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ABSTRACT: Buoyant material, such as floating debris, marine organisms, and spilled oil, is

aggregated and trapped within estuaries. Traditionally, the aggregation of buoyant material is

assumed to be a consequence of converging Eulerian surface currents, often associated with lateral

(cross-estuary) density gradients that drive baroclinic lateral circulations. This study explores an

alternative aggregation mechanism due to tidally driven Lagrangian residual circulations without

Eulerian convergence zones and without lateral density variation. In a tidally driven estuary, the

depth-dependent tidal phase of the lateral velocity varies across the estuary. This study demonstrates

that the lateral movement of surface trapped material follows the tidal phase, resulting in a lateral

Lagrangian residual circulation known as Stokes drift for small amplitude motions. For steeper

bathymetry, the lateral change in tidal phase is greater and the corresponding lateral Lagrangian

residual flow faster. At local depth extrema, e.g. in the thalweg, depth does not vary laterally,

so that the associated tidal phase is laterally constant. Therefore, the Stokes drift is weak near

depth extrema resulting in Lagrangian convergence zones where buoyant material concentrates.

These ideas are evaluated employing an idealized analytic model in which the along-estuary tidal

flow is driven by an imposed barotropic pressure gradient, whereas cross-estuary flow is induced

by the Coriolis force. Model results highlight that convergence zones due to Lagrangian residual

velocities are efficient in forming persistent aggregation regions of buoyant material along the

estuary.
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SIGNIFICANCE STATEMENT: Our study focuses on the aggregation of buoyant material (e.g.,25

debris, oil, organisms) in estuaries. Traditionally, the aggregation of buoyant material is assumed26

to be a consequence of converging Eulerian surface currents, often associated with lateral (cross-27

estuary) density gradients that drive baroclinic lateral circulations. Our study explores an alternative28

aggregation mechanism due to tidally driven Lagrangian residual circulations without Eulerian29

convergence zones and without lateral density variation. Our results highlight that convergence30

zones due to Lagrangian residual velocities are efficient in forming persistent aggregation regions31

of buoyant material along the estuary.32

1. Introduction33

The estuarine circulation transports buoyant material such as floating debris, marine organisms,34

surface foam, air bubbles, and pollutants, e.g., oil and microplastics (Kennish 2002). Previous35

observations and hydrodynamic simulations indicate that buoyant material concentrates in laterally36

narrow near-surface patches that may extend from several 100 meters to a few kilometers along37

the estuary (e.g., Nunes and Simpson 1985; Cohen et al. 2019). These material patches greatly38

facilitate interactions between particles related to mating behavior, predator-prey dynamics, access39

to nutrients, and the exposure to pollutants. A common mechanism for patch formation is attributed40

to converging near-surface currents as part of the Eulerian estuarine circulation (e.g., Nunes and41

Simpson 1985; MacCready and Geyer 2010). This study explores an alternative aggregation42

mechanism due to tidally averaged Lagrangian residual flow (Zimmerman 1979).43

Eulerian surface convergence flows can be induced by lateral density variability, for example,44

resulting from differential advection during a tidal cycle (Nunes and Simpson 1985; MacCready45

and Geyer 2010). During flood, density in the thalweg becomes elevated relative to the flanks46

and the resulting baroclinic torques drive a two-cell flow structure with lateral surface currents47

towards the channel center (Lerczak and Geyer 2004; Burchard et al. 2011; Li et al. 2014). This48

mechanism suggests that along-estuary surface aggregation zones are tightly linked to lateral49

density variability. Here, we demonstrate that aggregation zones can form independently of the50

lateral density distribution.51

The Coriolis force presents another critical ingredient in driving flows across the estuary (Lerczak52

and Geyer 2004; Valle-Levinson 2008; Li et al. 2014). The cell structure of this lateral circulation53
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can be complex and generally depends on the estuary geometry, turbulent mixing, and density54

variations. For example, Lerczak and Geyer (2004) explore a single lateral circulation cell due to55

tidally varying Ekman dynamics. Such circulations are associated with vanishing tidally averaged56

Eulerian velocities. However, this study finds that in a Lagrangian framework, Eulerian currents57

with zero tidal average nevertheless contribute to particle transport due the lateral Lagrangian58

residual velocities. The Lagrangian residual velocity is defined as the velocity of a marked fluid59

parcel averaged over one tidal cycle (Longuet-Higgins 1969; Zimmerman 1979).60

The importance of the Lagrangian framework to understand mass transport by time-varying61

ocean currents has long been recognized (Longuet-Higgins 1969; Zimmerman 1979); yet, except62

for a handful of exceptions (e.g., Feng et al. 1986; Jay 1991; Ridderinkhof and Zimmerman 1992;63

Lemagie and Lerczak 2015), few studies previously explored a Lagrangian approach to estuarine64

transport. A tidally averaged Lagrangian residual velocity (Stokes drift velocity for small amplitude65

motions) in the direction of phase progression of the oscillatory currents is well known to occur66

for surface waves including tides (Longuet-Higgins 1969; Li and O’Donnell 1997; LeBlond 1978).67

This study shows that time-dependent secondary flows in estuaries result in Lagrangian residual68

flows that laterally organizes buoyant material and controls material transport, playing an important69

role in estuarine transport processes.70

To understand the Stokes drift intuitively it is insightful to cite Chris Garrett (2004): “The Stokes71

drift is like surfing. The more you stay with a wave, the more you drift forward; that is, you stay72

longer with the forward flow than if were standing still (Eulerian) in which case you would see73

the forward and backward flow for exactly the same amount of time.” A time-series of surface74

cross-channel velocities 𝑣0 further illustrates this concept (Figure 1). Because the phase of 𝑣075

depends on cross-estuary location 𝑦, the particle of the shown path (black line) spends more time76

in positive 𝑣0 than in negative 𝑣0, so that the particle moves forward over a tidal cycle by “surfing"77

positive 𝑣0.78

Laterally varying surface currents organize buoyant material and thus play an important role in84

estuarine transport processes. For example, Burchard et al. (2011) provide examples where the85

Eulerian mean flows at the surface in the channel center can either be (a) landward or (b) seaward86

depending on the details of the controlling dynamics. As such, a steady convergence of surface87
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Fig. 1. Modeled cross-estuary surface velocity 𝑣0(𝑡, 𝑦) as function of time 𝑡 and cross-estuary location 𝑦 with

associated particle trajectory (black line). This trajectory shows how the particle released at 𝑦 = −1000 m follows

the phase to converge in an oscillating tidal motion over the channel center. The model is discussed in detail in

section 3 and is based on solution (9) with parabolic bathymetry (Figure 2) with ℎmax = 15 m and ℎmin = 5 m and

half width 𝐵 = 2 km. Other model parameters are 𝐴 = 0.0022m2s−1, 𝑈0=0.75ms−1, 𝑓 = 10−4s−1.
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material to the thalweg via lateral Stokes drift would result in the (a) retention or (b) export of88

material.89

The goal of this paper is to provide a proof-of-concept demonstrating the importance of La-90

grangian residual flows in tidally driven estuaries for aggregating buoyant material in laterally91

narrow zones along the estuary. The following section introduces basic theoretical concepts and92

discusses favorable conditions for converging Lagrangian flows in estuaries. Section 3 reviews an93

idealized analytic model for the tidally driven estuarine circulation following Lerczak and Geyer94

(2004), which is applied in section 4. We conclude in section 5 that Lagrangian convergence zones95

are efficient in forming persistent aggregation regions of buoyant material in estuaries.96

2. Theory97

a. Lagrangian residual velocity98

We explore the horizontal Lagrangian residual velocity of an oscillating tidal flow with along-99

estuary velocity 𝑢(𝑡, 𝑦, 𝑧) and cross-estuary velocity 𝑣(𝑡, 𝑦, 𝑧). The velocity shall only depend on100

vertical coordinate (increasing upward with 𝑧 = 0 at that air-sea interface) and on cross-estuary101

5



(lateral) coordinate 𝑦 (with 𝑦 = 0 at the channel center), see definition sketch in Figure 2. The102

velocity (𝑢, 𝑣) is assumed to be independent of the along-channel location 𝑥. The dependence of103

𝑢 and 𝑣 on time 𝑡 shall be prescribed by a sinusoidal oscillation, so that the Eulerian average 𝑢̄ and104

𝑣̄ over one tidal cycle is zero that is 𝑢̄ = 𝑣̄ = 0. Here, the overbar denotes the temporal average over105

one tidal period 𝑇 from 𝑡 −𝑇/2 to 𝑡 +𝑇/2.106

z

yx z = 0
z = ⎼hmin

y = ⎼B

h(y)

y =B

z = ⎼hmax

Tides U0 ⎼ f u
⎼ f u

𝛽

Fig. 2. Definition sketch of idealized estuary with parabolic cross-estuary bathymetry. Along-channel tidal

currents are characterized by velocity scale𝑈0, the Coriolis force− 𝑓 𝑢 drives a cross-channel flow, while turbulent

mixing induce a bottom boundary layer whose height scales as 𝛽. These processes result in a tidal cross-channel

velocity whose phase depends on depth ℎ.

107

108

109

110

The Lagrangian velocity is often decomposed in Eulerian and Stokes drift velocities (e.g., Buhler111

2009). This decomposition is particularly meaningful for small amplitude motions in which the112

Stokes drift is the first order approximation of the difference between Lagrangian and Eulerian113

velocity. Following Longuet-Higgins (1969) and Zimmerman (1979), we distinguish in this study114

between Stokes drift for small amplitude motions and a more general residual circulation, which is115

the Lagrangian velocity with zero Eulerian mean motion.116

To define the Lagrangian residual velocity, we first consider the time-dependent horizontal tra-117

jectory (𝑋 (𝑡),𝑌 (𝑡)) of a particle marked at time 𝑡0 and horizontal position (𝑋0,𝑌0). For this118
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proof-of-concept study, we examine only Lagrangian surface motion with 𝑧 = 0. The correspond-119

ing Lagrangian particle velocity is then obtained from the Eulerian velocity fields through the120

relation (𝑈,𝑉) = (𝑢(𝑡,𝑌 ,0), 𝑣(𝑡,𝑌 ,0)). Finally, the Lagrangian residual velocity is defined by the121

tidal average of the Lagrangian velocity, (𝑈̄,𝑉̄), where the overbar indicates the tidal average122

(Zimmerman 1979). In this study, we focus on convergence regions of 𝑉̄ ; the explicit expression123

for 𝑉̄ is124

𝑉̄ (𝑡, 𝑡0,𝑌0) =
1
𝑇

∫ 𝑡+𝑇/2

𝑡−𝑇/2
𝑉 (𝑡′, 𝑡0,𝑌0)𝑑𝑡′ =

1
𝑇

∫ 𝑡+𝑇/2

𝑡−𝑇/2
𝑣(𝑡′,𝑌 (𝑡′, 𝑡0,𝑌0),0)𝑑𝑡′. (1)

b. Lagrangian convergence regions125

To understand surface aggregation of buoyant particles due to Lagrangian convergence regions,126

we first approximate (1). For sufficiently small |𝑌 −𝑌0 |, so that |𝜎−1𝜕𝑣/𝜕𝑦 | � 1, where 𝜎 = 2𝜋/𝑇127

is the angular tidal frequency, the first order Taylor expansion in (𝑌 −𝑌0) accurately approximates128

𝑉̄ , which is referred to as Stokes drift 𝑣𝑠 (Longuet-Higgins 1969)129

𝑉̄ (𝑦) ≈ 𝑣𝑠 (𝑦) =
𝜕𝑣

𝜕𝑦
(𝑡′, 𝑦)

∫ 𝑡 ′

𝑡−𝑇/2
𝑣(𝑡′′, 𝑦)𝑑𝑡′′. (2)

The condition |𝜎−1𝜕𝑣/𝜕𝑦 | � 1 ensures that lateral changes of 𝑣 are relatively small over a tidal130

excursion. Generally 𝑣𝑠 depends on estuary depth. Note that the Stokes drift does not depend on 𝑡131

because 𝑣 is periodic over 𝑇 and the range of motion is assumed to be sufficiently small in (2). For132

a sinusoidally varying tidal flow, the Eulerian cross-estuary velocity can be expressed as133

𝑣 = |𝑣 |<{exp[𝑖(𝜑−𝜎𝑡)]} , (3)

where |𝑣 | represent the cross-estuary velocity magnitude and 𝜑 denotes the cross-estuary velocity134

phase, < symbolizes the real part of the argument. Substitution of this velocity expression into (2)135

yields136

𝑣𝑠 =
1
2
|𝑣 |2
𝜎

𝜕𝜑

𝜕𝑦
, (4)

which demonstrates that the lateral Stokes drift critically depends on the cross-estuary phase change137

𝜕𝜑/𝜕𝑦. Generally, 𝑣 depends on estuary depth ℎ while ℎ(𝑦) changes across the estuary (Figure 2),138
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so that the phase change becomes139

𝜕𝜑

𝜕𝑦
=
𝜕𝜑

𝜕ℎ

𝜕ℎ

𝜕𝑦
. (5)

The last equation suggests that the Stokes drift (4) is proportional to the channel slope ℎ𝑦 = 𝜕ℎ/𝜕𝑦140

so that the Lagrangian residual transport is greater for steeper bathymetry. Furthermore, wherever141

ℎ has a local maximum, e.g. in the channel center (Figure 2), ℎ𝑦 changes its sign across that142

local maximum. Consequently, the Stokes drift flips sign as well, providing a mechanism for143

Lagrangian convergence zones over bathymetry extrema. Note that this result is valid for arbitrary144

cross-estuary depth profile ℎ(𝑦) with a local maximum and does not dependent on any idealized145

parabolic channel geometry. Below we show that this mechanism is likely to occur in wide range of146

tidally driven estuaries that are wide enough for the Coriolis force to be important with sufficiently147

steep topography. In addition, 𝜑(ℎ) may have a local extreme point along varying depth such148

that 𝜕𝜑/𝜕ℎ = 0, providing another possibility for Stokes drift convergence across the channel that149

is not related to bathymetry extrema but may occur away from the channel center in Figure 2.150

These possibilities for Lagrangian convergence will next be explored through an idealized model151

for Ekman-forced lateral flows.152

3. Idealized model for Ekman-forced lateral flow153

To design a straight-forward concept model with 𝜑(ℎ) and 𝑣̄ = 0, we employ the idealized model154

for tidally driven Ekman-forced flow from Lerczak and Geyer (2004, see appendix therein), which155

is reviewed here for convenience. The governing linear equations for the tidally varying along- and156

cross-estuary velocities, 𝑢 and 𝑣, respectively, are157

𝜕𝑢

𝜕𝑡
= −𝑔𝜕𝜂

𝜕𝑥
+ 𝐴

𝜕2𝑢

𝜕𝑧2 , (6)

158

𝜕𝑣

𝜕𝑡
= − 𝑓

(
𝑢− 1

ℎ

∫ 0

−ℎ
𝑢𝑑𝑧

)
+ 𝐴

𝜕2𝑣

𝜕𝑧2 +
𝜏𝑏

ℎ𝜌
. (7)

Here, the density 𝜌 is assumed to be constant, 𝑓 is the Coriolis parameter, 𝐴 is a constant vertical

eddy viscosity, 𝑔 is the acceleration due to gravity, 𝜂 is the sea-surface height, 𝜏𝑏 = 𝜌𝐴(𝜕𝑣/𝜕𝑧) |𝑧=−ℎ
is the bottom stress, 𝑥 is the along-estuary coordinate such that 𝑥 = 0 at the estuary mouth and 𝑥 < 0

up-estuary (Figure 2). The along-channel flow is driven by a prescribed tidally-varying hydrostatic
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pressure gradient due to the sloping air-sea interface such that

𝜕𝜂

𝜕𝑥
=<[𝑖𝑈0𝜎𝑔

−1 exp(−𝑖𝜎𝑡)],

where 𝑈0 is a constant scale for the tidal velocity amplitude and 𝜎 denotes the angular tidal159

frequency. The cross-channel flow is forced through the Coriolis term − 𝑓 𝑢 in (7). Note that (7)160

describes the dynamics of lateral flows by subtracting the depth average of the 𝑣 equation assuming161

a negligible depth-average 𝑣.162

The balance (7) highlights that the phase of 𝑣 critically depends on depth ℎ, which is directly seen163

by scaling the acceleration term (first left-hand side term) relative to the stress terms (two last right-164

hand side terms) whose ratio scales as ℎ/𝛽, where 𝛽 is the boundary layer thickness 𝛽 =
√︁

2𝐴/𝜎165

For relatively small ℎ, ℎ/𝛽 � 1, the acceleration term is relatively small, and 𝑣 is expected to be166

in phase with the Coriolis term. On the other hand, for relatively large ℎ, ℎ/𝛽 � 1, acceleration is167

expected to be dominant so that 𝑣 is 90◦ out of phase with the Coriolis term. Therefore, 𝜑 depends168

on ℎ which results in a lateral Stokes drift if ℎ varies across the estuary, as discussed above.169

Solutions to (6) and (7) are derived by imposing the boundary conditions 𝑢 = 𝑣 = 0 at 𝑧 = −ℎ170

and a zero surface stress condition 𝜕𝑢/𝜕𝑧 = 𝜕𝑣/𝜕𝑧 = 0 at 𝑧 = 0 (see details in Lerczak and Geyer171

2004). Furthermore, solutions are determined so that the depth-integrated cross-channel transport172

is zero for all 𝑡. Analytic solutions are obtained by imposing a time dependence exp(−𝑖𝜎𝑡) for 𝑢173

and 𝑣 resulting with (6) and (7) in the complex cross-channel flow structure functions for 𝑣 in (3)174

|𝑣 | exp(𝑖𝜑) =
𝑖

2
𝑈0

𝑓

𝜎

[
𝛼

cosh(𝜅𝑧)
cosh(𝜅ℎ) −𝛼

tanh(𝜅ℎ)
𝜅ℎ

− 𝜅𝑧
sinh(𝜅𝑧)
cosh(𝜅ℎ) −

tanh(𝜅ℎ)
𝜅ℎ

+1
]

(8)

with 𝜅2 = −2𝑖𝛽−2 and 𝛼 = [(𝜅ℎ)2 tanh(𝜅ℎ)]/[𝜅ℎ− tanh(𝜅ℎ)] − 1. The lateral velocity depends on175

the non-dimensional boundary layer thickness 𝛽/ℎ (Figure 3). If 𝛽 is comparable to ℎ, the lateral176

velocity is characterized by a single lateral cell structure, whereas for small 𝛽 and greater ℎ/𝛽, the177

boundary layer is shallower and cross-currents intensify closer to the bottom (Lerczak and Geyer178

2004).179
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In this study, we are interested in the lateral surface velocity 𝑣0 = 𝑣(𝑧 = 0) with phase 𝜑0 = 𝜑(𝑧 = 0)183

which are normalized as184

𝜎

𝑓

|𝑣0 |
𝑈0

exp(𝑖𝜑0) =
𝑖

2

[
𝛼

cosh(𝜅ℎ) −𝛼
tanh(𝜅ℎ)

𝜅ℎ
− tanh(𝜅ℎ)

𝜅ℎ
+1

]
. (9)

Thus, the normalized surface velocity magnitudes and phases only depend on ℎ/𝛽 because 𝜅 ∝ 𝛽−1
185

(Figure 3). Lerczak and Geyer (2004) considered the range of 0.1 < 𝛽/ℎ < 0.4 or 2.5 < ℎ/𝛽 < 10,186

which is typical range found in estuarine systems. For this parameter range, Figure 3 suggests187

a significant |𝑣 | and a substantial dependence of 𝜑 on ℎ for ℎ/𝛽 > 8, indicating non-zero Stokes188

drift according to (4) and a significant Lagrangian residual circulation. Figure 1 illustrates how the189

lateral surface velocity 𝑣0 changes over a tidal cycle across the estuary enabling surface trapped190

particles to move with the phase.191
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4. Convergence zones due to the Lagrangian residual circulation192

Applying the idealized model, we will first contrast differences between the Stokes drift and the193

full Lagrangian residual velocity, before considering illustrative example solutions for a parabolic194

cross-estuary bathymetry (Figure 2).195

a. Stokes drift196

Substitution of (8) into (4) results in the non-dimensioan lateral Stokes drift197

𝑣𝑠
𝛽𝜎

(𝑈0 𝑓 /𝜎)2
1
ℎ𝑦

=
1
2

|𝑣 |2
(𝑈0 𝑓 /𝜎)2

𝜕𝜑

𝜕 (ℎ/𝛽) , (10)

which only depends on the single non-dimensional parameter (ℎ/𝛽) (Figure 4). The normalized198

Stokes drift peaks near where |𝑣 | and 𝜕𝜑/𝜕 (ℎ/𝛽) peak, compare with Figure 3. Note that the199

Stokes drift changes sign near ℎ/𝛽 = 6, which is associated with a Lagrangian convergence zone200

as discussed above. Equation (10) highlights that the Stokes drift is proportional to ℎ𝑦. Recall that201

ℎ𝑦 must not be too large for an accurate Stokes drift estimate because the small amplitude motion202

requires that 𝑣 does only change approximately linearly along the particle 𝑌 −𝑌0. This requires203

that |𝜎−1𝜕𝑣/𝜕𝑦 | � 1 or ℎ𝑦 (𝛽𝜎)−1 |𝜕𝑣/𝜕 (𝑦/𝛽) | � 1, so that ℎ𝑦 also critically controls higher order204

contributions to the Lagrangian residual velocity (1).205

b. Dependence of 𝑉̄ on ℎ𝑦 and ℎ/𝛽209

Next we release and track particles for the flow field (9) to determine the Lagrangian residual210

circulation numerically based on (1) (Figure 4). Particle paths are computed using standard211

numerical ordinary differential equation solvers (4th order Runge-Kutta method). Solutions are212

obtained over a range of the two independent parameters ℎ/𝛽 and ℎ𝑦, where ℎ𝑦 is set constant for213

each run. The Lagrangian residual velocity still peaks close to where |𝑣 | and 𝜕𝜑/𝜕𝑦 peak, compare214

with Figure 3, but clearly also depends on slope ℎ𝑦 (Figure 4). As expected, the Stokes drift (10)215

accurately approximates 𝑉̄ for smaller slopes. These numeric solutions provide an expectation for216

𝑉̄ and Lagrangian convergence zones 𝜕𝑉̄/𝜕𝑦 < 0 across the channel for given 𝛽 and ℎ(𝑦).217

For realistic parameters (for example, Figure 4a with ℎ𝑦=0.01, 𝐴 = 0.0022m2s−1, 𝑈0=0.75ms−1,218

𝑓 = 10−4s−1) we find 𝑉̄ in the order of several cm/s, which comparable to tidally averaged Eulerian219
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lateral currents obtained from more realistic nonlinear hydrodynamic models with stratification220

(Lerczak and Geyer 2004; Burchard et al. 2011). A simple scaling for 𝑉̄ can be developed by221

considering a range of nondimensional 𝑉̄ based on solutions of the idealized model (Figure 4). For222

realistic 2 < ℎ/𝛽 < 5, normalized 𝑉̄ is substantial with 𝑉̄ 𝛽𝜎/(𝑈0 𝑓 /𝜎)2/ℎ𝑦 often exceeding 0.005.223

Taking realistic parameters as above, this results in typical 𝑉̄ ≈ 5 cm/s for ℎ𝑦 = 0.01. Below we224

furthermore show that variability of ℎ/𝛽 from 2 to 8 across the estuary has an appreciable effect on225

the Lagrangian transport. Thus, our results suggest that lateral Lagrangian residual flows can play226

an important role in persistently transporting and organizing material over multiple tidal cycles in227

tidally driven estuaries, such as Delaware Bay, South San Francisco Bay, Mobile Bay, Raritan Bay,228

Hudson River, and James River.229
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c. Illustrative examples230

We apply the idealized model to a parabolic channel with depth ℎ(𝑦) = ℎmax − (ℎmax −231

ℎmin) (𝑦/𝐵)2, where 𝐵 is half the channel width, and the maximum and minimum depths are,232

respectively, ℎmax = 15 m and ℎmin = 5 m (Figure 2). To explore the dependence on slope,233

we design three experiments with 𝐵 = 5 km, 2 km, and 1 km with constant eddy viscosity of234

𝐴 = 2.2× 10−3m2s−1. In these experiments, 𝐵 controls the slope with steeper slopes for smaller235

𝐵. To investigate model result for a greater ℎ/𝛽 range, we also explore a case with smaller 𝐴 of236

𝐴 = 3.3×10−4m2s−1, where 𝐵 is set to 𝐵 = 2 km. These 𝐴 values are consistent with those from237

Lerczak and Geyer (2004), similar to other model parameters which are held constant at 𝑈0 = 0.75238

m s−1, 𝑓 = 10−4 s−1, and 𝑇 = 12 h. For all cases, particles are released at 𝑡 = 0 and 𝑦 = −𝐵/2 and239

tracked over six full semi-diurnal tidal cycles.240

For the three experiments with greater 𝐴, ℎ/𝛽 is in the range ℎ/𝛽 = 0.5− 3 so that the phase245

increases with depth (Figure 3). Consistent with the analysis above, particles converge in the246

channel center, even for the mildest sloping case with 𝐵 = 5 km for which particles aggregate more247

slowly (Figure 5, upper six panels). As expected, the Stokes drift 𝑣𝑠 is greater for steeper slopes248

(smaller 𝐵), so that the particles accumulate more quickly around channel center where 𝜕𝜑/𝜕𝑦 = 0.249

In agreement with the analysis presented above, 𝑣𝑠 accurately approximates 𝑉̄ near the channel250

center but deviations between 𝑣𝑠 and 𝑉̄ are found away from the channel where slopes are steeper.251

These Lagrangian convergence zones quickly drive particles towards the channel center regardless252

of initial particle location (Figure 6a). As observed in Figure 1, particles surf the cross-channel253

velocity 𝑣0 resulting in a net transport over a tidal cycle. Note that without tidal averaging particle254

aggregation zones oscillate around the channel center because of the tidal flow.255

For the case with smaller 𝐴, ℎ/𝛽 is in the range ℎ/𝛽 = 2− 8, which includes ℎ/𝛽 ≈ 6 at about259

𝑦 ≈ ±1000 m. Since the phase is nearly constant at this cross-channel location with 𝜕𝜑/𝜕ℎ = 0260

(Figure 3), the phase is also nearly constant across the channel and 𝜕𝜑/𝜕𝑦 = 0. Consistently,261

Lagrangian convergence zones occur at those lateral locations where ℎ/𝛽 ≈ 6. As a consequence,262

particles converge for this case off the channel center at 𝑦 = ±1000 m (Figure 5, bottom two panels),263

and particles that are evenly released over the channel aggregate in those two convergence zones264

(Figure 6b). In the channel center between 𝑦 ≈ −1000 m to 𝑦 ≈ 1000 m, the depth is deeper so that265

ℎ/𝛽 > 6 here. In this region 𝜑 depends only weakly on ℎ/𝛽 (Figure 3), so that particles converge266
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Fig. 5. Lagrangian cross-channel transport solutions with parabolic bathymetry with ℎmax = 15 m, ℎmin = 5

m and (a,b) 𝐵 = 5000 m, 𝐴 = 2.2× 10−3m2s−1; (c,d) 𝐵 = 2000 m, 𝐴 = 2.2× 10−3m2s−1; (e,f) 𝐵 = 1000 m,

𝐴 = 2.2×10−3m2s−1; (g,h) 𝐵 = 2000 m, 𝐴 = 3.3×10−4m2s−1. (Left panels, a, c, e, g) Particle locations 𝑌 (𝑡) and

𝑌 (𝑡), (right panels b, d, f, h) 𝑉̄ (𝑦). Other model parameters are 𝑈0=0.75ms−1, 𝑓 = 10−4s−1, 𝑇 = 12 h.
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Fig. 6. Surface velocity 𝑣0 and Particle trajectories 𝑌 (𝑡) (lines) for (a) 𝐴 = 2.2×10−3m2s−1 with 𝜕ℎ/𝜕𝑦 = 0

and a convergence zone in the channel center at 𝑦 = 0 m, and (b) 𝐴 = 3.3× 10−4m2s−1 and 𝜕𝜑/𝜕ℎ = 0 and

convergence zones near 𝑦 ≈ ±1000 m; other parameters as discussed in the main text.

256

257

258

only slowly to the lateral location where ℎ/𝛽 ≈ 6 and particles are trapped between 𝑦 ≈ −1000267

m to 𝑦 ≈ 1000 m for long times (Figure 6b). These results suggest that the Lagrangian residual268

transport and Lagrangian convergence zones strongly depend on turbulent boundary layer mixing269

(represented by 𝐴) and depth. The Stokes drift estimate is accurate for small 𝑉̄ and thus insightful270

for identifying convergence regions.271

Note that 𝐴 may vary across the estuary due complex topography and related bottom roughness.272

For example, if roughness increases in shallower regions one may assume an inverse relation273

between 𝐴 and ℎ. If this inverse relation is approximated by 𝐴 ∝ ℎ−1 then 𝛽 ∝ ℎ−1/2 and ℎ/𝛽 ∝ ℎ3/2,274

which increases the phase change as the fluid moves across the channel relative to constant 𝐴 (Figure275

3) and thus enhances the Stokes drift.276
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5. Conclusions277

This proof-of-concept study demonstrates the importance of Lagrangian residual velocities in278

transporting and aggregating surface trapped buoyant material in tidally driven estuaries. Any279

cross-estuary (lateral) Eulerian velocity with zero tidally averaged velocity yet with a lateral tidal280

phase variability will result in a net Lagrangian velocity that will follow this phase and converge at281

location where phase is most lagged, often the center of the channel. For small amplitude motions282

this velocity is characterized by Stokes velocity described by the low-order approximation in (2).283

A straightforward analysis of the lateral momentum balance reveals that the tidal phase generally284

depends on tidal frequency, turbulent mixing, and estuary depth. For greater depth and tidal285

frequency but weaker turbulent mixing, the lateral acceleration increases relative to the stress286

divergence term, inducing a phase shift of the later velocity towards 90◦ out of phase with the287

Coriolis force term. Therefore, the tidal phase varies across the estuary with varying estuarine288

depth. Our results show that this lateral phase variability has critical implications for the lateral289

transport and aggregation of surface trapped material. For steeper bathymetry, the lateral change290

in tidal phase is greater and the corresponding lateral Lagrangian residual flow faster. At local291

depth extrema, e.g. in the thalweg, depth does not vary laterally, so that the associated tidal phase292

is laterally constant. Therefore, the Stokes drift is weak near depth extrema resulting in Lagrangian293

convergence zones where buoyant material concentrates.294

We examined these ideas employing the idealized analytic model from Lerczak and Geyer (2004)295

in which the along-estuary tidal flow is driven by an imposed barotropic pressure gradient, whereas296

cross-estuary flow is induced by the Coriolis force. Analytic solutions of the lateral tidal phase297

and nondimensional velocity at the surface only depend on a nondimensional depth given by298

the estuarine depth normalized by a tidally driven turbulent boundary layer depth scale. The299

nondimensional Stokes drift also only depends on this nondimensional depth and the Stokes drift300

is proportional to the bathymetry slope. Therefore, the Stokes drift changes sign across depth301

maxima coinciding with a Lagrangian convergence zone. Furthermore, analytic phase solutions302

demonstrate a local peak of lateral phase at a particular normalized depth revealing Stokes drift303

convergence across the channel that is not related to bathymetry extrema but may occur away from304

the channel center. Although the Stokes drift is only an accurate estimate for the Lagrangian residual305
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velocity for smaller amplitude motions, and thus smaller slopes, it still provides expectations for306

Lagrangian convergence zones.307

More comprehensive approaches need to incorporate competing influences due to density vari-308

ations and lateral advection, which affects the lateral circulation and mixing in the estuary. Some309

mixing modifications due to stratifications may be captured by adjusting 𝐴, and thus 𝛽, though310

others may require that 𝐴 depends on the tidal phase and vertical coordinate (Jay and Musiak311

1994). Furthermore, differential advection of saltier or fresher water induce lateral density gradi-312

ents and associated Eulerian secondary circulations (Nunes and Simpson 1985; MacCready and313

Geyer 2010) that could either reinforce or compete with Lagrangian convergence zones. Note that314

even in the presence of variable densities, the tidal phase of the lateral circulation still generally315

depends on cross-channel location which will introduce Lagrangian residual flows focus of our316

study.317

Overall, this study highlights that convergence zones due to Lagrangian residual velocities are318

efficient in forming persistent aggregation regions of buoyant material along the estuary and should319

be taken into account for comprehensive estuarine transport investigations.320
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