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Abstract

We determine defining equations for the set of concise tensors of minimal border rank
in C"@C™®C™ when m = 5 and the set of concise minimal border rank 1,-generic
tensors when m = 5, 6. We solve the classical problem in algebraic complexity theory
of classifying minimal border rank tensors in the special case m = 5. Our proofs
utilize two recent developments: the 111-equations defined by Buczyriska—Buczyriski
and results of Jelisiejew—Sivic on the variety of commuting matrices. We introduce
a new algebraic invariant of a concise tensor, its 111-algebra, and exploit it to give a
strengthening of Friedland’s normal form for 1-degenerate tensors satisfying Strassen’s
equations. We use the 111-algebra to characterize wild minimal border rank tensors
and classify them in C°@C>®C>.

Mathematics Subject Classification 68Q15 - 15A69 - 14135

1 Introduction

This paper is motivated by algebraic complexity theory and the study of secant varieties
in algebraic geometry. It takes first steps towards overcoming complexity lower bound
barriers first identified in [22, 26]. It also provides new “minimal cost” tensors for
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Strassen’s laser method to upper bound the exponent of matrix multiplication that are
not known to be subject to the barriers identified in [2] and later refined in numerous
works, in particular [10] which shows there are barriers for minimal border rank
binding tensors (defined below), as our new tensors are not binding.

Let T € C"@C"®@C" = AQBQ®C be a tensor. One says T has rank one if
T = a®b®c for some nonzeroa € A, b € B, ¢ € C, and the rank of T, denoted
R(T), is the smallest » such that 7 may be written as a sum of » rank one tensors.
The border rank of T, denoted R(T), is the smallest  such that 7 may be written as a
limit of a sum of r rank one tensors. In geometric language, the border rank is smallest
r such that T belongs to the r-th secant variety of the Segre variety, o, (Seg (P! x
Pr-l x pr—ly)y C P(C"@C"QC™).

Informally, a tensor T is concise if it cannot be expressed as a tensor in a
smaller ambient space. (See Sect. 1.1 for the precise definition.) A concise tensor
T € C"RC"®C™ must have border rank at least m, and if the border rank equals m,
one says that 7" has minimal border rank.

As stated in [16], tensors of minimal border rank are important for algebraic com-
plexity theory as they are “an important building stone in the construction of fast
matrix multiplication algorithms”. More precisely, tensors of minimal border rank
have produced the best upper bound on the exponent of matrix multiplication [1, 21,
40, 46, 51] via Strassen’s laser method [48]. Their investigation also has a long history
in classical algebraic geometry as the study of secant varieties of Segre varieties.

Problem 15.2 of [16] asks to classify concise tensors of minimal border rank. This
is now understood to be an extremely difficult question. The difficulty manifests itself
in two substantially different ways:

e Lack of structure. Previous to this paper, an important class of tensors (1-
degenerate, see Sect. 1.1) had no or few known structural properties. In other
words, little is known about the geometry of singular loci of secant varieties.

e Complicated geometry. Under various genericity hypotheses that enable one to
avoid the previous difficulty, the classification problem reduces to hard problems
in algebraic geometry: for example the classification of minimal border rank bind-
ing tensors (see Sect. 1.1) is equivalent to classifying smoothable zero-dimensional
schemes in affine space [35, §5.6.2], alongstanding and generally viewed as impos-
sible problem in algebraic geometry, which is however solved for m < 6 [41, 43].

The main contributions of this paper are as follows: (i) we give equations for the set
of concise minimal border rank tensors for m < 5 and classify them, (ii) we discuss
and consolidate the theory of minimal border rank 1,-generic tensors, extending their
characterization in terms of equations to m < 6, and (iii) we introduce a new structure
associated to a tensor, its //1-algebra, and investigate new invariants of minimal
border rank tensors coming from the 111-algebra.

Our contributions allow one to streamline proofs of earlier results. This results from
the power of the 111-equations, and the utilization of the ADHM correspondence
discussed below. While the second leads to much shorter proofs and enables one to
avoid using the classification results of [37, 50], there is a price to be paid as the
language and machinery of modules and the Quot scheme need to be introduced.
This language will be essential in future work, as it provides the only proposed path
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to overcome the lower bound barriers of [22, 26], namely deformation theory. We
emphasize that this paper is the first direct use of deformation theory in the study of
tensors. Existing results from deformation theory were previously used in [9].

Contribution (iii) addresses the lack of structure and motivates many new open
questions, see Sect. 1.4.

1.1 Results on tensors of minimal border rank

Given T € AQB®C, we may consider it as a linear map T¢ : C* — AQB. We let
T(C*) € A®B denote its image, and similarly for permuted statements. A tensor T
is A-concise if the map T}y is injective, i.e., if it requires all basis vectors in A to write
down T in any basis, and T is concise if itis A, B, and C concise.

Atensor T € C?QC"QC™ is 14-generic if T(A*) € B®C contains an element
of rank m and when a = m, T is 1-generic if it is 14, 1p, and 1¢-generic. Define a
tensor T € C"QC"Q®C™ to be 1,-generic ifitis at least one of 14, 15, or 1¢-generic,
and binding if it is at least two of 1 4, 1, or 1¢-generic. We say T is 1-degenerate if it
is not 1,-generic. Note that if T is 1 4-generic, it is both B and C concise. In particular,
binding tensors are concise.

Two classical sets of equations on tensors that vanish on concise tensors of minimal
border rank are Strassen’s equations and the End-closed equations. These are discussed
in Sect. 2.1. Strassen’s equations are sufficient for m < 4 [27, Prop. 22], [24, 47].

In [13, Thm 1.3] the following polynomials for minimal border rank were intro-
duced: Let T € AQBRC = C"@C™®C™. Consider the map

(T(A*)®A) ® (T (B*)®B) & (T(CHRC) - AQBRC & AQBRC  (1.1)

that sends (T, T, T3) to (T — T, T, — T3), where the A, B, C factors of tensors
are understood to be in the correct positions, for example 7 (A*)®A is more precisely
written as AQT (A*). If T has border rank at most m, then the rank of the above map
is at most 3m? — m. The resulting equations are called the /11-equations.

Consider the space

(T(A")®A) N (T(B*)®B) N (T(C*RC). (1.2)

We call this space the triple intersection or the 111-space. We say that T is 111-
abundant if the inequality

(111—abundance) dim ((T(A*)®A) N (T(B*)®B) N(T(CHRC)) =m (1.3)

holds. If equality holds, we say T is /11-sharp. When T is concise, 111-abundance is
equivalent to requiring that the equations of [13, Thm 1.3] are satisfied, i.e., the map
(1.1) has rank at most 3m? — m.

Example 1.1 For T = a1®b;®c>+a1@by®c1 +a:®b1®c; € C2QC?®C?, atangent
vector to the Segre variety, also called the W-state in the quantum literature, the triple
intersection is (T, a1 ®b1Qc1).
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We show that for concise tensors, the 111-equations imply both Strassen’s equations
and the End-closed equations:

Proposition 1.2 Let T € C"QC"QC™ be concise. If T satisfies the 111-equations
then it also satisfies Strassen’s equations and the End-closed equations. If T is 14-
generic, then it satisfies the 111-equations if and only if it satisfies the A-Strassen
equations and the A-End-closed equations.

The first assertion is proved in Sect. 3.3. The second assertion is Proposition 3.2.

In [42], and more explicitly in [39], equations generalizing Strassen’s equations for
minimal border rank, called p = 1 Koszul flattenings were introduced. (At the time
it was not clear they were a generalization, see [45] for a discussion.). The p = 1
Koszul flattenings of type 210 are equations that are the size m(m — 1) 4+ 1 minors of
the map T;! : A®QB* — A2A®C given by a®B > > TUkB(bj)a A a;®cy. Type
201, 120, etc. are defined by permuting A, B and C. Together they are called p = 1
Koszul flattenings. These equations reappear in border apolarity as the 210-equations,
see [20].

Proposition 1.3 The p = 1 Koszul flattenings for minimal border rank and the 111-
equations are independent, in the sense that neither implies the other, even for concise
tensors in C"@C"@C™.

Proposition 1.3 follows from Example 3.5 where the 111-equations are nonzero
and the p = 1 Koszul flattenings are zero and Example 5.9 where the reverse situation
holds.

We extend the characterization of minimal border rank tensors under the hypothesis
of 1.-genericity to dimension m = 6, giving two different characterizations:

Theorem 1.4 Let m < 6 and consider the set of tensors in C"QC"QC™ which are
14-generic and concise. The following subsets coincide

(1) the zero set of Strassen’s equations and the End-closed equations,
(2) 111-abundant tensors,

(3) 111-sharp tensors,

(4) minimal border rank tensors.

More precisely, in (1), if the tensor is 14-generic, only the A-Strassen and A-End-
closed conditions are required.

The equivalence of (1), (2), (3) in Theorem 1.4 is proved by Proposition 3.2. The
equivalence of (1) and (4) is proved in Sect. 8.

For 1 4-generic tensors, the p = 1 Koszul flattenings of type 210 or 201 are equiv-
alent to the A-Strassen equations, hence they are implied by the 111-equations in this
case. However, the other types are not implied, see Example 5.9.

The result fails for m > 7 by [37, Prop. 5.3], see Example 5.9. This is due to the
existence of additional components in the Quot scheme, which we briefly discuss here.

The proof of Theorem 1.4 introduces new algebraic tools by reducing the study of
14-generic tensors satisfying the A-Strassen equations to deformation theory in the
Quot scheme (a generalization of the Hilbert scheme, see [34]) in two steps. First one
reduces to the study of commuting matrices, which implicitly appeared already in [47],
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and was later spelled out in in [37], see Sect. 2. Then one uses the ADHM construction
as in [34]. From this perspective, the tensors satisfying (1)—(3) correspond to points
of the Quot scheme, while tensors satisfying (4) correspond to points in the principal
component of the Quot scheme, see Sect. 8.1 for explanations; the heart of the theorem
is that when m < 6 there is only the principal component. We expect deformation
theory to play an important role in future work on tensors. As discussed in [20], at
this time deformation theory is the only proposed path to overcoming the lower bound
barriers of [22, 26]. As another byproduct of this structure, we obtain the following
proposition:

Proposition 1.5 A 1-generic tensor in C"QC"QC™ with m < 13 satisfying the
A-Strassen equations has minimal border rank. A 14 and 1p-generic tensor in
C"C"@C™ with m < 7 satisfying the A-Strassen equations has minimal border
rank.

Proposition 1.5 is sharp: the first assertion does not hold for higher m by [31,
Lem. 6.21] and the second by [17].

Previously it was known (although not explicitly stated in the literature) that the A-
Strassen equations combined with the A-End-closed conditions imply minimal border
rank for 1-generic tensors when m < 13 and binding tensors when m < 7. This can
be extracted from the discussion in [35, §5.6].

While Strassen’s equations and the End-closed equations are nearly useless for 1-
degenerate tensors, this does not occur for the 111-equations, as the following result
illustrates:

Theorem 1.6 When m < 5, the set of concise minimal border rank tensors in
C"@C"QC™ is the zero set of the 111-equations.

We emphasize that no other equations, such as Strassen’s equations, are necessary.
Moreover Strassen’s equations, or even their generalization to the p = 1 Koszul flat-
tenings, and the End-closed equations are not enough to characterize concise minimal
border rank tensors in C°’®C>®C?, see Example 3.5 and Sect. 1.4.3.

By Theorem 1.4, to prove Theorem 1.6 it remains to prove the 1-degenerate case,
which is done in Sect. 7. The key difficulty here is the above-mentioned lack of
structure. We overcome this problem by providing a new normal form, which follows
from the 111-equations, that strengthens Friedland’s normal form for corank one 1 4-
degenerate tensors satisfying Strassen’s equations [24, Thm. 3.1], see Proposition 3.3.

It is possible that Theorem 1.6 also holds for m = 6; this will be subject to future
work. It is false for m = 7, as already Theorem 1.4 fails when m = 7.

The 1,-generic tensors of minimal border rank in C®C3®C? are essentially clas-
sified in [37], following the classification of abelian linear spaces in [50]. We write
“essentially”, as the list has redundancies and it remains to determine the precise list.
Using our normal form, we complete (modulo the redundancies in the 1,-generic case)
the classification of concise minimal border rank tensors:

Theorem 1.7 Up to the action of GL5(C)*3 x &3, there are exactly five concise 1-
degenerate, minimal border rank tensors in C’QC>QC>. Represented as spaces of
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matrices, the tensors may be presented as:

X1 X2 X3 X5 X1 X2 X3 X5
X5 X1 X4 —X2 X1 X4 —X2
TO58 = X1 ’ TO57 = X1 s
—X5 X X1
X5 X5
X1 X2 X3 X5 X1 X2 X3 X5
X1 + x5 X4 X1 X5 X4
TOSG - X1 s TOSS - X1 s
X1 X1
X5 X5
X1 X2 X3 X5
X1 X4
T@54 = X1
X1
X5

In tensor notation: set

Tvi = a1®((b1®c1 + ba®ca + b3®c3 + ba®cy) + ar@b3&c
+a3®bs®c1 + as®bs®cy + asQ(bs®c1 + ba®cs)

and

vz = a1®(b1®c1 + ba®co + b3®c3 + ba®cy) + arQ(b3®c1 — ba®c2)
+a3®bs®c1 + as®b3@c) + asR(bs@c + ba®cs).

Then

Tosy = Tz + as@(b1®c2 — b3®cy)
Tos; = Tvz

Tos, = Tvi + as®@ba®ca

Toss = Tv1 + as®@b3@c

Tos, = TMi.

Moreover, each subsequent tensor lies in the closure of the orbit of previous: Toy, >
Tos; & Toss & Toss & Tos,

The subscript in the name of each tensor is the dimension of its GL(A) x GL(B) x
GL(C) orbitin projective space P(AQ B®C). Recall thatdim o5(Seg (P*xP*xP*) =
64 and that it is the orbit closure of the so-called unit tensor [Z§=1 aj®b;Qc;l.

Among these tensors, T, is (after a change of basis) the unique symmetric tensor
on the list (see Example 4.6 for its symmetric version). The subgroup of GL(A) x
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GL(B) x GL(C) preserving T, contains a copy of GL, C while all other stabilizers
are solvable.

The smoothable rank of atensor T € AQ BQC is the minimal degree of a smooth-
able zero dimensional scheme Spec(R) € PA xPB xPC which satisfies the condition
T € (Spec(R)). See, e.g., [14, 49] for basic definitions regarding zero dimensional
schemes.

The smoothable rank of a polynomial with respect to the Veronese variety was
introduced in [44] and generalized to points with respect to arbitrary projective varieties
in [11]. It arises because the span of the (scheme theoretic) limit of points may be
smaller than the limit of the spans. The smoothable rank lies between rank and border
rank. Tensors (or polynomials) whose smoothable rank is larger than their border rank
are called wild in [11]. The first example of a wild tensor occurs in C3C3xC3, see
[11, §2.3] and it has minimal border rank. We characterize wild minimal border rank
tensors:

Theorem 1.8 The concise minimal border rank tensors that are wild are precisely the
concise minimal border rank 1-degenerate tensors.

Thus Theorem 1.7 classifies concise wild minimal border rank tensors in
CRCRC.

The proof of Theorem 1.8 utilizes a new algebraic structure arising from the triple
intersection that we discuss next.

1.2 The 111-algebra and its uses

We emphasize that 111-abundance, as defined by (1.3), is a necessary condition for
border rank m only when T is concise. The condition can be defined for arbitrary
tensors and we sometimes allow that.

Remark 1.9 The condition (1.3) is not closed: for example it does not hold for the zero
tensor. It is however closed in the set of concise tensors as then T (A*) varies in the
Grassmannian, which is compact.

For X € End(A) = A*Q®A, let X o4 T denote the corresponding element
of T(A*)®A. Explicitly, if X = aQ®a, then X o4 T := T(¢)®a and the map
(=) o4 T: End(A) — A®BQC is extended linearly. Put differently, X o, T =
(X®1Idp ®Idc)(T). Define the analogous actions of End(B) and End(C).

Definition 1.10 Let 7 be a concise tensor. We say that a triple (X, Y, Z) € End(A) x
End(B) xEnd(C) is compatible with T if Xo, T = YogT = ZocT.The 111-algebra
of T is the set of triples compatible with 7. We denote this set by AIT]] .

The name is justified by the following theorem:

Theorem 1.11 The 111-algebra of a concise tensor T € AQBQC is a commutative
unital subalgebra of End(A) x End(B) x End(C) and its projection to any factor is
injective.

Theorem 1.11 is proved in Sect. 4.
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Example 1.12 Let T be as in Example 1.1. Then
Al =((d, 1d,1d), (a2 ® a1, B2 ® b1, y2 ® c1))

In this language, the triple intersection is AlT” - T. Once we have an algebra, we
may study its modules. The spaces A, B, C are all .AlTll-modules: the algebra AlTl 1
acts on them as it projects to End(A), End(B), and End(C). We denote these modules
by A, B, C respectively.

Using the 111-algebra, we obtain the following algebraic characterization of all
111-abundant tensors as follows: a tensor 7 is 111-abundant if it comes from a bilin-
ear map N1 x N» — N3 between m-dimensional .A-modules, where dim A > m, A
is a unital commutative associative algebra and Ny, N, N3 are A-modules, see The-
orem 5.5. This enables an algebraic investigation of such tensors and shows how they
generalize abelian tensors from [37], see Example 5.6. We emphasize that there are no
genericity hypotheses here beyond conciseness, in contrast with the 1,-generic case.
In particular the characterization applies to all concise minimal border rank tensors.

In summary, for a concise tensor 7" we have defined new algebraic invariants: the
algebra AITl , and its modules A, B, C. There are four consecutive obstructions for a
concise tensor to be of minimal border rank:

(1) the tensor must be 111-abundant. For simplicity of presentation, for the rest of this
list we assume that it is 111-sharp (compare Sect. 1.4.1). We also fix a surjection
from a polynomial ring S = C[yj, ..., ym—1] onto AITH as follows: fix a basis
of AIT” with the first basis element equal to (Id, Id, Id) and send 1 € S to this
element, and the variables of S to the remaining m — 1 basis elements. In particular
A, B, C become S-modules (the conditions below do not depend on the choice of
surjection).

(2) the algebra .A]T11 must be smoothable (Lemma 5.7),

(3) the S-modules A, B, C must lie in the principal component of the Quot scheme, so
there exist a sequence of modules A, limiting to A with general A_ semisimple,
and similarly for B, C (Lemma 5.8),

(4) the surjective module homomorphism A® AT, B — C associated to T as in
Theorem 5.5 must be a limit of module homomorphisms A, ® 4, B, — C, fora

choice of smooth algebras .A. and semisimple modules A., B, C..

Condition (2) is shown to be nontrivial in Example 5.9.

In the case of 1-generic tensors, by Theorem 1.8 above, they have minimal border
rank if and only if they have minimal smoothable rank, that is, they are in the span
of some zero-dimensional smoothable scheme Spec(R). Proposition 9.1 remarkably
shows that one has an algebra isomorphism AlTl | = R. This shows that to determine
if a given 1-generic tensor has minimal smoothable rank it is enough to determine
smoothability of its 111-algebra, there is no choice for R. This is in contrast with the

case of higher smoothable rank, where the choice of R presents the main difficulty.

Remark 1.13 While throughout we work over C, our constructions (except for explicit
computations regarding classification of tensors and their symmetries) do not use any-
thing about the base field, even the characteristic zero assumption. The only possible
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nontrivial applications of the complex numbers are in the cited sources, but we expect
that our main results, except for Theorem 1.7, are valid over most fields.

1.3 Previous work on tensors of minimal border rank in C"@ C"@C™

When m = 2 it is classical that all tensors in C2®C>®C? have border rank at most
two.

For m = 3 generators of the ideal of o3(Seg (P? x P? x P?)) are given in [38].

For m = 4 set theoretic equations for 04(Seg(P? x P3 x P3)) are given in [24]
and lower degree set-theoretic equations are given in [6, 25] where in the second
reference they also give numerical evidence that these equations generate the ideal.
It is still an open problem to prove the known equations generate the ideal. (This
is the “salmon prize problem” posed by E. Allman in 2007. At the time, not even
set-theoretic equations were known).

Regarding the problem of classifying concise tensors of minimal border rank:

For m = 3 a complete classification of all tensors of border rank three is given in
[15].

For m = 4, a classification of all 1,-generic concise tensors of border rank four in
C*@C*®C* is given in [37].

When m = 5, a list of all abelian subspaces of End(C>) up to isomorphism is given
in [50].

The equivalence of (1) and (4) in the m = 5 case of Theorem 1.4 follows from
the results of [37], but is not stated there. The argument proceeds by first using the
classification in [32, 50] of spaces of commuting matrices in End(C?). There are
15 isolated examples (up to isomorphism), and examples that potentially depend on
parameters. (We write “potentially” as further normalization is possible.) Then each
case is tested and the tensors passing the End-closed condition are proven to be of
minimal border rank using explicit border rank five expressions. We give a new proof
of this result that is significantly shorter, and self-contained. Instead of listing all
possible tensors, we analyze the possible Hilbert functions of the associated modules
in the Quot scheme living in the unique non-principal component.

1.4 Open questions and future directions
1.4.1 111-abundant, not 111-sharp tensors

We do not know any example of a concise tensor 7 which is 111-abundant and is
not 111-sharp, that is, for which the inequality in (1.3) is strict. By Proposition 3.2
such a tensor would have to be 1-degenerate, with T (A*), T (B*), T (C*) of bounded
(matrix) rank at most m — 2, and by Theorems 1.7 and 1.6 it would have to occur in
dimension greater than 5. Does there exist such an example?'

1 After this paper was submitted, A. Conca pointed out an explicit example of a 111-abundant, not 111-
sharp tensor when m = 9. We do not know if such exist when m = 6, 7, 8. The example is a generalization
of Example 4.6.
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1.4.2 111-abundant 1-degenerate tensors

The 111-abundant tensors of bounded rank m — 1 have remarkable properties. What
properties do 111-abundant tensors with T'(A*), T (B*), T (C*) of bounded rank less
than m — 1 have?

1.4.3 111-abundance v. classical equations

A remarkable feature of Theorem 1.6 is that 111-equations are enough: there is no need
for more classical ones, like p = 1 Koszul flattenings [39]. In fact, the p = 1 Koszul
flattenings, together with End-closed condition, are almost sufficient, but not quite:
the 111-equations are only needed to rule out one case, described in Example 3.5.
Other necessary closed conditions for minimal border rank are known, e.g., the higher
Koszul flattenings of [39], the flag condition (see, e.g., [37]), and the equations of [36].
We plan to investigate the relations between these and the new conditions introduced in
this paper. As mentioned above, the 111-equations in general do not imply the p = 1
Koszul flattening equations, see Example 5.9.

1.4.4 111-abundance in the symmetric case

Given a concise symmetric tensor 7' € S 3em Cc C"m@C™QC™, one classically studies
its apolar algebra A = C[xy, ..., x;,]/Ann (T), where x1, ..., x,, are coordinates on
the dual space C"* and Ann (7T') are the polynomials that give zero when contracted
with T. This is a Gorenstein (see Sect. 2.4) zero-dimensional graded algebra with
Hilbert function (1, m, m, 1) and each such algebra comes from a symmetric tensor.
A weaker version of Question 1.4.1 is: does there exist such an algebra with Ann (7)
having at least m minimal cubic generators? There are plenty of examples with m — 1
cubic generators, for example T = Y i, xi3 or the 1-degenerate examples from the
series [30, §7].

1.4.5 The locus of concise, 111-sharp tensors

There is a natural functor associated to this locus, so we have the machinery of defor-
mation theory and in particular, it is a linear algebra calculation to determine the
tangent space to this locus at a given point and, in special cases, even its smoothness.
This path will be pursued further and it gives additional motivation for Question 1.4.1.

1.4.6 111-algebra in the symmetric case

The 111-algebra is an entirely unexpected invariant in the symmetric case as well.
How is it computed and how can it be used?

1.4.7 The Segre-Veronese variety

While in this paper we focused on C"Q@C"®C™, the 111-algebra can be defined
for any tensor in Vi®@V2®V3® - - - @V, and the argument from Sect. 4 generalizes to
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show that it is still an algebra whenever ¢ > 3. It seems worthwhile to investigate it
in greater generality.

1.4.8 Strassen’s laser method

An important motivation for this project was to find new tensors for Strassen’s laser
method for bounding the exponent of matrix multiplication. This method has barriers
to further progress when using the Coppersmith—Winograd tensors that have so far
given the best upper bounds on the exponent of matrix multiplication [2]. Are any
of the new tensors we found in C3®C3®C? better for the laser method than the
big Coppersmith—Winograd tensor C W3? Are any 1-degenerate minimal border rank
tensors useful for the laser method? (At this writing there are no known laser method
barriers for 1-degenerate tensors.)

1.5 Overview

In Sect. 2 we review properties of binding and more generally 14-generic tensors
that satisfy the A-Strassen equations. In particular we establish a dictionary between
properties of modules and such tensors. In Sect. 3 we show 1 4-generic 111-abundant
tensors are exactly the 14-generic tensors that satisfy the A-Strassen equations and
are A-End-closed. We establish a normal form for 111-abundant tensors with T (A*)
corank one that generalizes Friedland’s normal for tensors with T (A*) corank one
that satisfy the A-Strassen equations. In Sect. 4 we prove Theorem 1.11 and illustrate
it with several examples. In Sect. 5 we discuss 111-algebras and their modules, and
describe new obstructions for a tensor to be of minimal border rank coming from its
111-algebra. In Sect. 6 we show certain classes of tensors are not concise to eliminate
them from consideration in this paper. In Sect. 7 we prove Theorems 1.6 and 1.7. In
Sect. 8 we prove Theorem 1.4 using properties of modules, their Hilbert functions and
deformations. In Sect. 9 we prove Theorem 1.8.

1.6 Definitions/notation
Throughout this paper we adopt the index ranges

1<i,jk<a

2<s,t,u<a-—1,

and A, B, C denote complex vector spaces respectively of dimension a, m, m. Except
for Sect. 2 we will also have a = m. The general linear group of changes of bases in A
is denoted GL(A) and the subgroup of elements with determinant one by SL(A) and
their Lie algebras by gl(A) and s[(A). The dual space to A is denoted A*. For Z C A,
Z1 = {a € A* | a(x) = OVx € Z} is its annihilator, and (Z) C A denotes the span
of Z. Projective space is PA = (A\{0})/C*. When A is equipped with the additional
structure of being a module over some ring, we denote it A to emphasize its module
structure.
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Unital commutative algebras are usually denoted .4 and polynomial algebras are
denoted S.

Vector space homomorphisms (including endomorphisms) between m-dimensional
vector spaces will be denoted K;, X;, X, Y, Z, and we use the same letters to denote
the corresponding matrices when bases have been chosen. Vector space homomor-
phisms (including endomorphisms) between (m — 1)-dimensional vector spaces, and
the corresponding matrices, will be denoted x;, y, z.

We often write T (A*) as a space of m x m matrices (i.e., we choose bases). When
we do this, the columns index the B* basis and the rows the C basis, so the matrices
live in Hom(B*, C). (This convention disagrees with [37] where the roles of B and C
were reversed.)

For X € Hom(A, B), the symbol X t denotes the induced element of Hom(B*, A*),
which in bases is just the transpose of the matrix of X.

The A-Strassen equations were defined in [47]. The B and C Strassen equations are
defined analogously. Together, we call them Strassen’s equations. Similarly, the A-
End-closed equations are implicitly defined in [28], we state them explicitly in (3.13).
Together with their B and C counterparts they are the End-closed equations. We never
work with these equations directly (except proving Proposition 1.2), we only consider
the conditions they impose on 1,-generic tensors.

For a tensor T € C" @ C"™ @ C™, we say that T(A*) € BQC is of bounded
(matrix) rank r if all matrices in T (A*) have rank at most r, and we drop reference
to “matrix” when the meaning is clear. If rank r is indeed attained, we also say that
T (A*) is of corank m — r.

2 Dictionaries for 1,-generic, binding, and 1-generic tensors
satisfying Strassen’s equations for minimal border rank

2.1 Strassen’s equations and the end-closed equations for 1.-generic tensors

A 1,-generic tensor satisfying Strassen’s equations may be reinterpreted in terms of
classical objects in matrix theory and then in commutative algebra, which allows one
to apply existing results in these areas to their study.

Fix atensor T € AQB®C = C*®C"®C™ which is A-concise and 14-generic
with @ € A* such that T (¢) : B* — C has full rank. The 14-genericity implies that
T is B and C-concise.

Consider

E(T) := T(A)T ()" C End(C).

This space is T'(A*) where T € AQC*®C is a tensor obtained from T using the
isomorphism Id 4 (T (@)~ Ht®Idc. It follows that T is of rank m if and only if the
space £ (T') is simultaneously diagonalizable and that T is of border rank m if and
only if &, (T) is a limit of spaces of simultaneously diagonalizable endomorphisms
[37, Proposition 2.8] also see [36]. Note tbat Id¢c = T(oe)T(a)’] € Eu(T).

A necessary condition for a subspace £ < End(C) to be a limit of simultaneously
diagonalizable spaces of endomorphisms is that the elements of E pairwise commute.
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The A-Strassen equations [24, (1.1)] in the 1 4-generic case are the translation of this
condition to the language of tensors, see, e.g., [37, §2.1]. For the rest of this section,
we additionally assume that T satisfies the A-Strassen equations, i.e., that &, (T) is
abelian.

Another necessary condition on a space to be a limit of simultaneously diago-
nalizable spaces has been known since 1962 [28]: the space must be closed under
composition of endomorphisms. The corresponding equations on the tensor are the
A-End-closed equations.

2.2 Reinterpretation as modules

In this subsection we introduce the language of modules and the ADHM correspon-
dence. This extra structure will have several advantages: it provides more invariants
for tensors, it enables us to apply theorems in the commutative algebra literature to the
study of tensors, and perhaps most importantly, it will enable us to utilize deformation
theory.

Let E € End(C) be a space of endomorphisms that contains Id¢ and consists
of pairwise commuting endomorphisms. Fix a decomposition E = (Idc) ® E. A
canonical such decomposition is obtained by requiring that the elements of E are
traceless. To eliminate ambiguity, we will use this decomposition, although in the
proofs we never make use of the fact that £ C s[(C). Let S = Sym E be a polynomial
ring in dim £ = a — 1 variables. By the ADHM correspondence [3], as utilized in
[34, §3.2] we define the module associated to E to be the S-module C which is the
vector space C with action of S defined as follows: let eq, ..., ea—1 be a basis of E,
write S = Cl[yi, ..., ya_1], define y;(c) := e;(c), and extend to an action of the
polynomial ring.

It follows from [34, §3.4] that E is a limit of simultaneously diagonalizable spaces
if and only if C is a limit of semisimple modules, which, by definition, are S-modules
of the form N1 ® N, & - - - & N,,, where dim N;, = 1 for every h. The limit is taken in
the Quot scheme, see [34, §3.2 and Appendix] for an introduction, and [23, §5], [49,
§9] for classical sources. The Quot scheme will not be used until Sect. 5.2.

Now we give a more explicit description of the construction in the situation relevant
for this paper. Let A, B, C be C-vector spaces, withdim A = a,dim B = dim C = m,
as above. Let T € AQB®C be a concise 14-generic tensor that satisfies Strassen’s
equations (see Sect. 2.1). To such a T we associated the space £, (T) € End(C). The
module associated to T is the module C associated to the space E = & (T) using
the procedure above. The procedure involves a choice of o and a basis of E, so the
module associated to T is only defined up to isomorphism.

Example 2.1 Consider a concise tensor 7 € C"QC"®C™ of minimal rank, say 7 =
Yo ai®bi®c; with {a;}, {b;}, {c;} bases of A, B,C and {e;} the dual basis of
A*etc. Set o = Y .| ;. Then & (T) is the space of diagonal matrices, so E =
(Eij —En |1 =2,3,...,m) where E;; = y;®c;. The module C decomposes as an
S-module into @~ ; Cc; and thus is semisimple. Every semisimple module is a limit
of such.
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If a module C is associated to a space E, then the space E may be recovered from
C as the set of the linear endomorphisms corresponding to the actions of elements of
S<1on C.If C is associated to a tensor 7', then the tensor T is recovered from C up to
isomorphism as the tensor of the bilinear map S<;®C — C coming from the action
on the module.

Remark 2.2 The restriction to S<; may seem unnatural, but observe that if E is addi-
tionally End-closed then for every s € S there exists an element s’ € S<; such that
the actions of s and s” on C coincide.

Additional conditions on a tensor transform to natural conditions on the associated
module. We explain two such additional conditions in the next two subsections.

2.3 Binding tensors and the Hilbert scheme

Proposition2.3 Let T € C"QC"QRC™ = ARBQ®C be concise, 14-generic, and
satisfy the A-Strassen equations. Let C be the S-module obtained from T as above.
The following conditions are equivalent

(1) the tensor T is 1g-generic (so it is binding),

(2) there exists an element ¢ € C such that S<ic = C,

(3) the S-module C is isomorphic to S/I for some ideal I and the space E,(T) is
End-closed,

(4) the S-module C is isomorphic to S/1 for some ideal I,

(5) the tensor T is isomorphic to a multiplication tensor in a commutative unital rank

m algebra A.

The algebra A in (5) will be obtained from the module C as described in the proof.
The equivalence of (1) and (5) for minimal border rank tensors was first obtained
by Bliser and Lysikov [9].

Proof Suppose (1) holds. Recall that £,(T) = T'(A*) where T' € AQC*®C is
obtained from T € A®B®C by means of (T (x)~")t: B — C*. Hence T’ is 1¢c+-
generic, so there exists an element ¢ € (C*)* ~ C such that the induced map A* — C
is bijective. But this map is exactly the multiplication map by ¢, S<; — C, so (2)
follows.

Let o: § — C be defined by ¢(s) = sc and let I = ker ¢. (Note that ¢ depends
on our choice of c.) Suppose (2) holds; this means that ¢|s_, is surjective. Since
dim S<; = m = dim C, this surjectivity implies that we have a vector space direct
sum S = S<1 @ 1. Now X € &,(T) € End(C) acts on C in the same way as the
corresponding linear polynomial X € S<;. Thus a product XY € End(C) acts as the
product of polynomials XY € S<;. Since § = I @ S<| we may write XY =U + Z,
where U € I and Z € S<;. The actions of XY, Z € End(C) on C are identical, so
XY = Z. This proves (3). Property (3) implies (4).

Suppose that (4) holds and take an S-module isomorphism ¢’ : C — S/I.Reversing
the argument above, we obtain again S = I & S<;. Let A := S§/I. This is a finite
algebraof rank dim S<; = m. The easy, but key observation is that the multiplication in
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A is induced by the multiplication S®.4 — A on the S-module .A. The multiplication
maps arising from the S-module structure give the following commutative diagram:

S<1 ® C——C

Lo H

vl S ® C——C

Lo H

S/ @ C——C

I e

S/I ® S/I —> S/I

The direct sum decomposition implies the map 1 is a bijection. Hence the tensor T,
which is isomorphic to the multiplication map from the first row, is also isomorphic
to the multiplication map in the last row. This proves (5). Finally, if (5) holds, then T
is 1g-generic, because the multiplication by 1 € A from the right is bijective. O

The structure tensor of a module first appeared in Wojtala [52]. The statement that
binding tensors satisfying Strassen’s equations satisfy End-closed conditions was orig-
inally proven jointly with M. Michatek. A binding tensor is of minimal border rank
if and only if C is a limit of semisimple modules if and only if S/I is a smoothable
algebra. For m < 7 all algebras are smoothable [17].

2.4 1-Generic tensors

A 1-generic tensor satisfying the A-Strassen equations is isomorphic to a symmetric
tensor by [37]. (See [45] for a short proof.). For a commutative unital algebra A, the
multiplication tensor of 4 is 1-generic if and only if A is Gorenstein, see [35, Prop.
5.6.2.1]. By definition, an algebra A is Gorenstein if A* = A¢ for some ¢ € A*, orin
tensor language, if its structure tensor 7 4 is 1-generic with T 4(¢) € A*®A* of full
rank. Form < 13 all Gorenstein algebras are smoothable [ 18], proving Proposition 1.5.

2.5 Summary

We obtain the following dictionary for tensors in C*@C" @C™ with a < m:

Tensor satisfying A-Strassen eqns. Is isomorphic to Multiplication tensor in

1 4-generic Module

14- and 1pg-generic (hence binding and a = m) Unital commutative algebra
1-generic (a = m) Gorenstein algebra
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3 Implications of 111-abundance

For the rest of this article, we restrict to tensors 7 € AQBRC = C"C"C™.
Recall the notation X o, T from Sect. 1.2 and that {a; } is a basis of A. In what follows
we allow aj, to be arbitrary elements of A.

Lemma3.l Let T = )} _, an®Ky, where ap € A and K;, € BRC are viewed as
maps Kp: B* — C. Let X € End(A), Y € End(B) and Z € End(C). Then

r
XouT =Y X(@)®Kp,
h=1

,
You T =Y @®(KyY,
h=1

,
ZocT =) @®(ZK).
h=1

If T is concise and Q2 is an element of the triple intersection (1.2), then the triple
(X,Y,Z)suchthat Q = X o, T =Y og T = Z oc T is uniquely determined. In this
case we call X, Y, Z the matrices corresponding to 2.

Proof The first assertion is left to the reader. For the second, it suffices to prove it
for X. Write T = ) ., a;®K;. The K; are linearly independent by conciseness.
Suppose X, X’ € End(A) are such that X o4 T = X' o, T. Then for X" = X — X’
wehave 0 = X" 0o, T = >"1" | X"(a;)®K;. By linear independence of K;, we have
X" (a;) = 0 for every i. This means that X" € End(A) is zero on a basis of A, hence
X" =0. O

3.1 14-generic case

Proposition 3.2 Suppose that T € C"QC"QC™ = AQBQC is 14-generic with
a € A* such that T (a) € BQC has full rank. Then T is 111-abundant if and only
if the space Eq(T) = T(AMT (2)~! € End(C) is m-dimensional, abelian, and End-
closed. Moreover if these hold, then T is concise and 111-sharp.

Proof Assume T is 111-abundant. The map (T(@)~Ht: B — C* induces an isomor-
phismof T withatensor 7’ € AQC*®C, so wemay assumethat T = T/, T («) = Id¢
and B = C*. We explicitly describe the tensors €2 in the triple intersection. We use
Lemma 3.1 repeatedly. Fix abasis ay, . .., a, of Aand write T = Z;":] a; ® K; where
K1 = Idc, but we do not assume the K; are linearly independent, i.e., that T is A-
concise. Let @ = Y ' | a;®Qw; € AQB®C. Suppose Q@ = Y'oz T = Z oc T for
some Y € End(C) and Z € End(C).

The condition Q = Y' o, T means that w; = K;Y for every i. The condition Q2 =
Zoc T meansthatw; = ZK;.Fori = 1weobtainY =Ild¢-Y =w1 =Z -Idc = Z,
so Y = Z. For other i we obtain ZK; = K;Z, which means that Z is in the joint
commutator of T (A*).
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A matrix X such that @ = X o, T existsifand only if w; € (K1, ..., K;,) = T(A*)
forevery i. This yields ZK; = K;Z € T(A*) and in particular Z = Z -1d¢ € T(A¥).

By assumption, we have a space of choices for Q2 of dimension at least m. Every
Q is determined uniquely by an element Z € T(A*). Since dim T (A*) < m, we
conclude that dim T (A*) = m, i.e., T is A-concise (and thus concise), and for every
Z € T(A*), the element 2 = Z o. T lies in the triple intersection. Thus for every
Z € T(A*) we have ZK; = K;Z, which shows that T(A*) C End(C) is abelian
and ZK; € T(A*), which implies that &,(T) is End-closed. Moreover, the triple
intersection is of dimension dim 7 (A*) = m, so T is 111-sharp.

Conversely, if £, (T') is m-dimensional, abelian and End-closed, then reversing the
above argument, we see that Z o T is in the triple intersection for every Z € T (A*).
Since (Z o¢ T)(«) = Z, the map from T (A*) to the triple intersection is injective, so
that 7 is 111-abundant and the above argument applies to it, proving 111-sharpness
and conciseness. O

3.2 Corank one 14-degenerate case: statement of the normal form

We next consider the 1 4-degenerate tensors which are as “nondegenerate” as possible:
there exists @ € A* with rank (T («)) = m — 1.

Proposition 3.3 (characterization of corank one concise tensors that are 111I-
abundant) Let T = Z;”zl a;®K; be a concise tensor which is 111-abundant and
not 1 4-generic. Suppose that Ky: B* — C has rank m — 1. Choose decompositions
B* = B¥ @ ker(K1) =: B¥ @ (By) and C =Im(K1) ® (cp) =: C' ® (cp) and use
K1 to identify B* with C’'. Then there exist bases of A, B, C such that

K1=<Idocl 8), KS=<XX 8) for 2<s<m-—1, and sz(z:z wé"),
G.1)

for some X3, ..., X, € End(C") and 0 # u,, € B'®cp = C'*, 0 # w,, € B,QC" =
C’ where, setting x1 = Id¢,

(D) wpx?wy, = 0 forevery j > 0and x € (X1, ..., Xy), so in particular u, w, = 0.

(2) the space {X1,Xa,...,Xu—1) € End(C’) is (m — 1)-dimensional, abelian, and
End-closed.

(3) the space (X3, ..., X;,—1) contains the rank one matrix w, uyy,.

@) Forall2 <s <m — 1, uyxy, = 0 and x;w,, = 0.
(5) For every s, there exist vectors us € C'* and wy € C', such that

XX + Wslly = XX + Whlts € (X2, ..., Xp—1). (3.2)

The vector [ug, w'] € C2m=D* s unique up to adding multiples of [um, w!, 1.
(6) Forevery j>land2 <s <m—1

XSX,me =0 and umx,i,xAy =0. (3.3)
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Moreover, the tensor T is 111-sharp.

Conversely, any tensor satisfying (3.1) and (1)—(5) is 111-sharp, concise and not
1 4-generic, hence satisfies (6) as well.

Additionally, for any vectors u* € C' and w}, € (C")* with upu* =1 = w*wy,
we may normalize X,, such that for every2 <s <m — 1

Xaut =0, w'x, =0, uy = wxx,,, and wy; = X, X;u*. (3.4)

Remark 3.4 Atkinson [4] defined a normal form for spaces of corank m — r where one

element is dr and all others of the form ( W and satisfy Ux/W = 0

0 0 (U 0
for every j > 0. The zero block is clear and the equation follows from expanding out
Eld,+x W

U 0
except for the zero blocks in the K just using bounded rank.

Later, Friedland [24], assuming corank one, showed that the A-Strassen equations
are exactly equivalent to having a normal form satisfying (3.1), (1), and (6). In par-
ticular, this shows the 111-equations imply Strassen’s equations in the corank one
case.

the minors of > with a variable £. This already implies (3.1) and (1)

Proof We use Atkinson normal form, in particular we use K to identify B* with C’.

Take (Y, Z) € End(B) x End(C) withO # Yoy T = Zoc T € T(A*)®A, which
exist by 111-abundance. Write these elements following the decompositions of B*
and C as in the statement:

Yt:<y wY) Z:<Z wz)’
uy ty uz iz

with'y € End((B*)"), z € End(C’) etc. The equality Y o T = Z o T € T(A*)®A

says K;Y' = ZK; € T(A*) = (Ky, ..., K,). When i = 1 this is
y owr) _ (2 0) poyx (3.5)
0 0/) \uz O ’ ’
sowy = 0,uz =0, and y = z. For future reference, so far we have

¢t _(z O [z wgz
Y_(uy ly) _(0 tz)' (3.6)

By (3.5), for every (Y, Z) above the matrix z belongs to B'®C’ N T (A*). By concise-
ness, the subspace B'QC’ N T (A*) is proper in T (A*), so it has dimension less than
m. The triple intersection has dimension at least m as T is 111-abundant. Thus the
projection map T (A*) — (B’ ® C') N T (A*) has a nonzero kernel. Thus there exists
apair (Y, Z) asin (3.6) withz =0,and 0 # Y o3 T = Z o T. Take any such pair
(Yo, Zp). Consider a matrix X € T (A*) with the last row nonzero and write it as

[ x wy
(o %)
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where u,, # 0. The equality

t [ Wnityy, Wptyy\ _ (wzoum O
g (T ) = (M 0)

implies wy,ty, = 0,0 = tz, (as u,, 7 0) and wz,u, = wyuy,. Observe thatwz, 7# 0
as otherwise Zp = 0 while we assumed Zj oz T # 0. Since u,, # 0 and wz, # O,
we have an equality of rank one matrices wz,u,, = wpuy,. Thus u, = Auy, and
Wy, = Awg, for some nonzero A € C. It follows that w,, # 0, so ty, = 0. The matrix
X was chosen as an arbitrary matrix with nonzero last row and we have proven that
every such matrix yields a vector [u,,, w! ] proportional to a fixed nonzero vector
[y, thO]. It follows that we may choose a basis of A such that there is only one
such matrix X. The same holds if we assume instead that X has last column nonzero.
This gives (3.1).

Returning to (3.5), from uz = 0 we deduce thatz € (X1, ..., X —1).
Now Yy and Z are determined up to scale as
0 O 0 w
t _ _ m
i=(00) A= () ). oo
so there is only a one-dimensional space of pairs (Y, Z) with Y o3 T = Z o T and
upper left block zero. The space of possible upper left blocks z is (xy, ..., X;;—1) S0
it is (m — 1)-dimensional. Since the triple intersection is at least m-dimensional, for
any matrix z € (X, ..., X,,_1) there exist matrices Y* and Z as in (3.6) with this z in

the top left corner.

Consider any matrix as in (3.6) corresponding to an element Y o3 T = Z o T €
T(A*)QA. For 2 < s < m — 1 we get zx; = X,z € (X1,...,Xy—1). Since
for any matrix z € (Xi,...,X;—1) a suitable pair (¥, Z) exists, it follows that
(X1,...,Xm—1) € End(C’) is abelian and closed under composition proving (2).
The coefficient of a,, in Y o T = Z o T gives

<xmz + Wy wm) _ <me T wzin Z“””) =AvKm + Ky, (39)
fr— - m ’ :

UmZ 0 tzumy, 0
where Ay € Cand Ky € (Ky, ..., K,,_1). It follows that ty = Ay = tz and that
Zw,, = Ayw,, as well as u,,z = Ayu,,.
Iterating over z € (X1, ..., Xn—1), We see that w,, is a right eigenvector and u,, a

left eigenvector of any matrix from this space, and u,,, w;,, have the same eigenvalues
for each matrix. We make a GL(A) coordinate change: we subtract this common
eigenvalue of x; times x| from x;, so thatx;w,,, = Oandu,,x; = Oforall2 <s <m—1

proving (4). Take z € (x2,...,X;—1) so that zw,, = 0 and u,,z = 0. The top left
block of (3.9) yields
ZX,, + Wzl = XpZ + Wy = AyXy, + Ky. (3.10)
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Since zw,, = 0, the upper right block of (3.9) implies Ay = 0 and we deduce that
ZX; + Wzl = XpZ + Wpuy = Ky € (X2, ..., X;u—1). (3.11)

For a pair (Y, Z) with z = Xx;, set wy := wz and us := uy. Such a pair is unique up to
adding matrices (3.8), hence [uy, w}] is uniquely determined up to adding multiples
of [uy,, w,tn]. With these choices (3.11) proves (5). Since X, determines ug, wy we see
that T is 111-sharp.

The matrix (3.7) lies in T(A*), hence w,,u,, € (X{,...,X,_1). Since 0 =
(UmWm) Uy = Uy (Wyt,) we deduce that wy,u, € (Xo, ..., Xn—1), proving (3).

Conversely, suppose that the space of matrices K1, ..., K, satisfies (3.1) and (1)—
(5). Conciseness and 1 4-degeneracy of K1, ..., K,, follow by reversing the argument
above. That T is 111-sharp follows by constructing the matrices as above.

To prove (6), we fix s and use induction to prove that there exist vectors v, € C'*
forh =1, 2, ... such that for every j > 1 we have

Jj—1
XinXs + ) X Wi Vj - € (X2, Xn—1). (3.12)

h=0

The base case j = 1 follows from (5). To make the step from j to j 4 1 use (5) for

the element (3.12) of (x3, ..., X;y_1), to obtain
j—1
j h
Xm X{nxs + mewmvjfh + wpuvjt1 € (X2, ..., Xm—1),
h=0

for a vector vj11 € C'. This concludes the induction. For every j, by (4), the expres-
sion (3.12) is annihilated by u,,:

j—1

J h . =0

Unm - | XXy + X, WnVj—p | =0.
h=0

By (1) we have umxfn wy, = 0 for every h, so umx,]nxs = 0 for all j. The assertion
XX}, Wy = 0 s proved similarly. This proves (6).

Finally, we proceed to the “Additionally” part. The main subtlety here is to adjust
the bases of B and C. Multiply the tuple from the left and right respectively by the
matrices

Ider y Idg= O "
( 0 1) e GL(C) ( 8 1) € GL(B™)

and then add ow,u,, to X,,. These three coordinate changes do not change the xi,
Xy, Um, OF Wy, and they transform x,, into X, := X,y + W B + Yum + @wyu,y,. Take
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(o, B, y) = (W*Kpu*, —w*Xp, —X,u*), then X/, satisfies w*x/, = 0 and x), u* = 0.
Multiplying (3.2) from the left by w™* and from the right by u™ we obtain respectively

W XX + (W W)y, = ug

Wy = XpXslt™ + wp (usu™).
Multiply the second line by w* to obtain w*w; = uzu*, so

[, wil = w*(Wo)lum, wh,] = [W XX, XnXsu®)'].
Replace [us, wi] by [us, w] — w*(ws)[um, wt,] to obtain uy = wW*XyXy, wy =
X, Xsu™*, proving (3.4). O

Example 3.5 Consider the space of 4 x4 matricesx; = Idg4, Xp = Ej4,X3 = E3,X4 =
Ez4. Take x5 = 0, u,, = (0,0, 0, 1) and w,,, = (1, 0, 0, 0)t. The tensor built from this
data as in Proposition 3.3 does not satisfy the 111-condition, since x3 and x4 do not
commute. Hence, it is not of minimal border rank. However, this tensor does satisfy
the A-End-closed equations (described in Sect. 2.1) and Strassen’s equations (in all
directions), and even the p = 1 Koszul flattenings. This shows that 111-equations
are indispensable in Theorem 1.6; they cannot be replaced by these more classical
equations.

3.3 Proof of Proposition 1.2

The 14-generic case is covered by Proposition 3.2 together with the description of
the A-Strassen and A-End-closed equations for 14-generic tensors which was given
in Sect. 2.1.

In the corank one case, Remark 3.4 observed that the 111-equations imply Strassen’s
equations. The End-closed equations are: Let ay, . .., o, be a basis of A*. Then for
allo’, a” € A%,

(TE@T @) ' TW@N)AT@) A AT(ay) =0e A" H(BRO).
(3.13)

Here, for Z € BQC, Z""~! denotes the induced element of A" ! B A"~ C, which,
up to choice of volume forms (which does not effect the space of equations), is iso-
morphic to C*®B*, so (T (a')T ()"~ T («”")) € BQC. Inbases Z"" ! is just the
cofactor matrix of Z. (Aside: when T is 1 4-generic these correspond to &, (T') being
closed under composition of endomorphisms.) When 7 («) is of corank one, using the
normal form (3.1) we see T (o) T (o)~ T («”") equals zero unless o’ = o = a,,
in which case it equals wyu, so the vanishing of (3.13) is implied by Proposition
3.3(3).

Finally if the corank is greater than one, both Strassen’s equations and the End-
closed equations are trivial. O
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4 Proof of Theorem 1.11

We prove Theorem 1.11 that AlTl | isindeed a unital subalgebra of End(A) x End(B) x
End(C) which is commutative for 7 concise. The key point is that the actions are linear
with respect to A, B, and C. We have (Id, Id, Id) € .AIT“ forany 7.

Lemma 4.1 (composition and independence of actions) Let T € AQBR®C. For all
X, X' € End(A) and Y € End(B),

X o, (X 0, T) = (XX') o, T, and .1
Xo,(YopT) =Y oy (Xo0,T). 4.2)

The same holds for (A, B) replaced by (B, C) or (C, A).
Proof Directly from the description in Lemma 3.1. O

Lemma 4.2 (commutativity) Let T € AQB®C and suppose (X, Y, Z), (X', Y',Z") €
AL Then XX' 04 T = X'X o, T and similarly for the other components. If T is
concise, then XX' = X'X,YY' =Y'Yand ZZ' = 7' Z.

Proof We will make use of compatibility to move the actions to independent positions
and (4.2) to conclude the commutativity, much like one proves that 7, in topology is
commutative. Concretely, Lemma 4.1 implies

XX oaT=Xos (X' oaT)=Xo4 (Y 03 T)=Y 05 (Xo0aT)=Y 05 (ZocT), and
X'Xo,T=X0sXoaT)=X'04(ZocT)=Zoc (X' 0aT)=Zoc (Y o5T).
Finally Y’ o5 (Z oc T) = Z o¢ (Y’ 05 T) by (4.2). If T is concise, then the equation

(XX'— X'X) o, T = 0implies XX’ — X’X = 0 by the description in Lemma 3.1,
so X and X’ commute. The commutativity of other factors follows similarly. O

Lemma 4.3 (closure under composition) Let T € AQB®C and suppose (X,Y, Z),
(X", Y, 2"y e Al||. Then (XX',YY', 2Z') € A},

Proof By Lemma 4.1

XX 0, T =Xo, (X' o4T)=Xo, Y 03 T)=Y 05 (X0, T)
=Y oy Yoy T)=YYo,T.

We conclude by applying Proposition 4.2 and obtain equality with Z'Z o T similarly.
]

Proof of Theorem 1.11 Commutativity follows from Lemma 4.2, the subalgebra asser-
tion is Lemma 4.3, and injectivity of projections follows from Lemma 3.1 and
conciseness.

Remark 4.4 Theorem 1.11 without the commutativity conclusion still holds for a non-
concise tensor 7. An example with a noncommutative 111-algebrais ) ;_, a; ®b; ®c;,
where r < m — 2. In this case the 111-algebra contains a copy of End(C™™").
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Example 4.5 If T is a 1 4-generic 111-abundant tensor, then by Proposition 3.2 its 111-
algebra is isomorphic to £ (T'). In particular, if T is the structure tensor of an algebra
A, then AT, is isomorphic to A.

Example 4.6 Consider the symmetric tensor F € S3C> € C?°®@C ®C> correspond-
ing to the cubic form x3x12 + x4x1x2 + x5x%, where, e.g., x3xf = 2(x3®@x1®x1 +
x1Qx3®x1 +x1®x1®x3). This cubic has vanishing Hessian, hence F is 1-degenerate.

The triple intersection of the corresponding tensor is (F, x13, xlzxz, xlxg, x%} and its
111-algebra is given by the triples (x, x, x) where

x € (Id, x1 ®a3, 2@z + X1 @4, X204 + X1 Qu5, X2®0'5),

where « is the basis vector dual to x;. Since all compositions of basis elements other
than Id are zero, this 111-algebra is isomorphic to Cley, 2, €3, €4]/(¢1, €2, €3, 84)2.

Example 4.7 Consider a tensor in the normal form of Proposition 3.3. The projection
of the 111-algebra to End(B) x End(C) can be extracted from the proof. In addition

to (Id, Id) we have:
_ 0 O _ 0 wy
[ Xs 0 (X Wy
n=(o o) 2=(5 %)

Theorem 1.11 implies for matrices in End(C) that

XsXp  XsWr) _ (Xs Ws) (X Wr)  (Xp W) [(Xg Ws)  [XXg X Ws
0 0 /) \o o0 0 o/ \0 O 0o o/ Lo 0

which gives x,w; = X, w; forany 2 < s, < m — 1. Considering matrices in End(B)
we obtain u; Xy = usX, forany 2 < s,t < m — 1. (Of course, these identities are also
a consequence of Proposition 3.3, but it is difficult to extract them directly from the
Proposition.)

5 New obstructions to minimal border rank via the 111-algebra

In this section we characterize 111-abundant tensors in terms of an algebra equipped

with a triple of modules and a module map. We then exploit this extra structure to
obtain new obstructions to minimal border rank via deformation theory.

5.1 Characterization of tensors that are 111-abundant

Definition 5.1 A tri-presented algebra is a commutative unital subalgebra A <
End(A) x End(B) x End(C).
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For any concise tensor 7T its 111-algebra AIT11 is a tri-presented algebra. A tri-
presented algebra A naturally gives an .A-module structure on A, B, C. For every
A-module N the space N* is also an .A-module via, for any r € A, n € N, and
f e N* (r- f)(n):= f(rn). (This indeed satisfies rp - (r; - f) = (ror1) - f because
A is commutative.) In particular, the spaces A*, B*, C* are .A-modules. Explicitly, if
r=(X,Y,Z) e Aand a € A*, then ra = X' (a).

There is a canonical surjective map 7: A*®B* — A*®4B*, defined by
7(x®B) = a® 4B and extended linearly. For any homomorphism ¢ : A*® 4B* — C
of A-modules, we obtain a linear map o : A*® B* — C hence atensorin AQ BQC
which we denote by T,.

We need the following lemma, whose proof is left to the reader.

Lemma 5.2 (compatibility with flattenings) Let T € AQBRC, X € End(A), Z €
End(C) and a € A*. Consider T (a) : B* — C. Then

(ZocT)(a)=2Z-T(x), 6D
T (X'(@) = (X o4 T)(a), (5.2)
and analogously for the other factors. O

Proposition 5.3 Let T be a concise 111-abundant tensor. Then T is 1 4-generic if and
only if the AlTl \-module A* is generated by a single element, i.e., is a cyclic module.
More precisely, an element @ € A* generates the AlTll—module A*ifand only if T ()
has maximal rank.

Proof Takeany o € A*andr = (X,Y, Z) € AIT“. Using (5.1)—(5.2) we have
T(ra) =T(X" (@) = (X o, T)(@) = (Zoc T)(a) = Z - T(a). (5.3)

Suppose first that 7' is 1 4-generic with T («) of full rank. If » # 0, then Z # 0 by the
description in Lemma 3.1, so Z - T («) is nonzero. This shows that the homomorphism
Al — A* of AT, -modules given by r — ra is injective. Since dim A7,| > m =
dim A*, this homomorphism is an isomorphism and so A* >~ .AIT11 as AITI -modules.

Now suppose that A* is generated by an element « € A*. This means that for
every o’ € A* thereisanr = (X,Y,2) € .AIT11 such that ra = o’. From (5.3) it
follows that ker T'(a) < ker T (a’). This holds for every o', hence ker T («) is in the
joint kernel of T'(A*). By conciseness this joint kernel is zero, hence ker T'(«) = 0
and T (o) has maximal rank. m]

Theorem 5.4 Let T € AQBQC and let A be a tri-presented algebra. Then A C AIT“
if and only if the map Tf. : A*®B* — C factors through w : A*QB* — A*Q 4B*
and induces an A-module homomorphism ¢: A*Q@ AB* — C. If this holds, then
T=T,

Proof By the universal property of the tensor product over .4, the map Té : A*®B* —
C factors through 7 if and only if the bilinear map A* x B* — C given by («, 8)
T (a, B) is A-bilinear. That is, foreveryr = (X, Y, Z) € A,a € A*,and 8 € B* one
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hasT (ree, B) = T (e, 7B).By(5.2), T (ra, B) = (XosT) (e, B)and T (o, ¥ B) = (Y op
T)(a, B). Itfollows that the factorization exists if and only if foreveryr = (X, Y, Z) €
A wehave X o, T =Y o T. Suppose that this holds and consider the obtained map
@: A*®B* — C.Thusfora € A* and 8 € B* we have p(a¢® 48) = T («, B). The
map ¢ is a homomorphism of .A-modules if and only if forevery r = (X,Y, Z) € A
we have p(ra®48) = re@®4B). By (5.1), re(@®4B) = (Z oc T)(e, B) and
by (5.2), p(ra®48) = (X os T)(«, B). These are equal for all «, B if and only if
X oy T =Z oc T. The equality T = T, follows directly from definition of T,. O

Theorem 5.5 (characterization of concise 111-abundant tensors) A concise tensor that

is 111-abundant is isomorphic to a tensor Ty, associated to a surjective homomorphism
of A-modules

¢: Ni® Ny — N3, 5.4)

where A is a commutative associative unital algebra, N|, N>, N3 are A-modules
and dim N; = dim N, = dim N3 = m < dim A, and moreover for every n| €
Ni,ny € Ny the maps g(n1® 4—): Ny — N3 and ¢(—® gn2): N — N3 are
nonzero. Conversely, any such Ty, is 111-abundant and concise.

The conditions p(n1® 4—) # 0, ¢p(—® 4n2) # 0 for any nonzero ni, ny have
appeared in the literature. Bergman [7] calls ¢ nondegenerate if they are satisfied.

Proof By Theorem 5.4 a concise tensor 7' that is 111-abundant is isomorphic to T,
where A = AITU, Ni = A*, N, = B*, N3 = C. Since T is concise, the homo-
morphism ¢ is onto and the restrictions ¢(@®_4—), ¢(—® 48) are nonzero for any
nonzero o € A*, B € B*. Conversely, if we take (5.4) and set A := N, B := Nj,

C := N3, then Ty, is concise by the conditions on ¢ and by Theorem 5.4, A4 C AlT‘f]
hence T, is 111-abundant. O

Example 5.6 By Proposition 5.3 we see that for a concise 1 4-generic tensor 7 the ten-
sor product A*® 4 B* simplifies to A® 4 B* >~ B*. The homomorphism ¢: B* — C
is surjective, hence an isomorphism of B* and C, so the tensor T, becomes the mul-
tiplication tensor A®cC — C of the A-module C. One can then choose a surjection
S — A from a polynomial ring such that S<; maps isomorphically onto .A. This
shows how the results of this section generalize Sect. 2.2.

In the setting of Theorem 5.5, since T is concise it follows from Lemma 3.1 that the
projections of .AIT11 to End(A), End(B), End(C) are one to one. This translates into
the fact that no nonzero element of .AIT” annihilates A, B or C. The same is then true
for A*, B*, C*.

5.2 Two new obstructions to minimal border rank

Lemma5.7 LetT € C"QC"QC™ be concise, 111-sharp and of minimal border rank.
Then AIT“ is smoothable.
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Proof By 111-sharpness, the degeneration 7. — T from a minimal rank tensor
induces a family of triple intersection spaces, hence by semicontinuity it is enough to
check for T, of rank m. By Example 4.5 each T, has 111-algebra []i", C. Thus the
111-algebra of T is the limit of algebras isomorphic to [ /L, C, hence smoothable. O

Recall from Sect. 2 that for m < 7 every algebra is smoothable.
As in Sect. 2.2 view A]TH as a quotient of a fixed polynomial ring S. Then the
AlTn-modules A, B, C become S-modules.

Lemma 5.8 LetT € C"QC"QC™ be concise, 111-sharp and of minimal border rank.
Then the S-modules A, B, C lie in the principal component of the Quot scheme.

Proof As in the proof above, the degeneration 7. — T from a minimal rank tensor

induces a family of .AITE“ and hence a family of S-modules A,, B, C.. These modules
are semisimple when T, has minimal border rank by Example 2.1. O

Already for m = 4 there are S-modules outside the principal component [34, §6.1],
[29].

Example 5.9 In [37, Example 5.3] the authors exhibit a 1 4-generic, End-closed, com-
muting tuple of seven 7 x 7-matrices that corresponds to a tensor 7 of border rank
higher than minimal. By Proposition 3.2 this tensor is 111-sharp. However, the associ-
ated module C is not in the principal component, in fact it is a smooth point of another
(elementary) component. This can be verified using Biatynicki—Birula decomposition,
as in [34, Proposition 5.5]. The proof of non-minimality of border rank in [37, Exam-
ple 5.3] used different methods. We note that the tensor associated to this tuple does
not satisfy all p = 1 Koszul flattenings.

6 Conditions where tensors of bounded rank fail to be concise

Proposition 6.1 Let T € C°®C QC? be such that the matrices in T (A*) have the
shape

* O O O O
* O O O O
* O O O O
* Kk K K K
* K K K K

If T is concise, then T (C*) contains a matrix of rank at least 4.

Proof Write the elements of T (A*) as matrices

K,-:(I? :) € Hom(B*,C) fori=1,2,...,5

i

where u; € C3. Suppose T is concise. Then the joint kernel of (K7, ..., Ks) is zero,
soup,...,uUs span C3. After a change of coordinates we may assume u1, up, u3 are
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linearly independent while u4 = 0, u5 = 0. Since K4 # 0, choose a vector y € C*
such that y - K4 # 0. Choose & € C such that (y5s + £y) - K4 # 0. Note that
T(ys) : B* — A has matrix whose rows are the last rows of K1, ..., K5. We claim
that the matrix T (y5 + £y): B* — A has rank at least four. Indeed, this matrix can
be written as

up x *
ujy * *
U3 * *
0 (ys+8y)- Kq
0 « *
This concludes the proof. O

Proposition 6.2 Let T € AQB®C withm = 5 be a concise tensor. Then one of its
associated spaces of matrices contains a full rank or corank one matrix.

Proof Suppose that T(A*) is of bounded rank three. We use [4, Theorem A] and its
notation, in particular r = 3. By this theorem and conciseness, the matrices in the
space T (A*) have the shape

*  x %
* Y 0
* 0 O

where the starred part consists of p rows and ¢ columns, for some p,q > 0, and
Y forms a primitive space of bounded rank at most 3 — p — g. Furthermore, since
r+1 <mandr < 2+ 2, by [4, Theorem A, “Moreover” part] we see that T (A™)
is not primitive itself, hence at least one of p, g is positive. If just one is positive, say
p, then by conciseness ) spans 5 — p rows and bounded rank 3 — p, which again
contradicts [4, Theorem A, “Moreover”]. If both are positive, we have p = ¢ = 1
and Y is of bounded rank one, so by [5, Lemma 2], up to coordinate change, after
transposing 7' (A*) has the shape as in Proposition 6.2. O

Proposition 6.3 In the setting of Proposition 3.3, write T' = a;®x; + --- +
Am—1®@Xm—1 € C*1@C"-1C" ! = A'QC"*QC’, where x; = Id¢.. If T is
1-degenerate, then T’ is 10+ and 1¢/-degenerate.

Proof Say T’ is 1c+-generic with T'(¢’) of rank m — 1. Then T (¢’ 4+ Au*), where u* is
as in the statement of Proposition 3.3, has rank m for almost all A € C, contradicting
1-degeneracy. The 1/-generic case is similar. O

Corollary 6.4 In the setting of Proposition 6.3, the module C' associated to T'(A’)
via the ADHM correspondence as in Sect. 2.2 cannot be generated by a single element.
Similarly, the module C'* associated to (T'(A’™))! cannot be generated by a single
element.

Proof By Proposition 2.3 the module C’ is generated by a single element if and only
if T” is 1o+-generic. The claim follows from Proposition 6.3. The second assertion
follows similarly since 7’ is not 1¢-generic. O
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7 Proof of Theorem 1.6 in the 1-degenerate case and Theorem 1.7

Throughout this section T € C’®C ®C? is a concise 1-degenerate 111-abundant
tensor.

We use the notation of Proposition 3.3 throughout this section.

We begin, in Sect. 7.1 with a few preliminary results. We then, in Sect. 7.2 prove a
variant of the m = 5 classification result under a more restricted notion of isomorphism
and only require 111-abundance. Then the m = 5 classification of corank one 111-
abundant tensors follows easily in Sect. 7.3 as does the orbit closure containment in
Sect. 7.4. Finally we give two proofs that these tensors are of minimal border rank in
Sect. 7.5.

7.1 Preliminary results

We first classify admissible three dimensional spaces of 4 x 4 matrices (X7, X3, X4)
End(C*). One could proceed by using the classification [50, §3] of abelian subspaces
of End(C*) and then impose the additional conditions of Proposition 3.3. We instead
utilize ideas from the ADHM correspondence to obtain a short, self-contained proof.

Proposition 7.1 Ler (x; = Idy4, X3, X3,X4) C End((C4) be a 4-dimensional subspace
spanned by pairwise commuting matrices. Suppose there exist nonzero subspaces
V.W C C*withV & W = C* which are preserved by X1, X2, X3, X4. Then either
these exists a vector v € C* with (X1, X2, X3,X4) -V = C* or there exists a vector
v¥ e C** with (x), x4, x4, x{)v* = c4*,
Proof For h = 1,2, 3, 4 the matrix x; is block diagonal with blocks X;l € End(V)
and x;’ € End(W).

Suppose first that dim V = 2 = dim W. In this case we will prove that v exists.
The matrices x}l commute and commutative subalgebras of End(C?) are at most 2-

dimensional and are, up to a change of basis, spanned by Idc2 and either (8 (1))

or <(1) 8) In each of of the two cases, applying the matrices to the vector (1, 1)t

yields the space C2. Since the space (X1, X2, X3, X4) is 4-dimensional, it is, after a
change of basis, a direct sum of two maximal subalgebras as above. Thus applying
(X1, X2, X3, X4) to the vector v = (1, 1, 1, D)t yields the whole space.

Suppose now that dim V = 3. If some x), has at least two distinct eigenvalues,
then consider the generalized eigenspaces Vi, V; associated to them and suppose
dim V; = 1. By commutativity, the subspaces Vi, V; are preserved by the action of
every X, , so the matrices x;, also preserve the subspaces W @ V1 and V5. This reduces
us to the previous case. Hence, every x), has a single eigenvalue. Subtracting multiples
of x; from x; for s = 2, 3, 4, the xg become nilpotent, hence up to a change of basis
in V, they have the form

0 xPDi2 X)13
x;=[0 0 (X)23
0 0 0
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The space (x}, X5, X};) cannot be 3-dimensional, as it would fill the space of 3 x 3 upper
triangular matrices, which is non-commutative. So (xj, X}, X} is 2-dimensional and
so some linear combination of the matrices X, X3, X4 is the identity on W and zero on
V.

We subdivide into four cases. First, if (x,)12 # 0 for some s and (x)23 # 0 for
some ¢ #* s, then change bases so (x§)23 = 0 and take v = (0, p, 1, Dt such that
p(x)12 + (x;)13 # 0. Second, if the above fails and (x/)12 # 0 and (x})23 # O for
some s, then there must be a ¢ such that (x]);3 7# 0 and all other entries are zero,
so we may take v = (0,0, 1, 1)%. Third, if (x{)12 = O for all s = 2,3, 4, then for
dimensional reasons we have

0 O
(x5, x5, x;) =10 0
0 0

S *

and again v = (0,0, 1, Dt is the required vector. Finally, if (x;)23 = 0foralls =
2, 3, 4, then arguing as above v* = (1, 0, 0, 1) is the required vector. O

We now prove a series of reductions that will lead to the proof of Theorem 1.7.

Proposition7.2 Let m = 5 and T € AQBRC be a concise, 1-degenerate, 111-
abundant tensor with T (A*) of corank one. Then up to GL(A) x GL(B) x GL(C)
action it has the form as in Proposition 3.3 with

0
X, = (0 f;), 2<s <4, (7.1)

where the blocking is (2,2) x (2, 2).

Proof We apply Proposition 3.3. It remains to prove the form (7.1).

By Proposition 3.3(4) zero is an eigenvalue of every X;. Suppose some X; is not
nilpotent, so has at least two different eigenvalues. By commutativity, its generalized
eigenspaces are preserved by the action of X2, X3, X4, hence yield V and W as in
Proposition 7.1 and a contradiction to Corollary 6.4. We conclude that every Xx; is
nilpotent.

We now prove that the codimension of Z?:z Imx; C C’is atleast two. Suppose the
codimension is at most one and choose ¢ € C’ such that 2?22 Imx; +Cc = C’. Let
A C End(C’) be the unital subalgebra generated by x;, X3, X4 and let W = A - c. The
above equality can be rewritten as (X3, X3, X4)C’ + Cc = C’, hence (x2, X3, x4)C’ +
W = C’. We repeatedly substitute the last equality into itself, obtaining

C' = (x2,%3,x4)C" + W = ((x2, %3, x4))°C' + W = - .-
= ((x2,x3,x:)'°C" + W = W,

since X3, X3, X4 commute and satisfy x? = 0. This proves that C’ = A - ¢, again
yielding a contradiction with Corollary 6.4.
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Applying the abqve argument to xg, xg, xi proves that joint kernel of x3, X3, X4 is
at least two-dimensional.

We now claim that ﬂ?zz ker(x;) C Z?:z Im x;. Suppose not and choose v € C’
that lies in the joint kernel, but not in the image. Let W C C’ be a subspace containing
the image and such that W @ Cv = C’. Then (x2, X3, Xx4)W C (x2,Xx3,%x4)C’ C W,
hence V = Cv and W yield a decomposition as in Proposition 7.1 and a contradiction.
The containment ()!_, ker(x;) € Y"¢_, Im x; together with the dimension estimates

yield the equality ﬂizz ker(x;) = 2?22 Im x;. To obtain the form (7.1) it remains to
choose a basis of C’ so that the first two basis vectors span ﬂfzz ker(xy). O

7.2 Classification of 111-abundant tensors under restricted isomorphism

Refining Proposition 7.2, we now prove the following classification.

Theorem 7.3 Let m = 5. Up to GL(A) x GL(B) x GL(C) action and swapping the
B and C factors, there are exactly seven concise 1-degenerate, 111-abundant tensors
in AQBQ®C with T (A*) of corank one. To describe them explicitly, let

Tvi = a1Q(b1®c1 + br®cr + b3®c¢3 + ba®cyq) + a2 ®b3Rc1 + a3®bsRc
+a4@bs®c2 + as@(b5@c1 + ba®cs)

and

Tve = a1®(b1®ct + b2®cz + b3®c3 + ba®cy) + a2@(b3Q@c1 — bs®c2)
+a3®b4Q@c1 + as®b3Q@cy + asR(bs@ci + ba®cs).

Then the tensors are

Tvz + a5®(b1®c2 — b3®ca) (Tos)

Tv2 (Tos;)

Tvi + as®(bs®cy — b1®ca + b3&c3) (7057)
Tmi + as®bsQco (TOSG)

Tvm1 + asQbr®c2 (Tose)

Twmi + as®@b3Qc: (Toss)

Twmi (Tos,)
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These tensors are pairwise non-isomorphic, as we explain below. For a tensor
T € AQBQ®C its annihilator in gl(A) x gl(B) x gl(C) is called its symmetry Lie
algebra. The symmetry Lie algebra intersected with gl(A) x gl(B) is called the AB-
part etc. We list the dimensions of these Lie algebras below.

A linear algebra computation (see, e.g., [19]) shows that the dimensions of the
symmetry Lie algebras are

Case  Tos, Tos, Tos, Toss Toss Toss Tos,

Full 16 17 17 18 18 19 20
AB-patt 5 5 5 5 6 6 6
BCpat 5 6 5 6 5 6 6
CApat 5 5 6 6 6 6 6

Proof of Theorem 7.3 We utilize Proposition 7.2 and its notation. By conciseness, the
matrices X3, X3, X4 are linearly independent, hence form a codimension one subspace
of End(C?). We utilize the perfect pairing on End(C?) given by (A, B) > Tr(AB),
so that (x2, x3, x4)= € End(C?) is one-dimensional, spanned by a matrix P. Conju-
gation with an invertible 4 x 4 block diagonal matrix with 2 x 2 blocks M, N maps
Xs to M xs N ~land P to NPM~!. Under such conjugation the orbits are matrices of
fixed rank, so after changing bases in (a3, a3, a4), we reduce to the cases

0 1 10 0 1 00

PZ(O o) X2:<0 o>’ X3:(o 0)’ X“:(o 1)’ and (M1)
10 10 0 1 00

P=<0 1) X2=(O _1), X3=<0 O)’ X4=(1 0)~ (M2)

In both cases the joint right kernel of our matrices is (¥, %, 0, 0)t while the joint left
kernel is (0, 0, *, %), so ws = (ws,1, ws,2, 0, 0)t and u5 = (0, 0, Us 3, Us 4).

7.2.1 Case (M2)

In this case there is an involution, namely conjugation with

e GLjs

SO O~ O
SO OO
o= O OO
SO = OO
—_ O O OO

that preserves P, and hence (X2, X3, X4), while it swaps ws 1 with ws > and u5 1 with
us 2. Using this involution and rescaling c¢5, we assume ws ; = 1. The matrix

us3 us4
Us3wWs2 U54W52
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belongs to {2, x3, x4) by Proposition 3.3(3), so it is traceless. This forces us 4 # 0.
Rescaling b5 we assume us 4 = 1. The trace is now us 3 +ws 2, sous 3 = —ws 2. The
condition (3.2) applied for s = 2, 3, 4 gives linear conditions on the possible matrices
X5 and jointly they imply that

P P2 * *
p3 D4 * *

7.2
0 0 ps—wsa(pi+ps) ps (7-2)
0 0 —p3s—ws2(ps—p1) D6

X5 =

for arbitrary p; € C and arbitrary starred entries. Using (3.4) with u* = (1, 0, 0, 0)*
and w* = (0, 0, 0, 1), we may change coordinates to assume that the first row and last
column of x5 are zero, and subtracting a multiple of x4 from x5 we obtain further that
the (3, 2) entry of x5 is zero, so

<

o

<

N

(e}
(=l el e)

Subtracting ps X from X5 and then adding p4 times the last row (column) to the
fourth row (column) we arrive at

0 0 0 0
Ips 0 0 0

X5 = 0 0 0 0 (7.3)
0 0 —p3 O

for possibly different values of the parameter p3. Conjugating with the 5 x 5 block
diagonal matrix

1 0 0 0 0
ws,2 1 0 0 0
0 O 1 0 0
0 0 wsa 1 0
0O 0 0 01

does not change P, hence (x», X3, X4), and it does not change xs as well, but it makes
ws 2> = 0. Thus we arrive at the case when ws = (1,0, 0, 0%, us = (0,0,0, 1) and
Xs is as in (7.3). There are two subcases: either p3 = 0 or p3 # 0. In the latter case,
conjugation with the diagonal matrix with diagonal (1, p3, 1, p3, 1) does not change
(x2, X3, X4) and it maps X5 to the same matrix but with p3 = 1. In summary, in this
case we obtain the types (Toy,) and (Tos,).
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7.2.2 Case (M1)

For every t € C conjugation with

[ e R
SO O =~
SO = OO
S = - OO
—_ o O O O

preserves (X2, X3, X4) and maps us to (0,0, us 3, us 4 — tus3) and ws to (ws,; +
tws.2, ws.2, 0, 0)t. Taking ¢ general, we obtain ws_j, us 4 # 0 and rescaling bs, cs we
obtain us 4 = 1 = ws ;. Since wsus € (X2, X3, X4), this forces us3 = 0 or ws = 0.
Using (3.2) again, we obtain that

q1 *k k *

| ws2(g1—q3) 92 * *
X5 = 0 0 7 N (7.4)

0 0 us3(ga—q2) q4

for arbitrary q1, g2, 93,94 € C and arbitrary starred entries. We normalize fur-
ther. Transposing (this is the unique point of the proof where we swap the B and
C coordinates) and swapping 1 with 4 and 2 with 3 rows and columns (which is
done by conjugation with appropriate permutation matrix) does not change the space
(x2, X3, X4) or X1 and it maps us, ws to (0, 0, ws 2, ws 1), (45,4, us 3, 0, 0)t. Using this
operation if necessary, we may assume us 3 = 0. By subtracting multiples of us, ws
and X, X3, X4 we obtain

0 0O 0 O
| —q3ws2 g2 g4 O

X5 = 0 0 7 0 (7.5)
0 0O 0 O

Rescaling the second row and column we reduce to two cases:

wso =1 Mla)

ws2 =0 (M1b)

Case (M1a)
In this case we have ws = (1, 1,0, 0)! and u5 = (0, 0, 0, 1). We first add q4X3 10 X5

and subtract g4ws from the fourth column. This sets g4 = 0 in (7.5). Next, we subtract
—q2 X1 from X5 and then add gpus to the first column and g ws to the fourth row.
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This makes g» = 0 (and changes ¢3). Finally, if g3 is nonzero, we can rescale x5 by
qs ! and rescale the fifth row and column. This yields g3 = 1. In summary, we have
two cases: (qz q3,q4) = (0,1,0) and (¢2, g3, 94) = (0,0, 0). These are the types
(T056) and (Toq)

Case (M1b)

In this case we have ws = (1,0, 0, 0)t and u5 = (0,0, 0, 1).

Subtract —g3x; from x5 and then add g3us to the first column and gzws to the
fourth row. This makes g3 = 0 (and changes ¢2).

Subcase g2 = 0: Then either g4 = 0 and we obtain type (T,,) or we rescale X5
and the fifth row and column to obtain g4 = 1. Here (g2, g3, g4) = (0, 0, 1). This is
type (T0ss)-

Subcase g2 # 0: Then we rescale X5 and the fifth row and column to obtaingy = 1.
Subtract g4 times the second column from the third and add g4 times the third row to
the second. This does not change X1, ..., X4 and it changes X5 by making g4 = 0. Here
(2.3, 94) = (1,0,0), this is type (Tos, ).

We have shown that there are at most seven isomorphism types up to GL(A) x
GL(B) x GL(C) action, while the dimensions of the Lie algebras and restricted Lie
algebras show that they are pairwise non-isomorphic. This concludes the proof of
Theorem 7.3. O

7.3 Proof of Theorem 1.7

Proof We first prove that there are exactly five isomorphism types of concise 1-
degenerate 111-abundant up to action of GLj5 (©)*3 x &;3. By Proposition 6.2, after
possibly permuting A, B, C, the space T (A*) has corank one. It is enough to prove that
in the setup of Theorem 7.3 the two pairs of tensors with the symmetry Lie algebras
of the same dimension of are isomorphic. Swapping the A and C coordinates of the
tensor in case (7o) and rearranging rows, columns, and matrices gives case (T@%)
Swapping the A and B coordinates of the tensor in case (T(957) and rearranging rows
and columns, we obtain the tensor

ai(bici +bycy + byes + bacy) + arbzcr + az(bycy + bacy)
“+aq(bzcy — bac) + as(bscs + bscy + bycs)

1 0

1 -1
which has full rank, hence this tensor is isomorphic to one of the (M2) cases. The
dimension of the symmetry Lie algebra shows that it is isomorphic to (T, ). This
concludes the proof that there are exactly five isomorphism types.

The space of 2 x 2 matrices associated to this tensor is perpendicular to
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7.4 Proof of the degenerations

Write 7 &> 7" if T degenerates to 7" and T >~ T" if T and T" lie in the same orbit
of GL5(C)*3 x &3. The above yields Tos, =~ T@56 and T@57 >~ Tos,. Varying the
parameters in Sects. 7.2.1, 7.2.2, 7.2.2 we obtain degenerations which give

Tosy & Tos, = Tos; & Toss = Toss 2 Toss & Tos, »

which proves the required nesting. For example, in Sect. 7.2.2 we have a two-parameter
family of tensors parameterized by (¢2, g4) € C2. As explained in that subsection,
their isomorphism types are

@2 7#0g2=0,94#0g2=q4=0
TOS() TOSS TOS4

This exhibits the last two degenerations; the others are similar.
To complete the proof, we need to show that these tensors have minimal border
rank. By degenerations above, it is enough to show this for (7(,, ). We give two proofs.

7.5 Two proofs that the tensors have minimal border rank

7.5.1 Proof one: the tensor (Tp,,) lies in the closure of minimal border rank
14-generic tensors

Our first approach is to prove that (T, ) lies in the closure of the locus of 14-generic
concise minimal border rank tensors. We do this a bit more generally, for all tensors in
the case (M2). By the discussion above every such tensor is isomorphic to one where
x5 has the form (7.3) and we will assume that our tensor 7 has this form for some
p3 € C.

Recall the notation from Proposition 3.3. Take up = 0, wo = 0, uz =
0,0, —p3,0), w% = (0, p3,0,0),uqs = 0, wq = 0. We see that usx,, = 0, x,,ws; =0,
and wsu; = wyug for all s, ¢, so for every € € C* we have a commuting quintuple

-1
Xy  Wg _ X5 Ws€
1ds, (use 0 ) s =2,3,4, and <u5 0 )

We check directly that the tuple is End-closed, hence by Theorem 1.4 it corresponds
to a tensor of minimal border rank. (Here we only use the m = 5 case of the theorem,
which is significantly easier than the m = 6 case.) Multiplying the matrices of this
tuple from the right by the diagonal matrix with entries 1, 1, 1, 1, ¢ and then taking the
limit with # — 0 yields the tuple of matrices corresponding to our initial tensor 7.

While we have shown all (M2) cases are of minimal border rank, it can be useful
for applications to have an explicit border rank decomposition. What follows is one
such:
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7.5.2 Proof two: explicit proof of minimal border rank for (To,,)

For t € C*, consider the matrices

00 1 1 0 00 -1 1 0

00 -1 -1 0 00 -1 10
Bi=|l0 0 0o o0 o0, B,=]0 0 0 0 O],
00 0 0 O 00 0 0 O

00 0 0 O 00 0 0 0

0 0 00 0 -+ 0 0 1 0

0 ¢+ 1 0 0 0 00 0 O
Bi=|0 2 ¢+ 0 0|,B4a=]l0 0 0 0 o0,
0 0 00O 2 0 0 —t 0

0 0 00 0 0 00 0 0

-t 0 ¢ 1 2

20 -2 —t -3

Bs=(1,—1,0,—t,t5)' - (=1,0,t,1,t5)=| 0 0 0 0 0
20 -2 -t -

-2 0 B 2

The limit at t — 0 of this space of matrices is the required tuple. This concludes the
proof of Theorem 1.7. O

8 Proof (1)=(4) in Theorem 1.4
8.1 Preliminary remarks

Let T € AQBRC = C"QC"®C™ be 14-generic and satisfy the A-Strassen equa-
tions. Let E C sl(C) be the associated m — 1-dimensional space of commuting
traceless matrices as in Sect. 2.2. Let C be the associated module and S the associated
polynomial ring, as in Sect. 2.2. By Sect. 2.2 the tensor 7 has minimal border rank if
and only if the space E is a limit of spaces of simultaneously diagonalizable matrices
if and only if C is a limit of semisimple modules.

The principal component of the Quot (resp. Hilbert) scheme is the closure of the
set of semisimple modules (resp. algebras). Similarly, the principal component of the
space of commuting matrices is the closure of the space of simultaneously diagonaliz-
able matrices. A tensor T has minimal border rank if and only if E lies in the principal
component of the space of commuting matrices if and only if C lies in the principal
component of the Quot scheme.

Write Ann (C) = {s € S | s(C) = 0}. Let «; be a basis of A* with T («)
of full rank and X; = T(a;)T(a1)~' € End(C), for 1 < i < m. The algebra of
matrices generated by Id, X», ..., X, is isomorphic to S/Ann (C). The End-closed
condition in the language of modules becomes the requirement that the algebra of
matrices has dimension (at most) m. The tensor 7 is assumed to be A-concise, i.c.,

@ Springer



Concise tensors of minimal border rank

dim(Id, X», ..., X;;) = m, so the algebra is equal to this linear span: X; X ; € (Id =
X1, X0, ooy Xom)-

Our argument proceeds by examining the possible structures of C and S/Ann (C)
and, in each case, proving that C lies in the principal component. Let r be the minimal
number of generators of C.

In this section we introduce the additional index range

2<y,z,9g <m.

When S/Ann (C) is local, i.e., there is a unique maximal ideal m, we consider the
Hilbert function Hc (k) := dim(m*C/mf*t1C) and by Nakayama’s Lemma Hc(0) =
r. Similarly, we consider the Hilbert function Hg/ann () (k) := dim(mk/mk+1 ). Since
the algebra is local, Hg/ann (c)(0) = 1. Observe that if X, X, X,, = O forall y, z, w,
then Ann (C) contains S>3, which implies §/Ann (C) is local. When Hg/ann (¢)(1) =
k < m — 1, we may work with a polynomial ring in k variables, S = Clyi, ..., vkl

We will use the following results, which significantly restrict the possible structure
of C and §/Ann (C).

(i) For a finite algebra A = I1.4,, with the 4, local, the algebra A can be generated
by g elementsif and only if H 4, (1) < g for all z. From the geometric perspective,
the number of generators needed is the smallest dimension of an affine space the
associated scheme can be realized inside, and one just chooses the support of
each A; to be a different point of A4.

(i1)) When the module C is generated by a single element (so we are in the Hilbert
scheme), and m < 7, all such modules lie in the principal component [17].

(iii) By [34, Cor. 4.3], when m < 10 and the algebra of matrices generated by
Id, X5, ..., X, is generated by at most three generators, then the module
lies in the principal component. When S/Ann (C) is local, this happens when
Hg/am c)(1) < 3.

(iv) Whenm — 1 < 6,if X, X, = O for all y, z, then the module lies in the prin-
cipal component by [34, Thm. 6.14]. This holds when S/Ann (C) is local with
Hgjan(c)(2) = 0.

v) f Xy X, Xy, =0forall y, z, w (i.e., Hs/am (¢c)(3) = 0), dim ZIm(XyXZ) =1
(i.e., Hs/ann (¢)(2) = 1), and dim Ny, ; ker(X, X;) = m — 1, then (X2, ..., X;»)
deforms to a tuple with a matrix having at least two eigenvalues. Explicitly, there
is a normal form so that

be
=t
I
cocoocoo
coocoo
cococoX

coox %
oo«
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where X % # 0 and all other products are zero. Then

0 0 0 0 0
0 0 0 0 0
Y =10 0 GH, 0 O
0 0 0 0 0
0 0 0 0 0

commutes with all the X;, and the deformation (to a not necessarily traceless
tuple) is (X2 + 1Y, X3, ..., X;n) by [34, Lem. 6.13].

We now show that all End-closed subspaces E= (Id, E) lie in the principal com-
ponent when m = 5, 6 by, in each possible case, assuming the space is not in the
principal component and obtaining a contradiction.

8.2 Casem=>5

8.2.1 Case: E contains an element with more than one eigenvalue, i.e., E is not
nilpotent

By [34, Lem. 3.12] this is equivalent to saying the algebra S/Ann (C) is a nontriv-
ial product of algebras I1;.4;. Since dim(S/Ann (C)) = 5, we have for each ¢ that
dim(A;) < 4 and thus H4, (1) < 3. Using (i), we see S/Ann (C) is generated by at
most three elements, hence is in the principal component by (iii).

8.2.2 Case: all elements of E are nilpotent

In this case Ann (C) contains S>,;,—1), because any nilpotent m x m matrix raised to
the m-th power is zero and we have m — 1 commuting matrices that we could multiply
together. Thus S/Ann (C) is local and we can speak about Hilbert functions. By (iii) we
assume Hg/ann (c)(1) = 4, 50 Hg/am (c)(2) = 0. Thus for all z, w, y,y, € Ann (C)
and we conclude by (iv).

8.3 Casem =6

For non-local S/Ann (C), arguing as in Sect. 8.2.1 the only case is S/Ann (C) =~
Ar x Ay with dim A; = 1 and Hy,(1) = 4, Hyg,(2) = 0. Correspondingly the
module C is a direct sum of modules C; & C,, where A, ~ §/Ann (C,). By (iii) and
(iv) the module C, lies in the principal component and trivially so does C;. Hence C
lies in the principal component.

We are reduced to the case §/Ann (C) is local. By (iii) we assume Hg/ann (¢)(1) >
3. Moreover, if Hg/ann(c)(1) = 5, we have Hg/am (c)(2) = 0 and we conclude
by (iv). Thus the unique Hilbert function Hg/ann (¢) left to consider is (1, 4, 1).
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8.3.1 Case dim Zy’z Im(XyX;) = 1,i.e., Hs/ann (¢)(2) = 1

Since for all y, z, X, X, lies in the m dimensional space (Id, X», ..., X;,), we must
have dim(N, ; ker(X,X,)) = m — 1 and thus (v) applies. Let C (1) denote C with this
deformed module structure. The assumption that X1 Xy, = X, X; =0for2 <y <m
implies H1 K, = 0 and HyK; = 0 which implies that C (1) also satisfies the End-
closed condition. Since C (}) is not supported at a point, it cannot have Hilbert function
(1,4, 1) so it is in the principal component, and thus so is C = C(0).

8.3.2 Casedim Zy’z Im(X,Xz) > 1

This hypothesis says Hc(2) > 2. Since Hgjann (¢)(3) = 0 also Hc(3) = 0. We have
Hc(0)+ Hc(1) + Hc(2) = 6.1f Hc(0) = 1 then (ii) applies, so assume Hc¢ (0) > 2.
If Hc(1) = 1, then a near trivial case of Macaulay’s growth bound for modules [8,
Cor. 3.5], says Hc(2) < 2, so the Hilbert function Hc is (2, 2, 2), and the minimal
number of generators of C is Hc(0) = 2. Let ' = Se; @ Se; be a free S-module of
rank two. Fix an isomorphism C >~ F /R, where R is the subspace generated by the
relations.

We briefly recall the apolarity theory for modules from [34, §4.1]. Let S =
Cly1, ..., y4] which we may use instead of § because Hg/an(c)(1) = 4. Let
S = @D, Hom(§j, O = (C[Zl, ..., 4] be the dual polynomial ring. Let F* :=
@j Hom(F;,C) = §*e’f ® S*e5 = Clz1, ..., z4le] @ Clz1, ..., z4]e5. The action
of S on F* is the usual contraction action. In coordinates it is the “coefficientless”
differentiation: Y (z“) = §jj z” =@ when u > d and is zero otherwise. The subspace

RL C F*isan S- submodule.

Consider a minimal set of generators of R+ C F*. The assumption Hc(2) =2
implies there are two generators in degree two, write their leading terms as o11e] +
0'1263 and 0216T+O’2263,With oy € §2.ThenAnn (g)ﬂgzz = (o115, O'ZQ)J_mgzz.
But Hg/ann (¢)(2) = 1, so all the 0,y must be a multiple of some o and after changing
bases we write the leading terms as (rel,ae2 We see (y,ae1 +---, y,ﬂeak +---,1<
i < 4) € RL, where y; acts on §* by contraction and the are lower order
terms. Now H¢(1) = 2 says this is a 2-dimensional space, i.e., that o is a square.
Change coordinates so o = z%. Thus the generators of R+ include Q1 := z%e’f +
Liie] + £12e3, Q2 = z%ej + £21€] + £x2e5 for some linear forms £,,. These two
generators plus their contractions (by yi, y%) span a six dimensional space, so these
must be all the generators. Our module is thus a degeneration of the module where
the z1, £,, are all independent linear forms. Take a basis of the module RL C F*as
01, 02,y101, y1 02, y%Ql, yl2 (Q». Then the matrix associated to the action of y; is

[eNeoNeBoNoNel
[=NeNoBoNoNel
SO OO O -
[cNeoNeBeN "
[sNeNel -
=Nl ol Ne]
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and if we deform our module to a space where the linear forms z1, £, are all inde-
pendent and change bases such that £11 = y3, £12 = y3, €21 = ¥, 22 = y;, we may
write our space of matrices as

0 0 z1 0 z2 z3
0 0 0 z1 za4a z5
0 0 0 0 zz O
00 0 0 0 z
00 0 0 0 O
O 0 0 O 0 o0

Using Macaulay?2 VersalDeformations [33] we find that this tuple is a member of
the following family of tuples of commuting matrices parametrized by A € C. Their
commutativity is straightforward if tedious to verify by hand

0 A2z4 21 —AZ5 22 23
-1z 0  —Xz 21 74 25
—Mz4 A%z 0 A2z4 21 —AZ5

0 0 0 —A%z5s AMza—z4) A3tz

0 0 0 0 —1%z5 0

0 0 0 0 0 -2z

Here there are two eigenvalues, each with multiplicity three, so the deformed module
is a direct sum of two three dimensional modules, each of which thus has an associated
algebra with at most three generators and we conclude by (iii). O

9 Minimal cactus and smoothable rank

For a degree m zero-dimensional subscheme Spec(R) with an embedding Spec(R) <
Seg(PA x PB x PC) € P(A®BQRC), its span (Spec(R)) is the zero set of
I (Spec(R)) € A*®B*®C*, where I1(Spec(R)) is the degree one component of
the homogeneous ideal I of the embedded Spec(R). We say that the embedding
Spec(R) C Seg(PA x PB x PC) is nondegenerate if its span projects surjectively
to PA, PB, and PC. For a nondegenerate embedding, the maps Spec(R) — PA,
Spec(R) — PB, Spec(R) — PC, induced by projections, are embeddings as well. If
(Spec(R)) contains a concise tensor, then the embedding of Spec(R) is automatically
nondegenerate.

The cactus rank [12]of T € AQ BQC is the smallest 7 such that there exists a degree
r zero-dimensional subscheme Spec(R) C Seg(PA xPB xPC) C P(AQBR®C) with
[T] € (Spec(R)). (Recall that the smoothable rank has the same definition except that
one additionally requires R to be smoothable.)

Given a degree p zero-dimensional scheme Spec(R), for each ¢ € R*, one
gets a tensor 79 € R*QR*®QR* ~ CPRCPRCP defined by T?(ry,ra,r3) =
¢ (r1rar3). Given any non-degenerate embedding Spec(R) C Seg(PA x PB x PC) C
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P(A®B®C), the space of tensors 7% is isomorphic to the space of tensors (Spec(R))
as will be shown in the proof of Proposition 9.1 below.

In this section we show that the scheme (resp. smoothable scheme) Spec(R) which
witnesses that a tensor T € A® BQC has minimal cactus (resp. smoothable) rank is
unique, in fact, the algebra R is isomorphic to A1T11-

Proposition 9.1 Let Spec(R) be a degree m zero-dimensional subscheme and let T €
AQB®C. The following are equivalent:

(1) There exists a nondegenerate embedding Spec(R) € Seg(PA x PB x PC) with
T € (Spec(R)), so in particular T has cactus rank at most m.

(2) there exists ¢ € R* such that T is isomorphic to the tensor in R*Q R*® R* given
by the trilinear map (r1, r2, r3) — @(rirars).

If T is concise and satisfies the above, then it is 1-generic and has cactus rank m.

Proof We first show (1) implies (2). An embedding Spec(R) C IPA with (Spec(R)) =
PA is induced from an embedding Spec(R) € A with (Spec(R)) = A, which in
turn induces a vector space isomorphism 7,: A* — R = Sym(A*)/Ig 4 as follows:
let Ig 4 denote the ideal of Spec(R) C A, then 7,(x) := amodIr 4. Hence, a
nondegenerate embedding of Spec(R) induces a triple of vector space isomorphisms
7,: A*—> R, 1: B* > R, 7.: C* - R.

More generally, for each (s, 7, u), with s, ¢, u > 1, the map

Toru: STA*®S'B*QS"C* — STA*®S'B*®S“C* /(IR A9 BoC)s.t.u

is a surjection onto R = S*A*®S' B*®S"C* /(IR A9BaC)s.1.u> and these maps are
all compatible with multiplication, in particular 71 1,1 (¢®BRY) = T4 () Th(B)Tc(¥).
Then

(Spec(R)) = (ker71.1.1)" C (A*®B*®C*)* = A®BXC.

By duality, the space (ker 7;.1.1)" is the image of the map R* — A®B®C defined
by requiring that ¢ € R* maps to the trilinear form («, 8, ) > ¢(t4 (@) Tp(B)Tc(¥)).-

If T is the image of ¢, then it is isomorphic to the trilinear map (71, r2, 3)
@(rirar3) via ré@ré@r}, proving (1) implies (2).

Assuming (2), choose vector space isomorphisms 7,4, Tp, T, and define a map
A*QB*®C* — R, by a®BRy + t4(a)tp(B)1.(y). (For readers familiar with
border apolarity, the kernel of this map is /111.) Then extend it to S* A*®S* B*®84C*
by t,(1---05) = t4(0eq) - - 74(ey;) and similarly. This yields the required non-
degenerate embedding of Spec(R). The tensor T’ corresponding to (a, 8,y) —>
o(ta(a)tp(B) T (y)) is isomorphic to T and lies in (Spec(R)). This proves (1).

Finally, if T satisfies the above, then it is isomorphic to (r1, r2, r3) — @(rirar3)
for some . If T is additionally concise, then for every r € R there exists an ' € R
such that ¢(rr’) # 0. Hence the map (r, r2) —> ¢(r1, r2) has full rank. But this map
is ¢(1g). This shows that T is 1-generic. It has cactus rank at least m by conciseness
and at most m by assumption. O
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In particular, a concise tensor T € C"QC"QC™ has minimal smoothable rank if
there exists a smoothable degree m algebra R satisfying the conditions of Proposi-
tion 9.1.

Theorem 9.2 Let T € C"QC"Q@C™ be a concise tensor. The following are equivalent

(1) T has minimal smoothable rank,
(2) T is 1-generic, 111-sharp and its 111-algebra is smoothable and Gorenstein.
(3) T is 1-generic, 111-abundant and its 111-algebra is smoothable.

We emphasize that in Theorem 9.2 one does not need to find the smoothable scheme
to show the tensor has minimal smoothable rank, which makes the theorem effec-
tive by reducing the question of determining minimal smoothable rank to proving
smoothability of a given algebra.

Proof of Theorem 9.2 Suppose (1) holds so there exists a smoothable algebra R and an
embedding of it into Seg(PA x PB x PC) with T € (Spec(R)). By Proposition 9.1 T
is 1-generic and isomorphic to the tensor in the vector space R*®@ R*®@ R* given by the
trilinear map (ry, r2, r3) > @(rirar3) for some functional ¢ € R*, in particular T €
Hom(R®RAQR, C). Suppose that there exists a nonzero r € R such that ¢(Rr) = 0.
Then for all r{,r, € R, (r1, 2, r) — 0so T is not concise. Hence no such r exists
and so ¢ is nondegenerate. This shows that R is Gorenstein.
For an element r € R, the multiplication by r on the first position gives a map

D Hom(R®R®R, C) — Hom(RQRIR, C)

and similarly we obtain /L ) and ,u ). Observe that for i = 1,2, 3 and everyr € R
the map corresponding to the tensor u, )(T) is the composition of the multiplication
R®R®R — R, the multiplication by »r map R — R and ¢: R — C. Therefore
/Lﬁl)(T) = M?)(T) 2)(T) Moreover, for any nonzero r we have u; )(T) #0
since ¢ is nondegenerate. This shows that (i ,’)(T) | € R) is an m-dimensional
subspace of A!, - T € A®B®C.

Since T has minimal smoothable rank, it has minimal border rank soitis 111-
abundant and by Proposition 3.2 is it 111-sharp, so its 111-algebra s ( /Lr (T) |r € R),
which is isomorphic to R. This proves (1) implies (2). That (2) implies (3) is vacuous.

Suppose (3) holds and take R = AlTl - Then T is 111-sharp by Proposition 3.2,
which also implies the tensor T is isomorphic to the multiplication tensor of R. The
algebra R is Gorenstein as T is 1-generic (see Sect. 2.5). Since R is Gorenstein, the
R-module R* is isomorphic to R. Take one such isomorphism ®: R — R* and
let ¢ = ®(1g). Then the composition RQR®R — R — C can be rewritten as
R®R — R — R*, where the first map is the multiplication and the second one sends
r to rg; this second map is equal to ®. Composing further with ®~! we obtain a map
R®R — R — R* — R which is simply the multiplication. All this shows that the
tensor in R*@ R*@ R* associated to (R, ¢) is isomorphic to the multiplication tensor
of R, hence to T. By Proposition 9.1 and smoothability of R such a tensor has minimal
smoothable rank.
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Remark 9.3 There is a version of Theorem 9.2 without smoothability assumptions: a
concise tensor has minimal cactus rank if and only if it is 1-generic and 111-abundant
with Gorenstein 111-algebra.
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