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Abstract
We determine defining equations for the set of concise tensors of minimal border rank
in C

m⊗C
m⊗C

m when m = 5 and the set of concise minimal border rank 1∗-generic
tensors whenm = 5, 6. We solve the classical problem in algebraic complexity theory
of classifying minimal border rank tensors in the special case m = 5. Our proofs
utilize two recent developments: the 111-equations defined by Buczyńska–Buczyński
and results of Jelisiejew–Šivic on the variety of commuting matrices. We introduce
a new algebraic invariant of a concise tensor, its 111-algebra, and exploit it to give a
strengtheningofFriedland’s normal form for 1-degenerate tensors satisfyingStrassen’s
equations. We use the 111-algebra to characterize wild minimal border rank tensors
and classify them in C

5⊗C
5⊗C

5.

Mathematics Subject Classification 68Q15 · 15A69 · 14L35

1 Introduction

This paper ismotivated by algebraic complexity theory and the study of secant varieties
in algebraic geometry. It takes first steps towards overcoming complexity lower bound
barriers first identified in [22, 26]. It also provides new “minimal cost” tensors for
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Strassen’s laser method to upper bound the exponent of matrix multiplication that are
not known to be subject to the barriers identified in [2] and later refined in numerous
works, in particular [10] which shows there are barriers for minimal border rank
binding tensors (defined below), as our new tensors are not binding.

Let T ∈ C
m⊗C

m⊗C
m = A⊗B⊗C be a tensor. One says T has rank one if

T = a⊗b⊗c for some nonzero a ∈ A, b ∈ B, c ∈ C , and the rank of T , denoted
R(T ), is the smallest r such that T may be written as a sum of r rank one tensors.
The border rank of T , denoted R(T ), is the smallest r such that T may be written as a
limit of a sum of r rank one tensors. In geometric language, the border rank is smallest
r such that T belongs to the r -th secant variety of the Segre variety, σr (Seg(Pm−1 ×
P
m−1 × P

m−1)) ⊆ P(Cm⊗C
m⊗C

m).
Informally, a tensor T is concise if it cannot be expressed as a tensor in a

smaller ambient space. (See Sect. 1.1 for the precise definition.) A concise tensor
T ∈ C

m⊗C
m⊗C

m must have border rank at least m, and if the border rank equals m,
one says that T has minimal border rank.

As stated in [16], tensors of minimal border rank are important for algebraic com-
plexity theory as they are “an important building stone in the construction of fast
matrix multiplication algorithms”. More precisely, tensors of minimal border rank
have produced the best upper bound on the exponent of matrix multiplication [1, 21,
40, 46, 51] via Strassen’s laser method [48]. Their investigation also has a long history
in classical algebraic geometry as the study of secant varieties of Segre varieties.

Problem 15.2 of [16] asks to classify concise tensors of minimal border rank. This
is now understood to be an extremely difficult question. The difficulty manifests itself
in two substantially different ways:

• Lack of structure. Previous to this paper, an important class of tensors (1-
degenerate, see Sect. 1.1) had no or few known structural properties. In other
words, little is known about the geometry of singular loci of secant varieties.

• Complicated geometry. Under various genericity hypotheses that enable one to
avoid the previous difficulty, the classification problem reduces to hard problems
in algebraic geometry: for example the classification of minimal border rank bind-
ing tensors (see Sect. 1.1) is equivalent to classifying smoothable zero-dimensional
schemes in affine space [35, §5.6.2], a longstanding and generally viewed as impos-
sible problem in algebraic geometry, which is however solved for m ≤ 6 [41, 43].

The main contributions of this paper are as follows: (i) we give equations for the set
of concise minimal border rank tensors for m ≤ 5 and classify them, (ii) we discuss
and consolidate the theory of minimal border rank 1∗-generic tensors, extending their
characterization in terms of equations tom ≤ 6, and (iii) we introduce a new structure
associated to a tensor, its 111-algebra, and investigate new invariants of minimal
border rank tensors coming from the 111-algebra.

Our contributions allow one to streamline proofs of earlier results. This results from
the power of the 111-equations, and the utilization of the ADHM correspondence
discussed below. While the second leads to much shorter proofs and enables one to
avoid using the classification results of [37, 50], there is a price to be paid as the
language and machinery of modules and the Quot scheme need to be introduced.
This language will be essential in future work, as it provides the only proposed path
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to overcome the lower bound barriers of [22, 26], namely deformation theory. We
emphasize that this paper is the first direct use of deformation theory in the study of
tensors. Existing results from deformation theory were previously used in [9].

Contribution (iii) addresses the lack of structure and motivates many new open
questions, see Sect. 1.4.

1.1 Results on tensors of minimal border rank

Given T ∈ A⊗B⊗C , we may consider it as a linear map TC : C∗ → A⊗B. We let
T (C∗) ⊆ A⊗B denote its image, and similarly for permuted statements. A tensor T
is A-concise if the map TA is injective, i.e., if it requires all basis vectors in A to write
down T in any basis, and T is concise if it is A, B, and C concise.

A tensor T ∈ C
a⊗C

m⊗C
m is 1A-generic if T (A∗) ⊆ B⊗C contains an element

of rank m and when a = m, T is 1-generic if it is 1A, 1B , and 1C -generic. Define a
tensor T ∈ C

m⊗C
m⊗C

m to be 1∗-generic if it is at least one of 1A, 1B , or 1C -generic,
and binding if it is at least two of 1A, 1B , or 1C -generic. We say T is 1-degenerate if it
is not 1∗-generic. Note that if T is 1A-generic, it is both B andC concise. In particular,
binding tensors are concise.

Two classical sets of equations on tensors that vanish on concise tensors of minimal
border rank are Strassen’s equations and theEnd-closed equations. These are discussed
in Sect. 2.1. Strassen’s equations are sufficient for m ≤ 4 [27, Prop. 22], [24, 47].

In [13, Thm 1.3] the following polynomials for minimal border rank were intro-
duced: Let T ∈ A⊗B⊗C = C

m⊗C
m⊗C

m . Consider the map

(T (A∗)⊗A) ⊕ (T (B∗)⊗B) ⊕ (T (C∗)⊗C) → A⊗B⊗C ⊕ A⊗B⊗C (1.1)

that sends (T1, T2, T3) to (T1 − T2, T2 − T3), where the A, B, C factors of tensors
are understood to be in the correct positions, for example T (A∗)⊗A is more precisely
written as A⊗T (A∗). If T has border rank at most m, then the rank of the above map
is at most 3m2 − m. The resulting equations are called the 111-equations.

Consider the space

(T (A∗)⊗A) ∩ (T (B∗)⊗B) ∩ (T (C∗)⊗C). (1.2)

We call this space the triple intersection or the 111-space. We say that T is 111-
abundant if the inequality

(111−abundance) dim
(
(T (A∗)⊗A) ∩ (T (B∗)⊗B) ∩ (T (C∗)⊗C)

) ≥ m (1.3)

holds. If equality holds, we say T is 111-sharp. When T is concise, 111-abundance is
equivalent to requiring that the equations of [13, Thm 1.3] are satisfied, i.e., the map
(1.1) has rank at most 3m2 − m.

Example 1.1 For T = a1⊗b1⊗c2+a1⊗b2⊗c1+a2⊗b1⊗c1 ∈ C
2⊗C

2⊗C
2, a tangent

vector to the Segre variety, also called theW -state in the quantum literature, the triple
intersection is 〈T , a1⊗b1⊗c1〉.
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Weshow that for concise tensors, the 111-equations imply both Strassen’s equations
and the End-closed equations:

Proposition 1.2 Let T ∈ C
m⊗C

m⊗C
m be concise. If T satisfies the 111-equations

then it also satisfies Strassen’s equations and the End-closed equations. If T is 1A-
generic, then it satisfies the 111-equations if and only if it satisfies the A-Strassen
equations and the A-End-closed equations.

The first assertion is proved in Sect. 3.3. The second assertion is Proposition 3.2.
In [42], and more explicitly in [39], equations generalizing Strassen’s equations for

minimal border rank, called p = 1 Koszul flattenings were introduced. (At the time
it was not clear they were a generalization, see [45] for a discussion.). The p = 1
Koszul flattenings of type 210 are equations that are the size m(m − 1) + 1 minors of
the map T∧1

A : A⊗B∗ → �2A⊗C given by a⊗β �→ ∑
T i jkβ(b j )a ∧ ai⊗ck . Type

201, 120, etc. are defined by permuting A, B and C . Together they are called p = 1
Koszul flattenings. These equations reappear in border apolarity as the 210-equations,
see [20].

Proposition 1.3 The p = 1 Koszul flattenings for minimal border rank and the 111-
equations are independent, in the sense that neither implies the other, even for concise
tensors in C

m⊗C
m⊗C

m.

Proposition 1.3 follows from Example 3.5 where the 111-equations are nonzero
and the p = 1 Koszul flattenings are zero and Example 5.9 where the reverse situation
holds.

We extend the characterization of minimal border rank tensors under the hypothesis
of 1∗-genericity to dimension m = 6, giving two different characterizations:

Theorem 1.4 Let m ≤ 6 and consider the set of tensors in C
m⊗C

m⊗C
m which are

1∗-generic and concise. The following subsets coincide

(1) the zero set of Strassen’s equations and the End-closed equations,
(2) 111-abundant tensors,
(3) 111-sharp tensors,
(4) minimal border rank tensors.

More precisely, in (1), if the tensor is 1A-generic, only the A-Strassen and A-End-
closed conditions are required.

The equivalence of (1), (2), (3) in Theorem 1.4 is proved by Proposition 3.2. The
equivalence of (1) and (4) is proved in Sect. 8.

For 1A-generic tensors, the p = 1 Koszul flattenings of type 210 or 201 are equiv-
alent to the A-Strassen equations, hence they are implied by the 111-equations in this
case. However, the other types are not implied, see Example 5.9.

The result fails for m ≥ 7 by [37, Prop. 5.3], see Example 5.9. This is due to the
existence of additional components in theQuot scheme, which we briefly discuss here.

The proof of Theorem 1.4 introduces new algebraic tools by reducing the study of
1A-generic tensors satisfying the A-Strassen equations to deformation theory in the
Quot scheme (a generalization of the Hilbert scheme, see [34]) in two steps. First one
reduces to the study of commutingmatrices, which implicitly appeared already in [47],
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and was later spelled out in in [37], see Sect. 2. Then one uses the ADHM construction
as in [34]. From this perspective, the tensors satisfying (1)–(3) correspond to points
of the Quot scheme, while tensors satisfying (4) correspond to points in the principal
component of the Quot scheme, see Sect. 8.1 for explanations; the heart of the theorem
is that when m ≤ 6 there is only the principal component. We expect deformation
theory to play an important role in future work on tensors. As discussed in [20], at
this time deformation theory is the only proposed path to overcoming the lower bound
barriers of [22, 26]. As another byproduct of this structure, we obtain the following
proposition:

Proposition 1.5 A 1-generic tensor in C
m⊗C

m⊗C
m with m ≤ 13 satisfying the

A-Strassen equations has minimal border rank. A 1A and 1B-generic tensor in
C
m⊗C

m⊗C
m with m ≤ 7 satisfying the A-Strassen equations has minimal border

rank.

Proposition 1.5 is sharp: the first assertion does not hold for higher m by [31,
Lem. 6.21] and the second by [17].

Previously it was known (although not explicitly stated in the literature) that the A-
Strassen equations combined with the A-End-closed conditions imply minimal border
rank for 1-generic tensors when m ≤ 13 and binding tensors when m ≤ 7. This can
be extracted from the discussion in [35, §5.6].

While Strassen’s equations and the End-closed equations are nearly useless for 1-
degenerate tensors, this does not occur for the 111-equations, as the following result
illustrates:

Theorem 1.6 When m ≤ 5, the set of concise minimal border rank tensors in
C
m⊗C

m⊗C
m is the zero set of the 111-equations.

We emphasize that no other equations, such as Strassen’s equations, are necessary.
Moreover Strassen’s equations, or even their generalization to the p = 1 Koszul flat-
tenings, and the End-closed equations are not enough to characterize concise minimal
border rank tensors in C

5⊗C
5⊗C

5, see Example 3.5 and Sect. 1.4.3.
By Theorem 1.4, to prove Theorem 1.6 it remains to prove the 1-degenerate case,

which is done in Sect. 7. The key difficulty here is the above-mentioned lack of
structure. We overcome this problem by providing a new normal form, which follows
from the 111-equations, that strengthens Friedland’s normal form for corank one 1A-
degenerate tensors satisfying Strassen’s equations [24, Thm. 3.1], see Proposition 3.3.

It is possible that Theorem 1.6 also holds for m = 6; this will be subject to future
work. It is false for m = 7, as already Theorem 1.4 fails when m = 7.

The 1∗-generic tensors of minimal border rank in C
5⊗C

5⊗C
5 are essentially clas-

sified in [37], following the classification of abelian linear spaces in [50]. We write
“essentially”, as the list has redundancies and it remains to determine the precise list.
Using our normal form, we complete (modulo the redundancies in the 1∗-generic case)
the classification of concise minimal border rank tensors:

Theorem 1.7 Up to the action of GL5(C)×3
� S3, there are exactly five concise 1-

degenerate, minimal border rank tensors in C
5⊗C

5⊗C
5. Represented as spaces of
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matrices, the tensors may be presented as:

TO58 =

⎛

⎜⎜⎜
⎜
⎝

x1 x2 x3 x5
x5 x1 x4 −x2

x1
−x5 x1

x5

⎞

⎟⎟⎟
⎟
⎠

, TO57 =

⎛

⎜⎜⎜
⎜
⎝

x1 x2 x3 x5
x1 x4 −x2

x1
x1
x5

⎞

⎟⎟⎟
⎟
⎠

,

TO56 =

⎛

⎜⎜⎜⎜
⎝

x1 x2 x3 x5
x1 + x5 x4

x1
x1
x5

⎞

⎟⎟⎟⎟
⎠

, TO55 =

⎛

⎜⎜⎜⎜
⎝

x1 x2 x3 x5
x1 x5 x4

x1
x1
x5

⎞

⎟⎟⎟⎟
⎠

,

TO54 =

⎛

⎜⎜
⎜⎜
⎝

x1 x2 x3 x5
x1 x4

x1
x1
x5

⎞

⎟⎟
⎟⎟
⎠

.

In tensor notation: set

TM1 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3 + b4⊗c4) + a2⊗b3⊗c1
+a3⊗b4⊗c1 + a4⊗b4⊗c2 + a5⊗(b5⊗c1 + b4⊗c5)

and

TM2 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3 + b4⊗c4) + a2⊗(b3⊗c1 − b4⊗c2)

+a3⊗b4⊗c1 + a4⊗b3⊗c2 + a5⊗(b5⊗c1 + b4⊗c5).

Then

TO58 = TM2 + a5⊗(b1⊗c2 − b3⊗c4)

TO57 = TM2

TO56 = TM1 + a5⊗b2⊗c2
TO55 = TM1 + a5⊗b3⊗c2
TO54 = TM1.

Moreover, each subsequent tensor lies in the closure of the orbit of previous: TO58 �
TO57 � TO56 � TO55 � TO54 .

The subscript in the name of each tensor is the dimension of its GL(A)×GL(B)×
GL(C)orbit in projective spaceP(A⊗B⊗C). Recall that dim σ5(Seg(P4×P

4×P
4)) =

64 and that it is the orbit closure of the so-called unit tensor [∑5
j=1 a j⊗b j⊗c j ].

Among these tensors, TO58 is (after a change of basis) the unique symmetric tensor
on the list (see Example 4.6 for its symmetric version). The subgroup of GL(A) ×
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GL(B)×GL(C) preserving TO58 contains a copy of GL2 C while all other stabilizers
are solvable.

The smoothable rank of a tensor T ∈ A⊗B⊗C is the minimal degree of a smooth-
able zero dimensional schemeSpec(R) ⊆ PA×PB×PC which satisfies the condition
T ∈ 〈Spec(R)〉. See, e.g., [14, 49] for basic definitions regarding zero dimensional
schemes.

The smoothable rank of a polynomial with respect to the Veronese variety was
introduced in [44] andgeneralized to pointswith respect to arbitrary projective varieties
in [11]. It arises because the span of the (scheme theoretic) limit of points may be
smaller than the limit of the spans. The smoothable rank lies between rank and border
rank. Tensors (or polynomials) whose smoothable rank is larger than their border rank
are called wild in [11]. The first example of a wild tensor occurs in C

3⊗C
3⊗C

3, see
[11, §2.3] and it has minimal border rank. We characterize wild minimal border rank
tensors:

Theorem 1.8 The concise minimal border rank tensors that are wild are precisely the
concise minimal border rank 1-degenerate tensors.

Thus Theorem 1.7 classifies concise wild minimal border rank tensors in
C
5⊗C

5⊗C
5.

The proof of Theorem 1.8 utilizes a new algebraic structure arising from the triple
intersection that we discuss next.

1.2 The 111-algebra and its uses

We emphasize that 111-abundance, as defined by (1.3), is a necessary condition for
border rank m only when T is concise. The condition can be defined for arbitrary
tensors and we sometimes allow that.

Remark 1.9 The condition (1.3) is not closed: for example it does not hold for the zero
tensor. It is however closed in the set of concise tensors as then T (A∗) varies in the
Grassmannian, which is compact.

For X ∈ End(A) = A∗⊗A, let X ◦A T denote the corresponding element
of T (A∗)⊗A. Explicitly, if X = α⊗a, then X ◦A T := T (α)⊗a and the map
(−) ◦A T : End(A) → A⊗B⊗C is extended linearly. Put differently, X ◦A T =
(X⊗ IdB ⊗ IdC )(T ). Define the analogous actions of End(B) and End(C).

Definition 1.10 Let T be a concise tensor. We say that a triple (X ,Y , Z) ∈ End(A)×
End(B)×End(C) is compatible with T if X ◦A T = Y ◦B T = Z ◦C T . The 111-algebra
of T is the set of triples compatible with T . We denote this set by AT

111.

The name is justified by the following theorem:

Theorem 1.11 The 111-algebra of a concise tensor T ∈ A⊗B⊗C is a commutative
unital subalgebra of End(A) × End(B) × End(C) and its projection to any factor is
injective.

Theorem 1.11 is proved in Sect. 4.
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Example 1.12 Let T be as in Example 1.1. Then

AT
111 = 〈(Id, Id, Id), (α2 ⊗ a1, β2 ⊗ b1, γ2 ⊗ c1)〉

In this language, the triple intersection is AT
111 · T . Once we have an algebra, we

may study its modules. The spaces A, B,C are all AT
111-modules: the algebra AT

111
acts on them as it projects to End(A), End(B), and End(C). We denote these modules
by A, B, C respectively.

Using the 111-algebra, we obtain the following algebraic characterization of all
111-abundant tensors as follows: a tensor T is 111-abundant if it comes from a bilin-
ear map N1 × N2 → N3 between m-dimensional A-modules, where dim A ≥ m, A
is a unital commutative associative algebra and N1, N2, N3 are A-modules, see The-
orem 5.5. This enables an algebraic investigation of such tensors and shows how they
generalize abelian tensors from [37], see Example 5.6. We emphasize that there are no
genericity hypotheses here beyond conciseness, in contrast with the 1∗-generic case.
In particular the characterization applies to all concise minimal border rank tensors.

In summary, for a concise tensor T we have defined new algebraic invariants: the
algebra AT

111 and its modules A, B, C . There are four consecutive obstructions for a
concise tensor to be of minimal border rank:

(1) the tensor must be 111-abundant. For simplicity of presentation, for the rest of this
list we assume that it is 111-sharp (compare Sect. 1.4.1). We also fix a surjection
from a polynomial ring S = C[y1, . . . , ym−1] onto AT

111 as follows: fix a basis
of AT

111 with the first basis element equal to (Id, Id, Id) and send 1 ∈ S to this
element, and the variables of S to the remainingm−1 basis elements. In particular
A, B, C become S-modules (the conditions below do not depend on the choice of
surjection).

(2) the algebra AT
111 must be smoothable (Lemma 5.7),

(3) the S-modules A, B,C must lie in the principal component of the Quot scheme, so
there exist a sequence of modules Aε limiting to A with general Aε semisimple,
and similarly for B, C (Lemma 5.8),

(4) the surjective module homomorphism A⊗AT
111

B → C associated to T as in
Theorem 5.5 must be a limit of module homomorphisms Aε⊗Aε

Bε → Cε for a
choice of smooth algebras Aε and semisimple modules Aε , Bε , Cε .

Condition (2) is shown to be nontrivial in Example 5.9.
In the case of 1-generic tensors, by Theorem 1.8 above, they have minimal border

rank if and only if they have minimal smoothable rank, that is, they are in the span
of some zero-dimensional smoothable scheme Spec(R). Proposition 9.1 remarkably
shows that one has an algebra isomorphism AT

111
∼= R. This shows that to determine

if a given 1-generic tensor has minimal smoothable rank it is enough to determine
smoothability of its 111-algebra, there is no choice for R. This is in contrast with the
case of higher smoothable rank, where the choice of R presents the main difficulty.

Remark 1.13 While throughout we work overC, our constructions (except for explicit
computations regarding classification of tensors and their symmetries) do not use any-
thing about the base field, even the characteristic zero assumption. The only possible
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nontrivial applications of the complex numbers are in the cited sources, but we expect
that our main results, except for Theorem 1.7, are valid over most fields.

1.3 Previous work on tensors of minimal border rank inC
m⊗C

m⊗C
m

Whenm = 2 it is classical that all tensors in C
2⊗C

2⊗C
2 have border rank at most

two.
For m = 3 generators of the ideal of σ3(Seg(P2 × P

2 × P
2)) are given in [38].

For m = 4 set theoretic equations for σ4(Seg(P3 × P
3 × P

3)) are given in [24]
and lower degree set-theoretic equations are given in [6, 25] where in the second
reference they also give numerical evidence that these equations generate the ideal.
It is still an open problem to prove the known equations generate the ideal. (This
is the “salmon prize problem” posed by E. Allman in 2007. At the time, not even
set-theoretic equations were known).

Regarding the problem of classifying concise tensors of minimal border rank:
For m = 3 a complete classification of all tensors of border rank three is given in

[15].
For m = 4, a classification of all 1∗-generic concise tensors of border rank four in

C
4⊗C

4⊗C
4 is given in [37].

Whenm = 5, a list of all abelian subspaces of End(C5) up to isomorphism is given
in [50].

The equivalence of (1) and (4) in the m = 5 case of Theorem 1.4 follows from
the results of [37], but is not stated there. The argument proceeds by first using the
classification in [32, 50] of spaces of commuting matrices in End(C5). There are
15 isolated examples (up to isomorphism), and examples that potentially depend on
parameters. (We write “potentially” as further normalization is possible.) Then each
case is tested and the tensors passing the End-closed condition are proven to be of
minimal border rank using explicit border rank five expressions. We give a new proof
of this result that is significantly shorter, and self-contained. Instead of listing all
possible tensors, we analyze the possible Hilbert functions of the associated modules
in the Quot scheme living in the unique non-principal component.

1.4 Open questions and future directions

1.4.1 111-abundant, not 111-sharp tensors

We do not know any example of a concise tensor T which is 111-abundant and is
not 111-sharp, that is, for which the inequality in (1.3) is strict. By Proposition 3.2
such a tensor would have to be 1-degenerate, with T (A∗), T (B∗), T (C∗) of bounded
(matrix) rank at most m − 2, and by Theorems 1.7 and 1.6 it would have to occur in
dimension greater than 5. Does there exist such an example?1

1 After this paper was submitted, A. Conca pointed out an explicit example of a 111-abundant, not 111-
sharp tensor when m = 9. We do not know if such exist when m = 6, 7, 8. The example is a generalization
of Example 4.6.
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1.4.2 111-abundant 1-degenerate tensors

The 111-abundant tensors of bounded rank m − 1 have remarkable properties. What
properties do 111-abundant tensors with T (A∗), T (B∗), T (C∗) of bounded rank less
than m − 1 have?

1.4.3 111-abundance v. classical equations

A remarkable feature of Theorem 1.6 is that 111-equations are enough: there is no need
for more classical ones, like p = 1 Koszul flattenings [39]. In fact, the p = 1 Koszul
flattenings, together with End-closed condition, are almost sufficient, but not quite:
the 111-equations are only needed to rule out one case, described in Example 3.5.
Other necessary closed conditions for minimal border rank are known, e.g., the higher
Koszul flattenings of [39], the flag condition (see, e.g., [37]), and the equations of [36].
We plan to investigate the relations between these and the new conditions introduced in
this paper. As mentioned above, the 111-equations in general do not imply the p = 1
Koszul flattening equations, see Example 5.9.

1.4.4 111-abundance in the symmetric case

Given a concise symmetric tensor T ∈ S3Cm ⊆ C
m⊗C

m⊗C
m , one classically studies

its apolar algebraA = C[x1, . . . , xm]/Ann (T ), where x1, . . . , xm are coordinates on
the dual space C

m∗ and Ann (T ) are the polynomials that give zero when contracted
with T . This is a Gorenstein (see Sect. 2.4) zero-dimensional graded algebra with
Hilbert function (1,m,m, 1) and each such algebra comes from a symmetric tensor.
A weaker version of Question 1.4.1 is: does there exist such an algebra with Ann (T )

having at least m minimal cubic generators? There are plenty of examples with m − 1
cubic generators, for example T = ∑m

i=1 x
3
i or the 1-degenerate examples from the

series [30, §7].

1.4.5 The locus of concise, 111-sharp tensors

There is a natural functor associated to this locus, so we have the machinery of defor-
mation theory and in particular, it is a linear algebra calculation to determine the
tangent space to this locus at a given point and, in special cases, even its smoothness.
This path will be pursued further and it gives additional motivation for Question 1.4.1.

1.4.6 111-algebra in the symmetric case

The 111-algebra is an entirely unexpected invariant in the symmetric case as well.
How is it computed and how can it be used?

1.4.7 The Segre–Veronese variety

While in this paper we focused on C
m⊗C

m⊗C
m , the 111-algebra can be defined

for any tensor in V1⊗V2⊗V3⊗ · · · ⊗Vq and the argument from Sect. 4 generalizes to
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show that it is still an algebra whenever q ≥ 3. It seems worthwhile to investigate it
in greater generality.

1.4.8 Strassen’s laser method

An important motivation for this project was to find new tensors for Strassen’s laser
method for bounding the exponent of matrix multiplication. This method has barriers
to further progress when using the Coppersmith–Winograd tensors that have so far
given the best upper bounds on the exponent of matrix multiplication [2]. Are any
of the new tensors we found in C

5⊗C
5⊗C

5 better for the laser method than the
big Coppersmith–Winograd tensor CW3? Are any 1-degenerate minimal border rank
tensors useful for the laser method? (At this writing there are no known laser method
barriers for 1-degenerate tensors.)

1.5 Overview

In Sect. 2 we review properties of binding and more generally 1A-generic tensors
that satisfy the A-Strassen equations. In particular we establish a dictionary between
properties of modules and such tensors. In Sect. 3 we show 1A-generic 111-abundant
tensors are exactly the 1A-generic tensors that satisfy the A-Strassen equations and
are A-End-closed. We establish a normal form for 111-abundant tensors with T (A∗)
corank one that generalizes Friedland’s normal for tensors with T (A∗) corank one
that satisfy the A-Strassen equations. In Sect. 4 we prove Theorem 1.11 and illustrate
it with several examples. In Sect. 5 we discuss 111-algebras and their modules, and
describe new obstructions for a tensor to be of minimal border rank coming from its
111-algebra. In Sect. 6 we show certain classes of tensors are not concise to eliminate
them from consideration in this paper. In Sect. 7 we prove Theorems 1.6 and 1.7. In
Sect. 8 we prove Theorem 1.4 using properties of modules, their Hilbert functions and
deformations. In Sect. 9 we prove Theorem 1.8.

1.6 Definitions/notation

Throughout this paper we adopt the index ranges

1 ≤ i, j, k ≤ a

2 ≤ s, t, u ≤ a − 1,

and A, B,C denote complex vector spaces respectively of dimension a,m,m. Except
for Sect. 2 we will also have a = m. The general linear group of changes of bases in A
is denoted GL(A) and the subgroup of elements with determinant one by SL(A) and
their Lie algebras by gl(A) and sl(A). The dual space to A is denoted A∗. For Z ⊆ A,
Z⊥ := {α ∈ A∗ | α(x) = 0∀x ∈ Z} is its annihilator, and 〈Z〉 ⊆ A denotes the span
of Z . Projective space is PA = (A\{0})/C

∗. When A is equipped with the additional
structure of being a module over some ring, we denote it A to emphasize its module
structure.
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Unital commutative algebras are usually denoted A and polynomial algebras are
denoted S.

Vector space homomorphisms (including endomorphisms) betweenm-dimensional
vector spaces will be denoted Ki , Xi , X ,Y , Z , and we use the same letters to denote
the corresponding matrices when bases have been chosen. Vector space homomor-
phisms (including endomorphisms) between (m − 1)-dimensional vector spaces, and
the corresponding matrices, will be denoted xi , y, z.

We often write T (A∗) as a space of m ×m matrices (i.e., we choose bases). When
we do this, the columns index the B∗ basis and the rows the C basis, so the matrices
live in Hom(B∗,C). (This convention disagrees with [37] where the roles of B and C
were reversed.)

For X ∈ Hom(A, B), the symbol X t denotes the induced element of Hom(B∗, A∗),
which in bases is just the transpose of the matrix of X .

The A-Strassen equationswere defined in [47]. The B andC Strassen equations are
defined analogously. Together, we call them Strassen’s equations. Similarly, the A-
End-closed equations are implicitly defined in [28], we state them explicitly in (3.13).
Together with their B andC counterparts they are the End-closed equations. We never
work with these equations directly (except proving Proposition 1.2), we only consider
the conditions they impose on 1∗-generic tensors.

For a tensor T ∈ C
m ⊗ C

m ⊗ C
m , we say that T (A∗) ⊆ B⊗C is of bounded

(matrix) rank r if all matrices in T (A∗) have rank at most r , and we drop reference
to “matrix” when the meaning is clear. If rank r is indeed attained, we also say that
T (A∗) is of corank m − r .

2 Dictionaries for 1∗-generic, binding, and 1-generic tensors
satisfying Strassen’s equations for minimal border rank

2.1 Strassen’s equations and the end-closed equations for 1∗-generic tensors

A 1∗-generic tensor satisfying Strassen’s equations may be reinterpreted in terms of
classical objects in matrix theory and then in commutative algebra, which allows one
to apply existing results in these areas to their study.

Fix a tensor T ∈ A⊗B⊗C = C
a⊗C

m⊗C
m which is A-concise and 1A-generic

with α ∈ A∗ such that T (α) : B∗ → C has full rank. The 1A-genericity implies that
T is B and C-concise.

Consider

Eα(T ) := T (A∗)T (α)−1 ⊆ End(C).

This space is T ′(A∗) where T ′ ∈ A⊗C∗⊗C is a tensor obtained from T using the
isomorphism IdA ⊗(T (α)−1)t⊗ IdC . It follows that T is of rank m if and only if the
space Eα(T ) is simultaneously diagonalizable and that T is of border rank m if and
only if Eα(T ) is a limit of spaces of simultaneously diagonalizable endomorphisms
[37, Proposition 2.8] also see [36]. Note that IdC = T (α)T (α)−1 ∈ Eα(T ).

A necessary condition for a subspace Ẽ ⊆ End(C) to be a limit of simultaneously
diagonalizable spaces of endomorphisms is that the elements of Ẽ pairwise commute.
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The A-Strassen equations [24, (1.1)] in the 1A-generic case are the translation of this
condition to the language of tensors, see, e.g., [37, §2.1]. For the rest of this section,
we additionally assume that T satisfies the A-Strassen equations, i.e., that Eα(T ) is
abelian.

Another necessary condition on a space to be a limit of simultaneously diago-
nalizable spaces has been known since 1962 [28]: the space must be closed under
composition of endomorphisms. The corresponding equations on the tensor are the
A-End-closed equations.

2.2 Reinterpretation as modules

In this subsection we introduce the language of modules and the ADHM correspon-
dence. This extra structure will have several advantages: it provides more invariants
for tensors, it enables us to apply theorems in the commutative algebra literature to the
study of tensors, and perhaps most importantly, it will enable us to utilize deformation
theory.

Let Ẽ ⊆ End(C) be a space of endomorphisms that contains IdC and consists
of pairwise commuting endomorphisms. Fix a decomposition Ẽ = 〈IdC 〉 ⊕ E . A
canonical such decomposition is obtained by requiring that the elements of E are
traceless. To eliminate ambiguity, we will use this decomposition, although in the
proofs we never make use of the fact that E ⊆ sl(C). Let S = Sym E be a polynomial
ring in dim E = a − 1 variables. By the ADHM correspondence [3], as utilized in
[34, §3.2] we define the module associated to E to be the S-module C which is the
vector space C with action of S defined as follows: let e1, . . . , ea−1 be a basis of E ,
write S = C[y1, . . . , ya−1], define y j (c) := e j (c), and extend to an action of the
polynomial ring.

It follows from [34, §3.4] that Ẽ is a limit of simultaneously diagonalizable spaces
if and only if C is a limit of semisimple modules, which, by definition, are S-modules
of the form N1 ⊕ N2 ⊕ · · · ⊕ Nm where dim Nh = 1 for every h. The limit is taken in
the Quot scheme, see [34, §3.2 and Appendix] for an introduction, and [23, §5], [49,
§9] for classical sources. The Quot scheme will not be used until Sect. 5.2.

Nowwe give a more explicit description of the construction in the situation relevant
for this paper. Let A, B,C beC-vector spaces, with dim A = a, dim B = dim C = m,
as above. Let T ∈ A⊗B⊗C be a concise 1A-generic tensor that satisfies Strassen’s
equations (see Sect. 2.1). To such a T we associated the space Eα(T ) ⊆ End(C). The
module associated to T is the module C associated to the space Ẽ := Eα(T ) using
the procedure above. The procedure involves a choice of α and a basis of E , so the
module associated to T is only defined up to isomorphism.

Example 2.1 Consider a concise tensor T ∈ C
m⊗C

m⊗C
m of minimal rank, say T =∑m

i=1 ai⊗bi⊗ci with {ai }, {bi }, {ci } bases of A, B,C and {αi } the dual basis of
A∗ etc. Set α = ∑m

i=1 αi . Then Eα(T ) is the space of diagonal matrices, so E =
〈Eii − E11 | i = 2, 3, . . . ,m〉 where Ei j = γi⊗c j . The module C decomposes as an
S-module into

⊕m
i=1 Cci and thus is semisimple. Every semisimple module is a limit

of such.
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If a module C is associated to a space Ẽ , then the space Ẽ may be recovered from
C as the set of the linear endomorphisms corresponding to the actions of elements of
S≤1 on C . If C is associated to a tensor T , then the tensor T is recovered from C up to
isomorphism as the tensor of the bilinear map S≤1⊗C → C coming from the action
on the module.

Remark 2.2 The restriction to S≤1 may seem unnatural, but observe that if Ẽ is addi-
tionally End-closed then for every s ∈ S there exists an element s′ ∈ S≤1 such that
the actions of s and s′ on C coincide.

Additional conditions on a tensor transform to natural conditions on the associated
module. We explain two such additional conditions in the next two subsections.

2.3 Binding tensors and the Hilbert scheme

Proposition 2.3 Let T ∈ C
m⊗C

m⊗C
m = A⊗B⊗C be concise, 1A-generic, and

satisfy the A-Strassen equations. Let C be the S-module obtained from T as above.
The following conditions are equivalent

(1) the tensor T is 1B-generic (so it is binding),
(2) there exists an element c ∈ C such that S≤1c = C,
(3) the S-module C is isomorphic to S/I for some ideal I and the space Eα(T ) is

End-closed,
(4) the S-module C is isomorphic to S/I for some ideal I ,
(5) the tensor T is isomorphic to a multiplication tensor in a commutative unital rank

m algebra A.

The algebraA in (5) will be obtained from the module C as described in the proof.
The equivalence of (1) and (5) for minimal border rank tensors was first obtained

by Bläser and Lysikov [9].

Proof Suppose (1) holds. Recall that Eα(T ) = T ′(A∗) where T ′ ∈ A⊗C∗⊗C is
obtained from T ∈ A⊗B⊗C by means of (T (α)−1)t : B → C∗. Hence T ′ is 1C∗ -
generic, so there exists an element c ∈ (C∗)∗ � C such that the induced map A∗ → C
is bijective. But this map is exactly the multiplication map by c, S≤1 → C , so (2)
follows.

Let ϕ : S → C be defined by ϕ(s) = sc and let I = ker ϕ. (Note that ϕ depends
on our choice of c.) Suppose (2) holds; this means that ϕ|S≤1 is surjective. Since
dim S≤1 = m = dim C , this surjectivity implies that we have a vector space direct
sum S = S≤1 ⊕ I . Now X ∈ Eα(T ) ⊆ End(C) acts on C in the same way as the
corresponding linear polynomial X ∈ S≤1. Thus a product XY ∈ End(C) acts as the
product of polynomials XY ∈ S≤2. Since S = I ⊕ S≤1 we may write XY = U + Z ,
where U ∈ I and Z ∈ S≤1. The actions of XY , Z ∈ End(C) on C are identical, so
XY = Z . This proves (3). Property (3) implies (4).

Suppose that (4) holds and take an S-module isomorphismϕ′ : C → S/I . Reversing
the argument above, we obtain again S = I ⊕ S≤1. Let A := S/I . This is a finite
algebra of rank dim S≤1 = m. The easy, but key observation is that themultiplication in
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A is induced by the multiplication S⊗A → A on the S-moduleA. The multiplication
maps arising from the S-module structure give the following commutative diagram:

S≤1 ⊗ C C

S ⊗ C C

S/I ⊗ C C

S/I ⊗ S/I S/I

ψ

ϕ′ ϕ′

The direct sum decomposition implies the map ψ is a bijection. Hence the tensor T ,
which is isomorphic to the multiplication map from the first row, is also isomorphic
to the multiplication map in the last row. This proves (5). Finally, if (5) holds, then T
is 1B-generic, because the multiplication by 1 ∈ A from the right is bijective. ��

The structure tensor of a module first appeared in Wojtala [52]. The statement that
binding tensors satisfying Strassen’s equations satisfy End-closed conditionswas orig-
inally proven jointly with M. Michałek. A binding tensor is of minimal border rank
if and only if C is a limit of semisimple modules if and only if S/I is a smoothable
algebra. For m ≤ 7 all algebras are smoothable [17].

2.4 1-Generic tensors

A 1-generic tensor satisfying the A-Strassen equations is isomorphic to a symmetric
tensor by [37]. (See [45] for a short proof.). For a commutative unital algebra A, the
multiplication tensor of A is 1-generic if and only if A is Gorenstein, see [35, Prop.
5.6.2.1]. By definition, an algebraA is Gorenstein ifA∗ = Aφ for some φ ∈ A∗, or in
tensor language, if its structure tensor TA is 1-generic with TA(φ) ∈ A∗⊗A∗ of full
rank. Form ≤ 13 allGorenstein algebras are smoothable [18], provingProposition 1.5.

2.5 Summary

We obtain the following dictionary for tensors in C
a⊗C

m⊗C
m with a ≤ m:

Tensor satisfying A-Strassen eqns. Is isomorphic to Multiplication tensor in

1A-generic Module
1A- and 1B -generic (hence binding and a = m) Unital commutative algebra
1-generic (a = m) Gorenstein algebra
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3 Implications of 111-abundance

For the rest of this article, we restrict to tensors T ∈ A⊗B⊗C = C
m⊗C

m⊗C
m .

Recall the notation X ◦A T from Sect. 1.2 and that {ai } is a basis of A. In what follows
we allow ãh to be arbitrary elements of A.

Lemma 3.1 Let T = ∑r
h=1 ãh⊗Kh, where ãh ∈ A and Kh ∈ B⊗C are viewed as

maps Kh : B∗ → C. Let X ∈ End(A), Y ∈ End(B) and Z ∈ End(C). Then

X ◦A T =
r∑

h=1

X (̃ah)⊗Kh,

Y ◦B T =
r∑

h=1

ãh⊗(KhY
t),

Z ◦C T =
r∑

h=1

ãh⊗(ZKh).

If T is concise and � is an element of the triple intersection (1.2), then the triple
(X ,Y , Z) such that � = X ◦A T = Y ◦B T = Z ◦C T is uniquely determined. In this
case we call X, Y , Z the matrices corresponding to �.

Proof The first assertion is left to the reader. For the second, it suffices to prove it
for X . Write T = ∑m

i=1 ai⊗Ki . The Ki are linearly independent by conciseness.
Suppose X , X ′ ∈ End(A) are such that X ◦A T = X ′ ◦A T . Then for X ′′ = X − X ′
we have 0 = X ′′ ◦A T = ∑m

i=1 X
′′(ai )⊗Ki . By linear independence of Ki , we have

X ′′(ai ) = 0 for every i . This means that X ′′ ∈ End(A) is zero on a basis of A, hence
X ′′ = 0. ��

3.1 1A-generic case

Proposition 3.2 Suppose that T ∈ C
m⊗C

m⊗C
m = A⊗B⊗C is 1A-generic with

α ∈ A∗ such that T (α) ∈ B⊗C has full rank. Then T is 111-abundant if and only
if the space Eα(T ) = T (A∗)T (α)−1 ⊆ End(C) is m-dimensional, abelian, and End-
closed. Moreover if these hold, then T is concise and 111-sharp.

Proof Assume T is 111-abundant. The map (T (α)−1)t : B → C∗ induces an isomor-
phismof T with a tensor T ′ ∈ A⊗C∗⊗C , sowemay assume that T = T ′, T (α) = IdC
and B = C∗. We explicitly describe the tensors � in the triple intersection. We use
Lemma 3.1 repeatedly. Fix a basis a1, . . . , am of A and write T = ∑m

i=1 ai⊗Ki where
K1 = IdC , but we do not assume the Ki are linearly independent, i.e., that T is A-
concise. Let � = ∑m

i=1 ai⊗ωi ∈ A⊗B⊗C . Suppose � = Y t ◦B T = Z ◦C T for
some Y ∈ End(C) and Z ∈ End(C).

The condition � = Y t ◦B T means that ωi = KiY for every i . The condition � =
Z ◦C T means that ωi = ZKi . For i = 1 we obtain Y = IdC ·Y = ω1 = Z · IdC = Z ,
so Y = Z . For other i we obtain ZKi = Ki Z , which means that Z is in the joint
commutator of T (A∗).
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Amatrix X such that� = X ◦A T exists if and only ifωi ∈ 〈K1, . . . , Km〉 = T (A∗)
for every i . This yields ZKi = Ki Z ∈ T (A∗) and in particular Z = Z · IdC ∈ T (A∗).

By assumption, we have a space of choices for � of dimension at least m. Every
� is determined uniquely by an element Z ∈ T (A∗). Since dim T (A∗) ≤ m, we
conclude that dim T (A∗) = m, i.e., T is A-concise (and thus concise), and for every
Z ∈ T (A∗), the element � = Z ◦C T lies in the triple intersection. Thus for every
Z ∈ T (A∗) we have ZKi = Ki Z , which shows that T (A∗) ⊆ End(C) is abelian
and ZKi ∈ T (A∗), which implies that Eα(T ) is End-closed. Moreover, the triple
intersection is of dimension dim T (A∗) = m, so T is 111-sharp.

Conversely, if Eα(T ) is m-dimensional, abelian and End-closed, then reversing the
above argument, we see that Z ◦C T is in the triple intersection for every Z ∈ T (A∗).
Since (Z ◦C T )(α) = Z , the map from T (A∗) to the triple intersection is injective, so
that T is 111-abundant and the above argument applies to it, proving 111-sharpness
and conciseness. ��

3.2 Corank one 1A-degenerate case: statement of the normal form

We next consider the 1A-degenerate tensors which are as “nondegenerate” as possible:
there exists α ∈ A∗ with rank(T (α)) = m − 1.

Proposition 3.3 (characterization of corank one concise tensors that are 111-
abundant) Let T = ∑m

i=1 ai⊗Ki be a concise tensor which is 111-abundant and
not 1A-generic. Suppose that K1 : B∗ → C has rank m − 1. Choose decompositions
B∗ = B∗′ ⊕ ker(K1) =: B∗′ ⊕ 〈βm〉 and C = Im(K1) ⊕ 〈cm〉 =: C ′ ⊕ 〈cm〉 and use
K1 to identify B∗′ with C ′. Then there exist bases of A, B,C such that

K1 =
(
IdC ′ 0
0 0

)
, Ks =

(
xs 0
0 0

)
for 2 ≤ s ≤ m − 1, and Km =

(
xm wm
um 0

)
,

(3.1)

for some x2, . . . , xm ∈ End(C ′) and 0 �= um ∈ B ′⊗cm ∼= C ′∗, 0 �= wm ∈ βm⊗C ′ ∼=
C ′ where, setting x1 := IdC ′ ,

(1) umx jwm = 0 for every j ≥ 0 and x ∈ 〈x1, . . . , xm〉, so in particular umwm = 0.
(2) the space 〈x1, x2, . . . , xm−1〉 ⊆ End(C ′) is (m − 1)-dimensional, abelian, and

End-closed.
(3) the space 〈x2, . . . , xm−1〉 contains the rank one matrix wmum.
(4) For all 2 ≤ s ≤ m − 1, umxs = 0 and xswm = 0.
(5) For every s, there exist vectors us ∈ C ′∗ and ws ∈ C ′, such that

xsxm + wsum = xmxs + wmus ∈ 〈x2, . . . , xm−1〉. (3.2)

The vector [us, wt
s] ∈ C

2(m−1)∗ is unique up to adding multiples of [um, wt
m].

(6) For every j ≥ 1 and 2 ≤ s ≤ m − 1

xsx
j
mwm = 0 and umx

j
mxs = 0. (3.3)
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Moreover, the tensor T is 111-sharp.
Conversely, any tensor satisfying (3.1) and (1)–(5) is 111-sharp, concise and not

1A-generic, hence satisfies (6) as well.
Additionally, for any vectors u∗ ∈ C ′ and w∗

m ∈ (C ′)∗ with umu∗ = 1 = w∗wm,
we may normalize xm such that for every 2 ≤ s ≤ m − 1

xmu∗ = 0, w∗xm = 0, us = w∗xsxm, and ws = xmxsu∗. (3.4)

Remark 3.4 Atkinson [4] defined a normal form for spaces of corankm−r where one

element is

(
Idr 0
0 0

)
and all others of the form

(
x W
U 0

)
and satisfy Ux jW = 0

for every j ≥ 0. The zero block is clear and the equation follows from expanding out

the minors of

(
ξ Idr +x W

U 0

)
with a variable ξ . This already implies (3.1) and (1)

except for the zero blocks in the Ks just using bounded rank.
Later, Friedland [24], assuming corank one, showed that the A-Strassen equations

are exactly equivalent to having a normal form satisfying (3.1), (1), and (6). In par-
ticular, this shows the 111-equations imply Strassen’s equations in the corank one
case.

Proof We use Atkinson normal form, in particular we use K1 to identify B∗′ with C ′.
Take (Y , Z) ∈ End(B) ×End(C) with 0 �= Y ◦B T = Z ◦C T ∈ T (A∗)⊗A, which

exist by 111-abundance. Write these elements following the decompositions of B∗
and C as in the statement:

Y t =
(
y wY

uY tY

)
Z =

(
z wZ

uZ tZ

)
,

with y ∈ End((B∗)′), z ∈ End(C ′) etc. The equality Y ◦B T = Z ◦C T ∈ T (A∗)⊗A
says KiY t = ZKi ∈ T (A∗) = 〈K1, . . . , Km〉. When i = 1 this is

(
y wY

0 0

)
=

(
z 0
uZ 0

)
∈ T (A∗), (3.5)

so wY = 0, uZ = 0, and y = z. For future reference, so far we have

Y t =
(

z 0
uY tY

)
Z =

(
z wZ

0 tZ

)
. (3.6)

By (3.5), for every (Y , Z) above the matrix z belongs to B ′⊗C ′ ∩ T (A∗). By concise-
ness, the subspace B ′⊗C ′ ∩ T (A∗) is proper in T (A∗), so it has dimension less than
m. The triple intersection has dimension at least m as T is 111-abundant. Thus the
projection map T (A∗) → (B ′ ⊗C ′) ∩ T (A∗) has a nonzero kernel. Thus there exists
a pair (Y , Z) as in (3.6) with z = 0, and 0 �= Y ◦B T = Z ◦C T . Take any such pair
(Y0, Z0). Consider a matrix X ∈ T (A∗) with the last row nonzero and write it as

X =
(

x wm

um 0

)
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where um �= 0. The equality

XY t
0 =

(
wmuY0 wmtY0

0 0

)
= Z0X =

(
wZ0um 0
tZ0um 0

)
(3.7)

implieswmtY0 = 0, 0 = tZ0 (as um �= 0) andwZ0um = wmuY0 . Observe thatwZ0 �= 0
as otherwise Z0 = 0 while we assumed Z0 ◦B T �= 0. Since um �= 0 and wZ0 �= 0,
we have an equality of rank one matrices wZ0um = wmuY0 . Thus um = λuY0 and
wm = λwZ0 for some nonzero λ ∈ C. It follows that wm �= 0, so tY0 = 0. The matrix
X was chosen as an arbitrary matrix with nonzero last row and we have proven that
every such matrix yields a vector [um, wt

m] proportional to a fixed nonzero vector
[uY0 , wt

Z0
]. It follows that we may choose a basis of A such that there is only one

such matrix X . The same holds if we assume instead that X has last column nonzero.
This gives (3.1).

Returning to (3.5), from uZ = 0 we deduce that z ∈ 〈x1, . . . , xm−1〉.
Now Y0 and Z0 are determined up to scale as

Y t
0 =

(
0 0
um 0

)
Z0 =

(
0 wm

0 0

)
, (3.8)

so there is only a one-dimensional space of pairs (Y , Z) with Y ◦B T = Z ◦C T and
upper left block zero. The space of possible upper left blocks z is 〈x1, . . . , xm−1〉 so
it is (m − 1)-dimensional. Since the triple intersection is at least m-dimensional, for
any matrix z ∈ 〈x1, . . . , xm−1〉 there exist matrices Y t and Z as in (3.6) with this z in
the top left corner.

Consider any matrix as in (3.6) corresponding to an element Y ◦B T = Z ◦C T ∈
T (A∗)⊗A. For 2 ≤ s ≤ m − 1 we get zxs = xsz ∈ 〈x1, . . . , xm−1〉. Since
for any matrix z ∈ 〈x1, . . . , xm−1〉 a suitable pair (Y , Z) exists, it follows that
〈x1, . . . , xm−1〉 ⊆ End(C ′) is abelian and closed under composition proving (2).
The coefficient of am in Y ◦B T = Z ◦C T gives

(
xmz + wmuY wmtY

umz 0

)
=

(
zxm + wZum zwm

tZum 0

)
= λY Km + KY , (3.9)

where λY ∈ C and KY ∈ 〈K1, . . . , Km−1〉. It follows that tY = λY = tZ and that
zwm = λYwm as well as umz = λY um .

Iterating over z ∈ 〈x1, . . . , xm−1〉, we see that wm is a right eigenvector and um a
left eigenvector of any matrix from this space, and um, wm have the same eigenvalues
for each matrix. We make a GL(A) coordinate change: we subtract this common
eigenvalue ofxs timesx1 fromxs , so thatxswm = 0 andumxs = 0 for all 2 ≤ s ≤ m−1
proving (4). Take z ∈ 〈x2, . . . , xm−1〉 so that zwm = 0 and umz = 0. The top left
block of (3.9) yields

zxm + wZum = xmz + wmuY = λY xm + KY . (3.10)
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Since zwm = 0, the upper right block of (3.9) implies λY = 0 and we deduce that

zxm + wZum = xmz + wmuY = KY ∈ 〈x2, . . . , xm−1〉. (3.11)

For a pair (Y , Z) with z = xs , set ws := wZ and us := uY . Such a pair is unique up to
adding matrices (3.8), hence [us, wt

s] is uniquely determined up to adding multiples
of [um, wt

m]. With these choices (3.11) proves (5). Since xs determines us, ws we see
that T is 111-sharp.

The matrix (3.7) lies in T (A∗), hence wmum ∈ 〈x1, . . . , xm−1〉. Since 0 =
(umwm)um = um(wmum) we deduce that wmum ∈ 〈x2, . . . , xm−1〉, proving (3).

Conversely, suppose that the space of matrices K1, . . . , Km satisfies (3.1) and (1)–
(5). Conciseness and 1A-degeneracy of K1, . . . , Km follow by reversing the argument
above. That T is 111-sharp follows by constructing the matrices as above.

To prove (6), we fix s and use induction to prove that there exist vectors vh ∈ C ′∗
for h = 1, 2, . . . such that for every j ≥ 1 we have

x j
mxs +

j−1∑

h=0

xhmwmv j−h ∈ 〈x2, . . . , xm−1〉. (3.12)

The base case j = 1 follows from (5). To make the step from j to j + 1 use (5) for
the element (3.12) of 〈x2, . . . , xm−1〉, to obtain

xm

⎛

⎝x j
mxs +

j−1∑

h=0

xhmwmv j−h

⎞

⎠ + wmv j+1 ∈ 〈x2, . . . , xm−1〉,

for a vector v j+1 ∈ C ′. This concludes the induction. For every j , by (4), the expres-
sion (3.12) is annihilated by um :

um ·
⎛

⎝x j
mxs +

j−1∑

h=0

xhmwmv j−h

⎞

⎠ = 0.

By (1) we have umxhmwm = 0 for every h, so umx
j
mxs = 0 for all j . The assertion

xsx
j
mwm = 0 is proved similarly. This proves (6).
Finally, we proceed to the “Additionally” part. The main subtlety here is to adjust

the bases of B and C . Multiply the tuple from the left and right respectively by the
matrices

(
IdC ′ γ

0 1

)
∈ GL(C)

(
IdB′∗ 0

β 1

)
∈ GL(B∗)

and then add αwmum to xm . These three coordinate changes do not change the x1,
xs , um , or wm and they transform xm into x′

m := xm + wmβ + γ um + αwmum . Take
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(α, β, γ ) := (w∗xmu∗,−w∗xm,−xmu∗), then x′
m satisfies w∗x′

m = 0 and x′
mu

∗ = 0.
Multiplying (3.2) from the left by w∗ and from the right by u∗ we obtain respectively

w∗xsxm + (w∗ws)um = us
ws = xmxsu∗ + wm(usu

∗).

Multiply the second line by w∗ to obtain w∗ws = usu∗, so

[us, wt
s] − w∗(ws)[um, wt

m] = [w∗xsxm, (xmxsu∗)t].

Replace [us, wt
s] by [us, wt

s] − w∗(ws)[um, wt
m] to obtain us = w∗xsxm , ws =

xmxsu∗, proving (3.4). ��

Example 3.5 Consider the space of 4×4matrices x1 = Id4, x2 = E14, x3 = E13, x4 =
E34. Take x5 = 0, um = (0, 0, 0, 1) and wm = (1, 0, 0, 0)t. The tensor built from this
data as in Proposition 3.3 does not satisfy the 111-condition, since x3 and x4 do not
commute. Hence, it is not of minimal border rank. However, this tensor does satisfy
the A-End-closed equations (described in Sect. 2.1) and Strassen’s equations (in all
directions), and even the p = 1 Koszul flattenings. This shows that 111-equations
are indispensable in Theorem 1.6; they cannot be replaced by these more classical
equations.

3.3 Proof of Proposition 1.2

The 1A-generic case is covered by Proposition 3.2 together with the description of
the A-Strassen and A-End-closed equations for 1A-generic tensors which was given
in Sect. 2.1.

In the corank one case,Remark 3.4 observed that the 111-equations implyStrassen’s
equations. The End-closed equations are: Let α1, . . . , αm be a basis of A∗. Then for
all α′, α′′ ∈ A∗,

(T (α′)T (α1)
∧m−1T (α′′)) ∧ T (α1) ∧ · · · ∧ T (αm) = 0 ∈ �m+1(B⊗C).

(3.13)

Here, for Z ∈ B⊗C , Z∧m−1 denotes the induced element of�m−1B⊗�m−1C , which,
up to choice of volume forms (which does not effect the space of equations), is iso-
morphic to C∗⊗B∗, so (T (α′)T (α1)

∧m−1T (α′′)) ∈ B⊗C . In bases Z∧m−1 is just the
cofactor matrix of Z . (Aside: when T is 1A-generic these correspond to Eα(T ) being
closed under composition of endomorphisms.)When T (α1) is of corank one, using the
normal form (3.1) we see T (α′)T (α1)

∧m−1T (α′′) equals zero unless α′ = α′′ = αm

in which case it equals wmum so the vanishing of (3.13) is implied by Proposition
3.3(3).

Finally if the corank is greater than one, both Strassen’s equations and the End-
closed equations are trivial. ��
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4 Proof of Theorem 1.11

We prove Theorem 1.11 thatAT
111 is indeed a unital subalgebra of End(A)×End(B)×

End(C)which is commutative for T concise. The key point is that the actions are linear
with respect to A, B, and C . We have (Id, Id, Id) ∈ AT

111 for any T .

Lemma 4.1 (composition and independence of actions) Let T ∈ A⊗B⊗C. For all
X , X ′ ∈ End(A) and Y ∈ End(B),

X ◦A (X ′ ◦A T ) = (XX ′) ◦A T , and (4.1)

X ◦A (Y ◦B T ) = Y ◦B (X ◦A T ). (4.2)

The same holds for (A, B) replaced by (B,C) or (C, A).

Proof Directly from the description in Lemma 3.1. ��
Lemma 4.2 (commutativity)Let T ∈ A⊗B⊗C and suppose (X ,Y , Z), (X ′,Y ′, Z ′) ∈
AT

111. Then X X ′ ◦A T = X ′X ◦A T and similarly for the other components. If T is
concise, then X X ′ = X ′X, YY ′ = Y ′Y and Z Z ′ = Z ′Z.

Proof Wewill make use of compatibility to move the actions to independent positions
and (4.2) to conclude the commutativity, much like one proves that π2 in topology is
commutative. Concretely, Lemma 4.1 implies

XX ′ ◦A T = X ◦A (X ′ ◦A T ) = X ◦A (Y ′ ◦B T ) = Y ′ ◦B (X ◦A T ) = Y ′ ◦B (Z ◦C T ), and

X ′X ◦A T = X ′ ◦A (X ◦A T ) = X ′ ◦A (Z ◦C T ) = Z ◦C (X ′ ◦A T ) = Z ◦C (Y ′ ◦B T ).

Finally Y ′ ◦B (Z ◦C T ) = Z ◦C (Y ′ ◦B T ) by (4.2). If T is concise, then the equation
(XX ′ − X ′X) ◦A T = 0 implies XX ′ − X ′X = 0 by the description in Lemma 3.1,
so X and X ′ commute. The commutativity of other factors follows similarly. ��
Lemma 4.3 (closure under composition) Let T ∈ A⊗B⊗C and suppose (X ,Y , Z),

(X ′,Y ′, Z ′) ∈ AT
111. Then (XX ′,YY ′, Z Z ′) ∈ AT

111.

Proof By Lemma 4.1

XX ′ ◦A T = X ◦A (X ′ ◦A T ) = X ◦A (Y ′ ◦B T ) = Y ′ ◦B (X ◦A T )

= Y ′ ◦B (Y ◦B T ) = Y ′Y ◦B T .

We conclude by applying Proposition 4.2 and obtain equality with Z ′Z ◦C T similarly.
��

Proof of Theorem 1.11 Commutativity follows from Lemma 4.2, the subalgebra asser-
tion is Lemma 4.3, and injectivity of projections follows from Lemma 3.1 and
conciseness.

Remark 4.4 Theorem 1.11 without the commutativity conclusion still holds for a non-
concise tensor T . An examplewith a noncommutative 111-algebra is

∑r
i=1 ai⊗bi⊗ci ,

where r ≤ m − 2. In this case the 111-algebra contains a copy of End(Cm−r ).
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Example 4.5 If T is a 1A-generic 111-abundant tensor, then by Proposition 3.2 its 111-
algebra is isomorphic to Eα(T ). In particular, if T is the structure tensor of an algebra
A, then AT

111 is isomorphic to A.

Example 4.6 Consider the symmetric tensor F ∈ S3C5 ⊆ C
5⊗C

5⊗C
5 correspond-

ing to the cubic form x3x21 + x4x1x2 + x5x22 , where, e.g., x3x
2
1 = 2(x3⊗x1⊗x1 +

x1⊗x3⊗x1+ x1⊗x1⊗x3). This cubic has vanishing Hessian, hence F is 1-degenerate.
The triple intersection of the corresponding tensor is 〈F, x31 , x

2
1 x2, x1x

2
2 , x

3
2 〉 and its

111-algebra is given by the triples (x, x, x) where

x ∈ 〈Id, x1⊗α3, x2⊗α3 + x1⊗α4, x2⊗α4 + x1⊗α5, x2⊗α5〉,

where α j is the basis vector dual to x j . Since all compositions of basis elements other
than Id are zero, this 111-algebra is isomorphic to C[ε1, ε2, ε3, ε4]/(ε1, ε2, ε3, ε4)2.
Example 4.7 Consider a tensor in the normal form of Proposition 3.3. The projection
of the 111-algebra to End(B) × End(C) can be extracted from the proof. In addition
to (Id, Id) we have:

Y0 =
(

0 0
um 0

)
, Z0 =

(
0 wm

0 0

)
,

Ys =
(
xs 0
us 0

)
, Zs =

(
xs ws

0 0

)
.

Theorem 1.11 implies for matrices in End(C) that

(
xsxt xswt

0 0

)
=

(
xs ws

0 0

)
·
(
xt wt

0 0

)
=

(
xt wt

0 0

)
·
(
xs ws

0 0

)
=

(
xtxs xtws

0 0

)

which gives xswt = xtws for any 2 ≤ s, t ≤ m − 1. Considering matrices in End(B)

we obtain utxs = usxt for any 2 ≤ s, t ≤ m − 1. (Of course, these identities are also
a consequence of Proposition 3.3, but it is difficult to extract them directly from the
Proposition.)

5 New obstructions tominimal border rank via the 111-algebra

In this section we characterize 111-abundant tensors in terms of an algebra equipped
with a triple of modules and a module map. We then exploit this extra structure to
obtain new obstructions to minimal border rank via deformation theory.

5.1 Characterization of tensors that are 111-abundant

Definition 5.1 A tri-presented algebra is a commutative unital subalgebra A ⊆
End(A) × End(B) × End(C).
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For any concise tensor T its 111-algebra AT
111 is a tri-presented algebra. A tri-

presented algebra A naturally gives an A-module structure on A, B, C . For every
A-module N the space N∗ is also an A-module via, for any r ∈ A, n ∈ N , and
f ∈ N∗, (r · f )(n) := f (rn). (This indeed satisfies r2 · (r1 · f ) = (r2r1) · f because
A is commutative.) In particular, the spaces A∗, B∗, C∗ are A-modules. Explicitly, if
r = (X ,Y , Z) ∈ A and α ∈ A∗, then rα = X t(α).

There is a canonical surjective map π : A∗⊗B∗ → A∗⊗AB∗, defined by
π(α⊗β) = α⊗Aβ and extended linearly. For any homomorphism ϕ : A∗⊗AB∗ → C
ofA-modules, we obtain a linearmap ϕ◦π : A∗⊗B∗ → C hence a tensor in A⊗B⊗C
which we denote by Tϕ .

We need the following lemma, whose proof is left to the reader.

Lemma 5.2 (compatibility with flattenings) Let T ∈ A⊗B⊗C, X ∈ End(A), Z ∈
End(C) and α ∈ A∗. Consider T (α) : B∗ → C. Then

(Z ◦C T )(α) = Z · T (α), (5.1)

T
(
X t(α)

) = (X ◦A T )(α), (5.2)

and analogously for the other factors. ��
Proposition 5.3 Let T be a concise 111-abundant tensor. Then T is 1A-generic if and
only if the AT

111-module A∗ is generated by a single element, i.e., is a cyclic module.
More precisely, an element α ∈ A∗ generates theAT

111-module A∗ if and only if T (α)

has maximal rank.

Proof Take any α ∈ A∗ and r = (X ,Y , Z) ∈ AT
111. Using (5.1)–(5.2) we have

T (rα) = T (X t(α)) = (X ◦A T )(α) = (Z ◦C T )(α) = Z · T (α). (5.3)

Suppose first that T is 1A-generic with T (α) of full rank. If r �= 0, then Z �= 0 by the
description in Lemma 3.1, so Z ·T (α) is nonzero. This shows that the homomorphism
AT

111 → A∗ of AT
111-modules given by r �→ rα is injective. Since dim AT

111 ≥ m =
dim A∗, this homomorphism is an isomorphism and so A∗ � AT

111 asAT
111-modules.

Now suppose that A∗ is generated by an element α ∈ A∗. This means that for
every α′ ∈ A∗ there is an r = (X ,Y , Z) ∈ AT

111 such that rα = α′. From (5.3) it
follows that ker T (α) ⊆ ker T (α′). This holds for every α′, hence ker T (α) is in the
joint kernel of T (A∗). By conciseness this joint kernel is zero, hence ker T (α) = 0
and T (α) has maximal rank. ��
Theorem 5.4 Let T ∈ A⊗B⊗C and letA be a tri-presented algebra. ThenA ⊆ AT

111
if and only if the map T t

C : A∗⊗B∗ → C factors through π : A∗⊗B∗ → A∗⊗AB∗
and induces an A-module homomorphism ϕ : A∗⊗AB∗ → C. If this holds, then
T = Tϕ .

Proof By the universal property of the tensor product overA, themap T t
C : A∗⊗B∗ →

C factors through π if and only if the bilinear map A∗ × B∗ → C given by (α, β) �→
T (α, β) isA-bilinear. That is, for every r = (X ,Y , Z) ∈ A, α ∈ A∗, and β ∈ B∗ one
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has T (rα, β) = T (α, rβ). By (5.2), T (rα, β) = (X ◦AT )(α, β) and T (α, rβ) = (Y ◦B

T )(α, β). It follows that the factorization exists if and only if for every r = (X ,Y , Z) ∈
A we have X ◦A T = Y ◦B T . Suppose that this holds and consider the obtained map
ϕ : A∗⊗AB∗ → C . Thus for α ∈ A∗ and β ∈ B∗ we have ϕ(α⊗Aβ) = T (α, β). The
map ϕ is a homomorphism of A-modules if and only if for every r = (X ,Y , Z) ∈ A
we have ϕ(rα⊗Aβ) = rϕ(α⊗Aβ). By (5.1), rϕ(α⊗Aβ) = (Z ◦C T )(α, β) and
by (5.2), ϕ(rα⊗Aβ) = (X ◦A T )(α, β). These are equal for all α, β if and only if
X ◦A T = Z ◦C T . The equality T = Tϕ follows directly from definition of Tϕ . ��
Theorem 5.5 (characterization of concise 111-abundant tensors)A concise tensor that
is 111-abundant is isomorphic to a tensor Tϕ associated to a surjective homomorphism
of A-modules

ϕ : N1⊗AN2 → N3, (5.4)

where A is a commutative associative unital algebra, N1, N2, N3 are A-modules
and dim N1 = dim N2 = dim N3 = m ≤ dim A, and moreover for every n1 ∈
N1, n2 ∈ N2 the maps ϕ(n1⊗A−) : N2 → N3 and ϕ(−⊗An2) : N1 → N3 are
nonzero. Conversely, any such Tϕ is 111-abundant and concise.

The conditions ϕ(n1⊗A−) �= 0, ϕ(−⊗An2) �= 0 for any nonzero n1, n2 have
appeared in the literature. Bergman [7] calls ϕ nondegenerate if they are satisfied.

Proof By Theorem 5.4 a concise tensor T that is 111-abundant is isomorphic to Tϕ

where A = AT
111, N1 = A∗, N2 = B∗, N3 = C . Since T is concise, the homo-

morphism ϕ is onto and the restrictions ϕ(α⊗A−), ϕ(−⊗Aβ) are nonzero for any
nonzero α ∈ A∗, β ∈ B∗. Conversely, if we take (5.4) and set A := N∗

1 , B := N∗
2 ,

C := N3, then Tϕ is concise by the conditions on ϕ and by Theorem 5.4, A ⊆ ATϕ

111
hence Tϕ is 111-abundant. ��
Example 5.6 By Proposition 5.3 we see that for a concise 1A-generic tensor T the ten-
sor product A∗⊗AB∗ simplifies toA⊗AB∗ � B∗. The homomorphism ϕ : B∗ → C
is surjective, hence an isomorphism of B∗ and C , so the tensor Tϕ becomes the mul-
tiplication tensor A⊗CC → C of the A-module C . One can then choose a surjection
S → A from a polynomial ring such that S≤1 maps isomorphically onto A. This
shows how the results of this section generalize Sect. 2.2.

In the setting of Theorem 5.5, since T is concise it follows from Lemma 3.1 that the
projections of AT

111 to End(A), End(B), End(C) are one to one. This translates into
the fact that no nonzero element ofAT

111 annihilates A, B or C . The same is then true
for A∗, B∗, C∗.

5.2 Two new obstructions tominimal border rank

Lemma 5.7 Let T ∈ C
m⊗C

m⊗C
m be concise, 111-sharp and ofminimal border rank.

Then AT
111 is smoothable.
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Proof By 111-sharpness, the degeneration Tε → T from a minimal rank tensor
induces a family of triple intersection spaces, hence by semicontinuity it is enough to
check for Tε of rank m. By Example 4.5 each Tε has 111-algebra

∏m
i=1 C. Thus the

111-algebra of T is the limit of algebras isomorphic to
∏m

i=1 C, hence smoothable. ��
Recall from Sect. 2 that for m ≤ 7 every algebra is smoothable.

As in Sect. 2.2 view AT
111 as a quotient of a fixed polynomial ring S. Then the

AT
111-modules A, B, C become S-modules.

Lemma 5.8 Let T ∈ C
m⊗C

m⊗C
m be concise, 111-sharp and ofminimal border rank.

Then the S-modules A, B, C lie in the principal component of the Quot scheme.

Proof As in the proof above, the degeneration Tε → T from a minimal rank tensor
induces a family ofATε

111 and hence a family of S-modules Aε , Bε ,Cε . These modules
are semisimple when Tε has minimal border rank by Example 2.1. ��
Already for m = 4 there are S-modules outside the principal component [34, §6.1],
[29].

Example 5.9 In [37, Example 5.3] the authors exhibit a 1A-generic, End-closed, com-
muting tuple of seven 7 × 7-matrices that corresponds to a tensor T of border rank
higher than minimal. By Proposition 3.2 this tensor is 111-sharp. However, the associ-
ated moduleC is not in the principal component, in fact it is a smooth point of another
(elementary) component. This can be verified using Białynicki–Birula decomposition,
as in [34, Proposition 5.5]. The proof of non-minimality of border rank in [37, Exam-
ple 5.3] used different methods. We note that the tensor associated to this tuple does
not satisfy all p = 1 Koszul flattenings.

6 Conditions where tensors of bounded rank fail to be concise

Proposition 6.1 Let T ∈ C
5⊗C

5⊗C
5 be such that the matrices in T (A∗) have the

shape

⎛

⎜⎜⎜
⎜
⎝

0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗

⎞

⎟⎟⎟
⎟
⎠

.

If T is concise, then T (C∗) contains a matrix of rank at least 4.

Proof Write the elements of T (A∗) as matrices

Ki =
(
0 �

ui �

)
∈ Hom(B∗,C) for i = 1, 2, . . . , 5

where ui ∈ C
3. Suppose T is concise. Then the joint kernel of 〈K1, . . . , K5〉 is zero,

so u1, . . . , u5 span C
3. After a change of coordinates we may assume u1, u2, u3 are
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linearly independent while u4 = 0, u5 = 0. Since K4 �= 0, choose a vector γ ∈ C∗
such that γ · K4 �= 0. Choose ξ ∈ C such that (γ5 + ξγ ) · K4 �= 0. Note that
T (γ5) : B∗ → A has matrix whose rows are the last rows of K1, . . . , K5. We claim
that the matrix T (γ5 + ξγ ) : B∗ → A has rank at least four. Indeed, this matrix can
be written as

⎛

⎜
⎜⎜⎜
⎝

u1 � �

u2 � �

u3 � �

0 (γ5 + ξγ ) · K4
0 � �

⎞

⎟
⎟⎟⎟
⎠

.

This concludes the proof. ��
Proposition 6.2 Let T ∈ A⊗B⊗C with m = 5 be a concise tensor. Then one of its
associated spaces of matrices contains a full rank or corank one matrix.

Proof Suppose that T (A∗) is of bounded rank three. We use [4, Theorem A] and its
notation, in particular r = 3. By this theorem and conciseness, the matrices in the
space T (A∗) have the shape

⎛

⎝
� � �

� Y 0
� 0 0

⎞

⎠

where the starred part consists of p rows and q columns, for some p, q ≥ 0, and
Y forms a primitive space of bounded rank at most 3 − p − q. Furthermore, since
r + 1 < m and r < 2 + 2, by [4, Theorem A, “Moreover” part] we see that T (A∗)
is not primitive itself, hence at least one of p, q is positive. If just one is positive, say
p, then by conciseness Y spans 5 − p rows and bounded rank 3 − p, which again
contradicts [4, Theorem A, “Moreover”]. If both are positive, we have p = q = 1
and Y is of bounded rank one, so by [5, Lemma 2], up to coordinate change, after
transposing T (A∗) has the shape as in Proposition 6.2. ��
Proposition 6.3 In the setting of Proposition 3.3, write T ′ = a1⊗x1 + · · · +
am−1⊗xm−1 ∈ C

m−1⊗C
m−1⊗C

m−1 =: A′⊗C ′∗⊗C ′, where x1 = IdC ′ . If T is
1-degenerate, then T ′ is 1C ′∗ and 1C ′ -degenerate.

Proof Say T ′ is 1C ′∗ -generic with T ′(c′) of rankm−1. Then T (c′ +λu∗), where u∗ is
as in the statement of Proposition 3.3, has rank m for almost all λ ∈ C, contradicting
1-degeneracy. The 1C ′ -generic case is similar. ��
Corollary 6.4 In the setting of Proposition 6.3, the module C ′ associated to T ′(A′∗)
via the ADHM correspondence as in Sect. 2.2 cannot be generated by a single element.
Similarly, the module C ′∗ associated to (T ′(A′∗))t cannot be generated by a single
element.

Proof By Proposition 2.3 the module C ′ is generated by a single element if and only
if T ′ is 1C ′∗-generic. The claim follows from Proposition 6.3. The second assertion
follows similarly since T ′ is not 1C ′ -generic. ��
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7 Proof of Theorem 1.6 in the 1-degenerate case and Theorem 1.7

Throughout this section T ∈ C
5⊗C

5⊗C
5 is a concise 1-degenerate 111-abundant

tensor.
We use the notation of Proposition 3.3 throughout this section.
We begin, in Sect. 7.1 with a few preliminary results. We then, in Sect. 7.2 prove a

variant of them = 5 classification result under amore restricted notion of isomorphism
and only require 111-abundance. Then the m = 5 classification of corank one 111-
abundant tensors follows easily in Sect. 7.3 as does the orbit closure containment in
Sect. 7.4. Finally we give two proofs that these tensors are of minimal border rank in
Sect. 7.5.

7.1 Preliminary results

We first classify admissible three dimensional spaces of 4× 4 matrices 〈x2, x3, x4〉 ⊆
End(C4). One could proceed by using the classification [50, §3] of abelian subspaces
of End(C4) and then impose the additional conditions of Proposition 3.3. We instead
utilize ideas from the ADHM correspondence to obtain a short, self-contained proof.

Proposition 7.1 Let 〈x1 = Id4, x2, x3, x4〉 ⊂ End(C4) be a 4-dimensional subspace
spanned by pairwise commuting matrices. Suppose there exist nonzero subspaces
V ,W ⊆ C

4 with V ⊕ W = C
4 which are preserved by x1, x2, x3, x4. Then either

these exists a vector v ∈ C
4 with 〈x1, x2, x3, x4〉 · v = C

4 or there exists a vector
v∗ ∈ C

4∗
with 〈xt1, xt2, xt3, xt4〉v∗ = C

4∗
.

Proof For h = 1, 2, 3, 4 the matrix xh is block diagonal with blocks x′
h ∈ End(V )

and x′′
h ∈ End(W ).

Suppose first that dim V = 2 = dim W . In this case we will prove that v exists.
The matrices x′

h commute and commutative subalgebras of End(C2) are at most 2-

dimensional and are, up to a change of basis, spanned by IdC2 and either

(
0 1
0 0

)

or

(
1 0
0 0

)
. In each of of the two cases, applying the matrices to the vector (1, 1)t

yields the space C
2. Since the space 〈x1, x2, x3, x4〉 is 4-dimensional, it is, after a

change of basis, a direct sum of two maximal subalgebras as above. Thus applying
〈x1, x2, x3, x4〉 to the vector v = (1, 1, 1, 1)t yields the whole space.

Suppose now that dim V = 3. If some x′
h has at least two distinct eigenvalues,

then consider the generalized eigenspaces V1, V2 associated to them and suppose
dim V1 = 1. By commutativity, the subspaces V1, V2 are preserved by the action of
every x′

h , so the matrices xh also preserve the subspacesW ⊕ V1 and V2. This reduces
us to the previous case. Hence, every x′

h has a single eigenvalue. Subtracting multiples
of x1 from xs for s = 2, 3, 4, the x′

s become nilpotent, hence up to a change of basis
in V , they have the form

x′
s =

⎛

⎝
0 (x′

s)12 (x′
s)13

0 0 (x′
s)23

0 0 0

⎞

⎠ .
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The space 〈x′
2, x

′
3, x

′
4〉 cannot be 3-dimensional, as it would fill the space of 3×3 upper

triangular matrices, which is non-commutative. So 〈x′
2, x

′
3, x

′
4〉 is 2-dimensional and

so some linear combination of the matrices x2, x3, x4 is the identity onW and zero on
V .

We subdivide into four cases. First, if (x′
s)12 �= 0 for some s and (x′

t )23 �= 0 for
some t �= s, then change bases so (x′

s)23 = 0 and take v = (0, p, 1, 1)t such that
p(x′

s)12 + (x′
s)13 �= 0. Second, if the above fails and (x′

s)12 �= 0 and (x′
s)23 �= 0 for

some s, then there must be a t such that (x′
t )13 �= 0 and all other entries are zero,

so we may take v = (0, 0, 1, 1)t. Third, if (x′
s)12 = 0 for all s = 2, 3, 4, then for

dimensional reasons we have

〈x′
2, x

′
3, x

′
4〉 =

⎛

⎝
0 0 �

0 0 �

0 0 0

⎞

⎠

and again v = (0, 0, 1, 1)t is the required vector. Finally, if (x′
s)23 = 0 for all s =

2, 3, 4, then arguing as above v∗ = (1, 0, 0, 1) is the required vector. ��
We now prove a series of reductions that will lead to the proof of Theorem 1.7.

Proposition 7.2 Let m = 5 and T ∈ A⊗B⊗C be a concise, 1-degenerate, 111-
abundant tensor with T (A∗) of corank one. Then up to GL(A) × GL(B) × GL(C)

action it has the form as in Proposition 3.3 with

xs =
(
0 χs

0 0

)
, 2 ≤ s ≤ 4, (7.1)

where the blocking is (2, 2) × (2, 2).

Proof We apply Proposition 3.3. It remains to prove the form (7.1).
By Proposition 3.3(4) zero is an eigenvalue of every xs . Suppose some xs is not

nilpotent, so has at least two different eigenvalues. By commutativity, its generalized
eigenspaces are preserved by the action of x2, x3, x4, hence yield V and W as in
Proposition 7.1 and a contradiction to Corollary 6.4. We conclude that every xs is
nilpotent.

We nowprove that the codimension of
∑4

s=2 Im xs ⊆ C ′ is at least two. Suppose the
codimension is at most one and choose c ∈ C ′ such that

∑4
s=2 Im xs + Cc = C ′. Let

A ⊂ End(C ′) be the unital subalgebra generated by x2, x3, x4 and let W = A · c. The
above equality can be rewritten as 〈x2, x3, x4〉C ′ + Cc = C ′, hence 〈x2, x3, x4〉C ′ +
W = C ′. We repeatedly substitute the last equality into itself, obtaining

C ′ = 〈x2, x3, x4〉C ′ + W = (〈x2, x3, x4〉)2C ′ + W = · · ·
= (〈x2, x3, x4〉)10C ′ + W = W ,

since x2, x3, x4 commute and satisfy x4s = 0. This proves that C ′ = A · c, again
yielding a contradiction with Corollary 6.4.
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Applying the above argument to xt2, x
t
3, x

t
4 proves that joint kernel of x2, x3, x4 is

at least two-dimensional.
We now claim that

⋂4
s=2 ker(xs) ⊆ ∑4

s=2 Im xs . Suppose not and choose v ∈ C ′
that lies in the joint kernel, but not in the image. LetW ⊆ C ′ be a subspace containing
the image and such that W ⊕ Cv = C ′. Then 〈x2, x3, x4〉W ⊆ 〈x2, x3, x4〉C ′ ⊆ W ,
hence V = Cv andW yield a decomposition as in Proposition 7.1 and a contradiction.
The containment

⋂4
s=2 ker(xs) ⊆ ∑4

s=2 Im xs together with the dimension estimates
yield the equality

⋂4
s=2 ker(xs) = ∑4

s=2 Im xs . To obtain the form (7.1) it remains to
choose a basis of C ′ so that the first two basis vectors span

⋂4
s=2 ker(xs). ��

7.2 Classification of 111-abundant tensors under restricted isomorphism

Refining Proposition 7.2, we now prove the following classification.

Theorem 7.3 Let m = 5. Up to GL(A) × GL(B) × GL(C) action and swapping the
B and C factors, there are exactly seven concise 1-degenerate, 111-abundant tensors
in A⊗B⊗C with T (A∗) of corank one. To describe them explicitly, let

TM1 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3 + b4⊗c4) + a2⊗b3⊗c1 + a3⊗b4⊗c1
+a4⊗b4⊗c2 + a5⊗(b5⊗c1 + b4⊗c5)

and

TM2 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3 + b4⊗c4) + a2⊗(b3⊗c1 − b4⊗c2)

+a3⊗b4⊗c1 + a4⊗b3⊗c2 + a5⊗(b5⊗c1 + b4⊗c5).

Then the tensors are

TM2 + a5⊗(b1⊗c2 − b3⊗c4) (TO58 )

TM2 (TO57 )

TM1 + a5⊗(b5⊗c2 − b1⊗c2 + b3⊗c3) (T̃O57 )

TM1 + a5⊗b5⊗c2 (T̃O56 )

TM1 + a5⊗b2⊗c2 (TO56 )

TM1 + a5⊗b3⊗c2 (TO55 )

TM1 (TO54 )

123



Concise tensors of minimal border rank

These tensors are pairwise non-isomorphic, as we explain below. For a tensor
T ∈ A⊗B⊗C its annihilator in gl(A) × gl(B) × gl(C) is called its symmetry Lie
algebra. The symmetry Lie algebra intersected with gl(A) × gl(B) is called the AB-
part etc. We list the dimensions of these Lie algebras below.

A linear algebra computation (see, e.g., [19]) shows that the dimensions of the
symmetry Lie algebras are

Case TO58 TO57 T̃O57 T̃O56 TO56 TO55 TO54

Full 16 17 17 18 18 19 20
AB-part 5 5 5 5 6 6 6
BC-part 5 6 5 6 5 6 6
CA-part 5 5 6 6 6 6 6

Proof of Theorem 7.3 We utilize Proposition 7.2 and its notation. By conciseness, the
matrices x2, x3, x4 are linearly independent, hence form a codimension one subspace
of End(C2). We utilize the perfect pairing on End(C2) given by (A, B) �→ Tr(AB),
so that 〈χ2, χ3, χ4〉⊥ ⊆ End(C2) is one-dimensional, spanned by a matrix P . Conju-
gation with an invertible 4 × 4 block diagonal matrix with 2 × 2 blocks M , N maps
χs to Mχs N−1 and P to N PM−1. Under such conjugation the orbits are matrices of
fixed rank, so after changing bases in 〈a2, a3, a4〉, we reduce to the cases

P =
(
0 1
0 0

)
χ2 =

(
1 0
0 0

)
, χ3 =

(
0 1
0 0

)
, χ4 =

(
0 0
0 1

)
, and (M1)

P =
(
1 0
0 1

)
χ2 =

(
1 0
0 −1

)
, χ3 =

(
0 1
0 0

)
, χ4 =

(
0 0
1 0

)
. (M2)

In both cases the joint right kernel of our matrices is (∗, ∗, 0, 0)t while the joint left
kernel is (0, 0, ∗, ∗), so w5 = (w5,1, w5,2, 0, 0)t and u5 = (0, 0, u5,3, u5,4).

7.2.1 Case (M2)

In this case there is an involution, namely conjugation with

⎛

⎜⎜⎜⎜
⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞

⎟⎟⎟⎟
⎠

∈ GL5

that preserves P , and hence 〈x2, x3, x4〉, while it swaps w5,1 with w5,2 and u5,1 with
u5,2. Using this involution and rescaling c5, we assume w5,1 = 1. The matrix

(
u5,3 u5,4

u5,3w5,2 u5,4w5,2

)
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belongs to 〈χ2, χ3, χ4〉 by Proposition 3.3(3), so it is traceless. This forces u5,4 �= 0.
Rescaling b5 we assume u5,4 = 1. The trace is now u5,3+w5,2, so u5,3 = −w5,2. The
condition (3.2) applied for s = 2, 3, 4 gives linear conditions on the possible matrices
x5 and jointly they imply that

x5 =

⎛

⎜⎜
⎝

p1 p2 ∗ ∗
p3 p4 ∗ ∗
0 0 p4 − w5,2(p1 + p5) p5
0 0 −p3 − w5,2(p6 − p1) p6

⎞

⎟⎟
⎠ (7.2)

for arbitrary pi ∈ C and arbitrary starred entries. Using (3.4) with u∗ = (1, 0, 0, 0)t

andw∗ = (0, 0, 0, 1), we may change coordinates to assume that the first row and last
column of x5 are zero, and subtracting a multiple of x4 from x5 we obtain further that
the (3, 2) entry of x5 is zero, so

x5 =

⎛

⎜⎜
⎝

0 0 0 0
p3 p4 0 0
0 0 p4 0
0 0 −p3 0

⎞

⎟⎟
⎠

Subtracting p4X1 from X5 and then adding p4 times the last row (column) to the
fourth row (column) we arrive at

x5 =

⎛

⎜⎜
⎝

0 0 0 0
p3 0 0 0
0 0 0 0
0 0 −p3 0

⎞

⎟⎟
⎠ (7.3)

for possibly different values of the parameter p3. Conjugating with the 5 × 5 block
diagonal matrix

⎛

⎜⎜⎜⎜
⎝

1 0 0 0 0
w5,2 1 0 0 0
0 0 1 0 0
0 0 w5,2 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟
⎠

does not change P , hence 〈x2, x3, x4〉, and it does not change x5 as well, but it makes
w5,2 = 0. Thus we arrive at the case when w5 = (1, 0, 0, 0)t, u5 = (0, 0, 0, 1) and
x5 is as in (7.3). There are two subcases: either p3 = 0 or p3 �= 0. In the latter case,
conjugation with the diagonal matrix with diagonal (1, p3, 1, p3, 1) does not change
〈x2, x3, x4〉 and it maps x5 to the same matrix but with p3 = 1. In summary, in this
case we obtain the types (TO57 ) and (TO58 ).

123



Concise tensors of minimal border rank

7.2.2 Case (M1)

For every t ∈ C conjugation with

⎛

⎜⎜
⎜⎜
⎝

1 t 0 0 0
0 1 0 0 0
0 0 1 t 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟
⎟⎟
⎠

preserves 〈x2, x3, x4〉 and maps u5 to (0, 0, u5,3, u5,4 − tu5,3) and w5 to (w5,1 +
tw5,2, w5,2, 0, 0)t. Taking t general, we obtain w5,1, u5,4 �= 0 and rescaling b5, c5 we
obtain u5,4 = 1 = w5,1. Since w5u5 ∈ 〈x2, x3, x4〉, this forces u5,3 = 0 or w5,2 = 0.
Using (3.2) again, we obtain that

x5 =

⎛

⎜⎜
⎝

q1 ∗ ∗ ∗
w5,2(q1 − q3) q2 ∗ ∗

0 0 q3 ∗
0 0 u5,3(q4 − q2) q4

⎞

⎟⎟
⎠ (7.4)

for arbitrary q1, q2, q3, q4 ∈ C and arbitrary starred entries. We normalize fur-
ther. Transposing (this is the unique point of the proof where we swap the B and
C coordinates) and swapping 1 with 4 and 2 with 3 rows and columns (which is
done by conjugation with appropriate permutation matrix) does not change the space
〈x2, x3, x4〉 or x1 and it maps u5,w5 to (0, 0, w5,2, w5,1), (u5,4, u5,3, 0, 0)t. Using this
operation if necessary, we may assume u5,3 = 0. By subtracting multiples of u5, w5
and x2, x3, x4 we obtain

x5 =

⎛

⎜⎜
⎝

0 0 0 0
−q3w5,2 q2 q4 0

0 0 q3 0
0 0 0 0

⎞

⎟⎟
⎠ (7.5)

Rescaling the second row and column we reduce to two cases:

w5,2 = 1 (M1a)

w5,2 = 0 (M1b)

Case (M1a)

In this case we have w5 = (1, 1, 0, 0)t and u5 = (0, 0, 0, 1). We first add q4x2 to x5
and subtract q4w5 from the fourth column. This sets q4 = 0 in (7.5). Next, we subtract
−q2X1 from X5 and then add q2u5 to the first column and q2w5 to the fourth row.
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This makes q2 = 0 (and changes q3). Finally, if q3 is nonzero, we can rescale x5 by
q−1
3 and rescale the fifth row and column. This yields q3 = 1. In summary, we have
two cases: (q2, q3, q4) = (0, 1, 0) and (q2, q3, q4) = (0, 0, 0). These are the types
(T̃O56 ) and (T̃O57 ).

Case (M1b)

In this case we have w5 = (1, 0, 0, 0)t and u5 = (0, 0, 0, 1).
Subtract −q3x1 from x5 and then add q3u5 to the first column and q3w5 to the

fourth row. This makes q3 = 0 (and changes q2).
Subcase q2 = 0: Then either q4 = 0 and we obtain type (TO54 ) or we rescale X5

and the fifth row and column to obtain q4 = 1. Here (q2, q3, q4) = (0, 0, 1). This is
type (TO55 ).

Subcase q2 �= 0: Then we rescale X5 and the fifth row and column to obtain q2 = 1.
Subtract q4 times the second column from the third and add q4 times the third row to
the second. This does not change x1, …, x4 and it changes x5 by making q4 = 0. Here
(q2, q3, q4) = (1, 0, 0), this is type (TO56 ).

We have shown that there are at most seven isomorphism types up to GL(A) ×
GL(B) × GL(C) action, while the dimensions of the Lie algebras and restricted Lie
algebras show that they are pairwise non-isomorphic. This concludes the proof of
Theorem 7.3. ��

7.3 Proof of Theorem 1.7

Proof We first prove that there are exactly five isomorphism types of concise 1-
degenerate 111-abundant up to action of GL5(C)×3

� S3. By Proposition 6.2, after
possibly permuting A, B,C , the space T (A∗) has corank one. It is enough to prove that
in the setup of Theorem 7.3 the two pairs of tensors with the symmetry Lie algebras
of the same dimension of are isomorphic. Swapping the A and C coordinates of the
tensor in case (TO56 ) and rearranging rows, columns, and matrices gives case (T̃O56 ).
Swapping the A and B coordinates of the tensor in case (T̃O57 ) and rearranging rows
and columns, we obtain the tensor

a1(b1c1 +b2c2 + b3c3 + b4c4) + a2b3c2 + a3(b4c1 + b4c2)

+a4(b3c1 − b4c2) + a5(b3c5 + b5c1 + b4c5)

The space of 2 × 2 matrices associated to this tensor is perpendicular to

(
1 0
1 −1

)

which has full rank, hence this tensor is isomorphic to one of the (M2) cases. The
dimension of the symmetry Lie algebra shows that it is isomorphic to (TO57 ). This
concludes the proof that there are exactly five isomorphism types.
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7.4 Proof of the degenerations

Write T � T ′ if T degenerates to T ′ and T � T ′ if T and T ′ lie in the same orbit
of GL5(C)×3

� S3. The above yields TO56 � T̃O56 and T̃O57 � TO57 . Varying the
parameters in Sects. 7.2.1, 7.2.2, 7.2.2 we obtain degenerations which give

TO58 � TO57 � T̃O57 � T̃O56 � TO56 � TO55 � TO54 ,

which proves the required nesting. For example, in Sect. 7.2.2we have a two-parameter
family of tensors parameterized by (q2, q4) ∈ C

2. As explained in that subsection,
their isomorphism types are

q2 �= 0 q2 = 0, q4 �= 0 q2 = q4 = 0
TO56 TO55 TO54

This exhibits the last two degenerations; the others are similar.
To complete the proof, we need to show that these tensors have minimal border

rank. By degenerations above, it is enough to show this for (TO58 ). We give two proofs.

7.5 Two proofs that the tensors haveminimal border rank

7.5.1 Proof one: the tensor (TO58 ) lies in the closure of minimal border rank
1A-generic tensors

Our first approach is to prove that (TO58 ) lies in the closure of the locus of 1A-generic
concise minimal border rank tensors. We do this a bit more generally, for all tensors in
the case (M2). By the discussion above every such tensor is isomorphic to one where
x5 has the form (7.3) and we will assume that our tensor T has this form for some
p3 ∈ C.

Recall the notation from Proposition 3.3. Take u2 = 0, w2 = 0, u3 :=
(0, 0,−p3, 0),wt

3 = (0, p3, 0, 0), u4 = 0,w4 = 0.We see that usxm = 0, xmws = 0,
and wsut = wt us for all s, t , so for every ε ∈ C

∗ we have a commuting quintuple

Id5,

(
xs ws

usε 0

)
s = 2, 3, 4, and

(
x5 w5ε

−1

u5 0

)

We check directly that the tuple is End-closed, hence by Theorem 1.4 it corresponds
to a tensor of minimal border rank. (Here we only use the m = 5 case of the theorem,
which is significantly easier than the m = 6 case.) Multiplying the matrices of this
tuple from the right by the diagonal matrix with entries 1, 1, 1, 1, t and then taking the
limit with t → 0 yields the tuple of matrices corresponding to our initial tensor T .

While we have shown all (M2) cases are of minimal border rank, it can be useful
for applications to have an explicit border rank decomposition. What follows is one
such:
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7.5.2 Proof two: explicit proof of minimal border rank for (TO58 )

For t ∈ C
∗, consider the matrices

B1 =

⎛

⎜⎜⎜⎜
⎝

0 0 1 1 0
0 0 −1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

, B2 =

⎛

⎜⎜⎜⎜
⎝

0 0 −1 1 0
0 0 −1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

,

B3 =

⎛

⎜⎜⎜⎜
⎝

0 0 0 0 0
0 t 1 0 0
0 t2 t 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

, B4 =

⎛

⎜⎜⎜⎜
⎝

−t 0 0 1 0
0 0 0 0 0
0 0 0 0 0
t2 0 0 −t 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

,

B5 = (1,−t, 0,−t, t2)t · (−t, 0, t, 1, t2) =

⎛

⎜⎜⎜⎜
⎝

−t 0 t 1 t2

t2 0 −t2 −t −t3

0 0 0 0 0
t2 0 −t2 −t −t3

−t3 0 t3 t2 t4

⎞

⎟⎟⎟⎟
⎠

The limit at t → 0 of this space of matrices is the required tuple. This concludes the
proof of Theorem 1.7. ��

8 Proof (1)=(4) in Theorem 1.4

8.1 Preliminary remarks

Let T ∈ A⊗B⊗C = C
m⊗C

m⊗C
m be 1A-generic and satisfy the A-Strassen equa-

tions. Let E ⊆ sl(C) be the associated m − 1-dimensional space of commuting
traceless matrices as in Sect. 2.2. Let C be the associated module and S the associated
polynomial ring, as in Sect. 2.2. By Sect. 2.2 the tensor T has minimal border rank if
and only if the space E is a limit of spaces of simultaneously diagonalizable matrices
if and only if C is a limit of semisimple modules.

The principal component of the Quot (resp. Hilbert) scheme is the closure of the
set of semisimple modules (resp. algebras). Similarly, the principal component of the
space of commuting matrices is the closure of the space of simultaneously diagonaliz-
able matrices. A tensor T has minimal border rank if and only if E lies in the principal
component of the space of commuting matrices if and only if C lies in the principal
component of the Quot scheme.

Write Ann (C) = {s ∈ S | s(C) = 0}. Let αi be a basis of A∗ with T (α1)

of full rank and Xi = T (αi )T (α1)
−1 ∈ End(C), for 1 ≤ i ≤ m. The algebra of

matrices generated by Id, X2, . . . , Xm is isomorphic to S/Ann (C). The End-closed
condition in the language of modules becomes the requirement that the algebra of
matrices has dimension (at most) m. The tensor T is assumed to be A-concise, i.e.,
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dim〈Id, X2, . . . , Xm〉 = m, so the algebra is equal to this linear span: Xi X j ∈ 〈Id =
X1, X2, . . . , Xm〉.

Our argument proceeds by examining the possible structures of C and S/Ann (C)

and, in each case, proving that C lies in the principal component. Let r be the minimal
number of generators of C .

In this section we introduce the additional index range

2 ≤ y, z, q ≤ m.

When S/Ann (C) is local, i.e., there is a unique maximal ideal m, we consider the
Hilbert function HC (k) := dim(mkC/mk+1C) and by Nakayama’s Lemma HC (0) =
r . Similarly, we consider the Hilbert function HS/Ann (C)(k) := dim(mk/mk+1). Since
the algebra is local, HS/Ann (C)(0) = 1. Observe that if Xy Xz Xw = 0 for all y, z, w,
then Ann (C) contains S≥3, which implies S/Ann (C) is local. When HS/Ann (C)(1) =
k < m − 1, we may work with a polynomial ring in k variables, S̃ = C[y1, . . . , yk].

We will use the following results, which significantly restrict the possible structure
of C and S/Ann (C).

(i) For a finite algebraA = �At , with theAt local, the algebraA can be generated
by q elements if and only if HAt (1) ≤ q for all t . From the geometric perspective,
the number of generators needed is the smallest dimension of an affine space the
associated scheme can be realized inside, and one just chooses the support of
each At to be a different point of A

q .
(ii) When the module C is generated by a single element (so we are in the Hilbert

scheme), and m ≤ 7, all such modules lie in the principal component [17].
(iii) By [34, Cor. 4.3], when m ≤ 10 and the algebra of matrices generated by

Id, X2, . . . , Xm is generated by at most three generators, then the module
lies in the principal component. When S/Ann (C) is local, this happens when
HS/Ann (C)(1) ≤ 3.

(iv) When m − 1 ≤ 6, if Xy Xz = 0 for all y, z, then the module lies in the prin-
cipal component by [34, Thm. 6.14]. This holds when S/Ann (C) is local with
HS/Ann (C)(2) = 0.

(v) If Xy Xz Xw = 0 for all y, z, w (i.e., HS/Ann (C)(3) = 0), dim
∑

Im(Xy Xz) = 1
(i.e., HS/Ann (C)(2) = 1), and dim∩y,z ker(Xy Xz) = m − 1, then (X2, . . . , Xm)

deforms to a tuple with a matrix having at least two eigenvalues. Explicitly, there
is a normal form so that

Xy =

⎛

⎜⎜
⎜⎜
⎝

0 0 Hy ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 Gy

0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟
⎟⎟
⎠
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where X2
2 �= 0 and all other products are zero. Then

Y :=

⎛

⎜
⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 G2H2 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟⎟⎟
⎠

commutes with all the Xi , and the deformation (to a not necessarily traceless
tuple) is (X2 + λY , X3, . . . , Xm) by [34, Lem. 6.13].

We now show that all End-closed subspaces Ẽ = 〈Id, E〉 lie in the principal com-
ponent when m = 5, 6 by, in each possible case, assuming the space is not in the
principal component and obtaining a contradiction.

8.2 Casem = 5

8.2.1 Case: E contains an element with more than one eigenvalue, i.e., E is not
nilpotent

By [34, Lem. 3.12] this is equivalent to saying the algebra S/Ann (C) is a nontriv-
ial product of algebras �tAt . Since dim(S/Ann (C)) = 5, we have for each t that
dim(At ) ≤ 4 and thus HAt (1) ≤ 3. Using (i), we see S/Ann (C) is generated by at
most three elements, hence is in the principal component by (iii).

8.2.2 Case: all elements of E are nilpotent

In this case Ann (C) contains S≥(m−1)m because any nilpotent m ×m matrix raised to
them-th power is zero and we havem−1 commuting matrices that we could multiply
together. Thus S/Ann (C) is local andwe can speak aboutHilbert functions. By (iii) we
assume HS/Ann (C)(1) ≥ 4, so HS/Ann (C)(2) = 0. Thus for all z, w, yz yw ∈ Ann (C)

and we conclude by (iv).

8.3 Casem = 6

For non-local S/Ann (C), arguing as in Sect. 8.2.1 the only case is S/Ann (C) �
A1 × A2 with dim A1 = 1 and HA2(1) = 4, HA2(2) = 0. Correspondingly the
module C is a direct sum of modules C1 ⊕C2, whereA2 � S/Ann (C2). By (iii) and
(iv) the module C2 lies in the principal component and trivially so does C1. Hence C
lies in the principal component.

We are reduced to the case S/Ann (C) is local. By (iii) we assume HS/Ann (C)(1) >

3. Moreover, if HS/Ann (C)(1) = 5, we have HS/Ann (C)(2) = 0 and we conclude
by (iv). Thus the unique Hilbert function HS/Ann (C) left to consider is (1, 4, 1).
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8.3.1 Case dim
∑

y,z Im(XyXz) = 1, i.e., HS/Ann (C)(2) = 1

Since for all y, z, Xy Xz lies in the m dimensional space 〈Id, X2, . . . , Xm〉, we must
have dim(∩y,z ker(Xy Xz)) = m−1 and thus (v) applies. Let C(λ) denote C with this
deformed module structure. The assumption that X1Xy = Xy X1 = 0 for 2 ≤ y ≤ m
implies H1Ky = 0 and HyK1 = 0 which implies that C(λ) also satisfies the End-
closed condition. SinceC(λ) is not supported at a point, it cannot haveHilbert function
(1, 4, 1) so it is in the principal component, and thus so is C = C(0).

8.3.2 Case dim
∑

y,z Im(XyXz) > 1

This hypothesis says HC (2) ≥ 2. Since HS/Ann (C)(3) = 0 also HC (3) = 0. We have
HC (0) + HC (1) + HC (2) = 6. If HC (0) = 1 then (ii) applies, so assume HC (0) ≥ 2.
If HC (1) = 1, then a near trivial case of Macaulay’s growth bound for modules [8,
Cor. 3.5], says HC (2) < 2, so the Hilbert function HC is (2, 2, 2), and the minimal
number of generators of C is HC (0) = 2. Let F = Se1 ⊕ Se2 be a free S-module of
rank two. Fix an isomorphism C � F/R, where R is the subspace generated by the
relations.

We briefly recall the apolarity theory for modules from [34, §4.1]. Let S̃ =
C[y1, . . . , y4] which we may use instead of S because HS/Ann (C)(1) = 4. Let
S̃∗ = ⊕

j Hom(S̃ j , C) =: C[z1, . . . , z4] be the dual polynomial ring. Let F∗ :=
⊕

j Hom(Fj , C) = S̃∗e∗
1 ⊕ S̃∗e∗

2 = C[z1, . . . , z4]e∗
1 ⊕ C[z1, . . . , z4]e∗

2. The action

of S̃ on F∗ is the usual contraction action. In coordinates it is the “coefficientless”
differentiation: ydi (zuj ) = δi j z

u−d
j when u ≥ d and is zero otherwise. The subspace

R⊥ ⊆ F∗ is an S̃-submodule.
Consider a minimal set of generators of R⊥ ⊆ F∗. The assumption HC (2) = 2

implies there are two generators in degree two, write their leading terms as σ11e∗
1 +

σ12e∗
2 andσ21e∗

1+σ22e∗
2, withσuv ∈ S̃2. ThenAnn (C)∩ S̃≥2 = 〈σ11, . . . , σ22〉⊥∩ S̃≥2.

But HS̃/Ann (C)(2) = 1, so all the σuv must be a multiple of some σ and after changing
bases we write the leading terms as σe∗

1, σe
∗
2. We see 〈yiσe∗

1 +· · · , yiσe∗
2 +· · · , 1 ≤

i ≤ 4〉 ⊆ R⊥, where yi acts on S̃∗ by contraction and the “…” are lower order
terms. Now HC (1) = 2 says this is a 2-dimensional space, i.e., that σ is a square.
Change coordinates so σ = z21. Thus the generators of R⊥ include Q1 := z21e

∗
1 +

�11e∗
1 + �12e∗

2, Q2 := z21e
∗
2 + �21e∗

1 + �22e∗
2 for some linear forms �uv . These two

generators plus their contractions (by y1, y21 ) span a six dimensional space, so these
must be all the generators. Our module is thus a degeneration of the module where
the z1, �uv are all independent linear forms. Take a basis of the module R⊥ ⊆ F∗ as
Q1, Q2, y1Q1, y1Q2, y21Q1, y21Q2. Then the matrix associated to the action of y1 is

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟
⎟⎟
⎠
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and if we deform our module to a space where the linear forms z1, �uv are all inde-
pendent and change bases such that �11 = y∗

2 , �12 = y∗
3 , �21 = y∗

4 , �22 = y∗
5 , we may

write our space of matrices as

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 0 z1 0 z2 z3
0 0 0 z1 z4 z5
0 0 0 0 z1 0
0 0 0 0 0 z1
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟
⎟⎟
⎠

Using Macaulay2 VersalDeformations [33] we find that this tuple is a member of
the following family of tuples of commuting matrices parametrized by λ ∈ C. Their
commutativity is straightforward if tedious to verify by hand

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0 λ2z4 z1 −λz5 z2 z3
−λz1 0 −λz4 z1 z4 z5
−λ3z4 λ2z1 0 λ2z4 z1 −λz5

0 0 0 −λ2z5 λ(z2 − z4) λz3 + z1
0 0 0 0 −λ2z5 0
0 0 0 0 0 −λ2z5

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

Here there are two eigenvalues, each with multiplicity three, so the deformed module
is a direct sum of two three dimensional modules, each of which thus has an associated
algebra with at most three generators and we conclude by (iii). ��

9 Minimal cactus and smoothable rank

For a degree m zero-dimensional subscheme Spec(R) with an embedding Spec(R) ⊆
Seg(PA × PB × PC) ⊆ P(A⊗B⊗C), its span 〈Spec(R)〉 is the zero set of
I1(Spec(R)) ⊆ A∗⊗B∗⊗C∗, where I1(Spec(R)) is the degree one component of
the homogeneous ideal I of the embedded Spec(R). We say that the embedding
Spec(R) ⊆ Seg(PA × PB × PC) is nondegenerate if its span projects surjectively
to PA, PB, and PC . For a nondegenerate embedding, the maps Spec(R) → PA,
Spec(R) → PB, Spec(R) → PC , induced by projections, are embeddings as well. If
〈Spec(R)〉 contains a concise tensor, then the embedding of Spec(R) is automatically
nondegenerate.

The cactus rank [12] of T ∈ A⊗B⊗C is the smallest r such that there exists a degree
r zero-dimensional subscheme Spec(R) ⊆ Seg(PA×PB×PC) ⊆ P(A⊗B⊗C)with
[T ] ∈ 〈Spec(R)〉. (Recall that the smoothable rank has the same definition except that
one additionally requires R to be smoothable.)

Given a degree ρ zero-dimensional scheme Spec(R), for each ϕ ∈ R∗, one
gets a tensor T ϕ ∈ R∗⊗R∗⊗R∗ � C

ρ⊗C
ρ⊗C

ρ defined by T ϕ(r1, r2, r3) :=
ϕ(r1r2r3). Given any non-degenerate embedding Spec(R) ⊆ Seg(PA×PB×PC) ⊆
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P(A⊗B⊗C), the space of tensors T ϕ is isomorphic to the space of tensors 〈Spec(R)〉
as will be shown in the proof of Proposition 9.1 below.

In this section we show that the scheme (resp. smoothable scheme) Spec(R) which
witnesses that a tensor T ∈ A⊗B⊗C has minimal cactus (resp. smoothable) rank is
unique, in fact, the algebra R is isomorphic to AT

111.

Proposition 9.1 Let Spec(R) be a degree m zero-dimensional subscheme and let T ∈
A⊗B⊗C. The following are equivalent:

(1) There exists a nondegenerate embedding Spec(R) ⊆ Seg(PA × PB × PC) with
T ∈ 〈Spec(R)〉, so in particular T has cactus rank at most m.

(2) there exists ϕ ∈ R∗ such that T is isomorphic to the tensor in R∗⊗R∗⊗R∗ given
by the trilinear map (r1, r2, r3) �→ ϕ(r1r2r3).

If T is concise and satisfies the above, then it is 1-generic and has cactus rank m.

Proof We first show (1) implies (2). An embedding Spec(R) ⊆ PA with 〈Spec(R)〉 =
PA is induced from an embedding Spec(R) ⊆ A with 〈Spec(R)〉 = A, which in
turn induces a vector space isomorphism τa : A∗ → R ∼= Sym(A∗)/IR,A as follows:
let IR,A denote the ideal of Spec(R) ⊆ A, then τa(α) := αmod IR,A. Hence, a
nondegenerate embedding of Spec(R) induces a triple of vector space isomorphisms
τa : A∗ → R, τb : B∗ → R, τc : C∗ → R.

More generally, for each (s, t, u), with s, t, u ≥ 1, the map

τs,t,u : Ss A∗⊗St B∗⊗SuC∗ → Ss A∗⊗St B∗⊗SuC∗/(IR,A⊗B⊗C )s,t,u

is a surjection onto R ∼= Ss A∗⊗St B∗⊗SuC∗/(IR,A⊗B⊗C )s,t,u , and these maps are
all compatible with multiplication, in particular τ1,1,1(α⊗β⊗γ ) = τa(α)τb(β)τc(γ ).
Then

〈Spec(R)〉 = (ker τ1,1,1)
⊥ ⊆ (A∗⊗B∗⊗C∗)∗ = A⊗B⊗C .

By duality, the space (ker τ1,1,1)⊥ is the image of the map R∗ → A⊗B⊗C defined
by requiring that ϕ ∈ R∗ maps to the trilinear form (α, β, γ ) �→ ϕ(τa(α)τb(β)τc(γ )).

If T is the image of ϕ, then it is isomorphic to the trilinear map (r1, r2, r3) �→
ϕ(r1r2r3) via τ ta⊗τ tb⊗τ tc , proving (1) implies (2).

Assuming (2), choose vector space isomorphisms τa, τb, τc and define a map
A∗⊗B∗⊗C∗ → R, by α⊗β⊗γ �→ τa(α)τb(β)τc(γ ). (For readers familiar with
border apolarity, the kernel of this map is I111.) Then extend it to Ss A∗⊗St B∗⊗SuC∗
by τa(α1 · · · αs) = τa(α1) · · · τa(αi ) and similarly. This yields the required non-
degenerate embedding of Spec(R). The tensor T ′ corresponding to (α, β, γ ) �→
ϕ(τa(α)τb(β)τc(γ )) is isomorphic to T and lies in 〈Spec(R)〉. This proves (1).

Finally, if T satisfies the above, then it is isomorphic to (r1, r2, r3) �→ ϕ(r1r2r3)
for some ϕ. If T is additionally concise, then for every r ∈ R there exists an r ′ ∈ R
such that ϕ(rr ′) �= 0. Hence the map (r1, r2) �→ ϕ(r1, r2) has full rank. But this map
is ϕ(1R). This shows that T is 1-generic. It has cactus rank at least m by conciseness
and at most m by assumption. ��
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In particular, a concise tensor T ∈ C
m⊗C

m⊗C
m has minimal smoothable rank if

there exists a smoothable degree m algebra R satisfying the conditions of Proposi-
tion 9.1.

Theorem 9.2 Let T ∈ C
m⊗C

m⊗C
m be a concise tensor. The following are equivalent

(1) T has minimal smoothable rank,
(2) T is 1-generic, 111-sharp and its 111-algebra is smoothable and Gorenstein.
(3) T is 1-generic, 111-abundant and its 111-algebra is smoothable.

We emphasize that in Theorem 9.2 one does not need to find the smoothable scheme
to show the tensor has minimal smoothable rank, which makes the theorem effec-
tive by reducing the question of determining minimal smoothable rank to proving
smoothability of a given algebra.

Proof of Theorem 9.2 Suppose (1) holds so there exists a smoothable algebra R and an
embedding of it into Seg(PA×PB×PC) with T ∈ 〈Spec(R)〉. By Proposition 9.1 T
is 1-generic and isomorphic to the tensor in the vector space R∗⊗R∗⊗R∗ given by the
trilinear map (r1, r2, r3) �→ ϕ(r1r2r3) for some functional ϕ ∈ R∗, in particular T ∈
Hom(R⊗R⊗R, C). Suppose that there exists a nonzero r ∈ R such that ϕ(Rr) = 0.
Then for all r1, r2 ∈ R, (r1, r2, r) �→ 0 so T is not concise. Hence no such r exists
and so ϕ is nondegenerate. This shows that R is Gorenstein.

For an element r ∈ R, the multiplication by r on the first position gives a map

μ(1)
r : Hom(R⊗R⊗R, C) → Hom(R⊗R⊗R, C)

and similarly we obtain μ
(2)
r and μ

(3)
r . Observe that for i = 1, 2, 3 and every r ∈ R

the map corresponding to the tensor μ
(i)
r (T ) is the composition of the multiplication

R⊗R⊗R → R, the multiplication by r map R → R and ϕ : R → C. Therefore
μ

(1)
r (T ) = μ

(2)
r (T ) = μ

(3)
r (T ). Moreover, for any nonzero r we have μ

(i)
r (T ) �= 0

since ϕ is nondegenerate. This shows that 〈μ(i)
r (T ) | r ∈ R〉 is an m-dimensional

subspace of AT
111 · T ⊆ A⊗B⊗C .

Since T has minimal smoothable rank, it has minimal border rank so it is 111-
abundant and by Proposition 3.2 is it 111-sharp, so its 111-algebra is 〈μ(i)

r (T ) | r ∈ R〉,
which is isomorphic to R. This proves (1) implies (2). That (2) implies (3) is vacuous.

Suppose (3) holds and take R = AT
111. Then T is 111-sharp by Proposition 3.2,

which also implies the tensor T is isomorphic to the multiplication tensor of R. The
algebra R is Gorenstein as T is 1-generic (see Sect. 2.5). Since R is Gorenstein, the
R-module R∗ is isomorphic to R. Take one such isomorphism � : R → R∗ and
let ϕ = �(1R). Then the composition R⊗R⊗R → R → C can be rewritten as
R⊗R → R → R∗, where the first map is the multiplication and the second one sends
r to rϕ; this second map is equal to �. Composing further with �−1 we obtain a map
R⊗R → R → R∗ → R which is simply the multiplication. All this shows that the
tensor in R∗⊗R∗⊗R∗ associated to (R, ϕ) is isomorphic to the multiplication tensor
of R, hence to T . By Proposition 9.1 and smoothability of R such a tensor has minimal
smoothable rank.
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Remark 9.3 There is a version of Theorem 9.2 without smoothability assumptions: a
concise tensor has minimal cactus rank if and only if it is 1-generic and 111-abundant
with Gorenstein 111-algebra.
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