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Abstract
Birkhoff’s representation theorem (Birkhoff, Duke Math J 3(3):443–454, 1937)
defines a bijection between elements of a distributive lattice and the family of upper
sets of an associated poset. Although not used explicitly, this result is at the back-
bone of the combinatorial algorithm by Irving et al. (J ACM 34(3):532-543, 1987) for
maximizing a linear function over the set of stable matchings in Gale and Shapley’s
stable marriage model (Gale and Shapley, Am Math Monthly 69(1):9–15 1962). In
this paper, we introduce a property of distributive lattices, which we term as affine
representability, and show its role in efficiently solving linear optimization problems
over the elements of a distributive lattice, as well as describing the convex hull of
the characteristic vectors of the lattice elements. We apply this concept to the stable
matchingmodel with path-independent quota-filling choice functions, thus giving effi-
cient algorithms and a compact polyhedral description for this model. To the best of
our knowledge, this model generalizes all those for which similar results were known,
and our paper is the first that proposes efficient algorithms for stable matchings with
choice functions, beyond classical extensions of the Deferred Acceptance algorithm.
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1 Introduction

SinceGale and Shapley’s seminal publication [21], the concept of stability inmatching
markets has been widely studied by the optimization community. With minor mod-
ifications, the one-to-many version of Gale and Shapley’s original stable marriage
model is currently employed in the National Resident Matching Program [36], which
assigns medical residents to hospitals in the US, and for assigning eighth-graders to
public high schools in many major cities in the US [2].

In this paper, matching markets have two sides, which we call firms F and workers
W . In themarriagemodel, every agent from F∪W has a strict preference list that ranks
agents in the opposite side of themarket. The problemasks for a stablematching, which
is a matching where no pair of agents prefer each other to their assigned partners. A
stable matching can be found efficiently via the Deferred Acceptance (DA) algorithm
[21]. Although successful, the marriage model does not capture features that have
become of crucial importance both inside and outside academia. For instance, there is
growing attention tomodels that can increase diversity in school cohorts [34, 43]. Such
constraints cannot be represented in the original model, or its one-to-many or many-
to-many generalizations, since admission decisions with diversity concerns cannot be
captured by a strict preference list.

To model these and other markets, instead of ranking individual potential partners,
each agent a ∈ F ∪ W is endowed with a choice function Ca that picks a team she
prefers the best from a given set of potential partners. See, e.g., [8, 18, 28] for more
applications of models with choice functions. Models with choice functions were first
studied in [29, 37].Mutatis mutandis, one can define a concept of stability in thismodel
as well (for this and the other technical definition mentioned below, see Sect. 2). Two
classical assumptions on choices functions are substitutability and consistency, under
which the existence of stablematchings is guaranteed [7, 25]. Clearly, existence results
are not enough for applications (and for optimizers). Interestingly, little is known about
efficient algorithms in models with choice functions. Only extensions of the classical
Deferred Acceptance algorithm for finding the one-side optimal matching have been
studied for this model [14, 37].

The goal of this paper is to study algorithms for optimizing a linear function w

over the set of stable matchings in models with choice functions, where w is defined
over firm-worker pairs. Such questions are classical in combinatorial optimization,
see, e.g., [41] (and [31] for problems on matching markets), and having efficient
algorithms for such questions allows one to find the optimal stablematching for various
linear objectives, such as profit-maximal and egalitarian (i.e., fair for both sides of the
market). We focus on two models. The first model (CM- Model) assumes that all
choice functions are substitutable, consistent, and cardinal monotone. The second
model (CM- QF- Model) additionally assumes that for one side of the market, choice
functions are also quota-filling. Before proceeding, let us give some concrete examples
of such models.

In the school choice problem, many mechanisms that combine stability with affir-
mative actions can be viewed as modeling schools’ decisions via choice functions.
We here describe two popular mechanisms, which are called majority quota [2] and
minority reserve [24]. Under majority quota, a school’s choice function first chooses
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the top students one by one until the number of majority students chosen is at its
majority quota, and then chooses the top minority students until the total quota is met
or until there are no more minority students. Under minority reserve, a school’ choice
function first chooses the top minority students up to its reservation quota, and then
chooses the remaining top students (both majority and minority) until the total quota
is met or until there are no more students to choose from. Both mechanisms have
students simply ranking the schools in order of preference, as in the classical model,
and thus both fall under the CM- QF- Model.

Both the (CM- QF- Model) and the (CM- Model) generalize all classical models
where agents have strict preference lists, on which results for the question above were
known. For thesemodels,Alkan [5] has shown that stablematchings forma distributive
lattice. As we argue next, this is a fundamental property that allows us to solve our
optimization problem efficiently.

1.1 Our contributions and techniques

We give here a high-level description of our approach and results. For the standard
notions of posets, distributive lattices, and related definitions see Sect. 2. All sets
considered in this paper are finite.

Let L = (X ,�) be a distributive lattice1, where the elements of X are distinct
subsets of a base set E and � is a partial order on X . We refer to S ∈ X as an
element (of the lattice). Birkhoff’s theorem [12] implies that we can associate2 to L
a poset B = (Y ,��) such that there is a bijection ψ : X → U(B), where U(B) is
the family of upper sets of B. U ⊆ Y is an upper set of B if y ∈ U and y′ �� y for
some y′ ∈ Y implies y′ ∈ U . We say therefore that B is a representation poset for L
with the representation function ψ . See Example 1 below. B may contain much fewer
elements than the lattice L it represents, thus giving a possibly “compact” description
of L. The representation poset B and the representation function ψ are univocally
defined per Birkhoff’s theorem. Moreover, the representation function ψ satisfies that
for S, S′ ∈ X , S � S′ if and only ifψ(S) ⊆ ψ(S′). AlthoughB explains how elements
of X are related to each other with respect to �, it does not contain any information
on which items from E are contained in each lattice element. We introduce therefore
Definition 1. For S ∈ X and U ∈ U(B), we write χ S ∈ {0, 1}E and χU ∈ {0, 1}Y to
denote their characteristic vectors, respectively.

Definition 1 LetL = (X ,�) be a distributive lattice on a base set E and B = (Y ,��)

be a representation poset forLwith representation functionψ . B is an affine represen-
tation ofL if there exists an affine function g : RY → R

E such that g(χU ) = χψ−1(U ),
for all U ∈ U(B). In this case, we also say that B affinely represents L via function g
and that L is affinely representable.

1 Note that the ordering of lattices used in this paper is opposite to the standard notations in lattice theory,
where lattices are usually represented by L = (X ,�). Our notation, however, follows classical stable
matching literature.
2 The result proved by Birkhoff is actually a bijection between the families of lattices and posets, but in
this paper we shall not need it in full generality.
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(a) (b)

Fig. 1 Lattices for Example 1

We observe that, in Definition 1, we can always assume g(u) = Au + x0, where
A ∈ {0,±1}E×Y and x0 is the characteristic vector of the maximal element of L.
Indeed, g(χ∅) = x0. Moreover, for every y ∈ B, there is U ,U ′ ∈ U(B) such that
U ′ = U \ {y}. Hence, letting ay be the column of A corresponding to y, we have

ay = g(χU )− g(χU ′) = χψ−1(U ) − χψ−1(U ′) ∈ {0,±1}E .

Example 1 Consider first the distributive lattice L = (X ,�) whose Hasse diagram is
given in the Fig. 1a, with base set E = {1, 2, 3, 4}.

The representation posetB = (Y ,��) ofL contains two non-comparable elements,
y1 and y2. The representation function ψ maps Si to Ui for i ∈ [4] with U1 = ∅,
U2 = {y1}, U3 = {y2}, and U4 = {y1, y2}. That is, U(B) = {U1,U2,U3,U4}. One
can think of y1 as the operation of adding {3} and removing {2}, and y2 as the operation
of adding {4}. B affinely represents L via the function g(χU ) = AχU + χ S1 where

A =

⎛
⎜⎜⎝

0 0
−1 0
1 0
0 1

⎞
⎟⎟⎠ , as

g(χU1)ᵀ = (0, 0, 0, 0) + (1, 1, 0, 0) = (1, 1, 0, 0) = (χ S1)ᵀ;
g(χU2)ᵀ = (0,−1, 1, 0) + (1, 1, 0, 0) = (1, 0, 1, 0) = (χ S2)ᵀ;
g(χU3)ᵀ = (0, 0, 0, 1) + (1, 1, 0, 0) = (1, 1, 0, 1) = (χ S3)ᵀ;
g(χU4)ᵀ = (0,−1, 1, 1) + (1, 1, 0, 0) = (1, 0, 1, 1) = (χ S4)ᵀ.

Next consider the distributive latticeL′whoseHasse diagram is presented in Fig. 1b.
Note that the same poset B represents L′ with the same representation function ψ .
Nevertheless, L′ is not affinely representable. If it is and such a function g(χU ) =
AχU + χ S1 exists, then we must have

χ S1 + χ S4 = (χ S1 + AχU1)+ (χ S1 + AχU4) = (χ S1 + AχU2)+ (χ S1 + AχU3) = χ S2 + χ S3 ,

since (χU1 + χU4)ᵀ = (1, 1) = (χU2 + χU3)ᵀ. However, this is clearly not the case
as (χ S1 + χ S4)ᵀ = (2, 2, 0, 1) but (χ S2 + χ S3)ᵀ = (2, 0, 2, 1).

As we show next, affine representability allows one to efficiently solve linear opti-
mization problems over elements of a distributive lattice. In particular, it generalizes
properties that are at the backbone of algorithms for optimizing a linear function over
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the set of stable matchings in the marriage model and its one-to-many and many-to-
many generalizations (see, e.g., [11, 27]). For instance, in the marriage model, the
base set E is the set of potential pairs of agents from two sides of the market, X is
the set of stable matchings, and for S, S′ ∈ X , we have S � S′ if every firm prefers
its partner in S to its partner in S′. Elements of its representation poset are certain
(trading) cycles, called rotations.

Lemma 1 Suppose we are given a poset B = (Y ,��) that affinely represents a lattice
L = (X ,�) with representation functionψ . Letw : E → R be a linear function over
the base set E of L. Then the problem max{wᵀχ S : S ∈ X } can be solved in time
min-cut(|Y | + 2), where min-cut(k) is the time complexity required to solve a
minimum s − t cut problem with nonnegative weights in a digraph with k nodes.

Proof Let g(u) = Au + x0 be the affine function from the definition of affine repre-
sentability. We have:

max
S∈X wᵀχ S = max

U∈U(B)
wᵀg(χU ) = max

U∈U(B)
wᵀ(AχU + x0) = wᵀx0 + max

U∈U(B)
(wᵀA)χU .

Our problem boils down therefore to the optimization of a linear function over the
upper sets of B. It is well-known that the latter problem is equivalent to computing a
minimum s − t cut in a digraph with |Y | + 2 nodes [35]. 
�

Wewant to apply Lemma 1 to theCM- QF- Model. Observe that a choice function
may be defined on all the (exponentially many) subsets of agents from the opposite
side. We avoid this computational concern by modeling choice functions via an oracle
model. That is, choice functions can be thought of as agents’ private information. The
complexity of our algorithms will therefore be expressed in terms of |F |, |W |, and the
time required to compute the choice function Ca(X) of an agent a ∈ F ∪W , where the
set X is in the domain of Ca . The latter running time is denoted by oracle-call
and we assume it to be independent of a and X . Our first result is the following.

Theorem 1 The distributive lattice (S,�) of stable matchings in the CM- Model
is affinely representable. Its representation poset (�,��) has O(|F ||W |) elements.
This representation poset, as well as its representation function ψ and affine function
g(u) = Au + x0, can be computed in time O(|F |3|W |3oracle-call) for the
CM- QF- Model. Moreover, matrix A has full column rank.

In Theorem1,we assumed that operations such as comparing two sets and obtaining
an entry from their set difference take constant time. If this is not the case, a factor
mildly polynomial in |F | · |W | needs to be added to the running time. Theorem 1 is the
union of two statements. First, the distributive lattice of stable matchings in the CM-
Model is affinely representable. Second, this representation and the corresponding
functions ψ and g can be found efficiently for the CM- QF- Model. Those results
are proved in Sect. 3 and Sect. 4, respectively. Combining Theorem 1, Lemma 1 and
algorithms for min-cut(·), we obtain the following.

Corollary 1 Theproblemof optimizinga linear functionover the set of stablematchings
in the CM- QF- Model can be solved in time O(|F |3|W |3oracle-call).
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Since algorithms for solving min-cut(k) in time sub-cubic in k are known (see,
e.g., [15]), the bottleneck in the running time of Corollary 1 is given by the operations
that construct the poset. As a consequence of studying a distributive lattice via the
poset that affinely represents it, one immediately obtains a linear description of the
convex hull of the characteristic vectors of elements of the lattice (see Sect. 5). In
contrast, most stable matching literature has focused on deducing linear descriptions
for special cases of our model via ad-hoc proofs, independently of the lattice structure.

Theorem 2 Let L = (X ,�) be a distributive lattice and B = (Y ,��) be a poset that
affinely represents it via function g(u) = Au + x0. Then the extension complexity of
conv(X ):=conv{χ S : S ∈ X } is O(|Y |2). If moreover A has full column rank, then
conv(X ) has O(|Y |2) facets.

Theorems 1 and 2 imply the following description of the stable matching polytope,
i.e., the convex hull of the characteristic vectors of stable matchings.

Corollary 2 conv(S) has O(|F |2|W |2) facets in the CM- Model.

Lastly, in Sect. 6, we discuss alternative ways to represent choice functions, drop-
ping the oracle-model assumption. Interestingly, we show that choice functions in
the CM- Model (i.e., substitutable, consistent, and cardinal monotone) do not have
polynomial-size representation because the number of possible choice functions in
such a model is doubly-exponential in the size of acceptable partners.

For examples and extended discussions, we refer to the arXiv version of the paper3

and to the forthcoming Ph.D. thesis of the second author [45].

1.2 Relationship with the literature

Gale and Shapley [21] introduced the one-to-one stable marriage (SM- Model) and
the one-to-many stable admission model (SA- Model), and presented an algorithm
which finds a stable matching. McVitie and Wilson [33] proposed the break-marriage
procedure that allows us to find the full set of stable matchings. Irving et al. [27]
presented an efficient algorithm for the maximum-weighted stable matching problem
with weights over pairs of agents, utilizing the fact stablematchings form a distributive
lattice [30] and that its representation poset – an affine representation following our
terminology – can be constructed efficiently via the concept of rotations [26]. The
above-mentioned structural and algorithm results were shown for its many-to-many
generalization (MM- Model) by Baïou and Balinski [9], and Bansal et al. [11]. A
complete survey of results on these models can be found, e.g., in [23, 31].

Formodelswith substitutable and consistent choice functions, Roth [37] proved that
stable matchings always exist by generalizing the algorithm presented in [21]. Blair
[13] proved that stable matchings form a lattice, although not necessarily distributive.
Alkan [4] showed that if choice functions are further assumed to be quota-filling, the
lattice is distributive. Results on (non-efficient) enumeration algorithms for certain
choice functions appeared in [32].

3 https://arxiv.org/abs/2011.06763.
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It is then natural to investigate whether algorithms from [11, 26, 33] can be directly
extended to, e.g., construct the representation poset in the CM- QF- Model or the
more general CM- Model. However, their definition of rotation and techniques rely
on the fact that there is a strict ordering of partners, which is not available with choice
functions. This, for instance, leads to the fact that the symmetric difference of two
stable matchings that are adjacent in the Hasse Diagram of the lattice is a simple
cycle, which is not always true in the CM- Model. We take then a more fundamental
approach by showing a carefully defined ring of sets is isomorphic to the set of stable
matchings, and thus we can construct the rotation poset following a maximal chain of
the stable matching lattice. This approach conceptually follows the one by Gusfield
and Irving [23] for the SM- Model and leads to a generalization of the break-marriage
procedure from [33]. Again, proofs in [23, 33] heavily rely on the strict ordering of
partners, while we need to tackle the challenge of not having one.

Besides the combinatorial perspective, another line of research focuses on the poly-
hedral aspects. Linear descriptions of the convex hull of the characteristic vectors of
stable matchings are provided for the SM- Model [39, 40, 44], the SA- Model [10],
and the MM- Model [20]. In this paper, we provide a polyhedral description for the
CM- Model, by drawing connections between the order polytope (i.e., the convex
hull of the characteristic vectors of upper sets of a poset) and Birkhoff’s representa-
tion theorem of distributive lattices. A similar approach has been proposed in [6]: their
result can be seen as a specialization of Theorem 1 to the SM- Model.

2 Basics

2.1 Posets, lattices, and distributivity

A set X endowedwith a partial order relation≥, denoted as (X ,≥), is called a partially
ordered set (poset). When the partial order ≥ is clear from context, we often times
simply use X to denote the poset (X ,≥). Let a, a′ ∈ X , if a′ > a, we say a′ is
a predecessor of a in poset (X ,≥), and a is a descendant of a′ in poset (X ,≥). If
moreover, there is no b ∈ X such that a′ > b > a, we say that a′ an immediate
predecessor of a in poset (X ,≥) and that a is an immediate descendant of a′ in poset
(X ,≥). If a 
≥ a′ and a′ 
≥ a, we say a and a′ are incomparable.

For a subset S ⊆ X , an element a ∈ X is said to be an upper bound (resp. lower
bound) of S if for all b ∈ S, a ≥ b (resp. b ≥ a). An upper bound (resp. lower bound)
a′ of S is said to be its least upper bound or join (resp. greatest lower bound or meet),
if a ≥ a′ (resp. a′ ≥ a) for each upper bound (resp. lower bound) a of S.

A lattice is a poset for which every pair of elements has a join and a meet and for
every pair those are unique by definition. Thus, two binary operations are defined over
a lattice: join and meet. A lattice is distributive where the operations of join and meet
distribute over each other. Two lattices are said to be isomorphic if there is a structure-
preserving mapping between them that can be reversed by an inverse mapping. Such a
structure-preserving mapping is called an isomorphism between the two lattices. For
n ∈ N, we denote by [n] the set {1, · · · , n}.
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2.2 The firm-worker models

Let F and W denote two disjoint finite sets of agents, say firms and workers respec-
tively. Associated with each firm f ∈ F is a choice function C f : 2W ( f ) → 2W ( f )

where W ( f ) ⊆ W is the set of acceptable partners of f and C f satisfies the
property that for every S ⊆ W ( f ), C f (S) ⊆ S. Similarly, a choice function
Cw : 2F(w) → 2F(w) is associated to each worker w. We assume that for every firm-
worker pair ( f , w), f ∈ F(w) if and only if w ∈ W ( f ). We let CW and CF denote the
collection of firms’ and workers’ choice functions respectively. Amatching market (or
an instance) is a tuple (F,W , CF , CW ). Following [5], we define below the properties
of substitutability, consistency, and cardinal monotonicity (law of aggregate demand)
for choice function Ca of an agent a.

Definition 2 (Substitutability) An agent a’s choice function Ca is substitutable if for
any set of partners S, b ∈ Ca(S) implies that for all T ⊆ S, b ∈ Ca(T ∪ {b}).
Definition 3 (Consistency)An agent a’s choice function Ca is consistent if for any sets
of partners S and T , Ca(S) ⊆ T ⊆ S implies Ca(S) = Ca(T ).

Definition 4 (Cardinal monotonicity) An agent a’s choice function Ca is cardinal
monotone if for all sets of partners S ⊆ T , we have |Ca(S)| ≤ |Ca(T )|.

Intuitively, substitutability implies that if an agent is selected from a set of can-
didates, she will also be selected from a smaller subset; consistency is also called
“irrelevance of rejected contracts”; and cardinal monotonicity implies that the size of
the image of the choice function is monotone with respect to set inclusion.

Aizerman and Malishevski [3] showed that a choice function is substitutable and
consistent if and only if it is path-independent.

Definition 5 (Path-independence)Anagenta’s choice functionCa is path-independent
if for any sets of partners S and T , Ca(S ∪ T ) = Ca

(
Ca(S) ∪ T

)
.

We next prove a few properties of path-independent choice functions.

Lemma 2 Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆
A. If C(A1 ∪ {a}) = C(A1) for every a ∈ A2 \ A1, then C(A1 ∪ A2) = C(A1).

Proof Assume A2 \ A1 = {a1, a2, · · · , at }. Then, by repeated application of the path
independence property,

C(A1 ∪ A2) = C(A1 ∪ {a1, a2, · · · , at }) = C(C(A1 ∪ {a1}) ∪ {a2, · · · , at })
= C(C(A1) ∪ {a2, · · · , at }) = C(A1 ∪ {a2, a3, · · · , at }) = · · · = C(A1).


�
Corollary 3 Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆
A. If a /∈ C(A1 ∪ {a}) for every a ∈ A2 \ A1, then C(A1 ∪ A2) = C(A1).

123



Affinely representable lattices, stable matchings, and... 729

Proof By the consistency property of C, a /∈ C(A1∪{a}) implies C(A1∪{a}) = C(A1).
Lemma 2 then applies directly. 
�
Lemma 3 Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆
A, a ∈ A. Assume C(A1 ∪ A2) = A1 and a ∈ C(A1 ∪ {a}). Then, a ∈ C(A2 ∪ {a}).
Proof By path-independence, we have that C(A1∪A2∪{a}) = C(C(A1∪A2)∪{a}) =
C(A1 ∪ {a}) and thus a ∈ C(A1 ∪ A2 ∪ {a}). Also, by path-independence, we have
C(A1 ∪ A2 ∪ {a}) = C

(
C(A1 \ {a})∪ C(A2 ∪ {a})

)
. Since a /∈ C(A1 \ {a}), it must be

that a ∈ C(A2 ∪ {a}). 
�
A matching μ is a mapping from F ∪W to 2F∪W such that for all w ∈ W and for

all f ∈ F , (1) μ(w) ⊆ F(w); (2) μ( f ) ⊆ W ( f ); and (3) w ∈ μ( f ) if and only if
f ∈ μ(w). A matching can also be viewed as a collection of firm-worker pairs. That
is, μ ≡ {( f , w) : f ∈ F, w ∈ μ( f )}. Thus, we use ( f , w) ∈ μ, w ∈ μ( f ), and
f ∈ μ(w) interchangeably. We say a matching μ is individually rational if for every
agent a, Ca(μ(a)) = μ(a). An acceptable firm-worker pair ( f , w) /∈ μ is called a
blocking pair if w ∈ C f (μ( f ) ∪ {w}) and f ∈ Cw(μ(w) ∪ { f }), and when such pair
exists, we say μ is blocked by the pair or the pair blocks μ. A matching μ is stable if it
is individually rational and it admits no blocking pairs. If f is matched to w in some
stable matching, we say that ( f , w) is a stable pair and that f (resp. w) is a stable
partner of w (resp. f ). We denote by S(CF , CW ) the set of stable matchings in the
market (F,W , CF , CW ), and when the market is clear from the context we abbreviate
S := S(CF , CW ).

Alkan [5] showed the following.

Theorem 3 ( [5])Consider amatchingmarket (F,W , CF , CW ) and assumeCF andCW
are substitutable, consistent, and cardinal monotone. Then S(CF , CW ) is a distributive
lattice under the partial order relation�whereμ1 � μ2 if for all f ∈ F, C f (μ1( f )∪
μ2( f )) = μ1( f ). The join (denoted by ∨) and meet (denoted by ∧) operations of the
lattice are defined component-wise. That is, for all f ∈ F:

(μ1 ∨ μ2)( f ):=μ1( f ) ∨ μ2( f ):=C f (μ1( f ) ∪ μ2( f )),

(μ1 ∧ μ2)( f ):=μ1( f ) ∧ μ2( f )

:=[(
μ1( f ) ∪ μ2( f )

) \ (μ1 ∨ μ2)( f )
] ∪ (

μ1( f ) ∩ μ2( f )
)
.

Moreover, S(CF , CW ) satisfies the polarity property: μ1 � μ2 if and only if for every
worker w ∈ W, Cw(μ1(w)) ∪ μ2(w)) = μ2(w).

Because of the lattice structure, the firm- and worker-optimal stable matchings are
well-defined, and we denote them respectively by μF and μW . In addition, Alkan [5]
showed two properties, concordance (Proposition 7, [5]) and equal-quota (Proposition
6, [5]), satisfied by the family of sets of partners under all stable matchings for every
agent a. Let �a :={μ(a) : μ ∈ S(CF , CW )}. Then for all S, T ∈ �a ,

S ∩ T ⊆ S ∨ T (concordance)
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and

|S| = |T |=:qa . (equal-quota)

Instead of cardinal monotonicity, an earlier paper of Alkan [4] considers a more
restrictive property of choice functions, called quota-filling.

Definition 6 (Quota-filling) An agent a’s choice function Ca is quota-filling if there
exists qa ∈ N such that for any set of partners S, |Ca(S)| = min(qa, |S|). We call qa
the quota of agent a.

Intuitively, quota-filling means that an agent has a number of positions and she tries
to fill as many of these positions as possible. Note that quota-filling implies cardinal
monotonicity. Let qa denote the quota of each agent a ∈ F ∪W .

Our results from Sect. 3 assume path-independence (i.e., substitutability and con-
sistency) and cardinal monotonicity. In Sect. 4, we will restrict our model by replacing
cardinal monotonicity with quota-filling for one side of the market. These two models
are what we call the CM- Model and the CM- QF- Model, respectively.

3 Affine representability of the stable matching lattice

In this section, we show that the distributive lattice of stable matchings in the model
by [5] is affinely representable. An algorithm to construct an affine representation is
given in Sect. 4 where we additionally impose the quota-filling property upon choice
functions of agents in one side of the markets. The proof of this section proceeds
as follows. First, we show in Sect. 3.1 that the lattice of stable matchings (S,�) is
isomorphic to a lattice (P,⊆) belonging to a special class, that is called rings of sets. In
Sect. 3.2, we then show that rings of sets are always affinely representable. In Sect. 3.3,
we show a poset (�,��) representing (S,�). Lastly, in Sect. 3.4, we show how to
combine all those results and “translate” the affine representability of (P,⊆) to the
affine representability of (S,�), concluding the proof.

3.1 Isomorphism between the stable matching lattice and a ring of sets

A family H = {H1, H2, · · · , Hk} of subsets of a base set B is a ring of sets over B
if H is closed under set union and set intersection [12]. Note that a ring of sets is a
distributive lattice with the partial order relation ⊆, and the join and meet operations
corresponds to set intersection and set union, respectively.

In this and the following section, we fix a matching market (F,W , CF , CW )

and assume that CF and CW are path-independent and cardinal monotone (i.e., the
framework of [5]). Let φ(a) denote the set of stable partners of agent a. That is,
φ(a):={b : b ∈ μ(a) for some μ ∈ S}. For μ ∈ S, let Pf (μ):={w ∈ φ( f ) : w ∈
C f (μ( f )∪{w})}, and define the P-set ofμ as P(μ):={( f , w) : f ∈ F, w ∈ Pf (μ)}.

The goal of this section is to show the following theorem, which gives a represen-
tation of the stable matching lattice as a ring of sets. Let P(CF , CW ) denote the set
{P(μ) : μ ∈ S(CF , CW )}, and we often abbreviate P:=P(CF , CW ).

123



Affinely representable lattices, stable matchings, and... 731

Theorem 4 Assume CF and CW are path-independent and cardinal monotone. Then,

(i) the mapping P : S → P is a bijection;
(ii) (P,⊆) is isomorphic to (S,�). That is, for two stable matchings μ1, μ2 ∈ S,

we have μ2 � μ1 if and only if P(μ2) ⊆ P(μ1). Moreover, P(μ1 ∨ μ2) =
P(μ1) ∩ P(μ2) and P(μ1 ∧ μ2) = P(μ1) ∪ P(μ2). In particular, (P,⊆) is a
ring of sets over the base set {( f , w) : f ∈ F, w ∈ φ( f )}.

Remark 1 An isomorphism between the lattice of stable matchings and a ring of sets
(also called P-set) is proved in the SM- Model by Gusfield and Irving [23] as well.
However, they define P(μ) := {( f , w) : f ∈ F, w ≥ f μ( f )}, hence including
firm-worker pairs that are not stable. As a consequence, while in their model the
construction of the P-set for a given stable matching is immediate, in ours it is not,
since we need to know first which pairs are stable.

Lemma 4 Letμ1 andμ2 be two stable matchings such thatμ2 � μ1. Then, Pf (μ2) ⊆
Pf (μ1) for every firm f .

Proof Since μ2 � μ1, we have that C f (μ2( f ) ∪ μ1( f )) = μ2( f ). The claim then
follows from Lemma 3. 
�
Lemma 5 Let μ1 be a stable matching such that w ∈ Pf (μ1) for some firm f and
workerw. Then, there exists a stable matchingμ2 such thatμ2 � μ1 andw ∈ μ2( f ).

Proof By definition of Pf (μ1), we know there exists a stable matching μ′1 such that
w ∈ μ′1( f ). Let μ2:=μ1 ∨μ′1. We want to show that w ∈ μ2( f ). If w ∈ μ1( f ), then
the claim follows due to the concordance property. So assume w /∈ μ1( f ) and also
assume by contradiction that w /∈ μ2( f ). Then, we must have w ∈ (μ1 ∧ μ′1)( f ) by
definition of the meet. Since μ1 � μ1 ∧ μ′1, we have C f (μ1( f ) ∪ (μ1 ∧ μ′1)( f )) =
μ1( f ). However, applying path-independence and consistency, we have

C f (μ1( f ) ∪ (μ1 ∧ μ′1)( f )) = C f
(
C f (μ1( f ) ∪ (μ1 ∧ μ′1)( f ) \ {w}) ∪ {w}

)

= C f (μ1( f ) ∪ {w}) 
= μ1( f ),

which is a contradiction. 
�
Lemma 6 Let μ1 and μ2 be two stable matchings such that μ2 � μ1. Assume w ∈
Pf (μ1) \ Pf (μ2) for some firm f . Then, there exists a stable matching μ1 with
μ2 � μ1 � μ1 such that w ∈ μ1( f ).

Proof By Lemma 5, there exists a stable matching μ2 � μ1 such that w ∈ μ2( f ).
Let μ1:=μ2 ∧ μ2 and we claim that μ1 is the desired matching. First, by definition
of meet, we have μ2 � μ1 � μ1. Since w /∈ Pf (μ2), by the contrapositive of
the substitutability property, we have w /∈ C f (μ2( f ) ∪ μ2( f )), which implies that
w /∈ (μ2 ∨ μ2)( f ). Therefore, w ∈ μ1( f ), again by the definition of meet. 
�
Lemma 7 Let μ1 and μ2 be two stable matchings. Then,

P(μ1 ∨ μ2) = P(μ1) ∩ P(μ2) and P(μ1 ∧ μ2) = P(μ1) ∪ P(μ2).
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Proof Fix a firm f , and we want to show Pf (μ1 ∨ μ2) = Pf (μ1) ∩ Pf (μ2) and
Pf (μ1∧μ2) = Pf (μ1)∪Pf (μ2). Ifμ1( f ) = μ2( f ), then the claim is obviously true.
Thus, for the following,we assumeμ1( f ) 
= μ2( f ).Wefirst show that Pf (μ1∨μ2) ⊆
Pf (μ1)∩Pf (μ2). Sinceμ1∨μ2 � μ1, μ2, the claim follows fromLemma 4.Next, we
show that Pf (μ1∨μ2) ⊇ Pf (μ1)∩ Pf (μ2). If Pf (μ1)∩ Pf (μ2) = ∅, then the claim
follows trivially. So we assume Pf (μ1)∩ Pf (μ2) 
= ∅ and letw ∈ Pf (μ1)∩ Pf (μ2).
By Lemma 5, there exists a stable matching μ1 such that μ1 � μ1 and w ∈ μ1( f ).
Similarly, there exists a stable matching μ2 such that μ2 � μ2 and w ∈ μ2( f ).
Consider the stable matching μ1 ∨ μ2. Because of the concordance property, w ∈
(μ1∨μ2)( f ). As μ1∨μ2 � μ1, μ2 by transitivity of�, we have μ1∨μ2 � μ1∨μ2
by minimality of μ1 ∨ μ2. Hence, by Lemma 4, w ∈ Pf (μ1 ∨ μ2). This proves the
first part of the thesis.

For the second part, we first show Pf (μ1 ∧ μ2) ⊆ Pf (μ1) ∪ Pf (μ2). Let w /∈
Pf (μ1)∪ Pf (μ2) and assume by contradiction thatw ∈ Pf (μ1∧μ2).w /∈ Pf (μ1)∪
Pf (μ2) impliesw /∈ μ1( f ) andw /∈ μ2( f ) and thus,w /∈ (μ1∧μ2)( f ). ByLemma6,
for both i ∈ {1, 2}, there exists a stable matching μi such that μi � μi � μ1 ∧ μ2
and w ∈ μi ( f ). Note that μ1 ∧ μ2 � μ1 ∧ μ2 � μ1 ∧ μ2, where the first relation
holds because μi � μi for both i ∈ {1, 2}, and the second relation holds because
μ1, μ2 � μ1 ∧ μ2. Hence, μ1 ∧ μ2 = μ1 ∧ μ2. However, by applying the meet
operator ∧ over μ1 and μ2, we have w ∈ (μ1 ∧ μ2)( f ) = (μ1 ∧ μ2)( f ), which is a
contradiction.

Lastly, we show Pf (μ1 ∧ μ2) ⊇ Pf (μ1) ∪ Pf (μ2). Let w ∈ Pf (μ1) ∪ Pf (μ2)

and wlog assume w ∈ Pf (μ1). Since μ1 � μ1∧μ2, by Lemma 4, w ∈ Pf (μ1∧μ2).

�

Lemma 8 Let μ1 and μ2 be two stable matchings such that μ2 � μ1 and assume that
μ1( f ) 
= μ2( f ) for some f ∈ F. Then, Pf (μ1) 
= Pf (μ2).

Proof Assume by contradiction that Pf (μ1) = Pf (μ2). Let w ∈ μ1( f ) \ μ2( f ),
which exists because of the equal-quota property. Since the stable matching lattice
(S,�) has the polarity property as shown in Theorem 3, we have that Cw(μ1(w) ∪
μ2(w)) = μ1(w) and thus, by substitutability, we have f ∈ Cw(μ2(w)∪{ f }). On the
other hand, w ∈ μ1( f ) implies that w ∈ Pf (μ1) = Pf (μ2). Since w /∈ μ2( f ), this
means that ( f , w) is a blocking pair ofμ2, which contradicts the stability assumption.


�
Lemma 9 Let μ1 and μ2 be two distinct stable matchings and assume that μ1( f ) 
=
μ2( f ) for some f ∈ F. Then, Pf (μ1) 
= Pf (μ2).

Proof Assumeby contradiction that Pf (μ1) = Pf (μ2). Then,wehave Pf (μ1∨μ2) =
Pf (μ1 ∧ μ2) by Lemma 7. However, μ1( f ) 
= μ2( f ) implies that (μ1 ∨ μ2)( f ) 
=
(μ1 ∧ μ2)( f ), which contradicts Lemma 8 since μ1 ∨ μ2 � μ1 ∧ μ2. 
�
Proof of Theorem 4 For (i), note that themapping P is onto by definition. It is therefore
a bijection since it is also injective as shown in Lemma 9. Next, we show (ii). One
direction of the first statement is shown in Lemma 4. Conversely, if P(μ2) ⊆ P(μ1),
then by Lemma 7, P(μ1 ∨ μ2) = P(μ1) ∩ P(μ2) = P(μ2). Hence, by Lemma 9,
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we have μ1 ∨μ2 = μ2 and thus, μ2 � μ1. The second statement of (ii) follows from
Lemma 7. The third follows from the second and the fact that stable matchings form
a distributive lattice (Theorem 3). 
�

3.2 Affine representability of rings of sets via the posets of minimal differences

We now describe (mostly known) facts about posets representing rings of sets, and
observe that the affine representability of rings of sets easily follows from those.

Fix a ring of sets (H,⊆) over a base set B, and let H0 and Hz denote respectively
the unique minimal and maximal elements of H. That is, for all H ∈ H, we have
H0 ⊆ H ⊆ Hz . For a ∈ Hz , let H(a) denote the unique inclusion-wise minimal set
among all sets in H that contain a, where uniqueness follows from the fact that H is
closed under set intersection. That is,

H(a):=
⋂
{H ∈ H : a ∈ H}.

In addition, define the set I(H) of the irreducible elements of H as follows

I(H):={H ∈ H : ∃ a ∈ Hz s.t. H = H(a)}.

Since I(H) is a subset ofH, we can view I(H) as a poset under the set containment
relation. For H ∈ I(H), let K (H):={a ∈ Hz : H(a) = H} denote the centers of H .
Note that K (H0) = H0. Define D(H) as the set of centers of irreducible elements of
H without the set H0. Formally,

D(H):={K (H) : H ∈ I(H), H 
= H0}.

Immediately from the definition of centers, we obtain the following.

Lemma 10 Let a ∈ B. There is at most one K1 ∈ D(H) such that a ∈ K1. In
particular, |D(H)| = O(|B|).

For K1 ∈ D(H), let I (K1) denote the irreducible element from I(H) such that
K (I (K1)) = K1. Let � be a partial order over the set D(H) that is inherited from
the set containment relation of the poset I(H). That is, for K1, K2 ∈ D(H), we have
K1 � K2 if and only if I (K1) ⊆ I (K2).

Theorem 5 ( [12]) Let (H,⊆) be a ring of sets. Then, (D(H),�) is a representation
poset for (H,⊆) with representation function ψH, where ψ−1H (D) = ⋃{K1 : K1 ∈
D} ∪ H0 for any upper set D of (D(H),�), and H0 is the minimal element of H.

Lemma 10 and Theorem 5 directly imply the following.

Theorem 6 Let (H,⊆) be a ring of sets over base set B. Then, (D(H),�) affinely
represents (H,⊆) via affine function g(u) = Au + x0, where x0 is the characteristic
vector of the minimal element ofH, and A ∈ {0, 1}B×D(H) has columns χK1 for each
K1 ∈ D(H). Moreover, A has full column rank.
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Proof Because of the representation function ψH given in Theorem 5, it is clear that

g(χU ) = χψ−1H (U ) for every upper set U ∈ U((D(H),�)). Note that every row of A
has at most one non-zero entry due to Lemma 10, and every column of A contains at
least one non-zero entry by definition. Therefore, A has full column rank. 
�
Lemma 11 Let (H,⊆) be a ring of sets with minimal element H0, and let H ∈ H. If
H = ⋃{K1 : K1 ∈ D} ∪ H0 for some subset D of D(H), then D is an upper set of
(D(H),�).

Proof By Lemma 10, there is at most one subset ofD(H)whose union of the elements
together with H0 gives H . On the other hand, Theorem 5 implies that there exists one
such subset which is also an upper set of (D(H),�). The claim follows thereafter. 
�

Alternatively, one can view D(H) as the set of minimal differences between ele-
ments of H. The following lemma is established directly from Lemma 2.4.3 and
Corollary 2.4.1 of [23].

Lemma 12 D(H) = {H \ H ′ : H ′ is an immediate predecessor of H in (H,⊆)}.
A direct consequence of Lemma 10 and Lemma 12 is the following.

Lemma 13 Let H ′, H ∈ H. If H ′ ⊆ H and H \ H ′ ∈ D(H), then H ′ is an immediate
predecessor of H in (H,⊆).

Proof Let K1:=H \ H ′. Assume by contradiction that there exists H ∈ H with
H ′ � H � H . Then, because of Lemma 12, there exists a center K2 ∈ D(H) such
that ∅ 
= K2 � K1. However, this contradicts Lemma 10. 
�

3.3 Representation of (S,�) via the poset of rotations

As discussed in Sect. 3.2, the poset (D(P),�) associated with (P,⊆) provides a
compact representation of (P,⊆) and can be used to reconstruct P via Theorem 6.
In this section, we show how to associate with (S,�) a poset that is isomorphic to
(D(P),�), which can be used to reconstruct S. The precise statement is given in
Theorem 7 below.

For μ,μ′ ∈ S, with μ′ being an immediate predecessor of μ in the stable matching
lattice, let

ρ+(μ′, μ) = {( f , w) : f ∈ F, w ∈ μ( f ) \ μ′( f )}

and

ρ−(μ′, μ) = {( f , w) : f ∈ F, w ∈ μ′( f ) \ μ( f )}.

Note that by definition,

μ = μ′�ρ−(μ′, μ)�ρ+(μ′, μ) = μ′ \ ρ−(μ′, μ) ∪ ρ+(μ′, μ). (1)
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We call ρ(μ′, μ):=(ρ+(μ′, μ), ρ−(μ′, μ)) a rotation of (S,�). Let �(S) denote the
set of rotations of (S,�). That is,

�(S):={ρ(μ′, μ) : μ′ is an immediate predecessor of μ in (S,�)}.

Remark 2 While in the MM- Model, rotations are simple cycles in the associated
bipartite graph of agents [9], this may not be the case for our model.

In the following, we focus on proving a bijection betweenD(P) and �(S), and we
often abbreviate �:=�(S) and D:=D(P). In particular, we show the following.

Theorem 7 Assume CF and CW are path-independent and cardinal monotone. Then,

(i) the mapping Q : �→ D, with Q(ρ) = ρ+, is a bijection;
(ii) (D,�) is isomorphic to the rotationposet (�,��), where for two rotationsρ1, ρ2 ∈

�, ρ1 �� ρ2 if Q(ρ1) � Q(ρ2);
(iii) (�,��) is a representation poset for (S,�) with representation function ψS such

that for any upper set � of (�,��), P(ψ−1S (�)) = ψ−1P ({Q(ρ) : ρ ∈ �})
whereψP is the representation function of (P,⊆) per Theorem 5; andψ−1S (�) =(�ρ∈�(ρ−�ρ+)

)�μF , where � is the symmetric difference operator. Equiva-

lently, we have ψ−1S (�) = μF ∪ (
⋃

ρ∈� ρ+) \ (
⋃

ρ∈� ρ−).

Lemma 14 Let μ,μ′ ∈ S such that μ′ � μ. If w ∈ μ( f ) \ μ′( f ) for some f , then
w /∈ Pf (μ

′).

Proof Sinceμ′ � μ, we have C f (μ
′( f )∪μ( f )) = μ′( f ). By path-independence and

consistency, we have

w /∈ μ′( f ) = C f (μ
′( f ) ∪ μ( f )) = C f (C f (μ

′( f ) ∪ μ( f ) \ {w}) ∪ {w}) = C f (μ
′( f ) ∪ {w}).

Therefore, w /∈ Pf (μ
′), concluding the proof. 
�

Lemma 15 Let μ,μ′ ∈ S such that μ′ is an immediate predecessor of μ in the stable
matching lattice. Then, μ( f ) \μ′( f ) = Pf (μ) \ Pf (μ

′) for all f ∈ F. In particular,
P(μ) \ P(μ′) = ρ+(μ′, μ).

Proof Fix a firm f . μ( f ) \ μ′( f ) ⊆ Pf (μ) \ Pf (μ
′) follows by definition and from

Lemma 14. For the reverse direction, assume by contradiction that there exists w ∈
Pf (μ) \ Pf (μ

′) but w /∈ μ( f ) \ μ′( f ). Since w /∈ Pf (μ
′) implies that w /∈ μ′( f )

by definition of Pf (·), we also have w /∈ μ( f ). By Lemma 6, there exists a stable
matching μ such that μ′ � μ � μ and w ∈ μ( f ). However, since μ′ is an immediate
predecessor of μ in the stable matching lattice, we either have μ = μ or μ = μ′.
However, both are impossible since we deduced w /∈ μ( f ) ∪ μ′( f ). 
�
Lemma 16 Let μ1, μ2, μ3 ∈ S such that μ1 � μ2 � μ3. If w ∈ μ1( f ) \ μ2( f ) for
some firm f , then w /∈ μ3( f ).
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Proof First, note that μ1 � μ2 implies w ∈ μ1( f ) = C f (μ1( f ) ∪ μ2( f )). Thus,
by substitutability, we have w ∈ C f (μ2( f ) ∪ {w}). Assume by contradiction that
w ∈ μ3( f ). Then, applying Lemma 14 on μ2 and μ3, we have that w /∈ Pf (μ2),
which is a contradiction. 
�
Lemma 17 Let μ1, μ

′
1, μ2, μ

′
2 ∈ S and assume that μ′1, μ′2 are immediate predeces-

sors of μ1, μ2 in the stable matching lattice, respectively. In addition, assume that
μ1 � μ2. If P(μ1)\ P(μ′1) = P(μ2)\ P(μ′2), then μ′1( f )\μ1( f ) = μ′2( f )\μ2( f )
for all firms f ∈ F.

Proof Fix a firm f . Due to Lemma 15, we knowμ1( f )\μ′1( f ) = μ2( f )\μ′2( f ). By
the equal-quota property, we have |μ1( f )| = |μ′1( f )| and |μ2( f )| = |μ′2( f )|. Thus,|μ′1( f ) \ μ1( f )| = |μ′2( f ) \ μ2( f )| (	). If μ′1( f ) \ μ1( f ) = ∅, the claim follows
immediately, and thus, in the following, we assume μ′1( f ) \ μ1( f ) 
= ∅. Assume by
contradiction that there exists w ∈ μ′1( f ) \ μ1( f ) but w /∈ μ′2( f ) \ μ2( f ). Since
μ1 � μ2 and μ′i � μi for i ∈ {1, 2}, by Theorem 4, we have P(μ1) � P(μ2) and
P(μ′i ) � P(μi ) for i ∈ {1, 2}. Therefore, P(μ′1) � P(μ′2) due to the assumption that
P(μ1) \ P(μ′1) = P(μ2) \ P(μ′2). Again by Theorem 4, we have μ′1 � μ′2. Hence,
μ1 ∨ μ′2 = μ′1 and we must have w ∈ μ′2( f ) and thus, w ∈ μ2( f ). However, since
μ′1 � μ1 � μ2 and w ∈ μ′1( f ) \ μ1( f ), we can apply Lemma 16 and conclude that
w /∈ μ2( f ), which is a contradiction. This shows μ′1( f ) \ μ1( f ) ⊆ μ′2( f ) \ μ2( f ).
Together with (	), we have μ′1( f ) \ μ1( f ) = μ′2( f ) \ μ2( f ). 
�
Lemma 18 Let A, B, A′, B ′ be sets such that A ⊆ A′ and B ⊆ B ′. In addition, assume
that A′ \ A = B ′ \ B. Then, (A′ ∩ B ′) \ (A ∩ B) = A′ \ A.
Proof Let X :=A′ \A = B ′ \B. Notice that A′ = A�X and B ′ = B�X , where� is the
disjoint union operator. Therefore, we have A∩B = (A′ \X)∩(B ′ \X) = (A′∩B ′)\X
and the claim follows. 
�
Lemma 19 Let μ1, μ

′
1, μ2, μ

′
2 ∈ S and assume that μ′1, μ′2 are immediate prede-

cessors of μ1, μ2 in the stable matching lattice, respectively. If P(μ1) \ P(μ′1) =
P(μ2) \ P(μ′2), then μ′1( f ) \μ1( f ) = μ′2( f ) \μ2( f ) for every firm f . In particular,
ρ−(μ′1, μ1) = ρ−(μ′2, μ2).

Proof We first consider the case where μ1 = μ2. By Lemma 4, we have P(μ′i ) ⊆
P(μi ) for i ∈ {1, 2}. Therefore, P(μ′1) = P(μ1) \ (P(μ1) \ P(μ′1)) = P(μ2) \
(P(μ2) \ P(μ′2)) = P(μ′2), where the second equality is due to our assumptions that
μ1 = μ2 and P(μ1)\P(μ′1) = P(μ2)\P(μ′2). Thus,μ′1 = μ′2 because of Theorem4,
and the thesis then follows. Since the cases when μ1 � μ2 or μ2 � μ1 have already
been considered in Lemma 17, for the following, we assume that μ1 and μ2 are not
comparable. Letμ3:=μ1∨μ2 andμ′3:=μ′1∨μ′2.Note thatμ′3 � μ3. Then, byLemma7
and Lemma 18, we have P(μ3) \ P(μ′3) = (P(μ1) ∩ P(μ2)) \ (P(μ′1) ∩ P(μ′2)) =
P(μ1) \ P(μ′1).

By Theorem 4, Lemma 12 and Lemma 13, we also have that μ′3 is an immediate
predecessor of μ3 in the stable matching lattice. Note that by construction, we have
μ3 � μ1 and μ3 � μ2 since μ1 and μ2 are incomparable. Applying Lemma 17 on
μ1 and μ3 as well as on μ2 and μ3, we have μ′1( f ) \ μ1( f ) = μ′3( f ) \ μ3( f ) =
μ′2( f ) \ μ2( f ) for all firms f ∈ F , as desired. 
�
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Theorem 8 Let μ1, μ
′
1, μ2, μ

′
2 ∈ S and assume that μ′1, μ′2 are immediate predeces-

sors of μ1, μ2 in the stable matching lattice, respectively. Then, P(μ1) \ P(μ′1) =
P(μ2) \ P(μ′2) if and only if ρ(μ′1, μ1) = ρ(μ′2, μ2).

Proof For the “only if” direction, assume P(μ1) \ P(μ′1) = P(μ2) \ P(μ′2).
Then, ρ+(μ′1, μ1) = ρ+(μ′2, μ2) by Lemma 15 and ρ−(μ′1, μ1) = ρ−(μ′2, μ2) by
Lemma19. Thus,ρ(μ′1, μ1) = ρ(μ′2, μ2). For the “if” direction, assumeρ(μ′1, μ1) =
ρ(μ′2, μ2). Then, immediately from Lemma 15, we have that P(μ1) \ P(μ′1) =
ρ+(μ′1, μ1) = ρ+(μ′2, μ2) = P(μ2) \ P(μ′2). 
�

Remark 3 In the SM- Modelwith P-sets defined as by Gusfield and Irving [23] stated
in Remark 1, Theorem 8 immediately follows from the definition of P-set. In fact,
one can explicitly and uniquely construct ρ(μ′, μ) from P(μ) \ P(μ′). In particular,
ρ+(μ′, μ) is the set of edges ( f , w) such that Pf (μ) 
= Pf (μ

′) and w is the least
preferred partner of f among Pf (μ) \ Pf (μ

′), and ρ−(μ′, μ) is the set of edges
( f , w) such that Pf (μ) 
= Pf (μ

′) and w is the partner that, in the preference list≥ f ,
is immediately before the most preferred partner of f among Pf (μ) \ Pf (μ

′).

Proof of Theorem 7 Because of Theorem 4 and Lemma 15, for every K1 ∈ D, there
exist stable matchings μ′ and μ with μ′ being an immediate predecessor of μ such
that K1 = P(μ) \ P(μ′) = ρ+(μ′, μ). Thus, the mapping Q is onto. Theorem 8
further implies that Q is injective. Hence, the mapping Q is a bijection. This bijection
and the definition of �� immediately imply that (D,�) is isomorphic to (�,��).
Together with the isomorphism between (S,�) and (P,⊆), and the fact that (D,�)

is a representation poset of (P,⊆), we deduce a bijection between elements of (S,�)

and upper sets of (�,��). That is, (�,��) is a representation poset of (S,�) and its
representation function ψS satisfies that for every μ ∈ S, {Q(ρ) : ρ ∈ ψS(μ)} =
ψP (P(μ)). It remains to show that the formula for the inverse of ψS given in the
statement of the theorem is correct. Let μ ∈ S and let μ0, μ1, · · · , μk be a sequence
of stable matchings such that μi−1 is an immediate predecessor of μi in (S,�) for all
i ∈ [k], μ0 = μF and μk = μ. In addition, let ρi = ρ(μi−1, μi ) for all i ∈ [k]. Note
that μ = μF�(ρ−1 �ρ+1 )�(ρ−2 �ρ+2 )� · · ·�(ρ−k �ρ+k ) (	). By Theorem 4, P(μ0) ⊆
P(μ1) ⊆ · · · ⊆ P(μk), and thus,

P(μ) = P(μ0) ∪
(
P(μ1) \ P(μ0)

) ∪ (
P(μ2) \ P(μ1)

) ∪ · · · ∪ (
P(μk) \ P(μk−1)

)
.

Therefore, by Lemma 15, P(μ) = P(μF )∪ Q(ρ1)∪ · · · ∪ Q(ρk). By Lemma 11, we
know that {Q(ρi ) : i ∈ [k]} is an upper set of D and thus, ψP (P(μ)) = {Q(ρi ) : i ∈
[k]} due to Theorem 5. Hence, ψS(μ) = {ρi : i ∈ [k]}. The inverse of ψS must be as
in the first definition in the thesis so that (	) holds.

Let ( f , w) be a firm-worker pair. If ( f , w) ∈ ρ−i for some i ∈ [k], then ( f , w) /∈ μ

due to Lemma 16. In addition, because of Lemma 10 and the bijection Q, μF , ρ+1 ,
ρ+2 , · · · , ρ+i are disjoint. Hence, if ( f , w) ∈ μF ∪ (

⋃{ρ+i : i ∈ [k]}) but ( f , w) /∈⋃{ρ−i : i ∈ [k]}, then ( f , w) ∈ μ. The second definition of ψS from the thesis
follows immediately from these facts and the previous definition. 
�
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3.4 Concluding the proof for the first part of Theorem 1

Because of Theorem 7, part (iii), we know that poset (�,��) represents lattice (S,�).
Let ψS be the representation function as defined in Theorem 7. We denote by E ⊆
F × W the set of acceptable firm-worker pairs. Hence, E is the base set of lattice
(S,�). We deduce the following, proving the structural statement from Theorem 1.

Lemma 20 Let �1,�2 be two upper sets of (�,��) and let μi = ψ−1S (�i ) for
i ∈ {1, 2}. If �1 ⊆ �2, then μ1 � μ2.

Proof LetDi :={Q(ρ) : ρ ∈ �i } and let Pi :=ψ−1P (Di ) for i ∈ {1, 2}. Since�1 ⊆ �2,

we have D1 ⊆ D2 and thus subsequently P1 ⊆ P2. Since ψ−1P (Di ) = P(ψ−1S (�i ))

by Theorem 7, Pi = P(μi ) for both i = 1, 2. Therefore, by Theorem 4, μ1 � μ2. 
�

Lemma 21 Let ρ1, ρ2 ∈ �. If ρ+1 ∩ ρ−2 
= ∅, then ρ1 �� ρ2.

Proof Assume by contradiction that ρ1 �
� ρ2, that is, either ρ2 �� ρ1 or that they are

not comparable. Let �1:={ρ ∈ � : ρ � ρ2} be the inclusion-wise smallest upper set
of � that contains ρ2, let �0:=�1 \ {ρ2}, and let �2:={ρ ∈ � : ρ � ρ1 or ρ � ρ2}
be the inclusion-wise smallest upper set of � that contains both ρ1 and ρ2. Note that
�0 � �1 � �2, where the second strict containment is due to our assumption that
ρ1 �

� ρ2 and thus ρ1 /∈ �1. For i ∈ {0, 1, 2}, let μi :=(�ρ∈�i
(ρ−�ρ+))�μF . Since

�i is an upper set of (�,��), μi is a stable matching by Theorem 7. Moreover,
μ0 � μ1 � μ2 by Lemma 20. Let ( f , w) ∈ ρ+1 ∩ ρ−2 . Since ρ(μ0, μ1) = ρ2, we
have ( f , w) ∈ μ0 \ μ1. Since ρ1 is a �-minimal element in �2, �2 \ {ρ1} is also
an upper set of �. Then, μ′2:=(�ρ∈�2\{ρ1}(ρ

−�ρ+))�μF is a stable matching by

Theorem 7, and μ2 = μ′2 \ ρ−1 ∪ ρ+1 by (1). Thus, we have ( f , w) ∈ μ2. Together,
we have w ∈ (μ0( f ) ∩ μ2( f )) \ μ1( f ). However, this contradicts Lemma 16. 
�

Theorem 9 The rotation poset (�,��) affinely represents the stable matching lattice
(S,�) with affine function g(u) = Au + χμF , where A ∈ {0,±1}E×� is matrix with

columns χρ+ − χρ− for each ρ ∈ �. Moreover, |�| = O(|F ||W |) and matrix A has
full column rank.

Proof The first claim follows immediately because by Theorem 7, part (iii), χμ =
AχψS (μ) + χμF , for any stable matching μ. Because of Theorem 7, |�| = |D|. In
addition, by Lemma 10, we have |D| = |E | = O(|F ||W |). Thus, |�| = O(|F ||W |).
Finally, we show that matrix A has full column rank. Assume by contradiction that
there is a non-zero vector λ ∈ R

� such that
∑

ρ∈� λρ(χρ+ −χρ−) = 0. Let �̃:={ρ ∈
� : λρ 
= 0} denote the set of rotations whose corresponding coefficients in λ are
non-zero. Let ρ1 be a minimal rotation (w.r.t.��) in �̃ and let ( f , w) be a firm-worker
pair in ρ+1 . Because of Lemma 10 and the bijection Q, there is no rotation ρ 
= ρ1 such
that ( f , w) ∈ ρ+. Therefore, there must exist a rotation ρ2 ∈ �̃ with ( f , w) ∈ ρ−2 .
Note that we must have ρ1 �� ρ2 due to Lemma 21. However, this contradicts the
choice of ρ1. 
�
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4 Algorithms

Because of Theorem 9, in order to conclude the proof of Theorem 1, we are left
to explicitly construct (�,��). That is, we need to find elements of �, and how
they relate to each other via ��. We fix an instance (F,W , CF , CW ) and abbreviate
S := S(CF , CW ).

In this section, we further assume workers’ choice functions to be quota-filling.
Under this additional assumption, for each worker w ∈ W , the family of sets of
partners w is assigned to under all stable matchings (denoted as �w) satisfies an
additional property, which we call the full-quota4 property (see Lemma 22). Recall
that qw denote the quota of worker w and qw is the number of firms matched to w

under every stable matching, which is constant due to the equal-quota property (i.e.,
|S| = qw for all S ∈ �w).

Lemma 22 For every worker w ∈ W, if qw < qw, then w is matched to the same set
of firms in all stable matchings. That is,

qw < qw �⇒ |�w| = 1. (full-quota)

Proof Assume by contradiction that qw < qw but |�w| > 1. Let S1, S2 be two distinct
elements from �w and let μi be the matching such that μi (w) = Si for i = 1, 2. Note
that due to the equal-quota property, we have |S1| = |S2| = qw. Consider the stable
matching μ:=μ1 ∧ μ2. Then,

|μ(w)| = |Cw(μ1(w) ∪ μ2(w))| = |Cw(S1 ∪ S2)| = min(|S1 ∪ S2|, qw|) > qw,

where the first equality is by Theorem 3 and the last two relations are by quota-filling.
However, this contradicts the equal-quota property since μ is a stable matching. 
�

Our approach to construct (�,��) is as follows. First, we recall Roth’s adapta-
tion of the Deferred Acceptance algorithm to find a firm- or worker-optimal stable
matching (Sect. 4.1). Second, we feed the output of Roth’s algorithm to an algorithm
that produces a maximal chain C1,C2, . . . ,Ck of (S,�) and the set � (Sect. 4.2).
In Sect. 4.3, we give an algorithm that, given a maximal chain of a ring of sets, con-
structs the partial order of the poset of minimal differences. This and previous facts
are then exploited in Sect. 4.4 to construct the partial order �� on elements of �. We
sum up our algorithm in Sect. 4.5, where we show that the overall running time is
O(|F |3|W |3oracle-call).

We start with a definition and properties which will be used in later algorithms. For
a matching μ, let

X f (μ):={w ∈ W ( f ) : C f (μ( f ) ∪ {w}) = μ( f )},

and define the closure of μ, denoted by X(μ), as the collection of sets {X f (μ) : f ∈
F}. Note that μ( f ) ⊆ X f (μ) for every firm f and individually rational matching μ.

4 Note that the full-quota property is analogous to the Rural Hospital Theorem [38] in the SA- Model
where agents have preferences over individual partners instead of over sets of partners.
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Lemma 23 Let μ be an individually rational matching. Then, for every firm f , we
have C f (X f (μ)) = μ( f ).

Proof Fix a firm f . Since μ is individually rational, C f (μ( f )) = μ( f ). The claim
then follows from Lemma 2 with A1 = μ( f ) and A2 = X f (μ). 
�
Lemma 24 Let μ1, μ2 ∈ S(CF , CW ) such that μ1 � μ2. Then, for every firm f ,
μ2( f ) ⊆ X f (μ1).

Proof Since μ1 � μ2, we have C f (μ1( f )∪μ2( f )) = μ1( f ) for every firm f . Thus,
by the consistency property of C f , for every w ∈ μ2( f ), we have C f (μ1( f )∪{w}) =
μ1( f ). The claim follows. 
�
Lemma 25 In the following, we give the running time of three operations.

(i) given a matching μ, computing its closure X(μ) can be performed in time
O(|F ||W |oracle-call);

(ii) given a matching μ, deciding whether it is stable can be performed in time
O(|F ||W |oracle-call);

(iii) given stable matchings μ,μ′ ∈ S, deciding whether μ′ � μ can be performed in
time O(|F |oracle-call).

Proof (i). For any firm f , computing X f (μ) requires O(|W |) oracle-calls by
definition and thus, computing the closure of μ takes O(|F ||W |) oracle-calls.
(ii). To check if a matching μ is stable, we need to check first if it is individually
rational,which takesO(|F |+|W |)oracle-calls, and then to check if it admits any
blocking pair, which takes O(|F ||W |) oracle-calls. (iii). To decide if μ′ � μ,
one need to check if for every firm f ∈ F , C f (μ

′( f )∪μ( f )) = μ′( f ), and this takes
O(|F |) oracle-calls. 
�

4.1 Deferred acceptance algorithm

The deferred acceptance algorithm introduced in [37]5 can be seen as a generalization
of the algorithm proposed in [21]. For the following, we assume that firms are the
proposing side. Initially, for each firm f , let X f :=W ( f ), i.e., the set of acceptable
workers of f . At every step, every firm f proposes to workers in C f (X f ). Then,
every worker w considers the set of firms Xw who made a proposal to w, temporarily
accepts Yw:=Cw(Xw), and rejects the rest. Afterwards, each firm f removes from
X f all workers that rejected f . The firm-proposing algorithm iterates until there is no
rejection. Hence, throughout the algorithm, X f denotes the set of acceptable workers
of f that have not rejected f . A formal description is given in Algorithm 1.

Note that for every step s other than the final step, there exists a firm f ∈ F such
that X (s)

f � X (s−1)
f . Therefore, the algorithm terminates, since there is a finite number

of firms and workers. Moreover, the output has interesting properties.

5 The model considered in [37] is more general than our setting here, where choice functions are only
assumed to be substitutable and consistent, not necessarily quota-filling.
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Algorithm 1 Firm-proposing DA algorithm for an instance (F,W , CF , CW ).
1: initialize the step count s ← 0
2: for each firm f do initialize X (s)

f ← W ( f ) end for
3: repeat
4: for each worker w do
5: X (s)

w ← { f ∈ F : w ∈ C f (X
(s)
f )}

6: Y (s)
w ← Cw(X (s)

w )

7: end for
8: for each firm f do
9: update X (s+1)

f ← X (s)
f \ {w ∈ W : f ∈ X (s)

w \ Y (s)
w }

10: end for
11: update the step count s ← s + 1
12: until X (s)

f = X (s−1)
f for every firm f

Output: matching μ with μ(w) = Y (s−1)
w for every worker w

Theorem 10 (Theorem 2, [37]) Let μ be the output of Algorithm 1 over a matching
market (F,W , CF , CW ) assuming CF , CW are path-independent. Then, μ = μF .

Due to the symmetry between firms andworkers in amarketwhere the only assump-
tion on choice functions is path-independence, swapping the role of firms and workers
in Algorithm 1, we have the worker-proposing deferred acceptance algorithm, which
outputs μW .

4.2 Constructing5 via amaximal chain of (S,�)

Let (H,⊆) be a ring of sets. A chain C0, · · · ,Ck in (H,⊆) is an ordered subset ofH
such that Ci−1 is a predecessor of Ci in (H,⊆) for all i ∈ [k]. The chain is complete
if moreover Ci−1 is an immediate predecessor of Ci for all i ∈ [k]; it is maximal if it
is complete, C0 = H0 and Ck = Hz . Consider K ∈ D(H). If K = Ci \Ci−1 for some
i ∈ [k], then we say that the chain contains the minimal difference K . We start with
the theorem below, where it is shown that the set D(H) can be obtained by following
any maximal chain of (H,⊆).

Theorem 11 (Theorem 2.4.2, [23]) Let H ′, H ∈ H such that H ′ ⊆ H. Then, there
exists a complete chain from H ′ to H in (H,⊆), and every such chain contains exactly
the same set of minimal differences. In particular, for anymaximal chain (C0, · · · ,Ck)

in (H,⊆), we have {Ci \ Ci−1 : i ∈ [k]} = D(H) and k = |D(H)|.
In this section, we present Algorithm 3 that, on inputsμ′, outputs a stable matching

μ that is an immediate descendant of μ′ in (S,�). Then, using Algorithm 3 as a
subroutine, Algorithm 4 gives a maximal chain of (S,�).

We start by extending to our setting the break-marriage idea proposed by McVitie
and Wilson [33] for finding the full set of stable matchings in the one-to-one stable
marriagemodel. Given a stablematchingμ′ and a firm-worker pair ( f ′, w′) ∈ μ′\μW ,
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the break-marriage procedure, denoted as break-marriage(μ′, f ′, w′), works as
follows. We first initialize X f to be X f (μ

′) for every firm f 
= f ′, while we set
X f ′ = X f ′(μ′)\{w′}. We then restart the deferred acceptance process. The algorithm
continues in iterations as in the repeat loop of Algorithm 1, with the exception that
workerw′ temporarily acceptsYw′ :=Cw′(Xw′∪{ f ′})\{ f ′}.As an intuitive explanation,
this acceptance rule ofw′ ensures that for the output matchingμ, we have Cw′(μ(w′)∪
μ′(w′)) = μ(w′), as we show in Lemma 27. The formal break-marriage procedure
is summarized in Algorithm 2. Note that by choice of the pair ( f ′, w′), we have
|μ′(w′)| = qw′ .

Algorithm 2 break-marriage(μ′, f ′, w′), with ( f ′, w′) ∈ μ′ \μW and μ′ ∈ S
1: for each firm f 
= f ′ do initialize X (0)

f ← X f (μ
′) end for

2: initialize X (0)
f ′ ← X f ′(μ′) \ {w′}

3: initialize the step count s ← 0
4: repeat
5: for each worker w do
6: X (s)

w ← { f ∈ F : w ∈ C f (X
(s)
f )}

7: if w 
= w′ then Y (s)
w ← Cw(X (s)

w ) else Y (s)
w ← Cw(X (s)

w ∪ { f ′}) \ { f ′}
8: end for
9: for each firm f do
10: update X (s+1)

f ← X (s)
f \ {w ∈ W : f ∈ X (s)

w \ Y (s)
w }

11: end for
12: update the step count s ← s + 1
13: until X (s−1)

f = X (s)
f for every firm f

Output: matching μ with μ(w) = Y (s−1)
w for every worker w

With the same reasoning as for theDAalgorithm, thebreak-marriage(μ′, f ′, w′)
procedure is guaranteed to terminate. Let s� be the value of step count s at the end of
the algorithm. Note that, for every firm f ∈ F , we have

X f (μ
′) ⊇ X (0)

f ⊇ X (1)
f ⊇ · · · ⊇ X (s�)

f , (2)

where the first containment is an equality unless f = f ′. In particular, (2) implies that
f ′ /∈ X (s)

w′ for all s ∈ {0, 1, · · · , s�}. Also note that the termination condition implies

μ( f ) = C f (X
(s�)
f ) = C f (X

(s�−1)
f ) (3)

for every firm f , while for every worker w 
= w′ it implies that

μ(w) = Y (s�−1)
w = Cw(X (s�−1)

w ) = X (s�−1)
w . (4)

123



Affinely representable lattices, stable matchings, and... 743

Let ( f , w) ∈ F ×W , we say f is rejected by w at step s if f ∈ X (s)
w \ Y (s)

w , and we
say f is rejected by w if f is rejected by w at some step during the break-marriage
procedure. Note that a firm f is rejected by all and only the workers in X (0)

f \ X (s�)
f .

In the following, we prove Theorem 12.

Theorem 12 Let μ′, μ ∈ S(CF , CW ) and assume μ′ is an immediate predecessor of μ
in the stable matching lattice. Pick ( f ′, w′) ∈ μ′ \μ and let μ be the output matching
of break-marriage(μ′, f ′, w′). Then, μ = μ.

We start by outlining the proof steps of Theorem 12. We first show in Lemma 26
that the outputmatchingμ of break-marriage(μ′, f ′, w′) is individually rational.
We then show in Lemma 30 that under a certain condition (i.e., the break-marriage
operation being successful), μ is a stable matching and μ′ � μ. Lastly, we show that
under the assumptions in the statement of Theorem 12, the above-mentioned condition
is satisfied and μ � μ.

Lemma 26 Let μ′ ∈ S be a stable matching that is not the worker-optimal stable
matchingμW and let ( f ′, w′) ∈ μ′\μW .Consider thebreak-marriage(μ′, f ′, w′)
procedure with output μ. Then, μ is individually rational.

Proof By (3) and (4), for every agent a ∈ F ∪ W \ {w′}, μ(a) = Ca(X (s�−1)
a ) and

thus, Ca(μ(a)) = Ca(Ca(X (s�−1)
a )) = Ca(X (s�−1)

a ) = μ(a), where the second equality
is due to path-independence. For worker w′, note that X (s�−1)

w′ = Y (s�−1)
w′ = μ(w′) =

Cw′(X
(s�−1)
w′ ∪ { f ′}) \ { f ′}, where the first equality is due to the termination criterion.

Then, by the substitutability property, with T = X (s�−1)
w′ and S = X (s�−1)

w′ ∪ { f ′},
we have that for every firm f ∈ μ(w′), f ∈ Cw′(X

(s�−1)
w′ ) holds. Thus, μ(w′) ⊆

Cw′(μ(w′)). Since Cw′(X) ⊆ X for any X in the domain of Cw′ , we have μ(w′) =
Cw′(μ(w′)). Therefore, μ is individually rational. 
�
Lemma 27 Consider the break-marriage(μ′, f ′, w′) procedure with output
matching μ. Then, for every firm f , C f (μ( f ) ∪ μ′( f )) = μ′( f ).

Proof For a firm f , we have

C f (μ( f ) ∪ μ′( f )) = C f (C f (X
(s�)
f ) ∪ C f (X f (μ

′))

= C f (X
(s�)
f ∪ X f (μ

′)) = C f (X f (μ
′)) = μ′( f ),

where the first and last equality hold since μ′( f ) = C f (X f (μ
′)) by Lemma 23 and

μ( f ) = C f (X
(s�)
f ) by (3), the second equality is by path-independence, and the third

equality is due to X (s�)
f ⊆ X (0)

f ⊆ X f (μ
′) by (2). 
�

The following two properties of the break-marriage procedure are direct conse-
quences of the path-independence assumption imposed on choice functions. These
properties are also true for the deferred acceptance algorithm, as shown in [37]. Let
f ∈ F and w ∈ W be an arbitrary firm and worker. Lemma 28 states that once f
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proposes tow in some step of the algorithm, it will keep proposing tow in future steps
until w rejects f . Lemma 29 states that once w rejects f , w would never accept f in
later steps even if the proposal is offered again.

Lemma 28 For all s ∈ [s� − 1] and w ∈ W, we have Y (s−1)
w ⊆ X (s)

w .

Proof Let f ∈ Y (s−1)
w . By construction, we have w ∈ C f (X

(s−1)
f ) ∩ X (s)

f . Since

X (s)
f ⊆ X (s−1)

f by (2), we have w ∈ C f (X
(s)
f ) by substitutability. Hence, f ∈ X (s)

w . 
�

Lemma 29 Let s ∈ [s�−1], f ∈ F, andw ∈ W.Assume f ∈ X (s−1)
w \Y (s−1)

w , i.e., f is

rejected byw at step s−1. Ifw 
= w′, then for every step s′ ≥ s, f /∈ Cw(X (s′)
w ∪{ f });

and if w = w′, then for every step s′ ≥ s, f /∈ Cw(X (s′)
w ∪ { f ′} ∪ { f }).

Proof By construction, w /∈ X (s)
f . Hence, f /∈ X (s′)

w for all s′ ≥ s because of (2) and

the definition of X (s′)
w . Fix a value of s′ ≥ s. First consider the case when w 
= w′.

By repeated application of the path-independence property of Cw and Lemma 28, we
have

Cw(X (s′)
w ∪ { f }) = Cw(X (s′)

w ∪ Y (s′−1)
w ∪ { f }) = Cw(X (s′)

w ∪ Cw(Y (s′−1)
w ∪ { f }))

= Cw(X (s′)
w ∪ Cw(Cw(X (s′−1)

w ) ∪ { f }))
= Cw(X (s′)

w ∪ Cw(X (s′−1)
w ∪ { f }))

= · · ·
= Cw(X (s′)

w︸︷︷︸

� f

∪ X (s′−1)
w︸ ︷︷ ︸

� f

∪ · · · ∪ Cw(X (s−1)
w ∪ { f })︸ ︷︷ ︸

=Cw(X (s−1)
w )=Y (s−1)

w 
� f

).

Therefore, f /∈ Cw(X (s′)
w ∪ { f }) as desired. We next consider the case where w = w′.

Since w /∈ X (0)
f ′ by construction, we have w /∈ X (s−1)

f ′ by (2), which then implies

f ′ /∈ X (s−1)
w by definition. Thus, we have f 
= f ′. Again, by repeated application of

the path-independence property of Cw and Lemma 28, we have

Cw(X (s′)
w ∪ { f ′} ∪ { f }) = Cw(X (s′)

w ∪ Y (s′−1)
w ∪ { f ′} ∪ { f })

= Cw(X (s′)
w ∪ { f ′} ∪ Cw(Y (s′−1)

w ∪ { f ′} ∪ { f }))
= Cw(X (s′)

w ∪ { f ′} ∪ Cw((Cw(X (s′−1)
w ∪ { f ′}) \ { f ′}) ∪ { f ′} ∪ { f }))

= Cw(X (s′)
w ∪ { f ′} ∪ Cw(X (s′−1)

w ∪ { f ′} ∪ { f }))
= · · ·
= Cw(X (s′)

w︸︷︷︸

� f

∪ X (s′−1)
w︸ ︷︷ ︸

� f

∪ · · · ∪ { f ′} ∪ Cw(X (s−1)
w ∪ { f ′} ∪ { f })︸ ︷︷ ︸

=Cw(X (s−1)
w ∪{ f ′}) 
� f

).

Therefore, f /∈ Cw(X (s′)
w ∪ { f ′} ∪ { f }) as desired in this case as well. 
�
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We say the break-marriage procedure break-marriage(μ′, f ′, w′) is success-
ful if f ′ /∈ Cw′(X

(s�−1)
w′ ∪ { f ′}). We next show that when the procedure is successful,

the output matching is stable.

Lemma 30 If break-marriage(μ′, f ′, w′) is successful, then the output matching
μ is stable. Moreover, μ′ � μ.

Proof Since break-marriage(μ′, f ′, w′) is successful, applying the consistency
property with T = X (s�−1)

w′ and S = T ∪ { f ′}, we have Cw′(X
(s�−1)
w′ ∪ { f ′}) =

Cw′(X
(s�−1)
w′ ) and thus, Y (s�−1)

w′ = Cw′(X
(s�−1)
w′ ). In addition, by the termination con-

dition, Y (s�−1)
w′ = X (s�−1)

w′ . Therefore, we have the following identity (similar to (4)
for other workers)

μ(w′) = Y (s�−1)
w′ = X (s�−1)

w′ = Cw′(X
(s�−1)
w′ ) = Cw′(X

(s�−1)
w′ ∪ { f ′}). (5)

Claim 1 Let ( f , w) ∈ F ×W . If f is rejected by w during the break-marriage proce-
dure, then f /∈ Cw(μ(w) ∪ { f }).
Proof Ifw 
= w′, then byLemma29, f /∈ Cw(X (s�−1)

w ∪{ f }) = Cw(μ(w)∪{ f })where
the equality is due to (4). This is also true if w = w′ because again by Lemma 29,

f /∈ Cw′(X
(s�−1)
w′ ∪ { f ′} ∪ { f }) = Cw′(Cw′(X

(s�−1)
w′ ∪ { f ′}) ∪ { f }) = Cw′(μ(w′) ∪ { f }),

where the first equality is by path-independence, and the second equality by (5). 
�
Claim 2 Cw(μ′(w) ∪ μ(w)) = μ(w) for all w ∈ W .

Proof Let f ∈ μ′(w) \ μ(w), and suppose first ( f , w) 
= ( f ′, w′). Because of
Lemma 23 and Lemma 28, f must be rejected by w during the break-marriage
procedure since otherwise f ∈ X (s)

w for all s ∈ [s�] ∪ {0}, which in particu-
lar implies w ∈ μ( f ) due to (4). Then, by Claim 1, f /∈ Cw(μ(w) ∪ { f }).
Next assume ( f , w) = ( f ′, w′). By (5), we know that X (s�−1)

w = μ(w). Since
break-marriage(μ′, f ′, w′) is successful, we have f ′ /∈ Cw(X (s�−1)

w ∪ { f ′}) =
Cw(μ(w) ∪ { f ′}). We conclude that in both cases, Cw(μ(w) ∪ { f }) = Cw(μ(w)) by
consistency. Thus, we can apply Lemma 2 with A1 = μ(w) and A2 = μ′(w) and con-
clude that Cw(μ′(w) ∪μ(w)) = Cw(μ(w)). The claim then follows from Lemma 26.


�
Fix an acceptable firm-worker pair ( f , w) /∈ μ. We show that ( f , w) does not block
μ. Assume by contradiction that f ∈ Cw(μ(w) ∪ { f }) (†) and w ∈ C f (μ( f ) ∪ {w})
(‡). We claim that ( f , w) /∈ μ′. If this is not the case, the consistency property of Cw,
with S = μ′(w)∪μ(w) and T = μ(w)∪{ f }, implies Cw(μ(w)∪{ f }) = Cw(μ′(w)∪
μ(w)) = μ(w), where the last equality is by Claim 2. Thus, f /∈ Cw(μ(w) ∪ { f }),
which contradicts our assumption (†). Thus, ( f , w) /∈ μ′. Note that in particular,
( f , w) 
= ( f ′, w′). By Lemma 3 and Claim 2, (†) implies f ∈ Cw(μ′(w) ∪ { f }).
Hence, we must have w /∈ C f (μ

′( f ) ∪ {w}) since μ′ is stable, i.e., not blocked by
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( f , w). This implies C f (μ
′( f ) ∪ {w}) = C f (μ

′( f )) = μ′( f ) due to the consistency

property or C f and the fact that μ′ is individually rational. Thus, w ∈ X f (μ
′) = X (0)

f
since f 
= f ′.

Suppose firstw /∈ X (s�)
f . Then, workerw rejected firm f during the break-marriage

procedure. This implies f /∈ Cw(μ(w) ∪ { f }) by Claim 1, contradicting assumption
(†). Suppose next w ∈ X (s�)

f . Since ( f , w) /∈ μ, we have w /∈ μ( f ) = C f (X
(s�)
f ),

where the equality is due to (3). Then by the consistency property, with S = X (s�)
f

and T = μ( f ) ∪ {w}, we have that w /∈ C f (μ( f ) ∪ {w}). However, this contradicts
(‡). Therefore, μ must be stable. By Lemma 27, μ′ � μ. Moreover, we have μ′ 
= μ

since f ′ ∈ μ′(w′) \ μ(w′). Hence, μ′ � μ as desired. 
�
We now give the proof of Theorem 12.

Proof of Theorem 12 Note that by Lemma 24, μ( f ) ⊆ X f (μ
′) for every f ∈ F . We

start by showing that during the break-marriage procedure, for every firm f , no worker
in μ( f ) rejects f . Assume by contradiction that this is not true. Let s′ be the first step
where such a rejection happens, with firm f1 being rejected by worker w1 ∈ μ( f1).

Hence, f1 ∈ X (s′)
w1 \ Y (s′)

w1 .

Claim 3 There exists a firm f2 ∈ Y (s′)
w1 \ μ(w1) such that f2 ∈ Cw1(μ(w1) ∪ { f2}).

Proof Assume by contradiction that such a firm f2 does not exist. We first consider

the case when w1 
= w′. By Corollary 3 with A1 = μ(w1) and A2 = Y (s′)
w1 , we have

Cw1(μ(w1) ∪ Y (s′)
w1 ) = Cw1(μ(w1)) = μ(w1), where the last equality is because μ is

individually rational. Hence, f1 ∈ Cw1(μ(w1) ∪ Y (s′)
w1 ), and using substitutability, we

deduce f1 ∈ Cw1(Y
(s′)
w1 ∪{ f1}). However, using consistency, with T = Y (s′)

w1 ∪{ f1} and
S = X (s′)

w1 , we conclude Cw1(Y
(s′)
w1 ∪{ f1}) = Cw1(X

(s′)
w1 ) = Y (s′)

w1 
� f1, a contradiction.
We next consider the case whenw1 = w′. Note that f1 
= f ′, because ( f ′, w′) /∈ μ

by choice of ( f ′, w′). Since μ′ � μ, by Theorem 3, Cw′(μ′(w′) ∪ μ(w′)) = μ(w′).
Thus, by the consistency property, with S = μ′(w′) ∪ μ(w′) and T = μ(w′) ∪ { f ′},
we have Cw′(μ(w′) ∪ { f ′}) = μ(w′) 
� f ′. As in the case w1 
= w′, by Corollary 3

with A1 = μ(w′) and A2 = Y (s′)
w1 ∪ { f ′} and the fact that μ is individually rational,

μ(w′) = Cw′(μ(w′)) = Cw′(μ(w′) ∪ { f ′} ∪ Y (s′)
w′ ). Then, since f1 ∈ μ(w′) ∩ X (s′)

w′ ,
by substitutability and path independence, we have:

f1 ∈ Cw′(Y
(s′)
w′ ∪ { f ′} ∪ { f1})

= Cw′(Cw′(X
(s′)
w′ ∪ { f ′}) \ { f ′} ∪ { f ′} ∪ { f1})

= Cw′(X
(s′)
w′ ∪ { f ′}).

However, since f1 /∈ Y (s′)
w′ by our choice and f1 
= f ′, we should have f1 /∈ Cw′(X

(s′)
w′ ∪{ f ′}), which is again a contradiction. 
�

Now let f2 be the firm whose existence is guaranteed by Claim 3. In particular, f2 ∈
Y (s′)

w1 implies w1 ∈ C f2(X
(s′)
f2

) ⊆ X (s′)
f2

. Note that by our choice of f1, μ( f2) ⊆ X (s′)
f2

.
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Therefore, by substitutability and w1 ∈ C f2(X
(s′)
f2

), we have w1 ∈ C f2(μ( f2)∪ {w1}).
However, thismeans that ( f2, w1) is a blocking pair ofμ, which contradicts stability of
μ. Thus, for every firm f ∈ F , no worker inμ( f ) rejects f during the break-marriage
procedure as we claimed, which, together with the fact that μ( f ) ⊆ X f (μ

′), implies

μ( f ) ⊆ X (s�)
f . By path-independence and (3), we have that for every firm f :

C f (μ( f ) ∪ μ( f )) = C f (C f (X
(s�)
f ) ∪ μ( f )) = C f (X

(s�)
f ∪ μ( f ))

= C f (X
(s�)
f ) = μ( f ).

(6)

Moreover,

|μ( f )| = |μ′( f )| = |μ( f )|, ∀ f ∈ F (7)

because

|μ( f )| = |μ′( f )| = |C f (μ( f ) ∪ μ′( f ))| ≥ |C f (μ( f ))| = |μ( f )|
= |C f (μ( f ) ∪ μ( f ))| ≥ |C f (μ( f ))| = |μ( f )|,

where the first equality is due to the equal-quota property, the second and the fourth
equalities are by Lemma 27 and (6) respectively, the remaining two equalities are due
to the fact thatμ andμ are individually rational, and the two inequalities hold because
of cardinal monotonicity.

We next show that the break-marriage procedure is successful. Consider the fol-
lowing two cases for a worker w 
= w′. The first is when |μ′(w)| < qw. By
the full-quota property, w has the same set of partners in all stable matchings. In par-
ticular, μ′(w) = μ(w). We claim that only firms from μ(w) propose to w during the
break-marriage procedure. Assume by contradiction that a firm f /∈ μ(w) proposes to
w at step s (i.e., w ∈ C f (X

(s)
f )). Then, since μ( f ) = C f (X

(s�)
f ) ⊆ X (s�)

f ⊆ X (s)
f

due to (2) and (3), by substitutability, we have w ∈ C f (μ( f ) ∪ {w}) and thus,
w ∈ C f (μ( f ) ∪ {w}) because of (6) and Lemma 3. Since |μ(w)| < qw, we also
have that f ∈ Cw(μ(w) ∪ { f }) by the quota-filling property of Cw. However, this
contradicts stability of μ. Therefore, Y (s)

w = X (s)
w = μ′(w) for all s ∈ {0, 1, · · · , s�}

by Lemma 23 and Lemma 28. Hence, μ(w) = μ′(w) by (4).
We next consider the second case for workerw 
= w′, which is when |μ′(w)| = qw,

and we claim that |Y (s)
w | = qw for all s ∈ {0} ∪ [s�]. We will show this by induction.

For the base case with s = 0, we want to show that X (0)
w ⊇ μ′(w) because then we

have |X (0)
w | ≥ qw and thus |Y (0)

w | = qw by quota-filling. Let f ∈ μ′(w). If f 
= f ′,
then by Lemma 23, we have w ∈ C f (X

(0)
f ); and if f = f ′, by substitutability of

C f ′ , we also have w ∈ C f (X
(0)
f ) since w 
= w′. Hence, f ∈ X (0)

w by definition

of X (0)
w . For the inductive step, assume that |Y (s−1)

w | = qw and we want to show
that |Y (s)

w | = qw. Because of Lemma 28, X (s)
w ⊇ Y (s−1)

w . Hence, similar to the base
case, we have |X (s)

w | ≥ qw and subsequently |Y (s)
w | = qw by quota-filling. Therefore,

|μ(w)| = |μ′(w)| by (4).
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Combining both cases, we have |μ(w)| = |μ′(w)| for every worker w 
= w′.
Together with (7), we have:

∑
w∈W\{w′}

|μ(w)| + |μ(w′)|

=
∑
w∈W

|μ(w)| =
∑
f ∈F

|μ( f )| =
∑
f ∈F

|μ( f )|

=
∑
w∈W

|μ(w)| =
∑

w∈W\{w′}
|μ(w)| + |μ(w′)|.

Hence, we must also have |μ(w′)| = |μ′(w′)| = qw′ . Therefore, f ′ /∈ Cw′(X
(s�−1)
w′ ∪

{ f ′}) because otherwise |μ(w′)| = |Cw′(X
(s�−1)
w′ ∪ { f ′}) \ { f ′}| ≤ qw′ − 1, where the

inequality is by quota-filling. Hence, the break-marriage procedure is successful.
Finally, by Lemma 30, we have μ ∈ S and μ′ � μ. We also have μ � μ by (6).

Therefore, it must be that μ = μ since μ is an immediate descendant of μ′ in S. 
�
We are now ready to present the algorithm that finds an immediate descendant for

any given stable matching, using the break-marriage procedure. The details of the
algorithm are presented in Algorithm 3.

Algorithm 3 Immediate descendant of stable matching μ′ 
= μW

Input: μ′, μW

1: initialize T ← ∅
2: for each ( f ′, w′) ∈ μ′ \ μW do
3: run the break-marriage(μ′, f ′, w′) procedure
4: if the procedure is successful then add the output matching μ to T
5: end for
6: let μ∗ be a matching in T
7: for each μ ∈ T \ {μ∗} do
8: if μ � μ∗ then update μ∗ ← μ

9: end for � μ∗ is a maximal matching from T
Output: μ∗

Theorem 13 The output μ∗ of Algorithm 3 is an immediate descendant of μ′ in the
stable matching lattice (S,�).

Proof First note that due to Lemma 30, all matchings in the set T constructed by
Algorithm 3 are stable matchings and μ′ � μ for all μ ∈ T . Moreover, we claim
that T 
= ∅. Let μ1 ∈ S such that μ′ is an immediate predecessor of μ1 in (S,��).
Such a stable matching μ1 exists because μ′ 
= μW . Because of Lemma 16, we have
μ′ \ μ1 ⊆ μ′ \ μW and thus by Theorem 12, we have μ1 ∈ T . Hence, T 
= ∅ as
desired. Now, to prove the theorem, assume by contradiction that the output matching
μ∗ is not an immediate descendant ofμ′ in (S,�). Then, there exists a stablematching

123



Affinely representable lattices, stable matchings, and... 749

μ such thatμ′ � μ � μ∗. By Lemma 16, for every firm-worker pair ( f ′, w′) ∈ μ′ \μ,
we also have ( f ′, w′) /∈ μW . Thus, μ ∈ T due to Theorem 12. However, this means
that μ∗ is not a maximal matching from T , which is a contradiction. 
�

Finally, putting everything together, Algorithm 4 finds a maximal chain of the
stable matching lattice, as well as the set of rotations. Its correctness follows from
Theorems 13, 11, and 7.

Algorithm 4 A maximal chain of (S,�) and the set of rotations �

Input: μF and μW

1: initialize counter k ← 0 and Ck ← μF

2: while Ck 
= μW do
3: run Algorithm 3 with input Ck and μW , and let μ∗ be its output
4: update counter k ← k + 1 and Ck ← μ∗
5: end while
Output: maximal chain C0,C1, · · · ,Ck ; and � = {ρi :=ρ(Ci−1,Ci ) : i ∈ [k]}.

4.3 Finding irreducible elements via maximal chains

The goal of this section is to prove the following. Note that the result below holds for
any ring of sets.

Theorem 14 Consider a ring of sets (H,⊆) with base set B. Let C0,C1, · · · ,Ck be
a maximal chain of (H,⊆) and let Ki :=Ci \ Ci−1 for all i ∈ [k]. For H ⊆ B, let
ros-membership denote the running time of an algorithm that decides if H ∈ H.
There exists an algorithm with running time O(k2ros-membership) that takes
C0, C1, · · · , Ck as input and outputs, for each minimal difference Ki , a set of indices
�(Ki ) such that I (Ki ) =⋃{K j : j ∈ �(Ki )} ∪C0. In particular, this algorithm can
be used to obtain the partial order � over D(H).

The theorem below gives an alternative definition of the partial order �.
Theorem 15 (Theorem 2.4.4, [23]) Let K1, K2 ∈ D(H). Then, K1 � K2 if and only
if K1 appears before K2 on every maximal chain in (H,⊆).

We now present the algorithm stated in Theorem 14 in Algorithm 5. The idea
is as follows. In order to find I (Ki ) (i.e., the minimal element in H that contains
Ki ), the algorithm tries to remove from the set Ci as many items as possible, while
keeping Ci ∈ H. That is, the algorithm removes from Ci all minimal differences
K ∈ {K1, K2, · · · , Ki } such that K 
� Ki . As we show in the proof of Theorem 14,
the resulting set is I (Ki ).

We now give the proof of Theorem 14.

Proof of Theorem 14 It is clear that the running time of Algorithm 5 is O
(k2ros-membership). Suppose first the output of Algorithm 5 is correct, that
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Algorithm 5
Input: A maximal chain C0,C1, · · · ,Ck of (H,⊆).
1: for i = 1, 2, · · · , k do
2: define Ki ← Ci \ Ci−1
3: initialize H ← Ci and �(Ki )← {1, 2, · · · , i}
4: for j = i − 1, i − 2, · · · , 1 do
5: if H \ K j ∈ H then
6: update H ← H \ K j and �(Ki )← �(Ki ) \ { j}
7: end if
8: end for
9: end for
Output: �(Ki ) for all i ∈ [k]

is, I (Ki ) = ⋃{K j : j ∈ �(Ki )} ∪ C0. Then, for two minimal differences
Ki1 , Ki2 ∈ D(H), Ki1 � Ki2 if and only if �(Ki1) ⊆ �(Ki2) by definition of
�. Hence, the partial order� can be obtained in time O(k2) from the output of Algo-
rithm 5. It remains to show the correctness of Algorithm 5. Fix a value of i ∈ [k]
and for the following, consider the i th iteration of the outer for loop of the algorithm.
Let { j1, j2, · · · , jM } be an enumeration of �(Ki ) at the end of the iteration such that
j1 < j2 < · · · < jM . Note that jM = i . We start by showing the following claim.

Claim 4 For all m ∈ [M − 1], K jm � Ki .

Proof Weprove this by inductiononm,where the base case ism = M−1.We startwith
the base case. Note that jm is the first index for which the if statement at Line 5 is evalu-
ated to be false. That is, (

⋃ jm
�=1 K�)∪Ki ∪C0 ∈ H but (

⋃ jm−1
�=1 K�)∪Ki ∪C0 /∈ H. By

Lemma 11, {K1, K2, · · · , K jm , Ki } is an upper set of (D(H),�), and by Theorem 5,
{K1, K2, · · · , K jm−1, Ki } is not an upper set of (D(H),�). Since for all j ′ < jm ,
K jm 
� K j ′ because of Theorem 15, the reason why {K1, K2, · · · , K jm−1, Ki } is not
an upper set of (D(H),�) must be that K jm � Ki . For the inductive step, assume the
claim is true for all m′ > m and we want to show that K jm � Ki . Note that again by
Theorem 5, {K1, K2, · · · , K jm , K jm+1 , K jm+2 , · · · , Ki } is an upper set of (D(H),�)

but {K1, K2, · · · , K jm−1, K jm+1 , K jm+2 , · · · , Ki } is not an upper set of (D(H),�).
With the same argument as in the base case, since for all j ′ < jm , K jm 
� K j ′ by
Theorem 15, it must be that K jm � K jm′ for some m′ > m. Therefore, applying the
inductive hypothesis, we have K jm � Ki as desired. 
�

Let H∗ be set H at the end of i th iteration of the outer for loop. Note that H∗ =⋃{K j : j ∈ �(Ki )}∪C0 by construction. Since Ki ⊆ H∗,wehave I (Ki ) ⊆ Ci ⊆ H∗
by definition. Also note that by definition, I (Ki ) ∈ H. Assume by contradiction that
H∗ 
= I (Ki ) (i.e., H∗ � I (Ki )). Consider a complete chain from theminimal element
H0 of (H,⊆) to I (Ki ) in (H,⊆), whose existence is guaranteed by Theorem 11.
Then, at least one minimal difference from {K j : j ∈ �(Ki ) \ {i}}, call it K ′, is not
contained in this complete chain. However, this means K ′ 
� Ki due to Theorem 11,
which contradicts Claim 4. Therefore, we must have I (Ki ) = H∗. 
�
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4.4 Partial order�� over5

In this section, we show how to obtain the partial order �� over the rotation poset �.
Recall that as stated in Theorem 14 of the previous section, there exists an algorithm
that finds the partial order � over D:=D(P) when given as input a maximal chain
of P . Employing the isomorphism between S and P shown in Theorem 4 and that
betweenD and� shown in Theorem 7, we adapt the algorithm so that from amaximal
chain of S, we obtain the partial order �� over �.

Algorithm 6
Input: outputs of Algorithm 4 – maximal chain C0, · · · ,Ck of (S,�) and the set of

rotations � = {ρi :=ρ(Ci−1,Ci ) : i ∈ [k]}
1: for i = 1, 2, · · · , k do
2: initialize μ← Ci and �(ρi )← {1, 2, · · · , i}
3: for j = i − 1, i − 2, · · · , 1 do
4: if μ�ρ−j �ρ+j ∈ S then

5: update μ← μ�ρ−j �ρ+j and �(ρi )← �(ρi ) \ { j}
6: end if
7: end for
8: end for
Output: �(ρi ) for all i ∈ [k]

Theorem 16 Let�(ρ)and�(ρ′) be the outputs of Algorithm6 for rotationsρ, ρ′ ∈ �,
respectively. Then, ρ �� ρ′ if and only if �(ρ) ⊆ �(ρ′).

Proof To distinguish between the inputs of Algorithm 6 and Algorithm 5, we let
μ0, μ1, · · · , μk denote the maximal chain in the input of Algorithm 6. Consider the
outputs of Algorithm 5 with inputs Ci = P(μi ) for all i ∈ [k] ∪ {0}. Then, because of
the isomorphism between (S,�) and (P,⊆) and the isomorphism between (�,��)

and (D,�) stated respectively in Theorem4 andTheorem7, Ki = Q(ρi ) and�(ρi ) =
�(Ki ) for all i ∈ [k], where Ki = Ci \Ci−1 as defined in Algorithm 5. Thus, together
with Theorem 14,

ρ �� ρ′ ⇔ Q(ρ) � Q(ρ′)⇔ �(Q(ρ)) ⊆ �(Q(ρ′))⇔ �(ρ) ⊆ �(ρ′),

concluding the proof. 
�

4.5 Summary and time complexity analysis

The complete procedure to build the rotation poset is summarized in Algorithm 7.
The time complexity analysis of Algorithm 7 now follows easily from the results

deduced above and is deferred to Appendix A.

Theorem 17 Algorithm 7 runs in time |W |3|F |3oracle-call.
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Algorithm 7 Construction of the rotation poset (�,��)

1: Run Algorithm 1’s, firm-proposing and worker-proposing, to obtain μF and μW .
2: Run Algorithm 4 to obtain a maximal chain C0,C1, · · · ,Ck of the stable matching
lattice (S,�), and the set of rotations � ≡ {ρ1, ρ2, · · · , ρk}.

3: Run Algorithm 6 to obtain the sets �(ρi ) for each rotation ρi ∈ �.
4: Define the partial order relation ��: for ρi , ρ j ∈ �, ρi �� ρ j ⇔ �(ρi ) ⊆ �(ρ j ).

5 The convex hull of lattice elements

Consider a poset (Y ,��). Its associated order polytope is defined as

O(Y ,��):={y ∈ [0, 1]Y : yi ≥ y j , ∀i, j ∈ Y s.t. i �� j}.

A characterization of vertices and facets of O(X ,��) is given in [42].

Theorem 18 ( [42]) The vertices of O(Y ,��) are the characteristic vectors of upper
sets of Y . The facets ofO(Y ,��) are all and only the following: yi ≥ 0 if i is a minimal
element of the poset; yi ≤ 1 if i is a maximal element of the poset; yi ≥ y j if i is an
immediate predecessor of j .

Proof of Theorem 2 Let (Y ,��) affinely represent (X ,�) via functions ψ and g(u) =
Au + x0. We claim that

conv(X ):=conv({χμ : μ ∈ X}) = {x0} ⊕ A ·O(Y ,��)

= {x ∈ R
X : x = x0 + Ay, y ∈ O(Y ,��)}, (8)

where ⊕ denotes the Minkowski sum operator. Indeed, by definition of affine repre-
sentation and the fact that both polytopes, conv(X ) andO(Y ,��), have 0/1 vertices, g
defines a bijection between vertices of these two polytopes. Convexity then implies (8).
AsO(Y ,��) has O(|Y |2) facets shown in Theorem 18, we conclude the first statement
from Theorem 2.

Now suppose that A has full column rank. This implies that conv(X ) is affinely
isomorphic toO(Y ,��). Hence, there is a one-to-one correspondence between facets
of O(Y ,��) and facets of conv(X ), concluding the proof. 
�

Notice that,when A as in the statement of Theorem2does not have full column rank,
the extended formulation given in (8) may not give any information on the number of
facets of conv(X ). For instance, the vertices of any polytope can be ordered as to form
a chain. In this case, Theorem 2 simply implies the well-known fact that conv(X ) can
be written as the projection of a simplex with as many vertices as that of conv(X ).

6 Representations of choice functions and algorithms

Recall that a choice function is defined on all the (exponentially many) subsets of
agents from the opposite side. The oracle model bypasses the computational concerns
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of representing choice functions explicitly. However, one drawback of this model is
that it requires multiple rounds of communication between the “central planner” and
each agent in the market. This, from an application point of view, is time-consuming:
one of the major improvements brought about by the implementations of the Deferred
Acceptance algorithm when applied, e.g., to the New York City school system, lies in
the fact that it does not require multiple rounds of communication between the agents
and the central planner [1].

This observation leads to the following practically relevant and theoretically intrigu-
ing questions: is there a way to represent choice functions “compactly”, and do
our algorithms perform efficiently in such a model? A natural starting point is the
MC-representation [3] which we introduce next. We show that, in the model where
choice functions are given through their MC-representations, the time complexity
of our algorithms is polynomial in the input size (where now the input includes the
MC-representations). However, the number of preference relations required by the
MC-representation of a choice function may be exponential in the number of agents
(see Remark 4).

It is therefore interesting to investigate whether there are other ways to represent
choice functions that is of size polynomial in the number of agents. Via a counting
argument, we give a negative answer to this question for choice functions that are
substitutable, consistent, and cardinal monotone (see Theorem 21 and Remark 5). We
remark that our argument leaves it open whether a similar result holds if we replace
cardinal monotonicity with quota-filling.

6.1 MC-representation for path-independent choice functions

We now introduce an alternative, equivalent description of path-independent choice
functions. Aizerman and Malishevski [3] showed that a choice function Ca is path-
independent if and only if there exists a finite sequence of p(Ca) ∈ N preference
relations over acceptable partners, denoted as {≥a,i }i∈[p(Ca)] indexed by i , such that
for every subset of acceptable partners S, Ca(S) = ∪i∈[p(Ca)]{x∗a,i }, where x∗a,i =
max(S,≥a,i ) is the maximum element6 of S according to ≥a,i . We call this sequence
of preference relations theMaximizer-Collecting representation (MC-representation)
of choice function Ca . Note that for distinct i1, i2 ∈ [p(Ca)], it is possible to have
x∗a,i1

= x∗a,i2
.

Conceptually, one can view the MC-representation as follows: a firm is a collection
of positions, each of which has its own preference relation; a worker is a collection
of personas, each of whom also has his or her own preference relation. Each firm
hires the best candidate for each position, and the same candidate can be hired for two
positions if (s)he is the best for both. A symmetric statement holds for workers and
personas.

6 If S = ∅, then max(S,≥a,i ) is defined to be ∅.
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6.2 Algorithms with MC-representation

We now show how to modify the algorithms and analyze their time complexities when
agents’ choice functions are explicitly given via the MC-representations.

In Algorithm 1 and Algorithm 2, instead of relying on an oracle model, we need
to compute the outcomes of choice functions Ca(S) for agent a ∈ F ∪ W and subset
of acceptable partners S. Recall that Ca(S) can be obtained as a set of maximizers:
{max(S,≥a,i ) : i ∈ [p(Ca)]}. Since each max(S,≥a,i ) requires O(max(|F |, |W |)
time to compute, the time-complexity for obtaining Ca(S) is O(max(|F |, |W |)p(Ca)).
Thus, for all previous results in terms of time complexity, one can simply replace
O(oracle-calls) with O(max(|F |, |W |)maxa∈F∪W p(Ca)). Note that this time
complexity bound is polynomial in the input size, but could be exponential in the
number of agents, since maxa∈F∪W p(Ca) maybe exponential in the number of the
agents as discussed in Remark 4.

Remark 4 Doğan et al. [16] constructed strict preference lists with quotas (i.e., choice
functions for the MM- Model) whose MC-representation needs exponentially many
preference relations. Since such choice functions are a special case of the quota-filling
choice functions, in general the MC-representation of quota-filling choice functions
is not polynomial in the number of agents.

6.3 On the number of substitutable, consistent, and cardinal monotone choice
functions

In the following, the domain of all choice functions is the family of subsets of X , with
|X | = n. The simplest choice functions C appears in the SM- Model, where there is
a single underlying strict preference list. The number of such choice functions is

n∑
i=0

(
n

i

)
i ! =

n∑
i=0

n!
(n − i)! =

n∑
i=0

n!
(n − i)! = n!

n∑
i=0

1

i ! ≤ en!,

hence, singly exponential in n. On the other extreme, the number of all choice functions
is doubly-exponential in n (see, e.g., [17]).

Theorem 19 The number of choice functions on subsets of X with |X | = n is 2n2
n−1

.

It has also been shown by Echenique [17] that when choice functions are assumed to
be substitutable and consistent (i.e., path-independent), the number of choice functions
remains doubly exponential in n.

Theorem 20 ( [17]) The number of substitutable and consistent choice functions on

subsets of X with |X | = n is 2



(
2n−1√
n−1

)
.

In the rest of the section, we show the following. The proof idea follows from [17].

Theorem 21 The number of substitutable, consistent, and cardinal monotone choice

functions on subsets of X with |X | = n is 2



(
2n−1√
n−1

)
.
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Remark 5 Because of Theorem 21, in order to encode all substitutable, consistent, and
cardinal monotone choice function in binary strings, we need a number of strings that
is super-polynomial in n, i.e., the number of agents in the market.

A family of subsetsA ⊆ 2X is an antichain of (2X ,⊆) if for any subsets A, B ∈ A,
they are not comparable, i.e., A \ B 
= ∅ and B \ A 
= ∅. A family of subsets F ⊆ 2X

is a filter (i.e., lower set) if for all F ∈ F , F ′ ⊇ F implies F ′ ∈ F . Moreover, we say
filter F is a filter at x if for all F ∈ F , we have x ∈ F . Note that ∅ is a filter at x .
Theorem 22 ( [17]) There is an injective function mapping collections of antichains
A = {Ax : x ∈ X} where each Ax is an antichain of the poset (2X\{x},⊆) to
substitutable choice functions. The image ofA is defined as follows: for all S ⊆ X,

C(S):={x ∈ S : S /∈ Tx },

where

Tx :={B ⊆ X : A ∪ {x} ⊆ B for some A ∈ Ax }.

Moreover, Tx is a filter at x for all x ∈ X.

Let C[A] denote the substitutable choice function corresponding to the collection
of antichains A constructed as in the statement of Theorem 22.

Lemma 31 Let (Y ,W ) be a partition of X with W = {w}. Let A = {Ax : x ∈ X}
be a collection of antichains such that (i) for all x ∈ Y , Ax = ∅ and (ii) Aw is an
antichain of (2Y ,⊆). Then C[A] is consistent and cardinal monotone.

Proof We abbreviate C := C[A]. Let Tx be as defined in the statement of Theorem 22.
That is, Tx = ∅ for all x ∈ Y and Tw is a filter at w. Hence, note that S ∩ Y ⊆ C(S)

for all S ⊆ X (�).
Let T ⊆ X . We consider first the case when w /∈ T . Then, C(T ) = T because of

(�). Let S ⊆ X be such that C(T ) ⊆ S ⊆ T . Then it must be that S = T and it follows
immediately that C(T ) = C(S). In addition, for all S ⊆ T , we also have S ⊆ Y and
thus, using (�) again, |C(S)| = |S| ≤ |T | = |C(T )|.

We next consider the case whenw ∈ T . Then, either C(T ) = T or C(T ) = T \{w},
again because of (�). We start with the consistency property. Assume we are in the
former case, and let S ⊆ X be such that C(T ) ⊆ S ⊆ T . Since T = C(T ), we have
S = T and thus C(T ) = C(S). Now assume we are in the latter case: C(T ) = T \ {w}.
If S ⊆ X satisfies C(T ) ⊆ S ⊆ T , we either have S = T or S = T \ {w}. Regardless,
we have C(S) = C(T ). Lastly, we show the cardinality monotonicity property, and we
consider both cases at once. For all S � T , we either have C(S) = S or C(S) = S\{w}
due to (�). Either way, |C(S)| ≤ |S| ≤ |T | − 1 ≤ |C(T )|. Hence, C is both consistent
and cardinal monotone, concluding the proof. 
�

Thus, a lower bound to the number of substitutable, consistent, and cardinal mono-
tone choice functions can be obtained by counting the number of antichains. The
problem of counting the number of antichains of a poset is called the Dedekind’s
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problem. LetN (k) denote the collection of antichains of poset (2[k],⊆). The follow-
ing result is well-known and we include the proof for completeness.

Lemma 32 |N (k)| ≥ 2(
k

#k/2$) = 2�(2k/
√
k).

Proof Consider any two distinct subsets A, B ⊆ X with |A| = |B|, then it must be
that A \ B 
= ∅ and B \ A 
= ∅. Thus, a collection of subsets, each with the same
size, is an antichain of (2[k],⊆). Therefore, the number of antichains of (2[k],⊆) is at

least the number of subsets of {A ⊆ X : |A| = #k/2$}, which is exactly 2(
k

#k/2$) since
there are

( k
#k/2$

)
subsets of X with size #k/2$. The last equality follows from Stirling’s

approximation. 
�
We now present the proof for Theorem 21.

Proof of Theorem 21 Let (Y ,W ) be a partition of X with |Y | = n − 1 and |W | = 1,
as in the statement of Lemma 31. By Lemma 32, the possible choices of antichains
Ax for x ∈ W is at least N (n − 1). Hence, the number of A (i.e., collection of
antichains) in the statement of Lemma 31 is also at least N (n − 1). Finally, together
with Theorem 22, we have that the number of substitutable, consistent, and cardinal
monotone choice functions is again at least N (n − 1). 
�

7 Concluding remarks

Our results show that approaching stable matching problems by regarding their fea-
sible regions as a distributive lattice leads to efficient optimization algorithms and a
polyhedral description of the associated convex sets. Our study leaves some questions
open and it poses research directions which we think are worth exploring.

First, it is not clear if algorithms from Sect. 4 extend to the CM- Model—or even
beyond—and if conversely the lower bound from Sect. 6 extends to choice functions
that are quota-filling. Second, there has been some recent work showing how feasible
regions of certain problems in combinatorial optimization can be seen as a distributive
lattice [22]. This fact, combined with our approach, may lead to (known or new)
efficient algorithms for optimizing linear functions over the associated polytopes.

Acknowledgements Yuri Faenza acknowledges support from the NSFAward 2046146 and the ONR award
N00014-20-1-2091. Xuan Zhang thanks the Cheung Kong Graduate School of Business (CKGSB) for their
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Matching-Based Market Design program at the Simons Institute in Fall 2019. The authors wish to thank
Vijay Garg for pointing out to them the reference [22], as well as the members of the OpLog division at
UBC for stimulating discussions when the material from the current paper was presented there.

A Proof of Theorem 17

DA algorithm (Algorithm 1)

Because of Lemma 28 and Lemma 29, Algorithm 1 can be implemented as in Algo-
rithm 8 to reduce the number of oracle-calls. In particular, during each repeat
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loop, only firms that are rejected in the previous step (i.e., in F) and only workers who
receive new proposals (i.e., in W ) need to invoke their choice functions. Therefore,
the for loop at Line 5 is entered at most |F ||W | times, and similarly, the for loop at
Line 13 is entered at most |F ||W | times. That is, the total number of oracle-calls
is O(|F ||W |). Moreover, and for each firm-worker pair ( f , w), w is removed from
X f at most once and f is added to Xw at most once. That is, Line 8 (resp. Line 16)
is repeated at most |F ||W | times. Therefore, the running time of the DA algorithm is
O(|F ||W |oracle-call).

Algorithm 8 Efficient implementation of Algorithm 1

1: set F ← F and W ← ∅
2: for each firm f do initialize X f ← W ( f ) and Y prev

f ← ∅ end for

3: for each worker w do initialize Xw ← ∅ and Y prev
w ← ∅ end for

4: repeat
5: for each firm f ∈ F do
6: A f ← C f (X f )

7: for each worker w ∈ A f \ Y prev
f do

8: update Xw ← Xw ∪ { f } and W ← W ∪ {w}
9: end for
10: update Y prev

f ← A f

11: end for
12: re-set F ← ∅
13: for each worker w ∈ W do
14: Xw ← C(Xw)

15: for each firm f ∈ Y prev
w \ Xw do

16: update X f ← X f \ {w} and F ← F ∪ { f }
17: end for
18: update Y prev

w ← Xw

19: end for
20: re-set W ← ∅
21: until F = ∅
Output: matching μ with μ(w) = Y prev

w for every worker w; closure X̃(μ) with
X̃ f (μ) = X f for every firm f

Break-marriage procedure (Algorithm 2)

Since the core steps (i.e., the loops) of the break-marriage procedure is the same
as that of the DA algorithm, the running time of the break-marriage procedure is
O(|F ||W |oracle-call), with the same arguments as above.
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Immediate descendant (Algorithm 3)

Recall that q f denotes the number of workers matched to firm f under any stable
matching (see the equal-quota property). Let ϒ :=∑

f ∈F q f denote the number of
worker-firm pairs in any stablematching. Then, Algorithm 2 is run for at mostϒ times.
In addition, finding one maximal element μ∗ from T requires at most ϒ comparisons
of pairs of stable matchings, each of which requires |F | oracle-calls by Part (iii)
of Lemma 25. All together, since ϒ ≤ |F ||W |, the running time of Algorithm 3 is
O(|F |2|W |2oracle-call).

Maximal chain (Algorithm 4)

Since the length of a maximal chain of P , and equivalently of S due to Theorem 4,
is at most the size of its base set due to Lemma 10 and Theorem 11, Algorithm 3
is repeated for at most |F ||W | times. Thus, the running time of Algorithm 4 is
O(|F |3|W |3oracle-call).

Partial order�� (Algorithm 6)

Recall that checking if a matching is stable requires O(|F ||W |) oracle-calls by
Part (ii) of Lemma 25. Thus, ros-membership is O(|F ||W |oracle-call).
Since k is at most |F ||W | as argued above, the running time of Algorithm 6 is
O(|F |3|W |3oracle-call).

Rotation poset (5,��) (Algorithm 7)

Summing up the time of running Algorithm 1 twice, then Algorithm 4, and lastly
Algorithm 6, the time complexity for building the rotation poset is O(|F |3|W |3
oracle-call).
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16. Doğan, B., Doğan, S., Yıldız, K.: On capacity-filling and substitutable choice rules. Math. Oper. Res.

(2021)
17. Echenique, F.: Counting combinatorial choice rules. Games Econ. Behav. 58(2), 231–245 (2007)
18. Echenique, F., Yenmez, M.B.: How to control controlled school choice. Am. Econ. Rev. 105(8), 2679–

94 (2015)
19. Faenza, Y., Zhang, X.: Affinely representable lattices, stable matchings, and choice functions. In:

Singh, M., Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization, pp. 89–
103. Springer International Publishing, Cham (2021)

20. Fleiner, T.: On the stable b-matching polytope. Math. Social Sci. 46(2), 149–158 (2003)
21. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Monthly 69(1),

9–15 (1962)
22. Garg, V.K.: Predicate detection to solve combinatorial optimization problems. In: Proceedings of the

32nd ACM symposium on parallelism in algorithms and architectures, pp. 235–245 (2020)
23. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT press (1989)
24. Hafalir, I.E., Yenmez,M.B., Yildirim,M.A.: Effective affirmative action in school choice. Theor. Econ.

8(2), 325–363 (2013)
25. Hatfield, J.W., Milgrom, P.R.: Matching with contracts. Am. Econ. Rev. 95(4), 913–935 (2005)
26. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM J. Comput. 15(3), 655–

667 (1986)
27. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable marriage. J.

ACM (JACM) 34(3), 532–543 (1987)
28. Kamada, Y., Kojima, F.: Efficient matching under distributional constraints: theory and applications.

Am. Econ. Rev. 105(1), 67–99 (2015)
29. Kelso Jr, A.S., Crawford, V.P.: Job matching, coalition formation, and gross substitutes. Econ. J. Econ.

Soc, pp. 1483–1504 (1982)
30. Knuth, D.E.: Marriages stables. Technical report (1976)
31. Manlove, D.: Algorithmics of Matching Under Preferences, vol. 2. World Scientific (2013)
32. Martínez, R., Massó, J., Neme, A., Oviedo, J.: An algorithm to compute the full set of many-to-many

stable matchings. Math. Social Sci. 47(2), 187–210 (2004)
33. McVitie, D.G., Wilson, L.B.: The stable marriage problem. Commun. ACM 14(7), 486–490 (1971)
34. Nguyen, T., Vohra, R.: Stable matching with proportionality constraints. Oper. Res. (2019)
35. Picard, J.C.: Maximal closure of a graph and applications to combinatorial problems. Manage. Sci.

22(11), 1268–1272 (1976)
36. Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game

theory. J. Polit. Econ. 92(6), 991–1016 (1984)
37. Roth, A.E.: Stability and polarization of interests in job matching. Econ. J. Econ. Soc., pp. 47–57

(1984)
38. Roth, A.E.: On the allocation of residents to rural hospitals: a general property of two-sided matching

markets. Econ. J. Econ. Soc., pp. 425–427 (1986)
39. Roth, A.E., Rothblum, U.G., Vande Vate, J.H.: Stable matchings, optimal assignments, and linear

programming. Math. Oper. Res. 18(4), 803–828 (1993)
40. Rothblum, U.G.: Characterization of stable matchings as extreme points of a polytope. Math. Program.

54(1–3), 57–67 (1992)
41. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency, vol. 24. Springer Science & Busi-

ness Media (2003)
42. Stanley, R.P.: Two poset polytopes. Dis. Comput. Geometry 1(1), 9–23 (1986)

123



760 Y. Faenza, X. Zhang

43. Tomoeda, K.: Finding a stable matching under type-specific minimum quotas. J. Econ. Theory 176,
81–117 (2018)

44. Vate, J.H.V.: Linear programming brings marital bliss. Oper. Res. Lett. 8(3), 147–153 (1989)
45. Zhang, X.: Two-sided matching markets: Models, Structures, and Algorithms. Ph.D. thesis, IEOR

Department, Columbia University (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Affinely representable lattices, stable matchings, and choice functions
	Abstract
	1 Introduction
	1.1 Our contributions and techniques
	1.2 Relationship with the literature

	2 Basics
	2.1  Posets, lattices, and distributivity
	2.2 The firm-worker models

	3 Affine representability of the stable matching lattice
	3.1 Isomorphism between the stable matching lattice and a ring of sets
	3.2 Affine representability of rings of sets via the posets of minimal differences
	3.3 Representation of (mathcalS,succeq) via the poset of rotations
	3.4 Concluding the proof for the first part of Theorem 1

	4 Algorithms
	4.1 Deferred acceptance algorithm
	4.2 Constructing Π via a maximal chain of (mathcalS, succeq)
	4.3 Finding irreducible elements via maximal chains
	4.4 Partial order succeq over Π
	4.5 Summary and time complexity analysis

	5 The convex hull of lattice elements
	6 Representations of choice functions and algorithms
	6.1 MC-representation for path-independent choice functions
	6.2 Algorithms with MC-representation
	6.3 On the number of substitutable, consistent, and cardinal monotone choice functions

	7 Concluding remarks
	Acknowledgements
	A Proof of Theorem 17
	DA algorithm (Algorithm 1)
	Break-marriage procedure (Algorithm 2)
	Immediate descendant (Algorithm 3)
	Maximal chain (Algorithm 4)
	Partial order succeq (Algorithm 6)
	Rotation poset (Π,succeq) (Algorithm 7)

	References




