
€4 ﬁ3K4 ﬁ3K4
= ~ . 24
BZ2di1 2v T av 24

Given the definition of the Kirkwood factor in Eq. (3), the equation
for the linear susceptibility y; is the Kirkwood-Onsager equation
[Eq. ]. The equation for y, allows one to relate Ky to the
experimentally measurable Piekara coefficient through Eq. (8). Since
H? (T) in Eq. can be accessed from experimental data, exper-
imental a(T) provides access to the higher-order term H®¥(T).
This term turns out to dominate at high temperatures and is respon-
sible for a sharp rise in the Piekara coefficient of glycerol with rising
temperature.

I1l. DATA ANALYSIS

The data reported by Thoms et al. were collected with a
large amplitude oscillatory field and zero bias field. One, therefore,
has to apply E* — E2,/4 in Eq. (8) with the following result for the
Piekara coefficient Aeg/E2, expressed in terms of the binary and
higher-order orientational correlations:

3 4
oz B [H® +HCD] (25)
10

As mentioned above, K4 can be alternatively written in the form
of the fourth cumulant of the vector dipole moment,

1

Ky= —
‘7 15

[3(M*) - 5(M*)’], (26)
which produces an alternative expression for a4,

a= % [3(M*) - 5(M*)*]. (27)
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The derivation presented above applies to a nonpolarizable
dipolar liquid. To apply the theory to experimental data, electronic
polarization due to molecular polarizability needs to be included.
This can be achieved by adopting the Frohlich model™” viewing a
polar liquid as an ensemble of permanent dipoles immersed in the
dielectric continuum with the dielectric constant €. equal to the
liquid refractive index squared. The vacuum external field Ey in
the above derivation is then replaced with the Maxwell field in the
electronically polarized continuum Eo, = Eo/€c. The perturbation
expansion in Eq. is performed in terms of the field Eoo, and
the boundary condition for the field applied along the x-axis reads
Ex =E.

Repeating the above analysis in terms of fields Ec, and E, one

finds that the linear polarization susceptibility in Eq. becomes
€— €oo e B(M?)
= = , 28
o 4n 2e+€ V (28)

where now the total dipole moment M’ is a sum of all perma-
nent dipoles m’ modified by electronic polarization of the molecule.
Assuming that each molecule carries an effective dipole

, €oo +2

m =m 3 (29)

corrected by the Lorenz cavity field, one arrives at the

Kirkwood-Frohlich equation,' given by

(€— €0 ) (26 + €c0)
— = s 30
€(€0o +2)? % (30)

or, alternatively,
Ae(2e + €00 ) = 9y egx. (31)

Here, A€ = € — € is the dielectric strength and y’ = (47/9)Bp(m’)>.
The formula for the third-order susceptibility modifies to

_ €4 ﬁ3K4 - ﬁ3K4

B oeirel, 2v © 4V

(32)

and is less affected by the polarizability corrections [compare to
Eq. ]. Equation remains intact except for the replace-
ment of the gas-phase permanent dipole m with the effective
condensed-phase dipole m’.

A number of recent studies identified a dimension-
less third-order dielectric susceptibility X3 = (47)°p|x,|/(BA€).
Expressed in terms of dipolar correlations, this static susceptibility
becomes

2
Xy= L2t |H(2) +H(3’4)|. (33)
30 €gx

To separate H** from the binary term H®, the experimen-
tal results for the density’” and compressibility™ of glycerol were
used in Eq. . The compression term [second term in Eq. ]
makes a small, ~ 8 x 107>, contribution to H? in the case of
glycerol (see the )- The Kirkwood factor is
more essential and it can be calculated from Eq. . An alter-
native route to g,(T) can be established through the mean-field
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Wertheim theory, which—in contrast to the Kirkwood-Frohlich
equation applying the continuum form of the medium electronic
polarization—provides the effective molecular dipole and polariz-
ability in the liquid in terms of functions derived from liquid-state
perturbation theories. It therefore replaces the dipolar density
y in the Kirkwood-Onsager equation [Eq. ] with the effective
dipolar density

yer = (47/9)Bp(m')* + (47/3)pa’ (34)

through a formalism for calculating the liquid-state permanent
dipole m' and the liquid-state polarizability &’. They are altered from
their corresponding gas-phase values due to electronic polarization
of a given tagged molecule by the local electric field of the sur-
rounding liquid. These two approaches produce consistent results
for glycerol ( ), with Wertheim’s formalism yielding a some-
what lower temperature slope for g, (T). Similar results for the
Kirkwood-Frohlich route were recently reported by Gabriel et al.

The binary correlation term H® in Eq. was calculated
from experimental parameters of glycerol and is shown by the
solid line in . The experimental a(T) were used to calculate
H® + H®Y (red points) from Eq. . The correlation term H®%
(blue points) was calculated from these results by substituting 7' in
place of m and taking H? from Eq. . The dielectric constant
€oo (T) was calculated from p(T)” and the molecular polarizability
of glycerol*” a = 8.17 A® according to the Clausius-Mossotti equa-
tion; e(T) is from Ref. 60 (see the ). The
molecular dipole moment is m = 2.67 D”" (m = 2.56 D was listed
in Ref. 63).

It is clear that higher-order correlations specified by H
dominate in the Piekara coefficient at elevated temperatures: The
magnitude of this term increases by a factor of ~40 at the end of the
temperature scale compared to the low-temperature values (lower
panel in ). The higher-order and binary correlations are of
opposite sign, incompletely compensating each other below ~280 K.
One empirically finds H? + H®* ~ ~H® (dashed line in the lower

(3.4)

panel in ). Adopting this approximation, one obtains from
Eq.
2.6 T T T T
2.5
X
© 24
2.3

220 240 260 280 300 320
T,K
FIG. 1. g4 (T) calculated from the Kirkwood-Frohlich equation [Eq. , KF,

dashed] and from the Wertheim theory>* (W, solid) vs T with the molecular
parameters of glycerol.
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FIG. 2. H@ (solid ling), H®) (blue points), and H?) + H®4 (red points) from exper-
imental®® Piekara coefficients a(T) used in Eq. (25) where m is replaced with m"
calculated according to Wertheim’s algorithm®* also used to calculate g, (T) in
Eq. . Average values of experimental*° a(T) were taken at each tempera-
ture. The lower panel shows the magnified part of the plot at low temperatures; the
dashed line refers to —H® and the solid line to H®.

I

1(2 :

X5~ —( €+€°°) l6gk — 7| (35)
30 K

From this equation, X3 ~ 0.17 for glycerol at T ~ 210 K, in agree-

ment with the value ~0.16 reported from measurements.”” The

theory thus predicts a possibility of X3 = 0 at g, = 7/6.

If the mean-field view, neglecting dipolar correlations, is alter-
natively adopted, one obtains H? ~ -1 at 8x = 1and a small com-
pression term in H® dropped. Even though this approximation,
used in the past,”"" yields the correct sign for the nonlinear dielectric
effect, it is still not justified: Even at low temperatures, the over-
all negative sign of the Piekara coefficient comes from the negative
H®? term representing higher-order correlations totally neglected
in the mean-field framework. The approximation of the ideal gas of
dipoles is not quantitatively correct even at low temperatures.

Rotations of individual dipoles produce non-Gaussian polar-
ization noise because rotational matrices involve nonlinear trigono-
metric functions converting Gaussian fluctuations of the molecular
angles to non-Gaussian fluctuations of polarization Cartesian com-
ponents. This is the reason why the approximation of statistically
independent dipoles yields K4 # 0, i.e., non-Gaussian fluctuations.
For the same reason, rotational transformations from the body to
the laboratory frame make the mobility dynamics non-Gaussian for
particles undergoing both translational and rotational diffusion.
Despite producing a qualitatively correct result, the approxima-
tion of uncorrelated dipoles is quantitatively incorrect in the entire
range of temperatures studied for glycerol. It also predicts a o< 8
[Eq. ], which implies a lower nonlinear dielectric effect at ele-
vated temperatures, in contrast to what has been observed. The
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rise of the Piekara coefficient at elevated temperatures is con-
trolled by higher-order correlations, which project the increasing—
approximately as o T—variance of the Gaussian angle fluctuations
into increasingly non-Gaussian fluctuations of the dipole moment.
The present theory makes specific predictions for the solu-
tion of polar molecules in nonpolar solvents. When the density of
dipoles is low, one can apply liquid-state perturbation theories
to obtain an expansion of g, in the powers of y characterizing the
density of polar molecules. The lowest-order expansion yields the
following result for dipolar hard spheres:

gk = 1+ (17/16)y". (36)

The higher-order correlations vanish for a dilute solution and the
binary term becomes

(2) _ 3717 2 5
H —2[4}1 +1 3Bpp], (37)
where B, is the second-order virial coefficient for the interactions
between polar molecules dissolved in a nonpolar solvent [~ pxr=1
in Eq. for an ideal solution].

The p — 0 limit is H? — 3/2 and the theory predicts an incre-
ment of Aeg [a > 0 in Eq. ] in the limit of very dilute solutions.
At higher concentrations, the dependence on the density of polar
solutes p is more complex,

a(p) o< p[1—c1p + czpz]. (38)

In particular, this function predicts a negative minimum of a(p) at
B, > 0, as indeed observed for the solutions of nitrobenzene™” and
4-heptyl-4’-nitro-biphenyl®” in benzene. In other cases, such as 1,2-
dichloroethane and 1,2-dibromoethane in carbon tetrachloride,” a
monotonic nonlinear increase of a positive Piekara coefficient with
the rising concentration of polar molecules was found. Modeling
specific systems will require calculating the three-particle pertur-
bation integrals'® I(p) to obtain g =1 +y*I(p) in Eq. . The
density expansion I(p) ~ 177*/9 — cp, ¢ > 0 (Lennard-Jones, Ref. 66)
will add an additional linear in density term to the second virial
coefficient in Eq.

IV. CONCLUSIONS

In conclusion, recent experimental measurements of the
temperature-dependent Piekara coefficient have put in doubt the
view that nonlinear dielectric effects represent saturation of the
dipolar response. The present analysis provides a formalism for sep-
arating the component arising from three- and four-particle orien-
tational correlations in the Piekara coefficient from the component
due to binary correlations. From the data for glycerol, the higher-
order correlations strongly increase in magnitude with increasing
temperature and produce the main contribution to the Piekara
coefficient at elevated temperatures. This phenomenology is in dis-
agreement with the mean-field view of the nonlinear dielectric effect
as originating from saturation of orientations of separate dipoles in
the liquid and neglecting correlations altogether.

A microscopic theory of the temperature effect on many-
particle orientational correlations in polar liquids is still missing.
The present analysis does not attempt to develop such a theory and,

ARTICLE scitation.orgljournalljcp

instead, focuses on a formalism to extract the impact of higher-
order correlations from observations. The formulation is limited
only by the truncation of the expansion for the medium polariza-
tion in terms of the linear and first nonlinear susceptibilities and the
assumption of locality of the fourth cumulant of the dipole moment.
The analytical result for the binary term in the Piekara coefficient
becomes the basis for the theory of nonlinear dielectric response of
dilute solutions of polar molecules in nonpolar solvents. This term
also provides an analytical expression for the third-order dielectric
susceptibility at low temperatures [Eq. 1.

SUPPLEMENTARY MATERIAL

See the
and details of calculations.

for the parameters for glycerol
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