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Abstract

Birkhoff’s representation theorem (Birkhoff, Duke Math J 3(3):443-454, 1937)
defines a bijection between elements of a distributive lattice and the family of upper
sets of an associated poset. Although not used explicitly, this result is at the back-
bone of the combinatorial algorithm by Irving et al. (J ACM 34(3):532-543, 1987) for
maximizing a linear function over the set of stable matchings in Gale and Shapley’s
stable marriage model (Gale and Shapley, Am Math Monthly 69(1):9—-15 1962). In
this paper, we introduce a property of distributive lattices, which we term as affine
representability, and show its role in efficiently solving linear optimization problems
over the elements of a distributive lattice, as well as describing the convex hull of
the characteristic vectors of the lattice elements. We apply this concept to the stable
matching model with path-independent quota-filling choice functions, thus giving effi-
cient algorithms and a compact polyhedral description for this model. To the best of
our knowledge, this model generalizes all those for which similar results were known,
and our paper is the first that proposes efficient algorithms for stable matchings with
choice functions, beyond classical extensions of the Deferred Acceptance algorithm.
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1 Introduction

Since Gale and Shapley’s seminal publication [21], the concept of stability in matching
markets has been widely studied by the optimization community. With minor mod-
ifications, the one-to-many version of Gale and Shapley’s original stable marriage
model is currently employed in the National Resident Matching Program [36], which
assigns medical residents to hospitals in the US, and for assigning eighth-graders to
public high schools in many major cities in the US [2].

In this paper, matching markets have two sides, which we call firms F and workers
W.In the marriage model, every agent from F'UW has a strict preference list that ranks
agents in the opposite side of the market. The problem asks for a stable matching, which
is a matching where no pair of agents prefer each other to their assigned partners. A
stable matching can be found efficiently via the Deferred Acceptance (DA) algorithm
[21]. Although successful, the marriage model does not capture features that have
become of crucial importance both inside and outside academia. For instance, there is
growing attention to models that can increase diversity in school cohorts [34, 43]. Such
constraints cannot be represented in the original model, or its one-to-many or many-
to-many generalizations, since admission decisions with diversity concerns cannot be
captured by a strict preference list.

To model these and other markets, instead of ranking individual potential partners,
each agent a € F U W is endowed with a choice function C, that picks a team she
prefers the best from a given set of potential partners. See, e.g., [8, 18, 28] for more
applications of models with choice functions. Models with choice functions were first
studied in [29, 37]. Mutatis mutandis, one can define a concept of stability in this model
as well (for this and the other technical definition mentioned below, see Sect. 2). Two
classical assumptions on choices functions are substitutability and consistency, under
which the existence of stable matchings is guaranteed [7, 25]. Clearly, existence results
are not enough for applications (and for optimizers). Interestingly, little is known about
efficient algorithms in models with choice functions. Only extensions of the classical
Deferred Acceptance algorithm for finding the one-side optimal matching have been
studied for this model [14, 37].

The goal of this paper is to study algorithms for optimizing a linear function w
over the set of stable matchings in models with choice functions, where w is defined
over firm-worker pairs. Such questions are classical in combinatorial optimization,
see, e.g., [41] (and [31] for problems on matching markets), and having efficient
algorithms for such questions allows one to find the optimal stable matching for various
linear objectives, such as profit-maximal and egalitarian (i.e., fair for both sides of the
market). We focus on two models. The first model (CM- MODEL) assumes that all
choice functions are substitutable, consistent, and cardinal monotone. The second
model (CM- QF- MODEL) additionally assumes that for one side of the market, choice
functions are also quota-filling. Before proceeding, let us give some concrete examples
of such models.

In the school choice problem, many mechanisms that combine stability with affir-
mative actions can be viewed as modeling schools’ decisions via choice functions.
We here describe two popular mechanisms, which are called majority quota [2] and
minority reserve [24]. Under majority quota, a school’s choice function first chooses
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the top students one by one until the number of majority students chosen is at its
majority quota, and then chooses the top minority students until the total quota is met
or until there are no more minority students. Under minority reserve, a school’ choice
function first chooses the top minority students up to its reservation quota, and then
chooses the remaining top students (both majority and minority) until the total quota
is met or until there are no more students to choose from. Both mechanisms have
students simply ranking the schools in order of preference, as in the classical model,
and thus both fall under the CM- QF- MODEL.

Both the (CM- QF- MODEL) and the (CM- MODEL) generalize all classical models
where agents have strict preference lists, on which results for the question above were
known. For these models, Alkan [5] has shown that stable matchings form a distributive
lattice. As we argue next, this is a fundamental property that allows us to solve our
optimization problem efficiently.

1.1 Our contributions and techniques

We give here a high-level description of our approach and results. For the standard
notions of posets, distributive lattices, and related definitions see Sect. 2. All sets
considered in this paper are finite.

Let £ = (X, >) be a distributive lattice!, where the elements of X" are distinct
subsets of a base set £ and > is a partial order on X'. We refer to S € & as an
element (of the lattice). Birkhoff’s theorem [12] implies that we can associate? to £
a poset B = (Y, =*) such that there is a bijection ¢ : X — U(B), where U(B) is
the family of upper sets of B. U C Y is an upper set of Bif y € U and y’ =* y for
some y’ € Y implies y’ € U. We say therefore that B is a representation poset for L
with the representation function vr. See Example 1 below. B may contain much fewer
elements than the lattice £ it represents, thus giving a possibly “compact” description
of L. The representation poset B and the representation function ¥ are univocally
defined per Birkhoff’s theorem. Moreover, the representation function v satisfies that
for S, S’ € X, S > S ifand onlyif ¥/ (S) C ¥ (S’). Although B explains how elements
of X are related to each other with respect to >, it does not contain any information
on which items from E are contained in each lattice element. We introduce therefore
Definition 1. For § € X and U € U(B), we write x° € {0, 1}£ and xY € {0, 1}¥ to
denote their characteristic vectors, respectively.

Definition 1 Let £ = (X, >) be a distributive lattice on a base set E and B = (Y, >=*)
be a representation poset for £ with representation function . 5 is an affine represen-
tation of L if there exists an affine function g : RY — RE suchthatg(xY) = x vl ,
for all U € U(B). In this case, we also say that B affinely represents L via function g
and that L is affinely representable.

! Note that the ordering of lattices used in this paper is opposite to the standard notations in lattice theory,
where lattices are usually represented by £ = (X, <). Our notation, however, follows classical stable
matching literature.

2 The result proved by Birkhoff is actually a bijection between the families of lattices and posets, but in
this paper we shall not need it in full generality.
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S1={1,2} S1={1,2}

|52 =1{1,3}] [5:={1,2,4} | [$2={1,3}] |53 =1{1.3.4}]
Sa ={1,3,4} Sy ={1,2,4}
(2) Lattice affinely representable (b) Lattice not affinely representable

Fig.1 Lattices for Example 1

We observe that, in Definition 1, we can always assume g(u) = Au + xY, where
A € {0, £1}E*Y and x9 is the characteristic vector of the maximal element of L.
Indeed, g(x”) = x0. Moreover, for every y € B, there is U, U’ € U(B) such that
U’ = U \ {y}. Hence, letting a” be the column of A corresponding to y, we have

@ =g(xV) —g(xV) = xV O — 3V W) e 0, £1)E.

Example 1 Consider first the distributive lattice £ = (X, >) whose Hasse diagram is
given in the Fig. 1a, with base set E = {1, 2, 3, 4}.

The representation poset B = (Y, >*) of L contains two non-comparable elements,
y1 and y,. The representation function ¢ maps S; to U; for i € [4] with U} = @,
Uy = {1}, Us = {y2}, and Us = {y1, y2}. That is, U(B) = {U, Uz, U3, Us}. One
can think of y; as the operation of adding {3} and removing {2}, and y» as the operation
of adding {4}. B affinely represents £ via the function g(x¥) = AxY + x5! where

00 g(xYNT=1(0,0,0,00 +(1,1,0,0) = (1,1,0,0) = (x°)T;
-10 . g(xU)T =(0,-1,1,0) + (1,1,0,0) = (1,0,1,0) = (x*)T;
g(xYHT=(0,0,0,1) +(1,1,0,0)=(1,1,0,1) = (x*)T;
01 g(xUHT =(0,-1,1,1) + (1,1,0,0) = (1,0, 1, 1) = (x59)T.

Next consider the distributive lattice £’ whose Hasse diagram is presented in Fig. 1b.
Note that the same poset B represents £ with the same representation function .
Nevertheless, £’ is not affinely representable. If it is and such a function g(xY) =

AxY + x5 exists, then we must have
X150 = O+ AU + T AT = 5+ AX) + T+ A = xB 4 (%,

since (xU1 + xUHT = (1, 1) = (xY2 + xY3)T. However, this is clearly not the case
as (x50 4+ 5T = (2,2,0, 1) but (x5 + x5)T = (2,0,2, 1).

As we show next, affine representability allows one to efficiently solve linear opti-
mization problems over elements of a distributive lattice. In particular, it generalizes
properties that are at the backbone of algorithms for optimizing a linear function over
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the set of stable matchings in the marriage model and its one-to-many and many-to-
many generalizations (see, e.g., [11, 27]). For instance, in the marriage model, the
base set E is the set of potential pairs of agents from two sides of the market, X is
the set of stable matchings, and for S, S’ € X, we have S > §' if every firm prefers
its partner in S to its partner in S’. Elements of its representation poset are certain
(trading) cycles, called rotations.

Lemma 1 Suppose we are given a poset B = (Y, =*) that affinely represents a lattice
L = (X, ») with representation function . Let w : E — R be a linear function over
the base set E of L. Then the problem max{wT x5 : S € X} can be solved in time
min-cut(|Y| + 2), where min-cut(k) is the time complexity required to solve a
minimum s — t cut problem with nonnegative weights in a digraph with k nodes.

Proof Let g(u) = Au + x9 be the affine function from the definition of affine repre-
sentability. We have:

maxwTxs = max wTg(x¥)= max wT(AxY +x% = wTx+ max (wTA)xY.
sew U T vdus) 8(x™) Uel(B) (Ax ) UEL{(B)( )
Our problem boils down therefore to the optimization of a linear function over the

upper sets of B. It is well-known that the latter problem is equivalent to computing a
minimum s — ¢ cut in a digraph with |Y| + 2 nodes [35]. O

We want to apply Lemma 1 to the CM- QF- MODEL. Observe that a choice function
may be defined on all the (exponentially many) subsets of agents from the opposite
side. We avoid this computational concern by modeling choice functions via an oracle
model. That is, choice functions can be thought of as agents’ private information. The
complexity of our algorithms will therefore be expressed in terms of | |, |W|, and the
time required to compute the choice function C, (X) of an agenta € F U W, where the
set X is in the domain of C,. The latter running time is denoted by oracle-call
and we assume it to be independent of a and X. Our first result is the following.

Theorem 1 The distributive lattice (S, >) of stable matchings in the CM- MODEL
is affinely representable. Its representation poset (I1, =*) has O(|F||W|) elements.
This representation poset, as well as its representation function \ and affine function
g(u) = Au + x° can be computed in time O(|F|*|\W|?oracle-call) for the
CM- QF- MODEL. Moreover, matrix A has full column rank.

In Theorem 1, we assumed that operations such as comparing two sets and obtaining
an entry from their set difference take constant time. If this is not the case, a factor
mildly polynomial in | F'| - | W| needs to be added to the running time. Theorem 1 is the
union of two statements. First, the distributive lattice of stable matchings in the CM-
MODEL is affinely representable. Second, this representation and the corresponding
functions i and g can be found efficiently for the CM- QF- MODEL. Those results
are proved in Sect. 3 and Sect. 4, respectively. Combining Theorem 1, Lemma 1 and
algorithms for min-cut(-), we obtain the following.

Corollary 1 The problem of optimizing a linear function over the set of stable matchings
in the CM- QF- MODEL can be solved in time O(|F|?|W|3oracle-call).
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Since algorithms for solving min-cut (k) in time sub-cubic in k are known (see,
e.g., [15]), the bottleneck in the running time of Corollary 1 is given by the operations
that construct the poset. As a consequence of studying a distributive lattice via the
poset that affinely represents it, one immediately obtains a linear description of the
convex hull of the characteristic vectors of elements of the lattice (see Sect. 5). In
contrast, most stable matching literature has focused on deducing linear descriptions
for special cases of our model via ad-hoc proofs, independently of the lattice structure.

Theorem 2 Let L = (X, =) be a distributive lattice and B = (Y, =*) be a poset that
affinely represents it via function g(u) = Au + x0. Then the extension complexity of
conv(X):=conv{x® : § € X} is O(|Y|?). If moreover A has full column rank, then

conv(X) has 0(|Y|2)facets.

Theorems 1 and 2 imply the following description of the stable matching polytope,
i.e., the convex hull of the characteristic vectors of stable matchings.

Corollary 2 conv(S) has O(|F|*|W|?) facets in the CM- MODEL.

Lastly, in Sect. 6, we discuss alternative ways to represent choice functions, drop-
ping the oracle-model assumption. Interestingly, we show that choice functions in
the CM- MODEL (i.e., substitutable, consistent, and cardinal monotone) do not have
polynomial-size representation because the number of possible choice functions in
such a model is doubly-exponential in the size of acceptable partners.

For examples and extended discussions, we refer to the arXiv version of the paper?
and to the forthcoming Ph.D. thesis of the second author [45].

1.2 Relationship with the literature

Gale and Shapley [21] introduced the one-to-one stable marriage (SM- MODEL) and
the one-to-many stable admission model (SA- MODEL), and presented an algorithm
which finds a stable matching. McVitie and Wilson [33] proposed the break-marriage
procedure that allows us to find the full set of stable matchings. Irving et al. [27]
presented an efficient algorithm for the maximum-weighted stable matching problem
with weights over pairs of agents, utilizing the fact stable matchings form a distributive
lattice [30] and that its representation poset — an affine representation following our
terminology — can be constructed efficiently via the concept of rotations [26]. The
above-mentioned structural and algorithm results were shown for its many-to-many
generalization (MM- MODEL) by Baiou and Balinski [9], and Bansal et al. [11]. A
complete survey of results on these models can be found, e.g., in [23, 31].

For models with substitutable and consistent choice functions, Roth [37] proved that
stable matchings always exist by generalizing the algorithm presented in [21]. Blair
[13] proved that stable matchings form a lattice, although not necessarily distributive.
Alkan [4] showed that if choice functions are further assumed to be quota-filling, the
lattice is distributive. Results on (non-efficient) enumeration algorithms for certain
choice functions appeared in [32].

3 https://arxiv.org/abs/2011.06763.
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It is then natural to investigate whether algorithms from [11, 26, 33] can be directly
extended to, e.g., construct the representation poset in the CM- QF- MODEL or the
more general CM- MODEL. However, their definition of rotation and techniques rely
on the fact that there is a strict ordering of partners, which is not available with choice
functions. This, for instance, leads to the fact that the symmetric difference of two
stable matchings that are adjacent in the Hasse Diagram of the lattice is a simple
cycle, which is not always true in the CM- MODEL. We take then a more fundamental
approach by showing a carefully defined ring of sets is isomorphic to the set of stable
matchings, and thus we can construct the rotation poset following a maximal chain of
the stable matching lattice. This approach conceptually follows the one by Gusfield
and Irving [23] for the SM- MODEL and leads to a generalization of the break-marriage
procedure from [33]. Again, proofs in [23, 33] heavily rely on the strict ordering of
partners, while we need to tackle the challenge of not having one.

Besides the combinatorial perspective, another line of research focuses on the poly-
hedral aspects. Linear descriptions of the convex hull of the characteristic vectors of
stable matchings are provided for the SM- MODEL [39, 40, 44], the SA- MODEL [10],
and the MM- MODEL [20]. In this paper, we provide a polyhedral description for the
CM- MODEL, by drawing connections between the order polytope (i.e., the convex
hull of the characteristic vectors of upper sets of a poset) and Birkhoff’s representa-
tion theorem of distributive lattices. A similar approach has been proposed in [6]: their
result can be seen as a specialization of Theorem 1 to the SM- MODEL.

2 Basics
2.1 Posets, lattices, and distributivity

A set X endowed with a partial order relation >, denoted as (X, >), is called a partially
ordered set (poset). When the partial order > is clear from context, we often times
simply use X to denote the poset (X, >). Leta,a’ € X, if a’ > a, we say a’ is
a predecessor of a in poset (X, >), and a is a descendant of a’ in poset (X, >). If
moreover, there is no b € X such that a’ > b > a, we say that @’ an immediate
predecessor of a in poset (X, >) and that a is an immediate descendant of a’ in poset
(X,>).Ifa # a’ and @’ # a, we say a and a’ are incomparable.

For a subset S C X, an element a € X is said to be an upper bound (resp. lower
bound) of S ifforall b € S,a > b (resp. b > a). An upper bound (resp. lower bound)
a’ of S is said to be its least upper bound or join (resp. greatest lower bound or meet),
ifa > a’ (resp. a’ > a) for each upper bound (resp. lower bound) « of S.

A lattice is a poset for which every pair of elements has a join and a meet and for
every pair those are unique by definition. Thus, two binary operations are defined over
a lattice: join and meet. A lattice is distributive where the operations of join and meet
distribute over each other. Two lattices are said to be isomorphic if there is a structure-
preserving mapping between them that can be reversed by an inverse mapping. Such a
structure-preserving mapping is called an isomorphism between the two lattices. For
n € N, we denote by [n] the set {1, --- , n}.
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2.2 The firm-worker models

Let F and W denote two disjoint finite sets of agents, say firms and workers respec-
tively. Associated with each firm f € F is a choice function Cy : 2W(/) — 2W()
where W(f) € W is the set of acceptable partners of f and C; satisfies the
property that for every S C W(f), C¢(S) € S. Similarly, a choice function
Cy : 2FW) 5 2F (W) jg agsociated to each worker w. We assume that for every firm-
worker pair (f, w), f € F(w) ifand only if w € W(f). We let Cyy and Cr denote the
collection of firms’ and workers’ choice functions respectively. A matching market (or
an instance) is a tuple (F, W, Cr, Cw). Following [5], we define below the properties
of substitutability, consistency, and cardinal monotonicity (law of aggregate demand)
for choice function C, of an agent a.

Definition 2 (Substitutability) An agent a’s choice function C, is substitutable if for
any set of partners S, b € C,(S) implies that forall T € S, b € Co(T U {b}).

Definition 3 (Consistency) An agent a’s choice function C, is consistent if for any sets
of partners S and T, C,(S) C T C S implies C,(S) = Cy(T).

Definition 4 (Cardinal monotonicity) An agent a’s choice function C, is cardinal
monotone if for all sets of partners S C T, we have |C,(S)| < |Cy(T)|.

Intuitively, substitutability implies that if an agent is selected from a set of can-
didates, she will also be selected from a smaller subset; consistency is also called
“irrelevance of rejected contracts”; and cardinal monotonicity implies that the size of
the image of the choice function is monotone with respect to set inclusion.

Aizerman and Malishevski [3] showed that a choice function is substitutable and
consistent if and only if it is path-independent.

Definition 5 (Path-independence) An agenta’s choice function C, is path-independent
if for any sets of partners S and 7, C,(SUT) = C, (Ca SHu T).

We next prove a few properties of path-independent choice functions.

Lemma2 Let C : 24 — 24 be a path-independent choice function and let Ay, A» C
A IfC(A1U{a}) =C(A)) foreverya € Ax \ Ay, then C(A1 U Ay) = C(A)).

Proof Assume A \ A| = {aj, ay, -+, a;}. Then, by repeated application of the path
independence property,

C(A1UAy) =C(A1U{ar,az, -+ ,a;}) =C(CA U{a1}) Ulaz, - ,ar})
=C(CADUlaz, - ,a}) =C(A1 U{az, a3, - ,a;}) =--- = C(Ay).

O

Corollary 3 LetC : 24 — 24 be a path-independent choice function and let Ay, Ay C
A. Ifa ¢ C(A1 U {a}) foreverya € Ay \ Ay, then C(A1 U Ay) = C(Ay).
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Proof By the consistency property of C,a ¢ C(A;U{a}) implies C(A;U{a}) = C(A1).
Lemma 2 then applies directly. O

Lemma3 Let C : 24 — 24 be a path-independent choice function and let A1, Ay C
A, a € A Assume C(A1 U Ap) = Ay anda € C(Ay U {a}). Then, a € C(Ay U {a}).

Proof By path-independence, we have that C(A{UA;U{a}) = C(C(A1UA)U{a}) =
C(A1 U {a}) and thus a € C(A; U Ay U {a}). Also, by path-independence, we have
C(AjUAU{a}) = C(C(A1 \{ah UC(A U {a})). Since a ¢ C(A; \ {a}), it must be
thata € C(Ay U {a}). O

A matching (v is a mapping from F U W to 2FYW such that for all w € W and for
all fe F, (1) u(w) © F(w); (2) u(f) € W(f); and 3) w € u(f) if and only if
f € n(w). A matching can also be viewed as a collection of firm-worker pairs. That
is, u ={(f,w): f € F,w e u(f)}. Thus, we use (f,w) € u, w € u(f), and
f € u(w) interchangeably. We say a matching u is individually rational if for every
agent a, C;(u(a)) = p(a). An acceptable firm-worker pair (f, w) ¢ w is called a
blocking pair if w € Cr(u(f) U {w}) and f € Cy((w) U {f}), and when such pair
exists, we say u is blocked by the pair or the pair blocks p. A matching u is stable if it
is individually rational and it admits no blocking pairs. If f is matched to w in some
stable matching, we say that (f, w) is a stable pair and that f (resp. w) is a stable
partner of w (resp. f). We denote by S(Cr, Cyw) the set of stable matchings in the
market (F, W, Cr, Cw), and when the market is clear from the context we abbreviate
S =S, Cw).

Alkan [5] showed the following.

Theorem 3 ([5]) Consider a matching market (F, W, Cr, Cw) and assume Cr and Cy
are substitutable, consistent, and cardinal monotone. Then S(Cr, Cw) is a distributive
lattice under the partial order relation > where 11 > o ifforall f € F,Cr(ui(f)U
w2(f)) = u1(f). The join (denoted by V) and meet (denoted by N) operations of the
lattice are defined component-wise. That is, for all f € F:

(1 vV u2) () =p1 () vV ua(f):=Cr(pu1(f) U pa(f),
(1 A u2)(f)i=p1(f) A u2(f)
=[(1 () U pa(H))\ (1 v ) (H] U (e1(f) 0 2 ().

Moreover, S(Cr, Cw) satisfies the polarity property: 1 > > if and only if for every
worker w € W, Cyy (11 (w)) U pa(w)) = pa(w).

Because of the lattice structure, the firm- and worker-optimal stable matchings are
well-defined, and we denote them respectively by ur and pw. In addition, Alkan [5]
showed two properties, concordance (Proposition 7, [5]) and equal-quota (Proposition
6, [5]), satisfied by the family of sets of partners under all stable matchings for every
agenta. Let ®,:={u(a) : un € S(Cr,Cw)}. Thenforall S, T € ,,

SNTCSvT (concordance)
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and
IS| = |T|=:q,- (equal-quota)

Instead of cardinal monotonicity, an earlier paper of Alkan [4] considers a more
restrictive property of choice functions, called quota-filling.

Definition 6 (Quota-filling) An agent a’s choice function C, is quota-filling if there
exists g, € N such that for any set of partners S, |C,(S)| = min(g,, |S|). We call g,
the quota of agent a.

Intuitively, quota-filling means that an agent has a number of positions and she tries
to fill as many of these positions as possible. Note that quota-filling implies cardinal
monotonicity. Let g, denote the quota of each agenta € FU W.

Our results from Sect. 3 assume path-independence (i.e., substitutability and con-
sistency) and cardinal monotonicity. In Sect. 4, we will restrict our model by replacing
cardinal monotonicity with quota-filling for one side of the market. These two models
are what we call the CM- MODEL and the CM- QF- MODEL, respectively.

3 Affine representability of the stable matching lattice

In this section, we show that the distributive lattice of stable matchings in the model
by [5] is affinely representable. An algorithm to construct an affine representation is
given in Sect. 4 where we additionally impose the quota-filling property upon choice
functions of agents in one side of the markets. The proof of this section proceeds
as follows. First, we show in Sect. 3.1 that the lattice of stable matchings (S, >) is
isomorphic to a lattice (P, C) belonging to a special class, that is called rings of sets. In
Sect. 3.2, we then show that rings of sets are always affinely representable. In Sect. 3.3,
we show a poset (IT, =*) representing (S, >). Lastly, in Sect. 3.4, we show how to
combine all those results and “translate” the affine representability of (P, C) to the
affine representability of (S, >), concluding the proof.

3.1 Isomorphism between the stable matching lattice and a ring of sets

A family H = {H}, H», - - - , Hy} of subsets of a base set B is a ring of sets over B
if H is closed under set union and set intersection [12]. Note that a ring of sets is a
distributive lattice with the partial order relation C, and the join and meet operations
corresponds to set intersection and set union, respectively.

In this and the following section, we fix a matching market (F, W,Cp,Cw)
and assume that Cr and Cy are path-independent and cardinal monotone (i.e., the
framework of [5]). Let ¢ (a) denote the set of stable partners of agent a. That is,
¢(a):={b : b € pu(a) forsome u € S}. For u € S, let Pr(u):={w € ¢(f) : w €
Cr(u(f)U{w})}, and define the P-set of pas P(u):={(f, w): f € F,w € Pr(n)}.

The goal of this section is to show the following theorem, which gives a represen-
tation of the stable matching lattice as a ring of sets. Let P(Cr, Cw) denote the set
{P(u) : u € S(Cr,Cw)}, and we often abbreviate P:=P(Cr, Cw).
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Theorem 4 Assume Cr and Cy are path-independent and cardinal monotone. Then,

(i) the mapping P : S — P is a bijection;

(ii) (P, Q) is isomorphic to (S, >). That is, for two stable matchings 11, uy € S,
we have wy > 1 if and only if P(u2) S P(u1). Moreover, P(juy V j12) =
P (1) N P(u2) and P(uy A ) = P(u1) U P(u2). In particular, (P, C) is a
ring of sets over the base set {(f,w): f € F,w € ¢(f)}.

Remark 1 An isomorphism between the lattice of stable matchings and a ring of sets
(also called P-set) is proved in the SM- MODEL by Gusfield and Irving [23] as well.
However, they define P(n) = {(f,w) : f € F,w >y u(f)}, hence including
firm-worker pairs that are not stable. As a consequence, while in their model the
construction of the P-set for a given stable matching is immediate, in ours it is not,
since we need to know first which pairs are stable.

Lemma4 Let ju1 and o be two stable matchings such that iy > 1. Then, Py(u2) C
Py(uy) for every firm f.

Proof Since py > w1, we have that Cr(ua(f) U u1(f)) = pa(f). The claim then
follows from Lemma 3. O

Lemma5 Let (11 be a stable matching such that w € Py(uy) for some firm f and
worker w. Then, there exists a stable matching 1y such that o > w1 and w € wa(f).

Proof By definition of Pr(i1), we know there exists a stable matching ) such that
w € ) (f). Let po:=p1 Vv ). We want to show that w € ua(f). If w € 1 (f), then
the claim follows due to the concordance property. So assume w ¢ w1(f) and also
assume by contradiction that w ¢ w2 (f). Then, we must have w € (uj A ,u’l)(f) by
definition of the meet. Since p11 > p1 A ), we have Cr(u1(f) U (1 A ) (f)) =
w1 (f). However, applying path-independence and consistency, we have

Crui (U G A D) =Cr(Crui(f)U G A () \ fwh) U fw})
=Cr(ui(f)Ufw)) # wi(f),

which is a contradiction. O

Lemma 6 Let w1 and [y be two stable matchings such that py > 1. Assume w €
Pr(u1) \ Pr(u2) for some firm f. Then, there exists a stable matching 1, with
M2 > [y > jy such that w € @y (f).

Proof By Lemma 5, there exists a stable matching @, > w; such that w € @, (f).
Let w:=py A pup and we claim that 7¢; is the desired matching. First, by definition
of meet, we have uo > Ty > wpi. Since w ¢ Pyr(u2), by the contrapositive of
the substitutability property, we have w ¢ Cy(u2(f) U (f)), which implies that
w ¢ (u2 V p)(f). Therefore, w € x| (f), again by the definition of meet. O

Lemma7 Let i1 and py be two stable matchings. Then,

Py vV pa) = P(u) N P(u2) and P(uy A p2) = P(ur) U P(u2).
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Proof Fix a firm f, and we want to show Pr(u1 Vv u2) = Pr(u1) N Pr(u2) and
Pr(puiApz) = Pr(u)UPyr(u2). If 1 (f) = u2(f), then the claim is obviously true.
Thus, for the following, we assume w1 (f) # u2(f). We first show that Py (141Vu2) C
Pyr(u1)NPy(u2). Since w1V u2 > 1, w2, the claim follows from Lemma 4. Next, we
show that Py (i1 V u2) 2 Pr(ur) N Pr(ua). If Pr(u1) N Pr(u2) = 9, then the claim
follows trivially. So we assume Py (1) N Pr(u2) # Yandletw € Pr(py) N Pr(u2).
By Lemma 5, there exists a stable matching 7¢; such that t; > w1 and w € 7, (f).
Similarly, there exists a stable matching 7t, such that t, > uy and w € 7, (f).
Consider the stable matching 1 Vv [t,. Because of the concordance property, w €
(1 V) (f). As iy VL, = 11, W2 by transitivity of >, we have 1t V ity > ©1 VvV o
by minimality of 11 Vv 2. Hence, by Lemma 4, w € Py(u; V p2). This proves the
first part of the thesis.

For the second part, we first show Pr(uy A pu2) € Pr(u1) U Pr(uz). Let w ¢
Py(u1) U Py(p2) and assume by contradiction that w € Pr(uy Apz). w ¢ Pr(up)U
Py(uo) impliesw ¢ wi(f)andw ¢ uo(f)andthus, w ¢ (u1Au2)(f). By Lemmaé,
for both i € {1, 2}, there exists a stable matching i; such that p; > @; > @1 A p2
and w € ;(f). Note that 1 A o > 1wy A = (1 A uo, where the first relation
holds because u; > ; for both i € {1, 2}, and the second relation holds because
1, o = u1 A po. Hence, oy A iy = 1 A 2. However, by applying the meet
operator A over i and ,, we have w € (uy A ) (f) = (w1 A w2)(f), whichis a
contradiction.

Lastly, we show P71 A t2) 2 Pr(i1) U Pr(pa). Let w € Pr(up) U Py(i2)
and wlog assume w € Py (u1). Since w1 > py A o, by Lemmad4, w € Pr(pg A (o).

O

Lemma 8 Let w1 and py be two stable matchings such that .y > w1 and assume that
w1(f) # ma(f) for some f € F. Then, Py(i1) # Pr(u2).

Proof Assume by contradiction that Pr(u1) = Pr(u2). Let w € pwi1(f) \ pa(f),
which exists because of the equal-quota property. Since the stable matching lattice
(S, >) has the polarity property as shown in Theorem 3, we have that Cy, (u(w) U
u2(w)) = w1 (w) and thus, by substitutability, we have f € Cy, (u2(w) U{f}). On the
other hand, w € 1 (f) implies that w € Pr(u1) = Pr(u2). Since w ¢ pa(f), this
means that (f, w) is a blocking pair of o, which contradicts the stability assumption.

O

Lemma9 Let jt1 and o be two distinct stable matchings and assume that 1 (f) #
u2(f) for some f € F. Then, Pr(ju1) # Pr(u2).

Proof Assume by contradiction that Py (1) = Pr(u2). Then, wehave Pr(uiVvur) =

Py(uy A up) by Lemma 7. However, w1 (f) # u2(f) implies that (11 VvV w2)(f) #
(m1 A w2)(f), which contradicts Lemma 8 since @1 V pp > 1 A io. O

Proof of Theorem 4 For (i), note that the mapping P is onto by definition. It is therefore
a bijection since it is also injective as shown in Lemma 9. Next, we show (ii). One
direction of the first statement is shown in Lemma 4. Conversely, if P(u2) € P(u1),
then by Lemma 7, P(u1 VvV u2) = P(u1) N P(u2) = P(u2). Hence, by Lemma 9,
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we have w1 V up = up and thus, o > 1. The second statement of (ii) follows from
Lemma 7. The third follows from the second and the fact that stable matchings form
a distributive lattice (Theorem 3). O

3.2 Affine representability of rings of sets via the posets of minimal differences

We now describe (mostly known) facts about posets representing rings of sets, and
observe that the affine representability of rings of sets easily follows from those.

Fix a ring of sets (H, €) over a base set B, and let Hy and H, denote respectively
the unique minimal and maximal elements of H. That is, for all H € H, we have
Hy € H € H,.Fora € H,, let H(a) denote the unique inclusion-wise minimal set
among all sets in H that contain a, where uniqueness follows from the fact that H is
closed under set intersection. That is,

H(ay=({H €eH:a € H}.
In addition, define the set Z(H) of the irreducible elements of H as follows
I(H)y={HeH:3a€H,st H=H(a)}.

Since Z('H) is a subset of H, we can view Z(H) as a poset under the set containment
relation. For H € Z(H), let K(H):={a € H; : H(a) = H} denote the centers of H.
Note that K (Hy) = Hy. Define D(H) as the set of centers of irreducible elements of
‘H without the set Hy. Formally,

D(H):={K(H): H € I(H), H # Hp}.

Immediately from the definition of centers, we obtain the following.

Lemma 10 Let a € B. There is at most one Ky € D(H) such that a € Ki. In
particular, | D(H)| = O(|B)).

For K| € D(H), let I(K) denote the irreducible element from Z(H) such that
K(I(K1)) = K. Let O be a partial order over the set D(H) that is inherited from
the set containment relation of the poset Z(H). That is, for K1, K» € D(H), we have
K1 3 Kjifand only if I(K) C I1(K>3).

Theorem 5 ([12]) Let (H, ©) be a ring of sets. Then, (D(H), ;llis a representation
poset for (H, C) with representation function ¥, where 1//7_1l (D) = (K1 : K €
D} U Hy for any upper set D of (D(H), 2), and Hy is the minimal element of H.

Lemma 10 and Theorem 5 directly imply the following.

Theorem 6 Let (H, C) be a ring of sets over base set B. Then, (D(H), 3) affinely
represents (H, C) via affine function g(u) = Au + x°, where x° is the characteristic
vector of the minimal element of H, and A € {0, 1Y2*PM has columns x X1 for each
K1 € D(H). Moreover, A has full column rank.
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Proof Because of the representation function vy given in Theorem 5, it is clear that
g(xY) = X‘/’ﬁl ) for every upper set U € U((D(H), 32)). Note that every row of A
has at most one non-zero entry due to Lemma 10, and every column of A contains at
least one non-zero entry by definition. Therefore, A has full column rank. O

Lemma 11 Let (K, ©) be a ring of sets with minimal element Hy, and let H € H. If
H = | J{K; : K| € D}VU Hy for some subset D of D(H), then D is an upper set of
(D(H), ).

Proof By Lemma 10, there is at most one subset of D(H) whose union of the elements
together with Hy gives H. On the other hand, Theorem 5 implies that there exists one
such subset which is also an upper set of (D(H), =2). The claim follows thereafter. O

Alternatively, one can view D(H) as the set of minimal differences between ele-
ments of 7. The following lemma is established directly from Lemma 2.4.3 and
Corollary 2.4.1 of [23].

Lemma 12 D(H) = {H \ H' : H' is an immediate predecessor of H in (H, C)}.
A direct consequence of Lemma 10 and Lemma 12 is the following.

Lemma13 LetH',H ¢ H.IfH' C H and H\ H' € D(H), then H' is an immediate
predecessor of H in (H, ).

Proof Let Ki:=H \ H ’. Assume by contradiction that there exists H € H with
H' C H C H. Then, because of Lemma 12, there exists a center K, € D(H) such
that ¥ # K> C K. However, this contradicts Lemma 10. O

3.3 Representation of (S, >) via the poset of rotations

As discussed in Sect. 3.2, the poset (D(P), 2) associated with (P, ) provides a
compact representation of (P, €) and can be used to reconstruct P via Theorem 6.
In this section, we show how to associate with (S, >) a poset that is isomorphic to
(D(P), 3), which can be used to reconstruct S. The precise statement is given in
Theorem 7 below.

For u, u' € S, with u’ being an immediate predecessor of u in the stable matching
lattice, let

PP ) ={(fw): feFweu(H)\ W}

and

p (' w) ={(f,w): f € Fweu(f)\n(f)}

Note that by definition,
pw=pwop” (W, wApT ) =p N\ pT (W ) Upt G, ). (1)
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We call p(u/, ):=(pT (1, w), p~ (', 1)) arotation of (S, >). Let I1(S) denote the
set of rotations of (S, >). That is,

I1(S):={p(’, u) : 1 is an immediate predecessor of w in (S, >)}.

Remark 2 While in the MM- MODEL, rotations are simple cycles in the associated
bipartite graph of agents [9], this may not be the case for our model.

In the following, we focus on proving a bijection between D(P) and I1(S), and we
often abbreviate [1:=I1(S) and D:=D(P). In particular, we show the following.

Theorem 7 Assume Cr and Cy are path-independent and cardinal monotone. Then,

(i) the mapping Q : I1 — D, with Q(p) = p™, is a bijection;
(ii) (D, 3) isisomorphic to the rotation poset (I1, =*), where for two rotations p1, p» €

IL, p1 =% p2if Q(p1) 2 Q(p2);
(iii) (I1, =*) is a representation poset for (S, >) with representation function ¥g such

that for any upper set T of (IT, =*), P(yg' (M) = ¥5'(10(p) : p € TI})
where \rp is the representation function of (P, ) per Theorem 5; and wgl I =
(Apeﬁ(p_Ap+))Aup, where A is the symmetric difference operator. Equiva-

lently, we have g (D) = pr U (U,ei 0\ (U, e 07)-

Lemma 14 Ler pu, ' € S such that u' > p. If w € u(f) \ w/'(f) for some f, then
w ¢ Pr(p).

Proof Since ' > w, wehave Cr(u'(f)Un(f)) = u'(f). By path-independence and
consistency, we have

w ¢ W (f)=Cr/(HHUn(f) =CrCr/'(f)Un(H)\{wh Ufwh = Cr'(f) U{w).
Therefore, w ¢ Py(u'), concluding the proof. O

Lemma 15 Let u, u' € S such that ' is an immediate predecessor of 1 in the stable
matching lattice. Then, u(f)\ 1’ (f) = Py(u) \ Pr(u') forall f € F. In particular,
P\ P(W) = p* (', .

Proof Fix afirm f. u(f) \ /(f) S Pr(u) \ Pr(u') follows by definition and from
Lemma 14. For the reverse direction, assume by contradiction that there exists w €
Pr(u) \ Pr(u) butw ¢ w(f) \ #'(f). Since w ¢ Py(u') implies that w ¢ 1'(f)
by definition of Pr(-), we also have w ¢ w(f). By Lemma 6, there exists a stable
matching 7 such that ' > & > p and w € (). However, since i’ is an immediate
predecessor of w in the stable matching lattice, we either have & = w or @ = u'.
However, both are impossible since we deduced w ¢ w(f) U i/ (f). O

Lemma 16 Let ju1, 2, u3 € S such that py > po > pu3. If w € w1 (f) \ ua(f) for
some firm f, then w ¢ u3z(f).
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Proof First, note that pu1 > o implies w € u1(f) = Cr(un1(f) U ua(f)). Thus,
by substitutability, we have w € Cy(u2(f) U {w}). Assume by contradiction that
w € u3(f). Then, applying Lemma 14 on u, and w3, we have that w ¢ Pr(u2),
which is a contradiction. O

Lemma 17 Let py, iy, n2, iy, € S and assume that ||, 'y are immediate predeces-
sors of w1, w2 in the stable matching lattice, respectively. In addition, assume that

w1 > o If P(ur) \ P(uy) = P(u2) \ P (i), then !y () \ i (f) = iy (f) \ w2 (f)
forall firms f € F.

Proof Fix afirm f.Due to Lemma 15, we know 1 (f)\ ) (f) = a2 (f) \ 5 (f). By
the equal-quota property, we have |w1(f)| = |} (f)| and [u2(f)| = |5 (f)]. Thus,
[y O\ w1 (O] = (5 () \ ma (O @) I ) () \ 1 (f) = @, the claim follows
immediately, and thus, in the following, we assume w (f) \ 11(f) # . Assume by
contradiction that there exists w € w}(f) \ w1 (f) but w ¢ p5(f) \ n2(f). Since
n1 > pp and M; > w; fori € {1, 2}, by Theorem 4, we have P(u1) € P(u2) and
P(u;) C P(u;)fori e {1,2}. Therefore, P (i) C P(u}) due to the assumption that
P(u1) \ P(uy) = P(u2) \ P(u5). Again by Theorem 4, we have p] > ). Hence,
m1 vV ph = ) and we must have w € u)(f) and thus, w € pua(f). However, since
wy >y > po and w € py(f) \ w1(f), we can apply Lemma 16 and conclude that
w ¢ ua(f), which is a contradiction. This shows '“/1 (H\(f) < M/z(f) \ na2(f).
Together with (f), we have w1 (f) \ 11 (f) = w5 () \ w2 (f). O

Lemma 18 Let A, B, A, B’ be sets suchthat A C A’ and B C B’. In addition, assume
that A'\ A = B’ \ B. Then, (A’ B')\ (AN B) = A’ \ A.

Proof Let X:=A’\ A = B’\ B.Notice that A’ = AUX and B’ = BUX, where LI is the
disjoint union operator. Therefore, we have ANB = (A’\X)N(B'\ X) = (A’NB)H\ X
and the claim follows. O

Lemma 19 Let uy, i}, 2, iy, € S and assume that |y, v, are immediate prede-
cessors of 1, w2 in the stable matching lattice, respectively. If P(iu1) \ P(;L’l) =
P(u2) \ P(uh), then () \ 1 (f) = wh(f) \ ma(f) for every firm f. In particular,
p~ (i, m1) = p~ (uh, pw2).

Proof We first consider the case where ;11 = . By Lemma 4, we have P(u)) €
P(u;) for i € {1,2}. Therefore, P(u}) = P(u1) \ (P(n1) \ P(n})) = P(u2) \
(P(u2) \ P(M’z)) = P(,u’z), where the second equality is due to our assumptions that
w1 = poand P(u)\ P(u}) = P(u2)\ P(uh). Thus, u} = )y because of Theorem 4,
and the thesis then follows. Since the cases when (1 > p» or uy > w1 have already
been considered in Lemma 17, for the following, we assume that ;1 and py are not
comparable. Let u3:=p1 Vo and p:=pu V5. Note that 1y > 3. Then, by Lemma 7
and Lemma 18, we have P(113) \ P(123) = (P(u1) 0 P(12)) \ (P(1}) N P () =
P(u1) \ P(u)).

By Theorem 4, Lemma 12 and Lemma 13, we also have that [,L% is an immediate
predecessor of w3 in the stable matching lattice. Note that by construction, we have
u3 > w1 and pu3 > o since wp and po are incomparable. Applying Lemma 17 on
w1 and p3 as well as on wp and u3, we have ) (f) \ n1(f) = pu5(f) \ us(f) =
wh(f)\ p2(f) for all firms f € F, as desired. O
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Theorem 8 Let i1, 1), 2, 1 € S and assume that juy, |, are immediate predeces-
sors of w1, p2 in the stable matching lattice, respectively. Then, P(u1) \ P(u}) =

P(u2) \ P(u5) if and only if p(u, u1) = p(s, 12).

Proof For the “only if” direction, assume P(u1) \ P(,u,’]) = P(up) \ P(p,’z).
Then, p* (i}, 1) = p* (5, pn2) by Lemma 15 and p~ (i), 1) = p~ (5, p2) by
Lemma 19. Thus, p (1}, n1) = p(uf, n2). For the “if” direction, assume p (11}, 1) =
p (15, 12). Then, immediately from Lemma 15, we have that P(u1) \ P(u)) =
pT (s m1) = pt(hy, m2) = P(u2) \ P(uh). u]

Remark 3 Inthe SM- MODEL with P-sets defined as by Gusfield and Irving [23] stated
in Remark 1, Theorem 8 immediately follows from the definition of P-set. In fact,
one can explicitly and uniquely construct p(u’, u) from P(w) \ P(u'). In particular,
pT (', w) is the set of edges (f, w) such that Pr(u) # Py(u') and w is the least
preferred partner of f among Pr(n) \ Pr(n'), and p~ (i, w) is the set of edges
(f, w) such that Pr(u) # Py(u') and w is the partner that, in the preference list > 7,
is immediately before the most preferred partner of f among Py () \ Pr(i).

Proof of Theorem 7 Because of Theorem 4 and Lemma 15, for every K| € D, there
exist stable matchings " and p with  being an immediate predecessor of 1 such
that K| = P(u) \ P(u') = p*(u/, ). Thus, the mapping Q is onto. Theorem 8
further implies that Q is injective. Hence, the mapping Q is a bijection. This bijection
and the definition of >* immediately imply that (D, 3) is isomorphic to (IT, >=*).
Together with the isomorphism between (S, >) and (P, ), and the fact that (D, J)
is a representation poset of (P, C), we deduce a bijection between elements of (S, >)
and upper sets of (IT, >*). That is, (I1, >=*) is a representation poset of (S, >) and its
representation function g satisfies that for every u € S, {Q(p) : p € ¥s(u)} =
Yp(P(w)). It remains to show that the formula for the inverse of ¥/s given in the
statement of the theorem is correct. Let u € S and let ug, 11, - -+ , 4k be a sequence
of stable matchings such that u; ;| is an immediate predecessor of u; in (S, >) for all
i €lk], mo = nr and ug = w. In addition, let p; = p(ui—1, ;) forall i € [k]. Note
that w = wpA(py 2o A0y Apy)A -~ Alpg Ap;5) (5). By Theorem 4, P (o) S
P(uy) € --- € P(juy), and thus,

P() = P(10) U (P(w1) \ P(uo)) U (P(u2) \ P(u1)) U=+ U (P (i) \ P(pg—1)).

Therefore, by Lemma 15, P(i) = P(ur)U Q(p1)U---U Q(pr). By Lemma 11, we
know that {Q(p;) : i € [k]} is an upper set of D and thus, Yp(P(u)) = {Q(p;) :i €
[k]} due to Theorem 5. Hence, ¥s(it) = {p; : i € [k]}. The inverse of {5 must be as
in the first definition in the thesis so that () holds.

Let (f, w) be a firm-worker pair. If (f, w) € p;” forsomei € [k], then (f, w) ¢ u
due to Lemma 16. In addition, because of Lemma 10 and the bijection Q, ur, ,01+,
oy, -+, p; are disjoint. Hence, if (f, w) € up U (Ulp;" : i € [k]}) but (f,w) ¢
U{p; : i € [k]}, then (f, w) € u. The second definition of ys from the thesis
follows immediately from these facts and the previous definition. O
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3.4 Concluding the proof for the first part of Theorem 1

Because of Theorem 7, part (iii), we know that poset (IT, >=*) represents lattice (S, >).
Let ¢s be the representation function as defined in Theorem 7. We denote by E C
F x W the set of acceptable firm-worker pairs. Hence, E is the base set of lattice
(S, >). We deduce the following, proving the structural statement from Theorem 1.

Lemma20 Let 111, I1, be two upper sets of (I1, =*) and let u; = wgl(ﬁ,-) for
i €{1,2} IfT1; C My, then 1 > pa.

Proof LetD;:={Q(p) : p € T;}andlet P;:=y5' (D;) fori € {1,2}. Since TT; < TI,
we have D; C D5 and thus subsequently P; € P,. Since w;l(ﬁi) = P(l//gl(ﬁi))
by Theorem 7, P; = P(u;) for both i = 1, 2. Therefore, by Theorem 4, ;11 > up. O

Lemma21 Let p1, p2 € IL If p; N p; # O, then p1 =* pa.

Proof Assume by contradiction that p; #* po, that is, either pp >* p; or that they are
not comparable. Let TT: ={p € Il : p = p2} be the inclusion-wise smallest upper set
of I1 that contains py, let TIo:=IT; \ {2}, and let TIr:={p € [T : p = pj or p = po}
be the inclusion-wise smallest upper set of IT that contains both p; and p,. Note that
TIp C TI; C TI,, where the second strict containment is due to our assumption that
p1 #* pp and thus p; ¢ T1;. Fori € {0, 1, 2}, let i =(A g1, (0~ Ap ) Apr. Since
T1; is an upper set of (IT, =*), u; is a stable matching by Theorem 7. Moreover,
o > M1 > pp by Lemma 20. Let (f, w) € ,01+ N p, . Since p (o, n1) = P2, We
have (f, w) € po \ i1. Since pj is a >-minimal element in TT», T, \ {p1} is also

an upper set of I1. Then, M’z:z(ApEﬁz\{pl}(p’Apﬂ)AMF is a stable matching by

Theorem 7, and pp = u \ p; U ,01+ by (1). Thus, we have (f, w) € u». Together,
we have w € (uo(f) N ua(f)) \ w1 (f). However, this contradicts Lemma 16. ]

Theorem 9 The rotation poset (I1, =*) affinely represents the stable matching lattice
(S, >) with affine function g(u) = Au + x"¥, where A € {0, £1}E>W is matrix with
columns Xp+ — xP~ for each p € 1. Moreover, |T1| = O(|F||W|) and matrix A has
full column rank.

Proof The first claim follows immediately because by Theorem 7, part (iii), x* =
AxVsW 4 yir for any stable matching . Because of Theorem 7, |I1| = |D]. In
addition, by Lemma 10, we have |D| = |E| = O(|F||W]). Thus, |I1| = O(|F||W]).
Finally, we show that matrix A has full column rank. Assume by contradiction that
there is a non-zero vector A € R such that Zpen )»p()(p+ —xP7)=0.Let ﬁ::{p €
IT : &, # 0} denote the set of rotations whose corresponding coefficients in A are
non- zero Let p; be a minimal rotation (w.r.t. >*) in I and let (f, w) be a firm-worker
pairin ,01 Because of Lemma 10 and the bijection Q, there is no rotation p # pi such
that (f, w) € pT. Therefore, there must exist a rotation py € M with (f,w) € p,.

Note that we must have p; >* p; due to Lemma 21. However, this contradicts the
choice of py. m]
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4 Algorithms

Because of Theorem 9, in order to conclude the proof of Theorem 1, we are left
to explicitly construct (IT, >=*). That is, we need to find elements of I, and how
they relate to each other via >*. We fix an instance (F, W, Cr, Cy) and abbreviate
S :=8(CF, Cw).

In this section, we further assume workers’ choice functions to be quota-filling.
Under this additional assumption, for each worker w € W, the family of sets of
partners w is assigned to under all stable matchings (denoted as ®,,) satisfies an
additional property, which we call the full-quota® property (see Lemma 22). Recall
that ¢,, denote the quota of worker w and g,, is the number of firms matched to w
under every stable matching, which is constant due to the equal-quota property (i.e.,
|S| =4q, forall S € ®).

Lemma 22 For every worker w € W, if q,, < qu, then w is matched to the same set
of firms in all stable matchings. That is,

qw < qw = |Pyl=1. (full-quota)

Proof Assume by contradiction thatg,, < g, but |®,,| > 1.Let S;, S> be two distinct
elements from ®,, and let 1; be the matching such that u; (w) = S; fori = 1, 2. Note
that due to the equal-quota property, we have |S1| = |S2| = ¢q,,. Consider the stable
matching pu:=puq A 2. Then,

()| = [Cw(p1(w) U pa(w))] = [Cy(S1 U $2)| = min(|S1 U Sz, gul) > Gy

where the first equality is by Theorem 3 and the last two relations are by quota-filling.
However, this contradicts the equal-quota property since p is a stable matching. 0O

Our approach to construct (IT, >=*) is as follows. First, we recall Roth’s adapta-
tion of the Deferred Acceptance algorithm to find a firm- or worker-optimal stable
matching (Sect. 4.1). Second, we feed the output of Roth’s algorithm to an algorithm
that produces a maximal chain Cy, Cy, ..., Ck of (S, >) and the set IT (Sect. 4.2).
In Sect. 4.3, we give an algorithm that, given a maximal chain of a ring of sets, con-
structs the partial order of the poset of minimal differences. This and previous facts
are then exploited in Sect. 4.4 to construct the partial order >* on elements of IT. We
sum up our algorithm in Sect. 4.5, where we show that the overall running time is
O(|FP?|W|Poracle-call).

We start with a definition and properties which will be used in later algorithms. For
a matching u, let

X p(wy:={w € W(f): Cru(f) Ufw)) = n(f)},

and define the closure of ., denoted by X (1), as the collection of sets {Yf (n)y: fe
F}. Note that u(f) € X £ () for every firm f and individually rational matching (.

4 Note that the full-quota property is analogous to the Rural Hospital Theorem [38] in the SA- MODEL
where agents have preferences over individual partners instead of over sets of partners.
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Lemma 23 Let u be an individually rational matching. Then, for every firm f, we
have Cy(X r(n)) = u(f).

Proof Fix a firm f. Since u is individually rational, Cr(u(f)) = w(f). The claim
then follows from Lemma 2 with A} = u(f) and A> = Yf (). ]

Lemma24 Let pi, pn2 € S(Cr, Cw) such that wy > wa. Then, for every firm f,
m2(f) S X r(1).

Proof Since 111 > 2, we have Cr(u1(f)Uua(f)) = pu1(f) for every firm f. Thus,
by the consistency property of C s, for every w € u2(f), we have Cr(u1(f) U{w}) =
w1(f). The claim follows. O

Lemma 25 In the following, we give the running time of three operations.

(i) given a matching n, computing its closure X () can be performed in time
O(|F||W|oracle-call);

(ii) given a matching |, deciding whether it is stable can be performed in time
O(|F||W|oracle-call);

(iii) given stable matchings ., u' € S, deciding whether ' > 1 can be performed in
time O(|F|loracle-call).

Proof (i). For any firm f, computing Yf(u) requires O(|W|) oracle-calls by
definition and thus, computing the closure of u takes O(|F||W|) oracle-calls.
(i1). To check if a matching u is stable, we need to check first if it is individually
rational, which takes O (| F|+|W|) oracle-calls,andthentocheckifitadmits any
blocking pair, which takes O (|F||W|) oracle-calls. (iii). To decide if u’ > w,
one need to check if for every firm f € F,Cr(u'(f)Un(f)) = n'(f), and this takes
O(|F|) oracle-calls. m]

4.1 Deferred acceptance algorithm

The deferred acceptance algorithm introduced in [37] can be seen as a generalization
of the algorithm proposed in [21]. For the following, we assume that firms are the
proposing side. Initially, for each firm f, let X ;:=W(f), i.e., the set of acceptable
workers of f. At every step, every firm f proposes to workers in C7(X r). Then,
every worker w considers the set of firms X,, who made a proposal to w, temporarily
accepts Yy, :=Cy,(Xy), and rejects the rest. Afterwards, each firm f removes from
X ¢ all workers that rejected f. The firm-proposing algorithm iterates until there is no
rejection. Hence, throughout the algorithm, X ¢ denotes the set of acceptable workers
of f that have not rejected f. A formal description is given in Algorithm 1.

Note that for every step s other than the final step, there exists a firm f € F such
that X (;) cX (]f_ 1). Therefore, the algorithm terminates, since there is a finite number
of firms and workers. Moreover, the output has interesting properties.

5 The model considered in [37] is more general than our setting here, where choice functions are only
assumed to be substitutable and consistent, not necessarily quota-filling.
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Algorithm 1 Firm-proposing DA algorithm for an instance (F, W, Cr, Cy).
1: initialize the step count s <— 0
2: for each firm f do initialize X (;) <~ W(f) end for

3: repeat

4:  for each worker w do

5: Xy —{feF:welr(xP)

6: Y« Cp(X$)

7. end for

8:  for each firm f do

9: update X;;Hl) «— X;S) \{weWw: fexP\ri

10:  end for
11:  update the step count s <— s + 1
12: until X;f) = X;ffl) for every firm f

Output: matching © with w(w) = YIE;Y_I) for every worker w

Theorem 10 (Theorem 2, [37]) Let i be the output of Algorithm 1 over a matching
market (F, W, Cg, Cw) assuming Cr, Cyw are path-independent. Then, &t = (L F.

Due to the symmetry between firms and workers in a market where the only assump-
tion on choice functions is path-independence, swapping the role of firms and workers
in Algorithm 1, we have the worker-proposing deferred acceptance algorithm, which
outputs pw.

4.2 Constructing I via a maximal chain of (S, >)

Let (H, €) be aring of sets. A chain Cy, - - - , C in (H, €) is an ordered subset of H
such that C;_1 is a predecessor of C; in (H, C) for all i € [k]. The chain is complete
if moreover C;_1 is an immediate predecessor of C; for all i € [k]; it is maximal if it
is complete, Co = Hp and Cy = H,. Consider K € D(H).If K = C; \ C;_ for some
i € [k], then we say that the chain contains the minimal difference K. We start with
the theorem below, where it is shown that the set D(H) can be obtained by following
any maximal chain of (H, ©).

Theorem 11 (Theorem 2.4.2, [23]) Let H', H € H such that H' C H. Then, there
exists a complete chain from H' to H in (H, ), and every such chain contains exactly
the same set of minimal differences. In particular, for any maximal chain (Cy, - - - , Cg)
in (H, ©), we have {C; \ Ci_1 : i € [k]} = D(H) and k = |D(H)|.

In this section, we present Algorithm 3 that, on inputs ', outputs a stable matching
w that is an immediate descendant of u’ in (S, >). Then, using Algorithm 3 as a
subroutine, Algorithm 4 gives a maximal chain of (S, >).

We start by extending to our setting the break-marriage idea proposed by McVitie
and Wilson [33] for finding the full set of stable matchings in the one-to-one stable
marriage model. Given a stable matching  and a firm-worker pair ( f/, w’) € u'\ uw,
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the break-marriage procedure, denoted as break-marriage(u/, f/, w’), works as
follows. We first initialize X ; to be X s(u') for every firm f # f’, while we set
Xp = X (u)\ {w'}. We then restart the deferred acceptance process. The algorithm
continues in iterations as in the repeat loop of Algorithm 1, with the exception that
worker w’ temporarily accepts Yy, :=C, (X, U{ f'D\{f'}. As an intuitive explanation,
this acceptance rule of w’ ensures that for the output matching 1z, we have C,, (t(w’) U
w'(w")) = w(w’), as we show in Lemma 27. The formal break-marriage procedure
is summarized in Algorithm 2. Note that by choice of the pair (f’, w’), we have

[ (W) = qu.

Algorithm 2 break-marriage (u/, f/, w’), with (f/,w) e W'\ uwand ' € S
1: for each firm f # f’ do initialize X 59) < X s(11) end for

2 initialize X < X (1) \ (w')

3: initialize the step count s < 0

4: repeat

5. for each worker w do

6 Xy —{feF:welr(xP))

7: if w £ w then Y% < Cp(XY)) else ¥ <« Co\ (X U D\ {f)
8:  end for

9:  for each firm f do

10: update XS;Y'H) <~ X;f) \fweW: fe Xf,f) \ Ysz)}

11:  end for
12:  update the step count s <— s + 1
13: until X}Sil) = X;f) for every firm f

Output: matching © with w(w) = Ysz_l) for every worker w

With the same reasoning as for the DA algorithm, the break-marriage(u’, f/, w’)
procedure is guaranteed to terminate. Let s* be the value of step count s at the end of
the algorithm. Note that, for every firm f € F, we have

X2 xP o xP o oxi, @)

where the first containment is an equality unless f = f’. In particular, (2) implies that

fle¢Xx S/) forall s € {0, 1, - - - , s*}. Also note that the termination condition implies
a(f) =Crx§=cpx§ ) 3)

for every firm f, while for every worker w # w’ it implies that
Aw) =YD =, (x8 D) = x&"-D, )
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Let (f,w) € F x W, wesay f is rejected by w at step s if f € Xl(j) \ Ylff), and we
say f is rejected by w if f is rejected by w at some step during the break-marriage
procedure. Note that a firm f is rejected by all and only the workers in X (f(.)) \ X (;*).

In the following, we prove Theorem 12.

Theorem 12 Let ', u € S(Cr, Cw) and assume 1 is an immediate predecessor of |4
in the stable matching lattice. Pick (f', w') € u'\ u and let it be the output matching
of break-marriage(u’, f', w'). Then, &t = pu.

We start by outlining the proof steps of Theorem 12. We first show in Lemma 26
that the output matching @ of break-marriage(u/, f’, w’) isindividually rational.
We then show in Lemma 30 that under a certain condition (i.e., the break-marriage
operation being successful), ft is a stable matching and ' > 7x. Lastly, we show that
under the assumptions in the statement of Theorem 12, the above-mentioned condition
is satisfied and & > .

Lemma26 Let ' € S be a stable matching that is not the worker-optimal stable
matching pw andlet (f', w') € u'\uw. Considerthe break-marriage(i/, ', w’)
procedure with output [t. Then, [t is individually rational.

Proof By (3) and (4), for every agenta € F U W \ {w'}, (a) = C, (Xc(,s*_l)) and
thus, C, (w(a)) = Cy(Cq4 (X,(f _1))) =C, (Xc(f _1)) = t(a), where the second equality
is due to path-independence. For worker w’, note that X 1(5’ - Ylff, -b_ nw') =
Cuw (X I(UY,* Dy {f'D\ {f’}, where the first equality is due to the termination criterion.
Then, by the substitutability property, with T = X I(UV,* Dand § = X l(;,* Dy {f'h
we have that for every firm f € m(w’), f € Cw/(X](j,*_l)) holds. Thus, w(w’) C
Cyw (m(w")). Since Cyy(X) C X for any X in the domain of C,,, we have m(w’) =
Cy ((w")). Therefore, 1t is individually rational. O

Lemma 27 Consider the break-marriage(u/, f', w') procedure with output
matching ft. Then, for every firm f, Cr(u(f) U ' (f)) = 1’ (f).

Proof For a firm f, we have

Cr@(f) Ui () =CrCrXyHuC, (X r(u))
=Cr(XQOUX p(u)) = Cr (X p(u) = w'(f).

where the first and last equality hold since u/'(f) = C f x f (1)) by Lemma 23 and
n(f)=Cr(X (fm) by (3), the second equality is by path-independence, and the third
equality is due to X;f*) C X}O) C Yf () by (2). O

The following two properties of the break-marriage procedure are direct conse-
quences of the path-independence assumption imposed on choice functions. These

properties are also true for the deferred acceptance algorithm, as shown in [37]. Let
f € F and w € W be an arbitrary firm and worker. Lemma 28 states that once f
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proposes to w in some step of the algorithm, it will keep proposing to w in future steps
until w rejects f. Lemma 29 states that once w rejects f, w would never accept f in
later steps even if the proposal is offered again.

Lemma28 Foralls € [s* — 1] and w € W, we have Y,Ef_l) - Xl(jf).

Proof Let f € Ylff_l). By construction, we have w € Cf(ng_l)) N X(fs). Since
X;f) C X;f_l) by (2), we have w € Cy (X;f)) by substitutability. Hence, f € X,(Jf) O

Lemma29 Lets € [s*—1], f € F,andw € W. Assume f € Xflf*l)\Y,ff*l), ie, fis
rejected by w at step s — 1. If w # w', then for every steps’ > s, f ¢ Cu(XS U{f};
and if w = w', then for every step s’ > s, f & Co(XS ) U {f YU {f].

Proof By construction, w ¢ Xjf). Hence, f ¢ Xf,f/) for all s/ > s because of (2) and

the definition of X ,(ﬁ/). Fix a value of s’ > s. First consider the case when w # w’.
By repeated application of the path-independence property of C,, and Lemma 28, we
have

Co(XETU (D) =Cu(XEPUYE DU f) = Co(Xx U, SV U )
= Cp(X$)UC,Co(XE =Y U {f)
= Cp(X$UC, (XS DU F)

= Cp(X$PUXE DU U xSV U ).
S~ S——— —

2f 2f =Cy (X5 =rS Vg

Therefore, f ¢ Cy (X ,(,f U {f}) as desired. We next consider the case where w = w'.
Since w ¢ X 5[0,) by construction, we have w ¢ Xiffl) by (2), which then implies

fléeXx ,(5 -b by definition. Thus, we have f # f’. Again, by repeated application of
the path-independence property of C,, and Lemma 28, we have

Co(XE) UL TUfD) = Cu(XSUYE DU u{f)

= Co (XS U UC DU U

= Co (XS U{FUC(CuXS DU D\ DUV
= Co (XS U UCL(XS DU U )

= Co(XETUXETV U U UC (XS U U ).
—_——  ——

2 2 =Co (X UL DBS
Therefore, [ ¢ Cw(Xl(jl) U {f'}U{f}) as desired in this case as well. O
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We say the break-marriage procedure break-marriage(u’, f/, w’) is success-

ful if ' ¢ Cy(X f;,* Dy {f'}). We next show that when the procedure is successful,
the output matching is stable.

Lemma30 Ifbreak-marriage(u’, f', w') is successful, then the output matching
T is stable. Moreover, i/ > Tt.

Proof Since break-marriage(u/, f/, w’) is successful, applying the consistency
property with T = XS,*_I) and S = T U {f’}, we have Cw/(XI(j,*_l) Ui{fh =
er(Xl(l‘j;_l)) and thus, Y]Ef,*_l) = er(Xl(lf,*_l)). In addition, by the termination con-
dition, ¥~ = X"~ Therefore, we have the following identity (similar to (4)
for other workers)

s*=1) _

ﬁ(w/) _ YIE)/* —X s*—1)

(
w'

=Cy XY =Cy xSV UD. )

Claim1 Let (f, w) € F x W.If f isrejected by w during the break-marriage proce-
dure, then f ¢ C,(zt(w) U {f}).

Proof If w # w’,thenby Lemma?29, f ¢ Cw(ij*_l)U{f}) = Cyp (m(w)U{ f}) where
the equality is due to (4). This is also true if w = w’ because again by Lemma 29,

FeCoXSTV UL UL = CorCw XSV ULFD UL = Cur @) U {£)).
where the first equality is by path-independence, and the second equality by (5). O
Claim2 Cy (1 (w) U (w)) = w(w) forall w € W.

Proof Let f € u'(w) \ w(w), and suppose first (f, w) # (f/, w’). Because of
Lemma 23 and Lemma 28, f must be rejected by w during the break-marriage
procedure since otherwise f € X ,(j) for all s € [s*] U {0}, which in particu-
lar implies w € w(f) due to (4). Then, by Claim 1, f ¢ Cy,(w(w) U {f}).
Next assume (f, w) = (f/, w’). By (5), we know that X,(,f*_l) = m(w). Since
break-marriage(u/, f/, w’) is successful, we have f’ ¢ Cw(X,(j*_l) U{fh =
Cw((w) U { f'}). We conclude that in both cases, Cy, ((w) U { f}) = Cy, (L (w)) by
consistency. Thus, we can apply Lemma 2 with A; = (w) and Ay = u/(w) and con-
clude that Cy, (1’ (w) U (w)) = Cyy (7 (w)). The claim then follows from Lemma 26.

O

Fix an acceptable firm-worker pair (f, w) ¢ . We show that (f, w) does not block
& Assume by contradiction that f € Cy, (w(w) U {f}) () and w € Cr((f) U {w})
(%). We claim that (f, w) ¢ /. If this is not the case, the consistency property of Cy,
with § = p/(w) UE(w) and T = (w) U{ £}, implies Cyy ((w) U{f}) = Cu (1 (w)U
m(w)) = w(w), where the last equality is by Claim 2. Thus, f ¢ Cy,(u(w) U {f}),
which contradicts our assumption (). Thus, (f, w) ¢ u’. Note that in particular,
(f,w) # (f',w’). By Lemma 3 and Claim 2, (T) implies f € Cy,(u/(w) U {f}).
Hence, we must have w ¢ Cy (' (f) U {w}) since u’ is stable, i.e., not blocked by
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(f, w). This implies C ¢ (u/(f) U{w}) = Cr(u'(f)) = 1’ (f) due to the consistency
property or C s and the fact that 1" is individually rational. Thus, w € Yf wH)=X ;0)
since f # f'.

Suppose first w ¢ X gf*). Then, worker w rejected firm f during the break-marriage
procedure. This implies f ¢ Cy,(t(w) U {f}) by Claim 1, contradicting assumption
(1). Suppose next w € Xﬁf*). Since (f, w) ¢ w, we have w ¢ w(f) = Cf(XSf*)),
where the equality is due to (3). Then by the consistency property, with § = X }S*)
and T = 7x(f) U {w}, we have that w ¢ C(u(f) U {w}). However, this contradicts
(f). Therefore, x must be stable. By Lemma 27, 1/ > jx. Moreover, we have u’ # 1
since f' € u'(w’) \ w(w’). Hence, i’ > u as desired. O

We now give the proof of Theorem 12.

Proof of Theorem 12 Note that by Lemma 24, u(f) € X r(u) forevery f € F. We
start by showing that during the break-marriage procedure, for every firm f, no worker
in u(f) rejects f. Assume by contradiction that this is not true. Let s” be the first step
where such a rejection happens, with firm fj being rejected by worker w; € w(f1).

Hence, f| € X,(lfl/) \ Y,ffl/).

Claim 3 There exists a firm f; € Y3 \ 12(wy) such that f> € Cy, (w(w1) U {f2]).

Proof Assume by contradiction that such a firm f, does not exist. We first consider
the case when w; # w’. By Corollary 3 with A = u(w) and Ay = Y,ﬁfl’), we have
Cw, (n(wr) U Y,ffl/)) = Cy, (u(w1)) = p(wy), where the last equality is because  is
individually rational. Hence, fi € Cy, (n(w1) U Ylffl/)), and using substitutability, we
deduce f1 € Cy, (Ylffl,) U{f1}). However, using consistency, with T = Y,ffl,) U{f1}and
S = Xl(lfl,), we conclude Cy, (Y&;j’) U{fi}h) =Cy, (Xl(lf;)) = Ylffl/) 2 f1, acontradiction.

We next consider the case when w; = w’. Note that f; # f/, because (f', w') ¢ u
by choice of (f’, w’). Since u’ > u, by Theorem 3, C,y (' (w") U n(w”)) = w(w’).
Thus, by the consistency property, with S = u/(w’) U u(w’) and T = p(w’) U { '},
we have C,y (u(w") U {f'}) = u(w’) # f’. As in the case w; # w’, by Corollary 3
with A = u(w’) and Ay = Y,ffl/) U {f’} and the fact that u is individually rational,
(') = Co (') = Cyr(uw’) U{f'} U YS?). Then, since fi € p(w’) 0 XL,
by substitutability and path independence, we have:

fi € Cur UL ULAD
= Cu Cur (X5 UL D \AFULF YU LAD
= Cy (XS U LS.
However, since f] ¢ Y]Ef,,) by our choice and f] # f/, we should have fi ¢ Cw/(Xl(j,/)U
{f’'D, which is again a contradiction. O
Now let f> be the firm whose existence is guaranteed by Claim 3. In particular, f> €

Ylf,ﬂ,) implies w; € sz(X(sz/)) C Xg). Note that by our choice of fi, u(f2) < ngz/).
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Therefore, by substitutability and wi € Cp, (X « )) we have wy € Cp (n(f2) U{wr}).

However, this means that ( f, wy) isa blockmg palr of u, which contradicts stability of
. Thus, for every firm f € F, no worker in u(f) rejects f during the break-marriage
procedure as we claimed, which, together with the fact that u(f) € X £ (i), implies

n(f)cx ;V*). By path-independence and (3), we have that for every firm f:

Cr@(f)Un(f) =CrCrX)Un(f) =Crx§7 Upn(s)

=Cr (X)) = (). ©
Moreover,
(N =11 (DI =7, Vf € F )
because

(Ol = 11 (DO = ICr @SV UNI = 1Cr @D = 7))
=1Cr () U (N = 1Cr (NI = (N,

where the first equality is due to the equal-quota property, the second and the fourth
equalities are by Lemma 27 and (6) respectively, the remaining two equalities are due
to the fact that ix and p are individually rational, and the two inequalities hold because
of cardinal monotonicity.

We next show that the break-marriage procedure is successful. Consider the fol-
lowing two cases for a worker w # w’. The first is when |u'(w)| < g¢y. By
the full-quota property, w has the same set of partners in all stable matchings. In par-
ticular, u’(w) = p(w). We claim that only firms from w(w) propose to w during the
break-marriage procedure. Assume by contradiction that a firm f ¢ w(w) proposes to
w at step s (i.e., w € cf(x(”)) Then, since 7Z(f) = cf(X(S )y ¢ Xf b o xy
due to (2) and (3), by substltutablhty, we have w e Cpr(u( f ) U {w}) and thus
w € Cr(u(f) U {w}) because of (6) and Lemma 3. Since |u(w)| < gw, we also
have that f € Cy,(u(w) U {f}) by the quota-filling property of C,,. However, this
contradicts stability of u. Therefore, Ylff) = Xl(,f) = u/(w)foralls € {0, 1,---,s*}
by Lemma 23 and Lemma 28. Hence, t(w) = 1/ (w) by (4).

We next consider the second case for worker w # w’, which is when |1/ (w)| = gy,
and we claim that IY,E)S)| = gy for all s € {0} U [s*]. We will show this by induction.
For the base case with s = 0, we want to show that X I(UO ) D 1/ (w) because then we
have |X| > g, and thus |Y”| = gu by quota-filling. Let f € u/(w). If f # £/,
then by Lemma 23, we have w € Cy(X ;0)); and if f = f’, by substitutability of
Cyr, we also have w € Cf(XE‘('))) since w # w'. Hence, f € Xl(l?) by definition

of Xl(l? ). For the inductive step, assume that |Y$_l)| = ¢y and we want to show
that |Y| = gu,. Because of Lemma 28, X% 2 ¥*™". Hence, similar to the base
case, we have | X ,(5)| > qy and subsequently |Y,,(f)| = qy by quota-filling. Therefore,

[w)| = [ (w)| by (4).
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Combining both cases, we have [m(w)| = |/ (w)| for every worker w # w'.
Together with (7), we have:

> ImEw)| + [mw)

weW\{w'}

=Y Ew) =Y [mHI= Y )l
weW feF feF

=) luwl= > |pw)]+|pw).
wew weW\{w'}

Hence, we must also have |t(w’)| = |1/ (w)| = qy. Therefore, f/ ¢ Cyy (XS:_I) u

{£}) because otherwise [f(w)] = [Cypr (XY ™" U{f/D\ S} < qu — 1, where the
inequality is by quota-filling. Hence, the break-marriage procedure is successful.
Finally, by Lemma 30, we have & € S and / > . We also have @ > u by (6).
Therefore, it must be that 7t = u since p is an immediate descendant of 4/ in S. O
We are now ready to present the algorithm that finds an immediate descendant for
any given stable matching, using the break-marriage procedure. The details of the
algorithm are presented in Algorithm 3.

Algorithm 3 Immediate descendant of stable matching ' # pww

Input: 1/, pww

1: initialize 7 < ¢

2: for each (f', w') € u/ \ uw do

3:  runthe break-marriage (u/, f', w’) procedure

4:  if the procedure is successful then add the output matching 1z to 7°
5: end for

6: let u* be a matching in 7

7: for each u € 7 \ {u*} do

8 if u > ™ then update u* < u

9: end for > p* is a maximal matching from 7°
Output: p*

Theorem 13 The output u* of Algorithm 3 is an immediate descendant of ' in the
stable matching lattice (S, >).

Proof First note that due to Lemma 30, all matchings in the set 7 constructed by
Algorithm 3 are stable matchings and u’ > w for all © € 7. Moreover, we claim
that 7 # (. Let 1 € S such that ' is an immediate predecessor of i in (S, >*).
Such a stable matching w; exists because i’ # uw. Because of Lemma 16, we have
w' \ u1 € w' \ pw and thus by Theorem 12, we have u; € 7. Hence, T # @ as
desired. Now, to prove the theorem, assume by contradiction that the output matching
1* is not an immediate descendant of 1’ in (S, >). Then, there exists a stable matching
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wsuchthat i’ > u > u*. By Lemma 16, for every firm-worker pair (f/, w’) € u'\ u,
we also have (f/, w') ¢ uw. Thus, u € 7 due to Theorem 12. However, this means
that u* is not a maximal matching from 7, which is a contradiction. O

Finally, putting everything together, Algorithm 4 finds a maximal chain of the
stable matching lattice, as well as the set of rotations. Its correctness follows from
Theorems 13, 11, and 7.

Algorithm 4 A maximal chain of (S, >) and the set of rotations IT

Input: ur and pw

1: initialize counter k <— 0 and Cy < ur

2: while C; # uw do

3:  run Algorithm 3 with input C and pw, and let u* be its output

4:  update counter k < k + 1 and Cy, < u*

5: end while

Output: maximal chain Cy, Cy, -+ -, Cy; and I1 = {p;:=p(Ci_1, C;) : i € [k]}.

4.3 Finding irreducible elements via maximal chains

The goal of this section is to prove the following. Note that the result below holds for
any ring of sets.

Theorem 14 Consider a ring of sets (H, C) with base set B. Let Cy, Cy, - -+ , Cy be
a maximal chain of (H, C) and let K;:=C; \ Cj_1 for alli € [k]. For H C B, let
ros-membership denote the running time of an algorithm that decides if H € 'H.
There exists an algorithm with running time O (k*ros-membership) that takes
Co, Cy, - -+, Ck as input and outputs, for each minimal difference K;, a set of indices
A(K;) such that I(K;) = \[{Kj : j € A(K;)}U Co. In particular, this algorithm can
be used to obtain the partial order 3 over D(H).

The theorem below gives an alternative definition of the partial order 3.

Theorem 15 (Theorem 2.4.4, [23]) Let K1, K» € D(H). Then, K 3 K> if and only
if K1 appears before K, on every maximal chain in (H, ).

We now present the algorithm stated in Theorem 14 in Algorithm 5. The idea
is as follows. In order to find 7(K;) (i.e., the minimal element in H that contains
K;), the algorithm tries to remove from the set C; as many items as possible, while
keeping C; € ‘H. That is, the algorithm removes from C; all minimal differences
K € {K1,K>,---, K;} such that K Z K;. As we show in the proof of Theorem 14,
the resulting set is 1 (K;).

We now give the proof of Theorem 14.

Proof of Theorem 14 1t is clear that the running time of Algorithm 5 is O
(k*ros-membership). Suppose first the output of Algorithm 5 is correct, that
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Algorithm 5

Input: A maximal chain Cg, Cy, --- , C of (H, ©).
l.:fori =1,2,--- ,kdo

2:  define K; < C; \ Ci_

3 initialize H <— C; and A(K;) < {1,2,---,i}

4 forj=i—1,i—2,---,1do

5: if H\ K; € H then

6 update H <— H \ K; and A(K;) < A(K)\ {j}
7 end if

8:  end for

9: end for
Output: A(K;) foralli € [k]

is, I(K;) = U{K; : j € A(Ki)} U Co. Then, for two minimal differences
K, K, € D(H), K;; 3 K;, if and only if A(K;) S A(K;,) by definition of
. Hence, the partial order J can be obtained in time O (k2) from the output of Algo-
rithm 5. It remains to show the correctness of Algorithm 5. Fix a value of i € [k]
and for the following, consider the i iteration of the outer for loop of the algorithm.
Let {ji, j2,--- , jm} be an enumeration of A(K;) at the end of the iteration such that
J1 < ja <--- < jy. Note that jy;r = i. We start by showing the following claim.

Claim4 Forallm € [M — 1], K;, 3 K;.

Proof We prove this by induction on m, where the base caseism = M —1. We start with
the base case. Note that jy, is the first index for which the if statement at Line 5 is evalu-
ated to be false. Thatis, (", K¢)UK; UCo € Hbut ("' Ke)UK,;UC, ¢ H.By
Lemma 11, {Ky, K2, --- , K,,, K;} is an upper set of (D(H), 3), and by Theorem 5,
{Ki, K3, -+, Kj, 1, K;} is not an upper set of (D(H), J). Since for all J < Jjms
K, A K because of Theorem 15, the reason why {K, K3, ---, K, 1, K;} is not
an upper set of (D(H), 3) must be that K ;, 3 K;. For the inductive step, assume the
claim is true for all m" > m and we want to show that K;, 3 K;. Note that again by
Theorem 5, {Ky, K2, --- , K., Kj, .\, Kj,.», -+, K;} is an upper set of (D(H), 3)
but {K{,K>,---,Kj,—1,Kj,,,, Kj,.,,- -+, K;} is not an upper set of (D(H), 3).
With the same argument as in the base case, since for all ;' < j,, K;, Z Kj by
Theorem 15, it must be that Kj, 3 K , for some m’ > m. Therefore, applying the
inductive hypothesis, we have K ;,, 3 K; as desired. O

Let H* be set H at the end of i iteration of the outer for loop. Note that H* =
ULK; : j € A(K;)}UCq by construction. Since K; € H*,wehave I (K;) € C; € H*
by definition. Also note that by definition, 7 (K;) € H. Assume by contradiction that
H* # I(K;)(i.e.,H* ¢_ I1(K;)). Consider a complete chain from the minimal element
Hy of (H, ©) to I(K;) in (H, €), whose existence is guaranteed by Theorem 11.
Then, at least one minimal difference from {K; : j € A(K;) \ {i}}, call it K’, is not
contained in this complete chain. However, this means K’ 2 K; due to Theorem 11,
which contradicts Claim 4. Therefore, we must have I (K;) = H*. m|
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4.4 Partial order =* over

In this section, we show how to obtain the partial order >* over the rotation poset IT.
Recall that as stated in Theorem 14 of the previous section, there exists an algorithm
that finds the partial order 2 over D:=D(P) when given as input a maximal chain
of P. Employing the isomorphism between S and P shown in Theorem 4 and that
between D and IT shown in Theorem 7, we adapt the algorithm so that from a maximal
chain of S, we obtain the partial order >=* over IT.

Algorithm 6

Input: outputs of Algorithm 4 — maximal chain Cy, - - - , C¢ of (S, >) and the set of
rotations Il = {p;:=p(Ci—_1, C;) : i € [k]}

l.fori =1,2,--- ,kdo

2 initialize u < C; and A(p;) < {1,2,---,i}

33 forj=i—-1,i—2,---,1do

4: if MAp;Apf € S then

5 update u < uAp; Ap; and A(p;) < A(pi) \ {j}
6 end if

7. end for

8: end for

Output: A(p;) foralli € [k]

Theorem 16 Let A(p) and A(p') be the outputs of Algorithm 6 for rotations p, p' € TI,
respectively. Then, p =* p' if and only if A(p) C A(p').

Proof To distinguish between the inputs of Algorithm 6 and Algorithm 5, we let
Ko, 11, + -, Mg denote the maximal chain in the input of Algorithm 6. Consider the
outputs of Algorithm 5 with inputs C; = P (u;) foralli € [k] U {0}. Then, because of
the isomorphism between (S, >) and (P, C) and the isomorphism between (IT, >*)
and (D, 1) stated respectively in Theorem 4 and Theorem 7, K; = Q(p;) and A(p;) =
A(K;) foralli e [k], where K; = C; \ Cj_1 as defined in Algorithm 5. Thus, together
with Theorem 14,

p="p" & 0(p) 2 O(p) & AQ(p) S A(Q(0) & Alp) S Ap),
concluding the proof. O
4.5 Summary and time complexity analysis
The complete procedure to build the rotation poset is summarized in Algorithm 7.

The time complexity analysis of Algorithm 7 now follows easily from the results
deduced above and is deferred to Appendix A.

Theorem 17 Algorithm 7 runs in time |W|3|F|?oracle-call.
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Algorithm 7 Construction of the rotation poset (IT, =*)

1: Run Algorithm 1’s, firm-proposing and worker-proposing, to obtain @ and py.

2: Run Algorithm 4 to obtain a maximal chain Cg, Cy, - - - , C of the stable matching
lattice (S, >), and the set of rotations IT = {p1, 02, -+ , Pk}.

3: Run Algorithm 6 to obtain the sets A(p;) for each rotation p; € II.

4: Define the partial order relation >*: for p;, p; € I, p; =* p; & A(p;)) € A(pj).

5 The convex hull of lattice elements

Consider a poset (Y, =*). Its associated order polytope is defined as
O, >*):={yel0, 11" :y; > y;, Vi, j e Y st.i >* j}.

A characterization of vertices and facets of O(X, =*) is given in [42].

Theorem 18 ( [42]) The vertices of O(Y, =*) are the characteristic vectors of upper
sets of Y. The facets of O(Y , =*) are all and only the following: y; > 0ifi is a minimal
element of the poset; y; < 1 ifi is a maximal element of the poset; y; > y; ifi is an

immediate predecessor of j.

Proof of Theorem 2 Let (Y, =*) affinely represent (X, >) via functions ¥ and g(u) =
Au + x°. We claim that

conv(X):=conv({x* : n e XH) = "1 A O, =%

X 0 * ®)
={xeR*:x=x"+Ay,y e OF, ="},
where @ denotes the Minkowski sum operator. Indeed, by definition of affine repre-
sentation and the fact that both polytopes, conv(X) and O(Y, =*), have 0/1 vertices, g
defines a bijection between vertices of these two polytopes. Convexity then implies (8).
AsO(Y,>")has O(|Y |2) facets shown in Theorem 18, we conclude the first statement
from Theorem 2.
Now suppose that A has full column rank. This implies that conv(X) is affinely
isomorphic to O(Y, >=*). Hence, there is a one-to-one correspondence between facets
of O(Y, =*) and facets of conv(X’), concluding the proof. O

Notice that, when A as in the statement of Theorem 2 does not have full column rank,
the extended formulation given in (8) may not give any information on the number of
facets of conv(X). For instance, the vertices of any polytope can be ordered as to form
a chain. In this case, Theorem 2 simply implies the well-known fact that conv(X’) can
be written as the projection of a simplex with as many vertices as that of conv(X).

6 Representations of choice functions and algorithms

Recall that a choice function is defined on all the (exponentially many) subsets of
agents from the opposite side. The oracle model bypasses the computational concerns
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of representing choice functions explicitly. However, one drawback of this model is
that it requires multiple rounds of communication between the “central planner” and
each agent in the market. This, from an application point of view, is time-consuming:
one of the major improvements brought about by the implementations of the Deferred
Acceptance algorithm when applied, e.g., to the New York City school system, lies in
the fact that it does not require multiple rounds of communication between the agents
and the central planner [1].

This observation leads to the following practically relevant and theoretically intrigu-
ing questions: is there a way to represent choice functions “compactly”, and do
our algorithms perform efficiently in such a model? A natural starting point is the
MC-representation [3] which we introduce next. We show that, in the model where
choice functions are given through their MC-representations, the time complexity
of our algorithms is polynomial in the input size (where now the input includes the
MC-representations). However, the number of preference relations required by the
MC-representation of a choice function may be exponential in the number of agents
(see Remark 4).

It is therefore interesting to investigate whether there are other ways to represent
choice functions that is of size polynomial in the number of agents. Via a counting
argument, we give a negative answer to this question for choice functions that are
substitutable, consistent, and cardinal monotone (see Theorem 21 and Remark 5). We
remark that our argument leaves it open whether a similar result holds if we replace
cardinal monotonicity with quota-filling.

6.1 MC-representation for path-independent choice functions

We now introduce an alternative, equivalent description of path-independent choice
functions. Aizerman and Malishevski [3] showed that a choice function C, is path-
independent if and only if there exists a finite sequence of p(C,) € N preference
relations over acceptable partners, denoted as {>,,;}ie[p(c,)] indexed by i, such that
for every subset of acceptable partners S, Cq(S) = Uie[pc,ix; ;}, where x7, =

max(S, >, ;) is the maximum element® of S according to >4.i- We call this sequence
of preference relations the Maximizer-Collecting representation (MC-representation)
of choice function C,. Note that for distinct i1, i» € [p(C,)], it is possible to have
x;,il = x;,iz'

Conceptually, one can view the MC-representation as follows: a firm is a collection
of positions, each of which has its own preference relation; a worker is a collection
of personas, each of whom also has his or her own preference relation. Each firm
hires the best candidate for each position, and the same candidate can be hired for two
positions if (s)he is the best for both. A symmetric statement holds for workers and

personas.

6 If § = 04, then max(S, >, ;) is defined to be .
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6.2 Algorithms with MC-representation

We now show how to modify the algorithms and analyze their time complexities when
agents’ choice functions are explicitly given via the MC-representations.

In Algorithm 1 and Algorithm 2, instead of relying on an oracle model, we need
to compute the outcomes of choice functions C, (S) for agent a € F U W and subset
of acceptable partners S. Recall that C,(S) can be obtained as a set of maximizers:
{max(S, >,) : i € [p(Ca)]}. Since each max(S, >, ;) requires O (max(|F|, |W|)
time to compute, the time-complexity for obtaining C, (S) is O (max(|F|, |W|)p(Cy)).
Thus, for all previous results in terms of time complexity, one can simply replace
O(oracle-calls) with O(max(|F|, |W]|) max,cruw p(Cy)). Note that this time
complexity bound is polynomial in the input size, but could be exponential in the
number of agents, since max,cruw p(C;) maybe exponential in the number of the
agents as discussed in Remark 4.

Remark 4 Dogan et al. [16] constructed strict preference lists with quotas (i.e., choice
functions for the MM- MODEL) whose MC-representation needs exponentially many
preference relations. Since such choice functions are a special case of the quota-filling
choice functions, in general the MC-representation of quota-filling choice functions
is not polynomial in the number of agents.

6.3 On the number of substitutable, consistent, and cardinal monotone choice
functions

In the following, the domain of all choice functions is the family of subsets of X, with
|X| = n. The simplest choice functions C appears in the SM- MODEL, where there is
a single underlying strict preference list. The number of such choice functions is

n n n n
n\ . n! n! 1
izo M pr U e A Ak iz

hence, singly exponential in n. On the other extreme, the number of all choice functions
is doubly-exponential in n (see, e.g., [17]).

Theorem 19 The number of choice functions on subsets of X with |X| = n is 2

It has also been shown by Echenique [17] that when choice functions are assumed to
be substitutable and consistent (i.e., path-independent), the number of choice functions
remains doubly exponential in 7.

Theorem 20 ( [17]) The number of lsubstitutable and consistent choice functions on
subsets of X with | X| =nis?2 (%)

In the rest of the section, we show the following. The proof idea follows from [17].
Theorem 21 The number of substitutable, consistent, and cardinal monotone choice

n—1
functions on subsets of X with | X| =nis?2 (v"—l )
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Remark 5 Because of Theorem 21, in order to encode all substitutable, consistent, and
cardinal monotone choice function in binary strings, we need a number of strings that
is super-polynomial in n, i.e., the number of agents in the market.

A family of subsets A C 2% is an antichain of (2%, C) if for any subsets A, B € A,
they are not comparable, i.e., A\ B # @ and B\ A # . A family of subsets F C 2%
is afilter (i.e., lower set) if forall F € F, F/ O F implies F’ € F. Moreover, we say
filter F is a filter at x if for all F € F, we have x € F. Note that ¢ is a filter at x.

Theorem 22 ( [17]) There is an injective function mapping collections of antichains
A = {A, : x € X} where each Ay is an antichain of the poset 2X\¥} C) 10
substitutable choice functions. The image of A is defined as follows: for all S C X,

CS):={xe§:8¢T},
where
T.:={BC X:AU{x} C B jforsome A € A,}.

Moreover, T, is a filter at x for all x € X.

Let C[.A] denote the substitutable choice function corresponding to the collection
of antichains A constructed as in the statement of Theorem 22.

Lemma31 Let (Y, W) be a partition of X with W = {w}. Let A = {A, : x € X}
be a collection of antichains such that (i) for all x € Y, A, = 0 and (ii) Ay is an
antichain of (2Y, ©). Then C[.A] is consistent and cardinal monotone.

Proof We abbreviate C := C[.A]. Let 7, be as defined in the statement of Theorem 22.
That is, 7, = @ for all x € Y and 7,, is a filter at w. Hence, note that SNY C C(S)
forall S C X ().

Let T € X. We consider first the case when w ¢ T. Then, C(T) = T because of
(#). Let S € X be suchthat C(T) C § C T. Then it must be that S = T and it follows
immediately that C(T") = C(S). In addition, for all § € T, we also have S C Y and
thus, using () again, |C(S)| = |S| < |T| = |C(T)|.

We next consider the case when w € T. Then, either C(T) = T or C(T) = T \ {w},
again because of (). We start with the consistency property. Assume we are in the
former case, and let S € X be such that C(T) € § C T. Since T = C(T), we have
S = T and thus C(T') = C(S). Now assume we are in the latter case: C(T) = T \ {w}.
If § € X satisfiesC(T) € S € T, weeitherhave S = T or § = T \ {w}. Regardless,
we have C(S) = C(T). Lastly, we show the cardinality monotonicity property, and we
consider both cases at once. Forall S C T, we either have C(S) = SorC(S) = S\ {w}
due to (#). Either way, |C(S)| < |S| < |T| —1 < |C(T)|. Hence, C is both consistent
and cardinal monotone, concluding the proof. O

Thus, a lower bound to the number of substitutable, consistent, and cardinal mono-
tone choice functions can be obtained by counting the number of antichains. The
problem of counting the number of antichains of a poset is called the Dedekind’s
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problem. Let N (k) denote the collection of antichains of poset (21 ©). The follow-
ing result is well-known and we include the proof for completeness.

Lemma32 [N (k)| > 2 — 20C4 VR,

Proof Consider any two distinct subsets A, B C X with |A| = |B|, then it must be
that A\ B # @ and B \ A # (0. Thus, a collection of subsets, each with the same
size, is an antichain of (2[k], Q). Therefore, the number of antichains of (Z[k], Q)isat

k
least the number of subsets of {A € X : |A| = |k/2]}, which is exactly 22 since
there are (sz J) subsets of X with size |k/2]. The last equality follows from Stirling’s
approximation. O

We now present the proof for Theorem 21.

Proof of Theorem 21 Let (Y, W) be a partition of X with |Y| =n — 1 and |W| = 1,
as in the statement of Lemma 31. By Lemma 32, the possible choices of antichains
A, for x € W is at least N'(n — 1). Hence, the number of A (i.e., collection of
antichains) in the statement of Lemma 31 is also at least A/ (n — 1). Finally, together
with Theorem 22, we have that the number of substitutable, consistent, and cardinal
monotone choice functions is again at least N'(n — 1). O

7 Concluding remarks

Our results show that approaching stable matching problems by regarding their fea-
sible regions as a distributive lattice leads to efficient optimization algorithms and a
polyhedral description of the associated convex sets. Our study leaves some questions
open and it poses research directions which we think are worth exploring.

First, it is not clear if algorithms from Sect. 4 extend to the CM- MODEL—or even
beyond—and if conversely the lower bound from Sect. 6 extends to choice functions
that are quota-filling. Second, there has been some recent work showing how feasible
regions of certain problems in combinatorial optimization can be seen as a distributive
lattice [22]. This fact, combined with our approach, may lead to (known or new)
efficient algorithms for optimizing linear functions over the associated polytopes.
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UBC for stimulating discussions when the material from the current paper was presented there.

A Proof of Theorem 17
DA algorithm (Algorithm 1)

Because of Lemma 28 and Lemma 29, Algorithm 1 can be implemented as in Algo-
rithm 8 to reduce the number of oracle-calls. In particular, during each repeat
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loop, only firms that are rejected in the previous step (i.e., in F) and only workers who
receive new proposals (i.e., in W) need to invoke their choice functions. Therefore,
the for loop at Line 5 is entered at most | F||W| times, and similarly, the for loop at
Line 13 is entered at most | F'||W | times. That is, the total number of oracle-calls
is O(|F||W]). Moreover, and for each firm-worker pair (f, w), w is removed from
X at most once and f is added to X, at most once. That is, Line 8 (resp. Line 16)
is repeated at most | F'||W| times. Therefore, the running time of the DA algorithm is
O(|F||W|oracle-call).

Algorithm 8 Efficient implementation of Algorithm 1

LsetF < Fand W <
2: for each firm f do initialize Xy < W(f) and Y J*irev < ¢ end for

3: for each worker w do initialize X,, < ¥ and Y5 < @ end for

4: repeat

5.  for each firm f € F do

6: Ar < Cr(Xy)

7: for each worker w € A\ Y}Zrev do

8: update X, < X, U{f}and W < W U {w}
9: end for

10: update Y§™" < Ay

11:  end for
12: re-setF < @
13:  for each worker w € W do

14: Xw < C(Xuw)

15: for each firm f € Y5\ X,, do

16: update X <— X7\ {w}and F < F U{f}
17: end for

18: update Ylﬁ“’v <~ Xu

19:  end for

20:  re-set W <

21: until F = ¢

Oulput: matching @ with w(w) = YPY for every worker w; closure X (w) with
X r(w) = Xy for every firm f

Break-marriage procedure (Algorithm 2)
Since the core steps (i.e., the loops) of the break-marriage procedure is the same

as that of the DA algorithm, the running time of the break-marriage procedure is
O(|F||W|oracle-call), with the same arguments as above.
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Immediate descendant (Algorithm 3)

Recall that g ; denotes the number of workers matched to firm f under any stable
matching (see the equal-quota property). Let T:=_ rerdy denote the number of
worker-firm pairs in any stable matching. Then, Algorithm 2 is run for at most Y times.
In addition, finding one maximal element u* from 7 requires at most Y comparisons
of pairs of stable matchings, each of which requires | F| oracle-calls by Part (iii)
of Lemma 25. All together, since Y < |F||W]|, the running time of Algorithm 3 is
O(|F*|W|*oracle-call).

Maximal chain (Algorithm 4)

Since the length of a maximal chain of P, and equivalently of S due to Theorem 4,
is at most the size of its base set due to Lemma 10 and Theorem 11, Algorithm 3
is repeated for at most |F||W| times. Thus, the running time of Algorithm 4 is
O(|FP’|\W|?oracle-call).

Partial order ~* (Algorithm 6)

Recall that checking if a matching is stable requires O (|F||W|) oracle-calls by
Part (ii) of Lemma 25. Thus, ros-membership is O(|F||W|oracle-call).
Since k is at most |F||W| as argued above, the running time of Algorithm 6 is
O(|F)?|WPoracle-call).

Rotation poset (I, >*) (Algorithm 7)

Summing up the time of running Algorithm 1 twice, then Algorithm 4, and lastly
Algorithm 6, the time complexity for building the rotation poset is O(|F*|W|?
oracle-call).
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