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a b s t r a c t

Interface dielectric constant is used to quantify polar response of water interfacing a spherical solute. This
interfacial parameter, affected by the interfacial structure within about two hydration layers, is funda-
mentally distinct from the bulk dielectric constant (a material property). Molecular dynamics simulations
are used to extract the interface dielectric constant from fluctuation relations correlating the dipole
moment of the interfacial layer with the medium electrostatics. For a probe ion, one has to calculate
cross-correlations between the hydration shell dipole moment and the electrostatic potential, while
cross-correlations between the shell dipole moment and the electrostatic field are required for a probe
dipole. All protocols produce dielectric constants of water interfacing a nonpolar solute significantly
below the bulk value. We analyze corrections imposed on the fluctuation relations by protocols using
periodic boundary conditions with Ewald sums to compute electrostatic interactions. These corrections
are insignificant for typical simulation protocols.

! 2023 Elsevier B.V. All rights reserved.

1. Introduction

Polar susceptibility of an interface has recently attracted much
attention from theory [1–6] and experiment [7–10]. A consistent
result from these efforts is that the response of the interfacial polar
liquid and the corresponding interfacial dielectric susceptibility are
substantially reduced compared to the bulk when probed in the
direction perpendicular to the substrate. Only the response in the
perpendicular direction could be tested experimentally so far. On
the other hand, computer simulations allow probing polar
response in both perpendicular and parallel directions to the divid-
ing surface separating the liquid from the substrate. These studies
have shown that the interfacial dielectric constant is highly aniso-
tropic, thus becoming an axial tensor, with the parallel projection
showing either the bulk-like behavior or polarity much exceeding
that of the bulk [11–14].

Most simulations have been done for polar liquids in the slab
geometry, when equations for the local dielectric susceptibility
are significantly simplified [15,1]. The effective polarity of liquids
interfacing solutes of more complex geometries is also of much
interest to theories of solvation and interfacial polarization. There-
fore, the polar response of water interfacing model spherical
solutes [1,16,17], fullerenes [18], and proteins[19] has been quan-
tified. In agreement with studies using slab geometry, the interface
dielectric constant of water is reduced when probed either in the

radial direction of a spherical solute or perpendicular to the protein
surface [19]. The present study clarifies technical aspects of calcu-
lating the effective dielectric constant around spherical solutes by
numerical simulations based on periodic boundary conditions[20]
and Ewald sums to evaluate electrostatic interactions [21–24].

The analysis of simulations aimed at extracting the interface
dielectric constant requires accounting for finite-size corrections
[17] in the Ewald sums protocol applied to calculate electrostatic
interactions [20]. Here, we provide an extended analysis of simula-
tions of neutral Kihara solutes[16] and show that finite-size correc-
tions are minor when applied to a thin hydration layer used to
determine the interface dielectric constant. We also derive analyt-
ical expressions for the interface susceptibility and interface
dielectric constant, including a full analysis of finite-size effects.

The article starts with reviewing the formalism for an effective,
coarse-grained dielectric constant of the interface around a spher-
ical solute, followed with the analysis of simulation trajectories
including finite-size corrections. We analyze the dipolar and
quadrupolar components of the interfacial polarization to show
that the density of interfacial bound charge is strongly affected
by quadrupolar polarization. The interfacial quadrupolar density
cannot, however, be directly calculated because of the lack of
invariance to the choice of the reference point for the molecular
quadrupole of a dipolar molecule. One therefore has to rely on
either the interfacial charge density or the interfacial dipole den-
sity to study the interface polarization. Dipolar density is sufficient
to define the coarse-grained interface dielectric constant.
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The analysis of interfacial response developed previously[25]
and implemented here anticipates placing a small probe charge
(linear response) at the center of a spherical solute. The need for
finite-size corrections arises from the fact that the total charge of
the simulation cell becomes nonzero when the probe charge is
instantaneously placed at the solute. This difficulty is avoided
when susceptibility in response to a point dipole is analyzed. The
second part of the paper presents a new formalism to produce
the interface dielectric constant from the response to a probe
dipole. Consistent with the response to a probe charge, the inter-
face dielectric constant is strongly reduced relative to the bulk.

2. Polarization of the interface

The microscopic electric field in a dielectric material is a sum of
the field of external charges and the field of fluctuating bound
(molecular) charge distributed with the charge density qb. The
external field in our model is produced by a small probe charge q
placed at the center of a spherical solute. The Gauss theorem[26]
defines the microscopic, instantaneous electric field EmðrÞ normal
to the surface of the sphere with the radius r (Gaussian units)

4pr2EmðrÞ ¼ 4p qþ qbðrÞð Þ; ð1Þ

where qbðrÞ is the total bound charge within the r-sphere. Note that
both EmðrÞ and qbðrÞ fluctuate as the system configuration changes.
If the macroscopic Maxwell field EðrÞ ¼ q=ð!r2Þ is adopted to replace
the microscopic electric field EmðrÞ; qbðrÞ gains a constant value
independent of the sphere radius r

qb ¼ %q 1% !%1! "
; ð2Þ

where ! is the bulk dielectric constant. The independence of qb of
the macroscopic radius makes one conclude that all bound charge
must be accumulated within a microscopic interfacial region, where
the microscopic field deviates from the macroscopic Maxwell field.
Once accumulated in the microscopic region, the screening charge
is constant for any macroscopic radius r outside of the charge accu-
mulation region.

This observation can be directly proven by noting that the den-
sity of bound charge is equal[27,26] to the divergence of the vector
field of medium polarization Pt

qb ¼ %r & Pt ¼ %r%2@r r2Pt
r

! "
; ð3Þ

where Pt
r ¼ r̂ & Pt ; r̂ ¼ r=r and radial symmetry was applied to the

second equation. In dielectric theories, Pt
r / E0 ¼ q=r2 is propor-

tional to the vacuum field of the external charge E0 and thus one
finds from Eq. (3) qb ¼ 0. The density of bound charge vanishes in
the parts of the dielectric where macroscopic electrostatics applies.

Given that there is no bound charge density in the bulk, dielec-
tric theories collapse all interfacial bound charge to the surface
charge at the dividing surface separating dielectrics with different
dielectric properties [27,26]. Its position is not exactly specified on
the molecular scale. To produce the dielectric screening charge as
specified by Eq. (2), the region with EmðrÞ – EðrÞ has to be included
within the dividing surface. The surface charge density is, in turn,
related to the polarization discontinuity at the dividing surface
[27].

Discontinuity of the polarization field at the dividing surface
separating a continuum dielectric from a vacuum cavity yields
the surface charge density rn ¼ %Pt

rðaþ 0Þ, where a is the radius
of the dividing surface. This result is derived by integrating the
Maxwell equation

r & E ¼ %4pr & Pt ð4Þ

between two closely separated spheres at a% 0 and aþ 0. The result
is

Erðaþ 0Þ % Erða% 0Þ ¼ 4prn: ð5Þ

If Erðaþ 0Þ ¼ q=ð!a2Þ and Erða% 0Þ ¼ q=a2, one arrives at the dielec-
tric result in Eq. (2) with qb ¼ 4pa2rn.

The microscopic distribution of bound charge is produced by
taking the statistical ensemble average over the liquid configura-
tions. The resulting hqbðrÞi around two nonpolar solutes (Kihara
[16], see below, and fullerene C60[18]) are shown in Fig. 1a. The
water model is TIP3P for the Kihara solute and SPC/E for C60. The
threshold hqbðrÞi ’ 0 is reached outside of the hydration layer with
the thickness d ’ 5% 6 Å, which corresponds to roughly two
hydration shells. The polarization response is thus continuum-
like, qb ¼ 0, outside of the second hydration shell.

The density of bound charge is oscillatory within the micro-
scopic interfacial region. The first positive spike in Fig. 1a repre-
sents hydrogen atoms of water preferentially oriented toward
the nonpolar solute carrying zero charge and interacting with
water only through a surface Lennard-Jones (LJ) potential. The sec-
ond positive maximum represents hydrogens in the second hydra-
tion shell, which are much more disordered, hence producing a
broader peak. The bound charge density around the Kihara solute
computed here is compared to the charge density (shifted horizon-
tally) of SPC/E water around a neutral C60 fullerene (both water
models are at T ¼ 298 K) [18]. The basic arrangements of molecular
charge around two types of neutral solutes are very similar. Putting
a negative charge on the solute produces an electrostatic pull on
the first-shell hydrogens and the release of dangling O–H bonds
[28,29] directed toward the solute (blue line in Fig. 1a).

Fig. 1a confirms that the bound screening charge is accumulated
within a microscopic interfacial region with the thickness ’ d. The
radius of the dielectric cavity a should be chosen to allow at least

Fig. 1. (a) Average density of bound charge of TIP3P water (T ¼ 298 K) hqbðrÞi
around the Kihara solute with RHS ¼ 10 Å (black line). The brown line shows the
bound charge density of SPC/E water around neutral C60 solute (T ¼ 298 K) [18].
This curve is horizontally shifted by 6:9 Å to make the first maxima of two densities
coincide. The charge density for the Kihara solute is multiplied by a factor of 10 to
bring two functions to the same scale. The blue line shows the charge density
around C2%

60 carrying the negative charge q ¼ %2e. (b) Pair solute–solvent distribu-
tion function of water’s oxygens around the Kihara solute. The vertical lines indicate
the hard-sphere solute–solvent diameter R0 ¼ 12:7 Å and the position of the second
density maximum identified with the cavity radius a ¼ 16:3 Å.
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partial accumulation of the screening charge within the divided
surface. There is no exact criterion for positioning the dividing sur-
face and we will associate a with the second maximum of the
solute–solvent radial distribution function shown in Fig. 1b. Since
the density maximum arises from preferential positions of water’s
oxygen atoms carrying negative partial charges, it corresponds to
the second minimum of hqbðrÞi shown in Fig. 1a. As explained
below, this choice minimizes the contribution of quadrupolar
polarization to the surface charge density rn. The surface charge
appears from collapsing the microscopic bound charge within the
a-sphere to the dividing surface. Calculation of rn induced by an
external probe charge or dipole is the goal of the formalism dis-
cussed below.

The comparison between neutral and charged C60 in Fig. 1a
illustrates how the interfacial charge density is shifted by the pull-
ing force from the solute charge. A change in qb, induced by a probe
multipole placed inside the solute, is quantified by the interfacial
polar susceptibility, which is our primary goal. Theories of bulk
dielectrics[27,26,30] represent changes in the scalar field qb in
terms of the vector field of dipolar polarization P. In turn, the bulk
dielectric constant is given by the variance of the dipole moment of
the macroscopic sample and molecular quadrupoles do not directly
contribute to it. They only affect local dipolar correlations entering
the Kirkwood factor [31]. Is the same true for the interfacial polar
response? To answer this question, we start by considering interfa-
cial polarization in terms of individual contributions from dipolar
and quadrupolar polarization components to the interfacial den-
sity of bound charge.

3. Dipolar and quadrupolar polarization

The superscript ‘‘t” in the polarization vector Pt in Eq. (3) spec-
ifies the total polarization field, which can be viewed as an (in-
finite) expansion in terms of multipolar densities of the liquid. If
only the dipolar P and quadrupolar Q densities are included, one
obtains[26]

Pt ¼ P% 1
3
r & Q ; ð6Þ

where the densities of molecular dipolesmj and quadrupoles Q j are

PðrÞ ¼
X

j

mjdðr% rjÞ
* +

;

Q ðrÞ ¼
X

j

Q jdðr% rjÞ
* +

:

ð7Þ

Here, the molecular quadrupole[26,32] Q ¼ ð3=2Þ
P

kqkrkrk is calcu-
lated relative to some arbitrary point chosen inside the solvent
molecule[33] (see below); the sum runs over the atomic charges
qk with coordinates rk.

The statistically averaged radial projection hPt
ri can be viewed as

the derivative of the average radial dipole moment

Mt
rðrÞ ¼ 4p

Z r

0
dr0r02hPt

ri ð8Þ

accumulated within the spherical region with the radius r around
the solute. The average density of the bound charge directly follows
from taking the statistical average in Eq. (3) and using the definition
of Mt

rðrÞ in Eq. (8)

hqbi ¼ %ð4pr2Þ%1
@2
r M

t
r: ð9Þ

Integrating this equation, one obtains an expression for the radial
shell dipole moment in terms of the charge density

Mt
rðrÞ ¼ %4p

Z r

0
dr0ðr % r0Þr02hqbðr0Þi: ð10Þ

This shell dipole moment includes contributions from the radial
dipole moment

MrðrÞ ¼
X

rj<r

r̂j &mj

* +

ð11Þ

and from the corresponding density of quadrupoles[34]

Mt
rðrÞ ¼ MrðrÞ %

4p
3

r2Qrr; ð12Þ

where Qrr is the radial projection of the average quadrupolar den-
sity (Eq. (7)) in spherical coordinates.

Given that hqbðrÞi vanishes outside of the second hydration
shell, integration in Eq. (10) does not extend beyond that micro-
scopic region with the thickness d ’ 2rs, where rs is the molecular
diameter of the solvent. For large colloidal solutes with a ' 2rs,
one can assign a constant, mean-field value to Pt

r ¼ %Pt
n ¼ %n̂ & Pt

inside the microscopic layer and put qb ¼ 0 at r < R0 and
r > R0 þ d (Fig. 1b). According to the standard rules of electrostatics
[26,27], the projection of the polarization density is taken on the
normal unit vector n̂ pointing outward from the solvent and
toward the solute (Fig. 3).

From Eq. (8), one can write for a ' d

Mt
rða ! 1Þ ’ 4pda2hPt

ri: ð13Þ

Given Pt
r ¼ %Pt

n, one obtains

Mt
rða ! 1Þ ¼ %Q intd: ð14Þ

In this equation,

Q int ¼ 4pa2hPt
ni ð15Þ

is the total charge of the interface obtained by multiplying the sur-
face charge density rn ¼ hPt

ni with the surface area of the dividing
surface.

As is shown in Fig. 2, the dipole moment Mt
rðrÞ saturates to a

negative value ’ %0:6e(Å’ %2:9 D. Given d ’ 6 Å (5 Å was
reported in Ref. [35]), this value yields Q int ’ 0:1e in Eq. (9). The
positive sign of Q int is consistent with the positive potential
/c ¼ Q int=a inside an uncharged spherical cavity found in simula-
tions of force-field water [36,37,35]. It reflects spontaneous interfa-
cial polarization due to specific orientations of the water molecules
[38,39]. The magnitude of Q int estimated from Fig. 2 is consistent
with the cavity potentials reported in the past [40].

In contrast to the total radial dipole Mt
rðrÞ, its dipolar compo-

nent MrðrÞ saturates to a positive constant value ’ 25:7 D

Fig. 2. Integrated radial dipole moment of the water shellMt
rðrÞ (Eq. (10), solid line)

with the average density of bound charge of water hqbðrÞi around the Kihara solute
with RHS ¼ 10 Å. The saturation limit at large r is Mt

r ’ %2:9 D. The dashed line
refers to the integrated dipolar density MrðrÞ (Eq. (11)).
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(Fig. 2). This implies that hydration shell dipoles are slightly tilted
toward the bulk (Fig. 3), in opposite to the water–vapor interface
where dipoles are tilted toward the vapor phase [34]. Dipoles tilted
toward the bulk are seen from a reference point inside the solute as
oxygen’s negative charges (Fig. 3), yielding a negative interface
charge. However, for each tilted dipole there is a positive hydrogen
atom which is closer to the center of the solute than the negative
oxygen. A compensation between two contributions leads to a pos-
itive net charge Q int for TIP3P water. This compensation is strongly
affected by the water model[37] and the solute–solvent
interaction.

Despite its importance [2,34,41,35], the interfacial quadrupolar
density cannot be calculated directly because of the lack of invari-
ance of molecular quadrupole of a dipolar molecule in respect to
the reference point [32,38]. This can be illustrated by taking
water’s quadrupole relative to the reference point at the oxygen
atom. The radial quadrupolar density becomes

QrrðrÞ ¼ qHr
2
H

X

i

dðr% riÞ
X

k¼1;2

P2ðcos hkiÞ
* +

; ð16Þ

where qH ¼ 0:417e is the atomic charge of the hydrogen atom of
TIP3P water and rH ¼ 0:957 Å is the length of the O–H bond. Fur-
ther, P2ðxÞ is the second Legendre polynomial and hki (k ¼ 1;2) are
two angles between the O–H bonds of a water molecule and the
radial direction established by the position of oxygen at ri.

Now assume that the reference point is shifted by the vector b
along the symmetry axis of the water molecule. The quadrupolar
density changes to

Qrr0ðrÞ ¼ QrrðrÞ þ 3mbqg0sðrÞhcos2 hri; ð17Þ

where g0sðrÞ is the solute-oxygen pair distribution function, q is the
number density in the bulk, and hr is the angle between the O–H
bond and the radial direction. If the traceless tensor is used for Q
in Eq. (7), the expression 3 cos2 hr in Eq. (17) is replaced with
3 cos2 hr % 1. The dependence on the reference point for the
quadrupolar density disappears in the latter case for a point in
the bulk, where h3 cos2 hr % 1i ¼ 0, but not in the interface. The
interfacial quadrupolar polarization maintains its dependence on
the choice of the reference point within the molecule even if trace-
less molecular quadrupole is adopted. The quadrupolar interfacial
polarization is ill-defined when calculated from Eq. (7).

Fig. 4 illustrates the calculation of QrrðrÞ based on Eq. (16). The
radial quadrupolar density reaches a plateau consistent with the
second term in Eq. (17). If this limit is scaled with g0sðrÞ, one
obtaines the dashed line in Fig. 4. The overall function QrrðrÞ is thus
dominated by the second term in Eq. (17) and cannot be unam-

biguously defined. This difficulty is, however, eliminated if Qrr is
calculated from Mt

r and Mr (green line in Fig. 4): one obtains
Qrr / r%2 at large r (Eq. (12)). Both of these interface dipoles are
well-defined and are not affected by an arbitrary choice of the ref-
erence point for higher molecular multipoles.

To ensure that quadrupolar polarization does not contribute to
the radial projection of the polarization vector field, the dividing
surface is specified at the second minimum of hqbi (Figs. 1 and 4)
where the derivative in the second term in the following equation
vanishes

Pt
rðr ¼ aÞ ¼ Pr %

1
3r2

@r r2Qrr
! "

jr¼a ¼ Pr : ð18Þ

We now turn to the polarization field Pr induced at the dividing sur-
face by an external charge or dipole.

4. Response to a charge

The focus of the formalism discussed here is not the overall
interface charge, but rather the interface charge density rn induced
by solute’s electrostatics (Eq. (5)). The algorithm presented here
aims to compute a coarse-grained, mean-field surface charge den-
sity characterizing the overall polarization induced in a micro-
scopic region at the surface of the solute. With the assumption
d ) a, the target of this formalism is polar response of liquids at
surfaces of colloidal particles with the size of a nanometer and lar-
ger (the Kihara solute studied here has the diameter of ’ 2:5 nm).
We start with considering the response to a single charge q placed
at the solute’s geometrical center, followed with the response to a
point dipole. The contribution of the quadrupolar density to rn is
neglected per Eq. (18): the induced surface charge density rn is
viewed as arising solely from the interfacial dipolar polarization.

The surface charge density rn ¼ hPniq is obtained by projecting
P on the surface normal n̂ pointing outward from the solvent
(Fig. 3)

hPniq ¼ n̂ & hPiq: ð19Þ

The angular brackets h. . . iq denote an ensemble average in the pres-
ence of charge q. By performing a linear expansion of the statistical
average in the interaction of charge qwith the medium electrostatic
potential /s, one gets the induced surface charge density

DPn ¼ hPniq % hPni0 ¼ %bqhdPnd/si0; ð20Þ

where the spontaneous polarization component hPni0, if non-zero, is
subtracted from the total. The statistical average h. . . i0 denotes con-
figurations in the absence of the solute charge (q ¼ 0) and

Fig. 3. Schematic drawing of spontaneous orientation of water dipoles m in the
hydration shell of the Kihara solute with the radial direction indicated by r̂. The
dipoles tilted toward the bulk produce an effective negative interface charge
(marked with ‘‘–”). The charge is overall positive when both the dipolar and
quadrupolar polarization components of the interfacial polarization are included
(Fig. 2 and Eq. (12)). The unit normal vector n̂ perpendicular to the dividing surface
points from the solvent toward the solute.

Fig. 4. Radial quadrupolar density Qrr calculated according to Eq. (16) from MD
trajectories for the Kihara solute in TIP3P water (solid line). The dashed line shows
the second term in Eq. (17) in which 3mbqhcos2 hri is taken from the long-distance
value of QrrðrÞ. The green solid line indicates Qrr obtained from Eq. (12) withMt

r and
Mr shown in Fig. 2. The vertical dotted line indicates the dividing surface radius a.
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d/s ¼ /s % h/si0; dPn ¼ Pn % hPni0 are deviations from the averages
in the reference state. The electrostatic potential /s produced by
the solvent is calculated at the position of the probe charge, which
is the geometrical center of the solute in the present calculations.
Note that binary correlations in the right-hand side of Eq. (20) cal-
culated for the neutral solute, h. . . i0, must be equal to the same bin-
ary correlations calculated on configurations produced with a
charged solute, h. . . iq, when linear response is adopted. This is
because the structure of the interface is viewed as unperturbed by
the solute–solvent electrostatics in linear response. Molecular
dynamics (MD) simulations[16] support this assumption for rela-
tively large Kihara solutes with the radius of * 1 nm studied here.

The induced surface polarization DPn defines the linear surface
susceptibility in response to the vacuum field E0n

DPn ¼ v0nE0n; ð21Þ

where, for spherical symmetry, one has n̂ ¼ %r̂ ¼ %r=r (Fig. 3)

E0n ¼ n̂ & E0 ¼ @r/0jr¼a: ð22Þ

Here, /0 ¼ q=r is the electrostatic (vacuum) potential of the charge
q. From Eqs. (20) and (21), one obtains[25]

v0n ¼ ba2hdPnd/si0: ð23Þ

In this equation, dPn is determined from calculating the dipole
moment from a thin layer at the dividing surface r ¼ a. One can
instead make r a variable, which leads to oscillatory PnðrÞ and
v0nðrÞ in the hydration shell. This difficulty applies to all attempts
to define polar response at a specific spatial point in the interface
[1,42], which also produced divergent dielectric constants for the
longitudinal response in the slab geometry [43]. An algorithm
around this difficulty[25] is to use a mean-filed, coarse-grained
value of Pn characterizing the entire water shell within the micro-
scopic region with the thickness d. By taking a small increment
Dr ¼ r % a ) a in Eq. (8), one can write

Pn ¼ % DMr

DVðrÞ
’ % 1

4pa2
DMr

Dr
; ð24Þ

where DVðrÞ ’ 4pa2Dr is the shell volume and Mr is calculated as
the entire dipole moment within the r-sphere (Eq. (11)). From this
equation and Eq. (23), one obtains the linear interface susceptibility
as the slope of the cross-correlation between the radial shell dipole
moment from Eq. (11) and the electrostatic potential of the medium
calculated at the position of the probe charge

v0n ¼ % b
4p

D
Dr

hdMrd/si0: ð25Þ

The slope D=Dr in this equation is calculated from the dependence
of hdMrd/si0on r with Dr ¼ r % a taken beyond the dividing surface
(see below).

The scalar parameter v0n is the coarse-grained susceptibility of
the interface which delivers no information about the solvent polar
response far from the dividing surface. Calculations of such
distance-dependent susceptibilities carry little physical meaning
since only the capacitance of a thin liquid film can be measured
experimentally [7,10]. There is no spatial resolution in such mea-
surements and both the experimental and simulation results fit
well to the model of a layered capacitor combining the interfacial
layer of thickness d and the dielectric constant !int and the bulk
layer with the dielectric constant ! [42].

Calculations of the interface susceptibility through Eq. (25)
anticipate that only the linear portion of DMr / Dr is used to deter-
mine the slope (the assumption in Eq. (24) that the layer’s volume
is DV ¼ 4pa2Dr obviously fails when Dr is increased). This require-
ment poses an obvious challenge when used in numerical simula-
tions. One wants a sufficiently large Dr to incorporate ’ 1% 2

layers of water beyond the radius a for sufficient statistics com-
bined with Dr ) a. Taken together, these conditions require suffi-
ciently large solutes and correspondingly large simulation boxes.
Implementing this algorithm in numerical simulations employing
periodic boundary conditions and Ewald sums requires finite-size
corrections considered next.

4.1. Finite-size corrections

We now apply the formalism outlined above to numerical sim-
ulations involving periodic boundary conditions and Ewald sums
to calculate electrostatic interactions. A spherical solute is placed
at the center of a cubic simulation cell with the length L. The cell
is replicated by periodic boundary conditions to form a lattice
bounded by a sphere of the radius R with the ‘‘tin-foil” condition
of an infinite dielectric constant at the bounding sphere [20]. The
solute carries no charge in its equilibrium state, which is assumed
to be the reference state for the linear response perturbation the-
ory. The ensemble average h. . . i0 over the statistical configurations
in this state is specified with the zero subscript (Eqs. (20) and (25)).

When a small charge q is instantaneously added to the center of
a spherical solute, the nuclei of the medium do not move during
the addition (an analog of a spectroscopic vertical transition), but
the image charges and the uniform background, with the charge
density q0 ¼ %q=L3 to neutralize q, are added instantaneously
[23]. The energy of the simulation cell changes by

u ¼ q/s þ
q2

2
n: ð26Þ

Here, n ’ %2:837298=L is the electrostatic potential of the Wigner
lattice of the central cell images (surrounded by a ‘‘tin-foil” bound-
ary[44]). Additional finite-size corrections can be introduced for
equilibrium free energies of ions to account for the fact that periodic
polar media under-solvate the charge:[24] n ! nð1% !%1Þ for a
point charge[45] and correction terms depending on the ionic size
for the electrostatic chemical potential of a finite-size ion [46,24].

The electrostatic potential of the solvent at the position of the
probe charge is calculated in simulations employing periodic
boundary conditions[20] through the Ewald potential wðrÞ

/s ¼
XN

i¼1

X

a
qiawðriaÞ; ð27Þ

where qia are partial atomic charges with coordinates ria within N
solvent molecules; a runs over all partial charges within a given
molecule. The Ewald potential is given as a sum of the real-space
and reciprocal-space terms[20,21]

wðrÞ ¼ erfcðjrÞ
r

þ 4p
L3

X

k–0

1
k2

e%k2=ð4j2Þþik&r % p
L3j2

: ð28Þ

The decay parameter j is typically chosen to be sufficiently large to
eliminate the need to perform lattice sums in real space (the first
term in Eq. (28)), k are the lattice vectors in reciprocal space.

The formalism used to arrive at Eqs. (23) and (25) needs to
accommodate the field of the lattice of periodic images of the cen-
tral ion when applied to simulation protocols based on Ewald sums
[17]. The normal projection of the electric field at the dividing sur-
face becomes

E0n ¼ q@rwjr¼a ¼ % q
a2

f: ð29Þ

The parameter f in this equation provides the correction due to the
lattice of images of the central ion

f ¼ erfcðjaÞ þ 2jaffiffiffiffi
p

p e%ðjaÞ2 þ 4pa2

L3
X

k–0

1
k
e%k2=ð4j2Þj1ðjaÞ; ð30Þ
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where j1ðxÞ is the spherical Bessel function of the first order[47] and
the angular average over the dividing surface was used to simplify
the final expression. Eq. (25) for the susceptibility becomes

v0n ¼ % b
4pf

D
Dr

hdMrd/si0: ð31Þ

Fig. 5 plots fðaÞ from Eq. (30) for j ¼ 6:4=L used in MD simula-
tions of Kihara solutes in TIP3P water [16]. There is no significant
correction for finite size effects for a=L 6 0:2. The correction factor
drops below unity with increasing size of the solute and
approaches f ’ 0:5 when the size of the solute becomes equal to
half of the simulation box. Lee and Singer[17] suggested an empir-
ical approximation for the correction parameter

f ¼ 1% ð4p=3Þða=LÞ3: ð32Þ

This simple function matches Eq. (23) very well for the protocol
adopted in our simulations[16] (Fig. 5). It might appear that the
parameter j in Eq. (30) is irrelevant. However, the choice of j does
affect the correction parameter (Fig. 6) and the estimate by Eq. (32)
is not always reliable. Nevertheless, the value jL ¼ 6:4 adopted in
the simulation protocol (vertical dashed line in Fig. 6) provides
nearly the lowest sensitivity of the correction factor to the solute
size a. For a Kihara solute with the hard-sphere core RHS equal to
10 Å (see below), the hard-sphere solute radius is R0 ¼ 12:7 Å[48]
(Fig. 1b) and one finds f ¼ 0:96 for a ¼ R0 and f ¼ 0:92 for
a ¼ 16:3 Å as defined in Fig. 1b (L ¼ 60 Å was used in simulations).
The corrections arising from applying Ewald sums thus contribute
about 8% of the calculated value of the susceptibility v0n.

From the interface susceptibility v0n in Eq. (31), one can define
the effective dielectric constant of the interface [1,25]

!int ¼ 1% 4pv0n

$ %%1
: ð33Þ

This interface dielectric constant specifies the coarse-grained sur-
face charge density rn and the boundary conditions for the discon-
tinuity of the Maxwell electrostatic field at the dividing surface (Eq.
(5)). The dielectric constant !int enters the electrostatic boundary-
value problem to calculate electrostatics in the void within a liquid
dielectric [25]. It replaces the bulk dielectric constant of dielectric
theories to account for the microscopic structure of the liquid inter-
face, but should not be used to characterize screening of molecular
charges by polar liquids [49,42].

Fig. 7 shows the analysis of simulation results for the Kihara
solute with the hard-core radius RHS ¼ 10 Å and dipolar density
for the water shell according to Eq. (11). The Kihara solute-water
interaction energy u0sðrÞ combines the hard-sphere core with the
radius RHS with a soft Lennard-Jones (LJ) layer characterized by
the LJ diameter r0s and the LJ energy !0s

u0sðrÞ ¼ 4!0s
r0s

r % RHS

& '12

% r0s

r % RHS

& '6
" #

: ð34Þ

The convenience of this potential for modeling solvation of large
solutes is that it maintains a sufficiently steep solute–solvent repul-
sion while allowing to model partial surface dewetting and layering
by modifying !0s [50].

The solute–solvent radial distribution function has its first peak
approximately at the distance RHS þ r0s from the solute center
(Fig. 1b). The results shown in Fig. 7 are obtained at !0s ¼ 3:7 kJ/-
mol and r0s ¼ 3 Å. Full wetting of the solute by TIP3P water is real-
ized with these parameters [48].

MD simulations were done as described elsewhere [48]. Briefly,
simulations were carried out at 298 K in the configuration of a sin-
gle solute in a cubic box consisting of 6180–6650 TIP3P water
molecules with the water density at 1.0 g/cm3 after initial NPT
equilibration. The production NVT runs were carried out for
200 ns with the time step of 2 fs. The simulation box length was
60 Å and the particle mesh Ewald method with the 12 Å cutoff dis-
tance was used for electrostatic interactions. The dielectric con-
stants of bulk TIP3P and SPC/E water models were presented in a
separate paper applying the algorithm of k ! 0 extrapolation in
the polarization structure factors to avoid finite-size effects [51].
These bulk values are much larger than the interfacial dielectric
constants presented here: ! ¼ 94:28 (TIP3P, T ¼ 300 K) and
! ¼ 70:95 (SPC/E, T ¼ 300 K).

The linear fit of %hdMrd/si0, required to determine the slope in
Eqs. (25) and (31) (red and black points in Fig. 7), was done for the

Fig. 5. Correction coefficient f in Eq. (30) vs a=L for jL ¼ 6:4 used in MD simulations
(solid black line). Red points coinciding with the black line indicate the result of Eq.
(32).

Fig. 6. Correction coefficient f in Eq. (30) vs jL for the values of the dielectric cavity
radius a listed in the plot. The vertical dashed line indicates jL ¼ 6:4 adopted in MD
simulations [25].

Fig. 7. Cross-correlation between the shell dipole moment Mr (Eq. (11)) and the
medium electrostatic potential /s vs the distance r from the center of the solute
(black open points). Open red points show the same correlation multiplied with f%1

(Eq. (30)). The cavity radius a ¼ 16:3 Å is shown by the vertical dashed line. The
filled points indicate the correlation data selected within the range Dr ’ 8:5 Å and
the dashed lines are the linear fits through the filled points to determine intrface
susceptibilities v0n in Eqs. (25) (black) and (31) (red). The linear fits produce !int
equal to 5.5 (Eq. (25)) and 9.5 (Eq. (31)).
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shell extending the distance Dr ¼ r % a ’ 8:5 Å beyond the cavity
radius a (dashed vertical line in Fig. 7). This empirical choice of
Dr leads to !int ’ 5:5 in Eq. (25) and ’ 9:5 in Eq. (31), when
finite-size corrections are included.

When Dr ’ 10 Å was applied to the analysis of neutral C60 in
SPC/E water, !intðTÞ ’ 12% 15 was found in the range of tempera-
tures T ’ 240% 360 K [18]. Further, when negative charge was
added to C60 to create structural instability toward release of O–
H bonds, !intðTÞ increased to 20% 25. The range of numbers
reported here is consistent with recent simulations of TIP3P water
interfacing a planar substrate [52]. A careful analysis of the interfa-
cial water structure revealed a small gap between water and the
substrate. With the account of vacuum permittivity in the gap,
the interfacial water layer was assigned the dielectric constant of
’ 17.

5. Response to a dipole

The algorithm to evaluate the interface dielectric constant dis-
cussed here considers the water interface polarized by a radially
symmetric electric field of the probe charge placed at the center
of a spherical solute. This setup gives access to the longitudinal
dielectric susceptibility[1,25,42]

vL ¼ ð4pÞ%1 1% !%1
int

! "
: ð35Þ

The interface dielectric constant !int can be associated in this case
with the perpendicular dielectric constant !int ¼ !? measured in
the dielectric slab when an external field is applied perpendicular
to the slab plane. Simulations of thin films of liquids (but not exper-
iment) have additionally provided access to the dielectric response
parallel to the slab planes [11–14], with the dielectric constant !k.
The application of the external field parallel to the slab planes yields
the transverse dielectric susceptibility

vT ¼ ð4pÞ%1 !k % 1
! "

: ð36Þ

These simulations have shown a significant anisotropy of the inter-
facial dielectric response with !? ) !k. One of the advantages of
using the slab geometry is that two different geometries of the
applied field, perpendicular and parallel to the slab surface, give
access to, respectively, longitudinal and transverse susceptibilities,
which refer to polar response in reciprocal space [53].

While the center charge induces the longitudinal polarization
only, a probe dipole induces polarization including components
of both longitudinal (L, irrotational, r( PL ¼ 0) and transverse
(T, solenoidal, r & PT ¼ 0) symmetries [26,54]. The electrostatic
chemical potential ld of a point dipole placed at the center of a
spherical solute can be expressed in terms of microscopic, k-
dependent longitudinal (L) and transverse (T) dipolar structure fac-
tors[53,55] SaðkÞ; a ¼ L;T of the bulk liquid. The resulting expres-
sion is[56]

ld ¼
X

a¼L;T

Sa

gK
la; ð37Þ

where Sa ¼ Sað0Þ and gK ¼ ðSL þ 2STÞ=3, the trace of the structure-
factor tensor, is the Kirkwood factor of the polar liquid [31]. The
terms la are the reciprocal-space integrals of the L and T projections
of the reciprocal-space electrostatic field of the dipole ~Ed with the
corresponding structure factors

la ¼ % 3y
8p

Z
dk

ð2pÞ3
~Ea
d

(((
(((
2
SaðkÞ; ð38Þ

where y ¼ ð4p=9Þbqm2 is the standard parameter of dimensionless
dipolar density appearing in dielectric theories [57,31].

Since we are interested in the limit of large colloidal solutes, the
Fourier-transformed projections of the solute electric field decay
on the scale of wavevectors a%1 for which the dipolar structure fac-
tors are nearly constant and can be approximated by their k ¼ 0
values. Continuum limits SaðkÞ ! Sað0Þ can be taken in the
reciprocal-space integrals in Eqs. (37) and (38). The chemical
potential for the dipole m0 placed at the center of the solute
becomes

ld ¼ %m2
0

a3
ySLST

gK
: ð39Þ

The reaction field [58] at the solute center is

R ¼ %@ld=@m0 ¼ vdm0: ð40Þ

It involves the susceptibility of the interface to the probe dipole

vd ¼
2y
a3

SLST

gK
: ð41Þ

For dielectrically isotropic liquids in contact with the solute, one
has SL ¼ ð!% 1Þ=ð3y!Þ; ST ¼ ð!% 1Þ=ð3yÞ and

vd ¼
1
a3

2ð!% 1Þ
2!þ 1

: ð42Þ

This is the standard Onsager expression for the reaction field sus-
ceptibility [58].

If, alternatively, one applies va ¼ 3ySa=ð4pÞfrom Eqs. (35) and
(36) to Eq. (39), one gets the reaction-field susceptibility in terms
of the perpendicular and parallel components of the dielectric
constant

vd ¼
2
a3

ð!k % 1Þð!? % 1Þ
2!k!? % !? % 1

: ð43Þ

This result reduces to the Onsager equation for the isotropic dielec-
tric constant !k ¼ !? ¼ !. In the opposite limit of strong anisotropy
!k ' !?, the susceptibility turns to the longitudinal response (per-
pendicular component)

vd ¼
1
a3

1% !%1
?

! "
: ð44Þ

From !k ' !? obtained in simulations of interfacial water [11–14],
the response of the microscopic interface to a dipole is mostly lon-
gitudinal and similar to that of an ion. This conclusion also follows
from microscopic calculation of dipole solvation in dipolar liquids
[59] suggesting that !k ' !? should be a general property of polar
liquid interfaces [14,60]. It is useful to note that the Onsager suscep-
tibility (Eq. (42)) has been widely used[61–63,54] to analyze spec-
tral solvatochromism. Dielectric anisotropy of the interface
requires revision of the corresponding polarity parameters.

When a point dipole is placed at the center of a spherical cavity,
the induced density of surface charge DPnðhÞ ¼ Pn1 cos h scales with
the first-order Legendre polynomial of the polar angle h relative to
the direction of the dipole aligned with the z-axis of the laboratory
frame. The reaction field (Eq. (40)) is given[54] in terms of the
expansion coefficient Pn1 as R ¼ %ð4p=3ÞPn1. The linear perturba-
tion theory allows one to express the reaction field in terms of
the cross-correlation between fluctuating Pn1 and the z-projection
Esz of the electric field of the medium at the center of the solute

R ¼ %4pbm0

3
hdPn1dEszi0: ð45Þ

The Legendre projection Pn1 of the instantaneous polarization at the
interface can be written as follows

Pn1 ¼ % 3
4pa2

X

j

ðẑ & r̂jÞðr̂j &mjÞdðrj % aÞ: ð46Þ
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Given spherical symmetry of the problem, one can represent the
dipolar susceptibility in Eqs. (40) and (45) as

vd ¼
b

3a2
D
Dr

hdMr & dEsi0; ð47Þ

where

Mr ¼
X

rj<r

r̂jðr̂j &mjÞ: ð48Þ

Eq. (47) suggests that the linear susceptibility of the hydration shell
to the probe dipole can be calculated from the slope, with increas-
ing thickness Dr, of the cross-correlation of the radial shell dipole
moment Mr with the electrostatic field Es produced by the medium
at the solute center. From Eq. (44), one obtains

!int ¼ !? ¼ 1% a3vd

! "%1
: ð49Þ

The results of calculations of hdMr & dEsi in Eq. (47) for the Kihara
solute are shown in Fig. 8. The dashed straight line indicates the
slope from the Dr ’ 8:5 Å shell, with the result !int ¼ !? ’ 4:4 in
Eq. (49). This outcome is about twice below !int ’ 9 calculated from
the susceptibility in response to the charge field incorporating
finite-size corrections (Fig. 7).

A disadvantage of the dipolar route to the interface dielectric
constant is that the susceptibility a3vd in Eq. (49) carries a weak
/ a dependence on the cavity size a. Such a sensitivity to the selec-
tion of the effective cavity radius does not appear for the suscepti-
bility to the charge field (Eq. (25)). However, the charge route
requires Ewald-sum corrections for the electrostatic potential,
which can be mostly neglected[64] in the calculation of the elec-
trostatic field by the Ewald sums protocol. The dipolar route lead-
ing to Eq. (49) is based on Eq. (44), which follows from the
assumption !k ! 1 and might be inaccurate. Calculating two com-
ponents, !k and !?, is not possible through a single susceptibility vd

in Eq. (43).
A full understanding of the reasons behind the discrepancy

between !int ’ 5% 9 for a central-symmetry charge probe and
!int ¼ !? ’ 4 for the dipolar probe is missing. The common accep-
tance of the bulk dielectric constant as a material property antici-
pates that the dielectric constant is independent of the symmetry
of the probing external electric field. The arguments, going back
to Ramshaw [65], show that specific linear combinations of the
longitudinal and transverse susceptibilities eliminate the long-
range, / r%3, dipolar correlations and preserve only short-range
correlations entering the Kirkwood factor and decaying on the
length ‘much shorter than the size of a macroscopic sample L. This
prescription allows one to calculate the bulk dielectric constant as

a material property insensitive to the sample shape and symmetry
of the probing field. The separation of length scales is obviously not
guaranteed for the interfacial polarization extending to the dis-
tance d comparable to ‘. The interface susceptibility is obviously
not a material property as it depends on the solute–solvent inter-
action. Some dependence on the symmetry of the probing field
might be maintained, contributing to the discrepancy between
the charge and dipole routes used in the present calculations.

6. Discussion

Dielectric theories of polar materials have evolved from conven-
tional boundary-value problems of macroscopic electrostatics to
treat many ramifications of electrostatics on molecular scale in
terms of one well-defined material property of the polar medium:
the dielectric constant as reported by macroscopic dielectric exper-
iments [57]. Electrostatic interactions are so ubiquitous on molec-
ular and supramolecular length scales that it is difficult to pinpoint
all limitations of this widely adopted approach. Two problems have
received much attention in application to molecular phenomena in
polar liquids: electrostatic solvation and screening of electrostatic
interactions. Different extensions of the famous Born equation are
used for the former. Limitations of this approach to solvation are
well documented[66,23,48] although often not fully acknowledged
because of a number of empirical schemes developed over the
years for error corrections.

In contrast to !, a material property [65], the interface dielectric
constant !int aims to capture the effect of the microscopic interfa-
cial structure on polarization induced by a multipole placed at
the solute (inside the dielectric cavity). The interfacial polarization
is a vector field defining the scalar bound charge density (Eq. (3))
residing in a thin layer of about two molecular diameters at the
solute surface. Accordingly, !int quantifies the interfacial bound
charge induced by the solute multipole. It replaces the bulk dielec-
tric constant in the boundary-value problem seeking to calculate
electrostatics inside a liquid void. The cavity radius a is chosen to
make electrostatics continuum-like at r > a. However, electrostat-
ics is not continuum-like inside the cavity, and this is reflected by
!int – !.

The original route[25] to the interface susceptibility is amended
here with corrections for periodic boundary conditions and Ewald
sums used to calculate electrostatics. The correction within the
standard Ewald sum protocol leads to minor modifications of !int
for typical simulation parameters. The response to a probe charge
was extended here to interfacial response to a small point dipole.
Both formalisms lead to !int ’ 4% 9 falling far below the bulk
dielectric constant for water (!ðTIP3PÞ ’ 94[51]). Even though
the interface and bulk dielectric constants are often compared,
they refer to quite distinct properties, interfacial for the former
and bulk for the latter. The interface dielectric constant is sensitive
to the interfacial structure and to the solute–solvent interaction,
while bulk dielectric constant is insensitive to surface effects.

There is a long history of modeling the interfacial polar suscep-
tibility with continuous functions of the distance into the bulk [67–
70]. They are constructed to interpolate between !int in a thin inter-
facial layer with the thickness d and the bulk dielectric constant !.
While such models are convenient to use because of their well-
defined mathematical properties [7], there is no physical reason
to adopt such models as a fair representation of reality until direct
measurements of the spatial extent of the interfacial polar struc-
ture become possible. The only measurement available so far is
the capacitance of a thin liquid layer [7–10]. Both the laboratory
and simulation results fit well to the model of a layered capaci-
tor[42] combining a thin layer of thickness d, characterized by
!int, with a bulk-like layer carrying the dielectric constant !. No

Fig. 8. Cross-correlation ðba=3ÞhdMr & dEsi0 (red points, Eq. (47)) required to
calculate the interface susceptibility in response to a probe dipole. The green
points refer to Dr ¼ 8:5 Å and the dashed green line refers to a linear fit through the
filled points to determine the slope in Eq. (47). The fit yields the interface dielectric
constant !int ¼ 4:4 at a ¼ 16:3 Å.
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information beyond this separation into two distinct layers exists
at the moment. This study presents a computational algorithm
for !int in this layered model of the liquid film.

While the results for !int are robust and are in line with a num-
ber of recent simulation[2–5] and experimental[7–10] studies, one
should avoid extrapolating !int reported here outside the scope of
the boundary-value problem. The interface susceptibility !int
applies to electrostatics produced by the interface in a void inside
a polar liquid or to polarization of a thin film for which !int con-
tributes to the film capacitance. Screening of charges in polar liq-
uids involves an oscillatory potential of mean force at the
distances between the charges comparable to the length of several
solvent molecules [71–75,49]. The potential of mean force and
microscopic screening cannot be characterized by a single scalar
property [76], even though the screening potential reaches the
standard dielectric result at large separations. In contrast to macro-
scopic dielectric theories, different electrostatic phenomena at the
molecular scale require distinct effective polar susceptibilities.

The generic form of the density of bound charge around nonpo-
lar solutes (Fig. 1a) suggests that a low value of the interface
dielectric constant is a general and robust property of such inter-
faces. On the other hand, the overall interface charge is a result
of opposite contributions from the dipolar and quadrupolar polar-
ization components. In line with previous studies [33,35], we find
that the inhomogeneous quadrupolar density in the interface is a
major contributor to the interface charge and to the electrostatic
potential produced by the solvent inside an uncharged cavity in
the liquid.
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