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ABSTRACT
Classical theories of dielectric friction make two critical assumptions: (i) friction due to van der Waals (vdW) forces is described by hydrody-
namic drag and is independent of the ionic charge and (ii) vdW and electrostatic forces are statistically independent. Both assumptions turn
out to be incorrect when tested against simulations of anions and cations with varying charge magnitude dissolved in water. Both the vdW and
electrostatic components of the force variance scale linearly with the ionic charge squared. The two components are strongly anticorrelated
producing simple relations for the total force variance in terms of self-variances. The inverse diffusion constant scales linearly with the charge
squared. Solvation asymmetry between cations and anions extends to linear transport coefficients.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088835

I. INTRODUCTION
The Kirkwood equation defines the diffusion constant for

translational diffusion in terms of the variance of the stochastic force
F acting on the particle and the relaxation time τF of the force–force
autocorrelation function,1

D = (βζ)−1 = �(β2�3)�(δF)2�τF�−1, (1)

where δF = F − �F� and β = (kBT)−1. The first equality is the Ein-
stein equation connecting the diffusion constant to the friction
coefficient ζ. The second equality (the Kirkwood equation) is an
approximation since the memory time should replace τF in the
exact result.2 Deviations from the exact formula follow from a series
expansion in the smallness parameter given by the square root of the
ratio of the solvent and solute masses.3 Recent molecular dynamics
(MD) simulations have shown that the first nonvanishing correction
is in fact quadratic in this smallness parameter and the first correc-
tion to the Kirkwood equation scales as the ratio of the solvent and
solute masses.4

Translational mobility of ions is driven by nonpolar van der
Waals (vdW) forces and electrostatic (E) interactions with the polar-
izable solvent.5 The total force acting on the ion is a sum of two
components,

F = FvdW + FE. (2)

These two forces were viewed as statistically independent in the Born
formulation5 of dielectric friction. In this standard formulation,

�(δF)2� = �(δFvdW)2� + �(δFE)2�, (3)

and the friction coefficient in Eq. (1) is additive, ζ = ζvdW + ζE. The
assumption of additivity was later shared by most modern analyt-
ical theories of dielectric friction,6–9 which followed Born’s paper.
More recent MD simulations have put this approximation in doubt
indicating significant cross correlations between electrostatic and
nonpolar (vdW) random forces.10–15 The force variance in the Kirk-
wood expression should, thus, include two self-components and a
cross correlation term,

�(δF)2� = �(δFE)2� + �(δFvdW)2� + 2�δFE ⋅ δFvdW�. (4)

A surprisingly simple relation was recently found in simula-
tions of small dipolar solutes,16 proteins,17,18 and colloidal nanopar-
ticles.19 It allows one to relate the cross correlation between vdW
and electrostatic forces to the negative of the electrostatic force
variance,

�δFE ⋅ δFvdW� = −�(δFE)2�. (5)
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The variance of the total force acting on a tagged particle
becomes the result of subtraction of the vdW and electrostatic
self-components,

�(δF)2� = �(δFvdW)2� − �(δFE)2�. (6)

This formula replaces additivity of vdW and electrostatic force vari-
ances in the Born picture [Eq. (3)]. Equation (6) applies to solutes
in water characterized by hydration shells tightly bound by the
solute–solvent interactions such that random rotations of the solute
drag its hydration shell with it18 (see below for a more detailed
explanation).

Here, we present MD evidence that the phenomenology of
strong correlations between vdW and electrostatic forces applies to
simple ions interacting with force-field (SPC/E) water by electro-
static and Lennard-Jones (LJ) forces. The generic vdW (London)
interaction is, thus, replaced with the model binary LJ solute–solvent
potential in our simulations. No ionic atmosphere, and friction
associated with it, is included. The results presented here apply,
therefore, to the limit of infinite ionic dilution. The force field of
water and the solute–solvent interaction are given by binary interac-
tion potentials. Multi-body London and induction interactions20–22
are not a part of the model. The SPC/E force field is nonpolar-
izable, and electronic induced dipoles of either the solute or the
solvent molecules are not included. Electronic polarizability in dense
molecular liquids can often be accounted for by mean-field mod-
els operating in terms of an effective solvent dipole moment,23,24
which becomes inhomogeneous for interfacial phenomena. Explicit
simulations with polarizable force fields20,25 are required to test this
approximation in application to ionic diffusion. Diffusion coeffi-
cients of hydrated ions are typically consistent between polarizable
and nonpolarizable models of water.20,26

The strength of the solute–solvent electrostatic interaction is
altered in our simulations by varying the charge q of a spherical
ion in the range −3 ≤ q�e ≤ 3; e is the elementary charge. The LJ
radius is kept constant at a = 2.2 Å for all ions. The first maxi-
mum of the ion–oxygen pair distribution function is reached at
rmax � 3.6 Å at q�e = 1.0. We assume that the Kirkwood equa-
tion applies to translational diffusion, which requires the solute
to be much heavier than the solvent. Since the force relaxation
time τF in Eq. (1) turns out to be little affected by the ionic
charge, the dependence of D on q in Eq. (1) arises from the force
variance.

The main focus of this study is on correlations between vdW
and electrostatic forces. We start with the electrostatic component
by considering the statistics of electrostatic potential and field at the
position of the ion’s charge. The electrostatic field at the center of
the cavity carved by the ion defines the electrostatic force. The mean
electrostatic potential specifies the interface charge, which, added
to the ionic charge, yields the effective solute charge producing the
screened electrostatic potential in the medium. We then turn to the
statistics of vdW and electrostatic forces in terms of wavevector-
dependent charge and density structure factors of the bulk liq-
uid. The statistics of forces turn out to be asymmetric between
anions and cations. Equation (6) holds well for cations, while
a modification of this equation, discussed below, is required for
anions.

II. POTENTIAL AND FIELD
Electrostatics of hydrated ions is characterized by the average

electrostatic potential �ϕs� produced by polarized water at the ion
center and by higher moments of the electric field; the average field
is zero by symmetry. The linear response approximation (LRA)
anticipates27 �ϕs�∝ q, the electrostatic interaction energy equal to
q�ϕs�, and the free energy of electrostatic solvation becoming (q�2)�ϕs�. Varying the ionic charge allows us to test these predictions.

The average potential from MD simulations was corrected for
finite-size effects of the Ewald sum protocol (see the supplementary
material).28,29 The resulting dependence of �ϕs� on q is a combina-
tion of two linear branches, as anticipated from the LRA but with
different slopes corresponding to different solvation susceptibilities
χs = �ϕs��q in response to anions and cations [Fig. 1(a)]. This result,
documented in the past,30–33 reflects higher solvation strength for
anions compared to cations of the same absolute charge and size.
The electrostatic solvation free energies are higher in magnitude for
anions.

FIG. 1. (a) Average potential of water inside the spherical ion vs the ionic charge
q. The linear slopes of �ϕs� vs q for negative and positive charges are −10.62
and −8.77 V�e, respectively; the vertical dashed-dotted line is drawn to guide the
eye. (b) The reaction-field susceptibility χR (filled circles, left axis) and the non-
Gaussian parameter χG (open triangles, right axis) vs q. The horizontal dashed
line marks the microscopic LRA calculation for χR from Ref. 15, the dashed-dotted
line indicates the LRA result for χG. (c) Relaxation times of the electric field (E,
filled circles) and total force (F, open circles) correlation functions. The dashed line
indicates the dielectric relaxation time τcE .
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The physical reason for asymmetry of �ϕs� vs q is the asym-
metry of the molecular charge of water leading to a large molecular
quadrupole tensor34,35 Q gauged by the reduced scalar quadrupole34(Q∗)2 = 2βQ : Q�(3σ5s ); σs is the water molecular diameter, and
tensor contraction is used to produce the scalar. Water’s reduced
quadrupole Q∗ is one of the largest among molecular solvents36
and quadrupolar polarization is a significant component of water’s
interfacial electrostatics.37–39 Solvation in dipolar solvents is invari-
ant to simultaneous inversion of the ionic charge, q→ −q, and of
the solvent dipoles, m→ −m. Molecular inversion, leading to the
flipping of the dipole, leaves Q invariant, thus breaking the symme-
try of the problem with respect to the sign of q existing in dipolar
solvents. Differences in solvation of cations and anions arise from
the lack of the inversion antisymmetry of the quadrupolar tensor.
Solvation in purely quadrupolar solvents scales as40 ∝ yQq

2, where
yQ = (2π�5)(Q∗)2ρ∗, ρ∗ = ρσ3s , and ρ is the solvent number density.
It does not carry the asymmetry with respect to the ionic charge. It
is the interaction between dipoles and quadrupoles that breaks the
symmetry and makes anions more favorably solvated.33

Not only the asymmetry of the average potential vs q [Fig. 1(a)]
can be traced to a large molecular quadrupole of water. Another
signature of water’s quadrupole is the observation of a nonzero aver-
age electrostatic potential at q = 0. It is caused by the spontaneous
polarization of the hydration shell around a spherical cavity.38,39,41,42

For ions studied here, the average potential extrapolates to �ϕ0s �� 1.94 V at q = 0 for the solute–solvent excluded radius a � 3.6 Å
[Fig. 1(a)]. This number significantly exceeds the cavity electro-
static potential of �ϕc� � 0.3–0.4 V calculated from simulations of
LJ solutes of comparable size39,43 (this should be distinguished from
the cavity potential measured relative to vacuum, which includes
cavity-liquid and liquid–vapor interfaces44). Ionic charge alters the
structure of interfacial water resulting in a higher extrapolated cavity
potential. Assuming that the cavity potential �ϕc� = qst�a is cre-
ated by the spontaneously induced static interface charge qst, one
gets qst � 0.49e, which is more than a factor of 5 higher than cor-
responding values for LJ solutes of similar size in water.45 This
observation implies that the net electrostatic potential at the cen-
ter of an uncharged solute38,39 is hardly transferrable to calculations
of ion solvation thermodynamics for that the term q�ϕ0s � provides a
linear in charge shift of the solvation free energy.

An enhancement of the interface charge of a structured polar-
ized interface carries direct relevance to the interface-screened ionic
charge q′ producing the electrostatic potential q′�r in the bulk. The
screened charge45 q′ = q + qb + qst includes the bound charge46 qb∝ q induced in the medium by the ion. It becomes q′ = q�� if qst = 0
and continuum electrostatics is applied to define qb = −q(1 − �−1)
from the polarized dielectric interface with the dielectric constant
�. The existence of qst, characterizing the spontaneously polarized
interface, means that even a neutral solute carries a nonzero effec-
tive interface charge.45 Simulation results shown in Fig. 1(a) indicate
that this spontaneous interface charge is substantially higher for an
interface restructured by an ion compared to estimates based on
simulations of partially dewetted surfaces of neutral solutes.

The asymmetry of �ϕs� vs q also implies that a colloidal particle
with positive and negative surface charges that sum up to a zero total
charge will end up having a nonzero interface charge. It comes as a
result of an incomplete cancellation of interface charges assigned to

positive and negative ionic sites at the surface. Specific interactions,
such as charge-transfer bonding,47,48 between the colloidal particle
and water will further modify qst contributing to q′.

The electrostatic force FE = qEs acting on the ion is the prod-
uct of the ionic charge and the electrostatic field Es of the polarized
solvent at the position of the charge. The variance of the electro-
static force is expected to scale ∝ q2 in the LRA assuming that the
structure of the hydration shell is not affected by the solute–solvent
electrostatic interaction. (The repulsive core of the solute produces a
nonlinear effect on the solute–solvent density profile, which cannot
be accounted for by the LRA.49) Adopting the LRA assumption that
the solute–solvent density profile is not altered by the electrostatic
interaction, the electric field variance is expected to be independent
of the ionic charge.

The LRA prediction is well supported by simulations of
anions, but an upward deviation from the LRA is found for
cations [Fig. 1(b)]. The field variance is quantified by the unitless
reaction-field susceptibility,15

χR = (β�6)�(δEs)2�. (7)

The dashed line in Fig. 1(b), which agrees well with the simulation
results for anions, shows χR calculated from an analytical micro-
scopic theory of solvation based on the LRA.15 On the other hand,
there is an increase in χR with the increasing cationic charge. This
phenomenology must be related to a structural change in the hydra-
tion shell caused by the cation and violating the basic assumption
of the LRA. Cations pull water oxygens in the first hydration layer
and force the O–H bonds to reorient into the bulk. This struc-
tural reorganization of the hydration shell is reflected in a nonlinear
dependence of χR on q. Note that the density profile around ions,
both cations and anions, for SPC/E water used here is consistent
with quantum density functional theory (DFT) calculations.50 Given
that the interaction energy of the ion with the water dipoles scales
as qm�r, one can anticipate the appearance of similar maxima at
comparable q�a values for cations with different radii a.

An asymmetry between anions and cations is also seen in the
density profile of water around the ion. Figure 2 shows the depen-
dence of the height of the first maximum G0s = g0s(rmax) of the
solute–oxygen pair distribution function g0s(r) on the ionic charge.
Anions are overall more efficient in compressing water since more

FIG. 2. Magnitude of the first peak G0s = g0s(rmax) of the ion–oxygen pair distri-
bution function g0s(r) vs the ionic charge q; SPC/E water at T = 300 K. Dashed
lines are fit through the points calculated from MD drawn to guide the eye.
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efficient packing and higher density is achieved in this case by releas-
ing dangling O–H bonds51 pointing toward the negative charge of
the ion.

The LRA also stipulates the fluctuation-dissipation52 rela-
tion between the first and second moments of the electrostatic
ion–solvent interaction energy,27,53 χG = −βq�(δϕs)2���ϕs� = 1.
Deviations from χG = 1 quantify the extent of the non-Gaussian
character of electrostatic fluctuations. The parameter χG [Fig. 1(b)]
roughly follows the reaction-field susceptibility χR, indicating that
the same physical reasons, rooted in the hydration shell restruc-
turing, are responsible for deviations from both LRA relations,
χR = Const and χG = 1. None of these microscopic details are
reflected in the average electrostatic potential �ϕs�, which shows a
perfectly linear scaling with q consistent with the LRA.

III. FORCE
Figure 1(c) shows the integral relaxation times calculated from

the time autocorrelation functions for the electrostatic (E) force (τE)
and the total (F) force (τF),

Ca(t) = �δFa(t) ⋅ δFa(0)�, a = E, F. (8)

The horizontal line in Fig. 1(c) marks the prediction of dielectric
theories,54 τcE = 3τD�(2� + 1), where τD is the Debye relaxation time
of the polar solvent55 (10.4 ps for SPC/E water at 300 K15). Tight-
ening of the hydration shell caused by increasing the magnitude
of the ionic charge does not strongly affect relaxation times. One,
thus, anticipates that the dependence of the diffusion constant on
the ionic charge [Eq. (1)] comes from the force variance. Both the
total force variance and its electrostatic and vdW components scale
approximately linearly with q2 (Fig. 3).

The variance of the electrostatic force is conveniently repre-
sented in terms of the charge–charge structure factor2,56 Sqq(k) by
converting calculations from direct to reciprocal space. One obtains
the following expression (see the supplementary material):

�(δFE)2� = 3ρq2 � dk(2π)3 �Ẽ 0(k)�2Sqq(k), (9)

where ρ = N�V is the number density of N water molecules occupy-
ing the volume V and Ẽ0 is the Fourier transform of the electric field
of the ion carrying the unit charge weighted with the solute–solvent

FIG. 3. Force variance components vs q2: vdW (black), electrostatic (red), and the
negative of cross-vdW-electrostatic (blue). The results for anions are plotted vs−q2. The dashed lines are linear fits through the points.

density profile represented by the solute–solvent (ion–oxygen here)
pair correlation function g0s(r),

Ẽ0(k) = e� rg1�20s (r)eik⋅r(dr�r3). (10)

The charge–charge structure factor2 represents correlated fluc-
tuations of the water charge density probed at the length scale
specified by the wavevector k,

Sqq(k) = 1
3N �i,j,α,β�zαzβe

ik⋅(riα−rjβ)�, (11)

where the sum runs over i, j = 1, . . . ,N water molecules and α,
β = 1, 2, 3 atoms of each water molecule carrying the partial charges
zα,β. The structure factor shows no compressibility of the charge
density2 at k→ 0 yielding Sqq(k→ 0)→ 0. The leading expansion
term Sqq(k) � (Λk)2 is linear in k2. The length parameter Λ fol-
lows from the Lemberg–Stillinger equation57 Λ2 = χL�(3βρe2) with
χL = (� − 1)�(4π�) representing the longitudinal susceptibility of
the polar liquid. The opposite asymptote, at k→∞, is nonzero,

Sqq(k→∞)→ 1
3
�z2O + 2z2H�, (12)

FIG. 4. (a) Sρρ(k) [Eq. (16)], (b) Sqq(k) [Eq. (11)], and (c) Sρq(k) [Eq. (18)] for
SPC/E water at the temperatures listed in the plot. The horizontal line in (b) refers
to the k →∞ asymptote specified by Eq. (12).
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where zO = z1 and zH = z2 = z3 are the atomic partial charges of
the water molecule. This limit is shown by the straight horizontal
line in Fig. 4(b), where the structure factors Sqq(k) from MD sim-
ulations of SPC/E water are shown at three temperatures (see the
supplementary material for the simulation protocol and additional
temperatures).

Reciprocal-space integration in Eq. (9) accounting for k→ 0
and k→∞ limits (see the supplementary material) suggests that
electrostatic friction ζE, which can be associated with the electro-
static force component in Eqs. (1) and (3), is roughly proportional
to the product of ion’s solvation free energy Fq and the field relax-
ation time τE and carries an addition inverse proportionality to the
ionic radius a,

ζE ∝ τEFqa−1. (13)

Given that Fq ∝ a−1 in the Born solvation model, the electrostatic
friction applied to a center charge decays as a−2 and becomes less
significant for large ions. This conclusion does not apply to colloidal
particles stabilized in solution by surface solvation.

The solute–solvent vdW force is given by a sum of binary
forces fvdW(i) with each molecule of the solvent (no multi-body
effects20–22 are included). The vdW interactions are modeled by the
LJ solute–solvent potential in simulations, and we write

FvdW =�
i
fLJ(i). (14)

The variance of the force can be expressed in terms of the
density–density structure factor Sρρ(k) upon transforming to recip-
rocal space (see the supplementary material),

�(δFvdW)2� = 3ρ� dk(2π)3 � f̃LJ(k)�2Sρρ(k). (15)

The density–density structure factor2 represents correlated fluctua-
tions of density in the bulk and is given by the following relation,
which does not involve atomic charges zα appearing in Sqq(k) in
Eq. (11),

Sρρ(k) = 1
3N �i,j,α,β�e

ik⋅(riα−rjβ)�. (16)

In addition, the spatial Fourier transform of the solute–solvent LJ
force in Eq. (15) becomes

f̃LJ(k) = � dr g1�20s (r)fLJ(r)eik⋅r. (17)

The vdW force varies steeply with the solute–solvent distance
in direct space, which implies that its Fourier transform is a slowly
changing function of the wavevector. The reciprocal-space integral
in Eq. (15) can be evaluated in the continuum limit Sρρ(k) � Sρρ(0)
for the density structure factor,

�(δFvdW)2� = 12πρSρρ(0)� ∞
0

drr2g0s(r) f 2LJ(r). (18)

The function r2g0s(r) f 2LJ(r) peaks sharply near the maximum of
the solute–solvent pair distribution function g0s(r) (Fig. S4), and
the integral in Eq. (18) scales linearly with the height of the first

FIG. 5. Variance of the vdW force β2�(δFvdW)2� (Å−2) vs G0s = g0s(rmax)
(see Fig. 2).

peak G0s = g0s(rmax) of the solute–solvent pair distribution function
(Fig. 5),

�(δFvdW)2�∝ G0s. (19)

This scaling suggests that a linear dependence of �(δFvdW)2� on q2
(Fig. 3) is caused by tightening of the hydration shell induced by the
electrostatic pull from the ion.

The cross correlation between electrostatic and vdW forces can
be related to the mixed, charge-density structure factor58 [Fig. 4(c)],

Sρq(k) = 1
3N �i,j,α,β�zαe

ik⋅(riα−rjβ)�. (20)

This structure factor tends to zero at both k→ 0 and k→∞ because
of electroneutrality of the polar liquid.

Common to all structure factors of water is the disappearance of
the double-maximum structure of the first peak at higher tempera-
tures and themerger of these twomaxima into a single peak (We also
find the previously reported minimum of the density structure fac-
tor at small k at lower temperatures.59,60). The single-peak structure
factor is typical for simple liquids. Water thus structurally converges
to the behavior of a simple polar liquid, both in terms of density
and charge fluctuations, at T > 320 K. This structural crossover is
potentially reflected by solvation and other observable properties.
The distribution of tetrahedral order parameter61 of water in hydra-
tion shells of ions62 and Raman O–H stretch in hydration shells of
sufficiently long linear alcohols51,63 all show distinct crossovers in
this temperature range.

The theoretical arguments expressing the force variance and
cross correlations in terms of k-dependent structure factors of the
bulk liquid are not intended to provide a quantitative solution to the
problem of dielectric friction. Rather, they are presented to arrive
at general scaling relations for self-variances with the parameters of
the problem [Eqs. (13) and (19)]. The advantage of the reciprocal-
space representation is that the k→ 0 limit produces results in terms
of collective properties of the medium, involving multi-body cor-
relations, which are not reducible to single–molecule parameters.
Nevertheless, there are quantitative difficulties with the present for-
malism. For instance, Eq. (18) does not explain different slopes of the
vdW variance vs G0s in Fig. 5. Quantitative theories are still required
for a complete grasp of the complex problem of dielectric friction.
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IV. DISCUSSION
The Born picture5 of dielectric friction adopted in many mod-

ern formulations is based on two assumptions: (i) friction due to
vdW forces is described by hydrodynamic drag and is independent
of the ionic charge and (ii) vdW and electrostatic forces are statisti-
cally independent. Both assumptions turn out to be incorrect for LJ
ions studied here: the variances of both vdW and electrostatic forces
scale linearly with q2, and there is a strong anticorrelation (negative
cross correlation) between them.

The present set of simulations provides us with a broad view
of correlations between vdW and electrostatic forces kicking, by
thermal agitation, cations and anions into random translational dif-
fusion. The results for the self-components of the force variance and
the cross correlations are shown in Fig. 3 (the numerical results are
listed in the supplementary material). The component forces are
compared on the logarithmic scale with the total force variance in
Fig. 6. The equality between the cross correlation term and the neg-
ative of the self-electric component, given by Eq. (5), holds more
accurately for cations than for anions. For cations, the cross corre-
lation falls slightly above the electrostatic component, while just the
opposite happens for anions. As a result, Eq. (6) for the total variance
holds reasonably well for cations, but an even simpler result applies
to anions (Fig. 6, compare orange diamonds with black squares for
anions),

�(δF)2� � �(δFvdW)2�. (21)

The physical reason for the equality between the electrostatic
self-variance and the negative of the cross correlation [Eq. (5)] is
the formation of a tightly bound hydration layer. When the solute is
either nonspherical or carries an asymmetric charge distribution, the
tightly bound hydration shell rotates with the solute.16 For a water
molecule in such a structured hydration layer, mechanical equilib-
rium between vdW and electrostatic solute–solvent forces holds in
the body frame of the solute, f̃ vdW = −f̃ E, where tildes denote the
solute body frame and projection on the radial direction is taken
to produce the scalar solute–solvent forces acting on a single water
molecule. If the molecule in the shell is structurally arrested and
rotates with the solute,24 the fluctuation of the force in the labo-
ratory frame (without tildes) is produced by the orientation of the

FIG. 6. Variances of vdW (black squares) and electrostatic (red circles) interac-
tions and the cross correlation −�δFE ⋅ δFvdW� (vdW-E, blue triangles). Orange
points, nearly coinciding with the vdW component for anions, refer to the total force
variance.

radial unit vector changing with solute’s rotation: δfvdW = −r̂f̃ E and
δfE = r̂f̃ E. This condition immediately leads to the compensation
relation in Eq. (5).

Similar qualitative arguments apply to spherical ions stud-
ied here. Mechanical equilibrium for a water molecule in the
hydration layer implies that fluctuations of vdW and electrostatic
forces roughly compensate each other, δf E = −δf vdW, which leads to
Eq. (6). One also has to stress that the solvent molecule does not
have to continuously reside within the shell and can exchange with
another solvent molecule in the bulk. It is the structure of the shell,
induced by the ion, which has to be maintained.

We find that all three components of the force variance in
Eq. (4) approximately follow linear scalings with q2 (Fig. 3), despite
some deviations from the LRA seen for cations [Fig. 1(b)]. Given that
τF in Eq. (1) is nearly independent of the ionic charge [Fig. 1(c)], the
inverse diffusion constant is predicted to follow a linear scaling with
the squared ionic charge,

D−1 = a + bq2, (22)

for simple ions in water. The linear slope b is higher for anions
than that for cations because of the distinction between Eqs. (6)
and (21). The solvation asymmetry [Fig. 1(a)], thus, extends to the
asymmetry of linear transport coefficients: according to the Kirk-
wood equation [Eq. (1)] and the values of force variances (Fig. 6),
cations should diffuse faster than anions of the same size and charge
magnitude.

In contrast to the present findings for simple LJ ions, diffu-
sion constants of proteins turn out to be little affected by charge
mutations.17 Stabilization of proteins and other colloidal particles in
solution is achieved by surface solvation of many surface ionic sites
(ionized residues for proteins) making up the overall solute charge.
Small alterations of the charge state of a few such surface sites do
not strongly affect diffusivity. The transition from high sensitivity
of translational diffusion to the ionic charge demonstrated here for
small spherical ions to the lack of such sensitivity for colloidal par-
ticles, and the study of intermediate length scales, will remain the
subject for future studies.

SUPPLEMENTARY MATERIAL

See the supplementary material for the simulation protocol,
structure factors of SPC/E water, and derivations of equations
presented in the text.
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