
P A L T : Parameter-Lite Transfer of Language Models for
Knowledge Graph Completion

Jianhao Shen1, Chenguang Wang2†, Ye Yuan1, Jiawei Han3

Heng Ji3 , Koushik Sen4, Ming Zhang1†, Dawn Song4†

1Peking University, 2Washington University in St. Louis,
3University of Illinois at Urbana-Champaign, 4UC Berkeley

{jhshen,yuanye_pku,mzhang_cs}@pku.edu.cn, chenguangwang@wustl.edu,
{hanj ,hengj i }@i l l ino is .edu, {ksen,dawnsong}@berkeley.edu

Abstract

This paper presents a parameter-lite transfer
learning approach of pretrained language mod-
els (LM) for knowledge graph (KG) comple-
tion. Instead of finetuning, which modifies
all LM parameters, we only tune a few new
parameters while keeping the original LM pa-
rameters fixed. We establish this via reformu-
lating KG completion as a “fill-in-the-blank”
task, and introducing a parameter-lite encoder
on top of the original LMs. We show that,
by tuning far fewer parameters than finetuning,
LMs transfer non-trivially to most tasks and
reach competitiveness with prior state-of-the-
art approaches. For instance, we outperform
the fully finetuning approaches on a KG com-
pletion benchmark by tuning only 1% of the
parameters.1

1 Introduction

Pretrained language models (LM) such as B E RT
and GPT-3 have enabled downstream transfer (De-
vlin et al., 2019; Brown et al., 2020). Recent stud-
ies (Petroni et al., 2019; Jiang et al., 2020; He et al.,
2021) show that the implicit knowledge learned
during pretraining is the key to success. Among
different transfer learning techniques (Shin et al.,
2020; Liu et al., 2021a,b; Houlsby et al., 2019;
Devlin et al., 2019), finetuning is the de facto
paradigm to adapt the knowledge to downstream
NLP tasks. Knowledge graph (KG) completion is
a typical knowledge-intensive application. For
example, given a fact (Chaplin, profession, __)
missing an entity, it aims to predict the correct en-
tity “screenwriter”. This task provides a natural
testbed to evaluate the knowledge transfer ability
of different transfer learning approaches.

Finetuning (Yao et al., 2019; Shen et al., 2022)
has been recently adopted to advance the KG com-

†
Corresponding authors.

1The code and datasets are available at ht tps ://g i thub.
com/yuanyehome/PALT.

pletion performance. However, it presents two fun-
damental limitations. First, finetuning is computa-
tionally inefficient, requiring updating all param-
eters of the pretrained LMs. This ends up with
an entirely new model for each KG completion
task. For example, storing a full copy of pretrained
B E RT L A R G E (340M parameters) for each task is
non-trivial, not to mention the billion parameter
LMs. Second, the finetuning approaches often
rely on task-specific architectures for various KG
completion tasks. For instance, KG-BERT (Yao
et al., 2019) designs different model architectures
to adapt a pretrained BERT to different tasks. This
restricts its usability in more downstream tasks.

In this work, we enable parameter-lite transfer of
the pretrained LMs to knowledge-intensive tasks,
with a focus on KG completion. As an alternative
to finetuning, our method, namely PA LT , tunes
no existing LM parameters. We establish this by
casting the KG completion into a “fill-in-the-blank”
task. This formulation enables eliciting general
knowledge about KG completion from pretrained
LMs. By introducing a parameter-lite encoder con-
sisting of a few trainable parameters, we efficiently
adapt the general model knowledge to downstream
tasks. The parameters of the original LM network
remain fixed during the adaptation process for dif-
ferent KG completion tasks. In contrast to fine-
tuning which modifies all LM parameters, PA LT
is lightweight. Instead of designing task-specific
model architectures, PA LT stays with the same
model architecture for all KG completion tasks that
we evaluate.

The contributions are as follows:

• We propose parameter-lite transfer learning
for pretrained LMs to adapt their knowledge
to KG completion. The reach of the results
is vital for broad knowledge-intensive NLP
applications.

• We reformulate KG completion as a “fill-in-

3862
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3862 - 3876

December 7-11, 2022 ©2022 Association for Computational Linguistics

https://github.com/yuanyehome/PALT
https://github.com/yuanyehome/PALT

BERT

Answer:

the-blank” task. This new formulation helps
trigger pretrained LMs to produce general
knowledge about the downstream tasks. The
new formulation implies that the KG com-
pletion can serve as a valuable knowledge
benchmark for pretrained LMs, in addition
to benchmarks such as LA MA (Petroni et al.,
2019) and K I LT (Petroni et al., 2021).

• We introduce a parameter-lite encoder to spec-
ify general model knowledge to different KG
completion tasks. This encoder contains a few
parameters for providing additional context
and calibrating biased knowledge according
to the task. The module is applicable to other
deep LMs.

• We obtain state-of-the-art or competitive per-
formance on five KG completion datasets
spanning two tasks: link prediction and triplet
classification. We achieve this via learning
only 1% of the parameters compared to the
fully finetuning approaches. In addition, com-
pared to task-specific KG completion models,
PA LT reaches competitiveness with a unified
architecture for all tasks.

2 PA LT

We propose parameter-lite transfer learning, called
PA LT , as an alternative to finetuning for knowl-
edge graph (KG) completion. Instead of finetuning
which modifies all the language model (LM) pa-
rameters and stores a new copy for each task, this
method is lightweight for KG completion, which
keeps original LM parameters frozen, but only
tunes a small number of newly added parameters.
The intuition is that LMs have stored factual knowl-
edge during the pretraining, and we need to prop-
erly elicit the relevant knowledge for downstream
tasks without much modification to the original
LMs. To do so, PA LT first casts KG completion
into a “fill-in-the-blank” task (Sec. 2.1), and then
introduces a parameter-lite encoder consisting of
a few trainable parameters, while parameters of
the original network remain fixed (Sec. 2.2). The
overall architecture of PA LT is shown in Figure 1.

2.1 Knowledge Graph Completion as
Fill-in-the-Blank

We reformulate KG completion as a fill-in-the-
blank task. The basic idea of this task formulation
is that pretrained LMs are able to answer questions

Positive Parameter-Lite Encoder

Transformer Layers x6
Knowledge Calibration Encoder

Transformer Layers x6

Fill-in-the-Blank Knowledge Prompt Encoder
CLS Chaplin is a SEP ____________ SEP

P0 ··· Pn

screenwriter

Figure 1: Summary of our approach PA LT . Compared
to finetuning, PA LT is a parameter-lite alternative to
transfer the knowledge that pretrained language mod-
els know about knowledge graph completion. Our ap-
proach first casts knowledge graph completion into a
fill-in-the-blank task. This formulation enables pre-
trained language models to produce general knowledge
for knowledge graph completion. By introducing a
few trainable parameters via a parameter-lite encoder
(in the dashed box), PA LT further adapts the general
knowledge in language models to different knowledge
graph completion tasks without modifying the original
language model parameters (in grey).

formatted in cloze-style statements, and having a
proper context helps to trigger LMs to produce
general knowledge for the task of interest. For ex-
ample, the KG completion task aims to predict the
missing entity in a fact (Chaplin, profession, __),
which is closely related to a cloze statement. We
therefore frame the KG completion as “fill-in-the-
blank” cloze statements. In this case, “Chaplin is
a” provides the proper context for LMs to elicit
the correct answer “screenwriter” that is generally
relevant to the task.

In more detail, a fact is in the form of (head,
relation, tail) or in short (h, r, t). The LM needs
to predict a missing entity. A typical KG com-
pletion task provides a partial fact (h, r, __) and
a set of candidate answers for the missing entity.
To perform this task, at test time, we convert (h,
r, t0) into a cloze statement, where t0 indicates an
answer candidate for filling the blank. For exam-
ple, given a partial fact (Chaplin, profession, __),
an LM needs to fill in the blank of the cloze state-
ment “Charlie is a __” by providing it as the model
input. In our case, a candidate answer (Chaplin,
profession, screenwriter) is given (e.g., “screen-
writer” is one of the candidates), the corresponding
cloze statement will turn into “[CLS] Chaplin is a
[SEP] screenwriter [SEP]” (Figure 1). We use this
statement as an input to a pretrained LM. [CLS]
and [SEP] are special tokens of the pretrained LMs,
e.g., BERT. “Chaplin” is the head entity name or
description. “is a” is relation name or description.
“screenwriter” is the candidate tail entity name
or

3863

0

i

0

i

description. Sec 3.1 includes resources for obtain-
ing the entity or relation descriptions.

2.2 Parameter-Lite Encoder

While the new formulation helps pretrained LMs to
provide general knowledge about the tasks, down-
stream tasks often rely on task-specific or domain-
specific knowledge. To adapt the general knowl-
edge in pretrained LMs to various KG completion
tasks, we introduce a parameter-lite encoder includ-
ing two groups of parameters: (i) a prompt encoder
serving as the additional task-specific context in
the cloze statement, and (ii) contextual calibration
encoders aiming to mitigate model’s bias towards
general answers. The encoder is added on top of
the original LM network whose parameters remain
frozen during tuning.

Knowledge Prompt Encoder Beyond general
context from the task formulation, we believe that
task-specific context helps better recall the knowl-
edge of interest in pretrained LMs. For example,
if we want the LM to produce the correct answer
“screenwriter” for “Charlie is a __”, a task-
specific prefix such as “profession” in the context
will help. The LM will then assign a higher
probability to “screenwriter” as the correct answer.
In other words, we want to find a task-specific
context that better steers the LM to produce task-
specific predictions. Intuitively, the task-specific
tokens influence the encoding of the context,
thus impacting the an-swer predictions. However,
it is non-trivial to find such task-specific tokens.
For example, manually writing these tokens is
not only time consuming, but also unclear
whether it is optimal for our task. Therefore, we
design a learnable and continuous prompt
encoder.

Specifically, we use “virtual” prompt tokens as
continuous word embeddings. As shown in Fig-
ure 1, we append these prompt tokens to differ-
ent positions in the context. The embeddings of
prompt tokens are randomly initialized and are up-
dated during training. To allow more flexibility
in context learning, we add a linear layer with a
skip connection on top of the embedding layer to
project the original token embeddings to another
subspace. This projection enables learning a more
tailored task-specific context that better aligns with
LM’s knowledge. The knowledge prompt encoder
is defined in Eq. 1.

e0 = Wp e i + bp + ei (1)

where ei denotes the virtual token embedding, and
ei denotes the input token embedding. W p and
bp are the tunable weight and bias of the prompt
encoder. The knowledge prompt encoder provides
task-specific context for KG completion as it is
tuned on task-specific training data.

Knowledge Calibration Encoder Another
main pitfall of pretrained LMs is that they tend
to be biased towards common answers in their
pretraining corpus. For example, the model
prefers “United States” over “Georgia” for the
birth place of a person, which is suboptimal
for KG completion. We actually view this as a
shift between the pretraining distribution and the
distribution of downstream tasks.

We counteract such biases by calibrating the out-
put distribution of pretrained LMs. Concretely, we
introduce task-specific calibration parameters be-
tween Transformer layers of LMs (Figure 1) to
gradually align the pretraining distribution with
the downstream distribution. We choose a linear
encoder with a skip connection to capture the dis-
tribution shifts, as shown in Eq. 2.

hi = Wc hi + bc + hi (2)

where h0 is the calibrated hidden state, and hi is
the hidden state of a Transformer layer. W c and bc
are the tunable weight and bias of the knowledge
calibration encoder.

Training and Inference We keep all LM param-
eters fixed and only tune the parameters in the
parameter-lite encoder. After formatting the KG
completion tasks following our formulation, a can-
didate fact is in the standard sentence pair format of
BERT. For example, the candidate (Chaplin, profes-
sion, screenwriter) is formulated as “[CLS] Chap-
lin is a [SEP] screenwriter [SEP]”. “Chaplin is
a” is the first sentence as the cloze-style question,
while the second sentence is “screenwriter” imply-
ing an answer candidate. LM then decides whether
the second sentence is a correct answer to the ques-
tion or not. This naturally aligns with the next
sentence prediction (NSP) task of BERT, which
outputs a positive label if the answer is correct; oth-
erwise negative. Therefore, we directly utilize the
next sentence prediction to perform KG completion
thanks to our formulation.

The training objective is to decide whether the
second sentence is the correct next sentence to the
first sentence. The small number of tunable param-

3864

˜

X
˜ ˜

˜

i ˜

eters are then updated with respect to the objec-
tive. To optimize those parameters, we need both
positive and negative examples. We use negative
sampling (Mikolov et al., 2013) for efficiency con-
sideration. To be more specific, for a positive fact
(h, r, t), we first corrupt its head entity with nns ran-
dom sampled entities to form negative facts, e.g.,
(hi, r, t). If a sampled fact is in the KG, it should
be considered positive so we will re-sample it. The
loss function for the head entity is defined in Eq. 3.

L h = − log Pr(1|h, r, t)

−
nns

Eh i �E \ { h } log Pr(0|hi, r, t)
(3)

i

where Pr(|h, r, t) is the output probability of the
B E RT NSP classifier.

For each fact, the losses for its relation L r and
tail entity L t are similarly defined. There are 3 �
nns negative facts in total for each fact. Similar
to the negative facts for its head entity (e.g., (hi,
r, t)), we have the negative facts for its relation
(e.g., (h, r̃ , t)), and its tail entity (e.g., (h, r,
ti)) respectively. The joint loss function is the
sum of the three components as defined in Eq. 4.

L =
X

(L h + L r + L t) (4)
(h,r,t)�G

where G is a collection of all KG facts.

3 Experiments

In this section, we evaluate the parameter-lite trans-
fer ability of PA LT on two KG completion tasks:
triplet classification and link prediction. The details
of the experimental setup, datasets, and comparison
methods are described in Appendix A.

3.1 Experimental Setup

Datasets We conduct the experiments on five
datasets: WN11 (Socher et al., 2013) and
FB13 (Socher et al., 2013) for triplet classifi-
cation, and FB15k-237 (Toutanova and Chen,
2015), WN18RR (Dettmers et al., 2018) and
UMLS (Dettmers et al., 2018) for link prediction.
A detailed description for these datasets is in Ap-
pendix A.3. Table 1 summarizes the statistics of
the datasets.

Comparison Methods We compare PA LT with
the following KG completion models. (i) task-
specific models (designed for KG completion):

Dataset # Entity # Relation # Train # Dev # Test
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
UMLS 135 46 5,216 652 661
FB13 75,043 13 316,232 5,908 23,733
WN11 38,696 11 112,581 2,609 10,544

Table 1: Dataset statistics.

TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), TransR (Lin et al., 2015), TransD (Ji et
al., 2015), DistMult (Yang et al., 2015),
TransG (Xiao et al., 2016), TranSparse (Ji et al.,
2016), ComplEx (Trouillon et al., 2016), R-
GCN (Schlichtkrull et al., 2018), ConvE (Dettmers
et al., 2018), ConvKB (Nguyen et al., 2018),
DistMult-HRS (Zhang et al., 2018), RotatE (Sun
et al., 2019), R E F E (Chami et al., 2020),
H A K E (Zhang et al., 2020b), and ComplEx-
DURA (Zhang et al., 2020a), NTN (Socher et al.,
2013), DOLORES (Wang et al., 2020b), KB-
GAT (Nathani et al., 2019), and GAATs (Wang et
al., 2020c), T E K E (Wang and Li, 2016), stAR
(Wang et al., 2021a); and (ii) a general model KG-
BERT (Yao et al., 2019). It utilizes finetuning to
transfer LMs for KG completion, and is task
agnostic.

3.2 Main Results

Triplet Classification Triplet classification is a
binary classification task to predict whether a given
fact (h, r, t) is correct or not. For each fact, we
prepare the input following Sec. 2.1 (Figure 1) and
feed the input into the model. The prediction score
is the output probability of the NSP classifier. If the
score is above a threshold, the fact is predicted as
positive, otherwise negative. We tune the threshold
on dev sets and report the accuracy on test data.
The results are summarized in Table 2.

PA LT B A S E outperforms all task-specific mod-
els, and achieves competitive or better perfor-
mance compared to the finetuning method KG-
BERT. PA LT L A R G E gains further improvement.
PA LT B A S E outperforms the best task-specific
model by 4.4% on WN11 and 1.3% on FB13. It
outperforms the finetuning method by 0.4% on av-
erage (with a 0.9% improvement on FB13). It is
slightly worse than the finetuning model on WN11.
Compared to finetuning, PA LT L A R G E gains 0.3%
and 1.3% improvements on WN11 and FB13 re-
spectively. These results suggest that PA LT is able
to transfer knowledge in pretrained LMs for KG
completion tasks. Importantly, it is able to outper-

3865

Method WN11 FB13 Avg
Task-specific models
NTN (Socher et al., 2013) 86.2 90.0 88.1
TransE (Bordes et al., 2013) 75.9 81.5 78.7
TransH (Wang et al., 2014) 78.8 83.3 81.1
TransR (Lin et al., 2015) 85.9 82.5 84.2
TransD (Ji et al., 2015) 86.4 89.1 87.8
T E K E (Wang and Li, 2016) 86.1 84.2 85.2
TransG (Xiao et al., 2016) 87.4 87.3 87.4
TranSparse-S (Ji et al., 2016) 86.4 88.2 87.3
DistMult (Yang et al., 2015) 87.1 86.2 86.7
DistMult-HRS (Zhang et al., 2020a) 88.9 89.0 89.0
A AT E (An et al., 2018) 88.0 87.2 87.6
ConvKB (Nguyen et al., 2018) 87.6 88.8 88.2
DOLORES (Wang et al., 2020b) 87.5 89.3 88.4
General models
KG-BERT (Yao et al., 2019) 93.5 90.4 91.9
PA LT B A S E (ours) 93.3 91.3 92.3
PA LT L A R G E (ours) 93.8 91.7 92.8

Table 2: Triplet classification accuracy. Task-specific
models are designed for knowledge graph completion,
while general models are task agnostic.

form the transfer learning performance of finetun-
ing with much fewer parameters.

L ink Prediction Link prediction aims to predict
a missing entity given relation and the other entity.
It is a ranking problem where we are asked to rank
all candidate entities and select the top answer to
complete the missing part. For each fact (h, r, t),
we corrupt it by replacing either its head or tail
entity with every other entity to form the candidate
set. We follow Bordes et al. (2013) to use a filtered
setting, i.e., all facts that appear in either train, dev
or test data are removed, and use the remaining
facts as the candidate set. Similar to triplet classi-
fication, each candidate fact is fed into PA LT and
the associated score is the output probability of the
NSP classifier. We rank all candidates according
to these scores. Two standard metrics are used for
evaluation: Mean Rank (MR) and Hits@10 (the
proportion of the correct entity ranked in the top
10). A lower MR is better while a higher
Hits@10 is better.

The evaluation results of link prediction are
shown in Table 3. PA LT B A S E achieves compet-
itive or better performance than the finetuning ap-
proach. PA LT L A R G E performs better. In particu-
lar, PA LT B A S E outperforms KG-BERT by 1.4%
in Hits@10 and 4 units in MR on FB15k-237;
and 15.5% in Hits@10 and 35 units in MR on
WN18RR. PA LT L A R G E outperforms PA LT B A S E

by 1% in Hits@10, 5 units in MR on FB15k-
237; and 1.4% in Hits@10 and 1 unit in MR on

WN18RR. On UMLS, the finetuning model outper-
forms PA LT B A S E by a small margin. This is be-
cause pretrained LMs contain less medical knowl-
edge due to a lack of medical corpus during pre-
training. As a result, finetuning has the advantage
over our approach on UMLS. The state-of-the-art
task-specific model performs better than PA LT .
This is mainly because they leverage the structure
information of KGs while the general models do
not.

3.3 Ablation Study

To better understand PA LT , we further conduct an
ablation study on WN11 to show the effectiveness
of different components. Specifically, we evaluate
PA LT B A S E without knowledge prompt encoder
(denoted as “w/o Prompt”) or knowledge calibra-
tion encoder (denoted as “w/o Calibration”). We
also remove the entire parameter-lite encoder (de-
noted as “w/o Encoder”). Note this will make
PA LT a zero-shot model since there are no tun-
able parameters. For comparison, we also test
B E RT B A S E under the finetuning setting, where
we do not add any new parameters and directly
finetune B E RT for triplet classification with our
formulation. The results are shown in Table 4.

We have the following observations: (i) all com-
ponents have a positive effect on the final perfor-
mance. The knowledge prompt encoder brings the
most improvement which is 1.6%. The knowledge
calibration encoder at the middle layer brings a
1.1% improvement, and that at the last layer
brings a 0.3% improvement. The results indicate
that it is more important to recall and prepare the
knowl-edge in earlier layers for the task of
interest. (ii) Removing both knowledge calibration
encoders re-sults in the worst accuracy. The
knowledge calibra-tion encoders are important for
knowledge transfer. (iii) PA LT B A S E outperforms
finetuning all param-eters, which suggests that
PA LT is an effective way to adapt pretrained
LMs for KG completion since it requires far less
computation and storage. (iv) Furthermore, we
can see that without the en-tire parameter-lite
encoder, our model still achieves promising results.
On WN11, it achieves 73.7% accuracy, which is
approximately 1.5 times the ac-curacy of random
guesses (50%). This shows the effectiveness of
our task formulation. Formulating KG completion
as a “fill-in-the-blank” task triggers the knowledge
that an LM learned during pretrain-ing. This
enables our efficient transfer algorithm.

3866

Tu
na

bl
e

Pa
ra

m
et

er
s

(M
)

Method

Task-specific models
TransE (Bordes et al., 2013)
DistMult (Yang et al., 2015)
ComplEx (Trouillon et al., 2016)
ConvE (Dettmers et al., 2018)
RotatE (Sun et al., 2019)
R E F E (Chami et al., 2020)
HA K E (Zhang et al., 2020b)
K BGAT (Nathani et al., 2019)
GAATs (Wang et al., 2020c)
StAR (Wang et al., 2021a)
ComplEx-DURA (Zhang et al., 2020a)

FB15k-237
Hits@10 MR

0.465 357
0.419 254
0.428 339
0.501 244
0.533 177
0.541 -
0.542 -
0.626 210
0.650 187
0.562 117
0.560 -

WN18RR
Hits@10 MR

0.501 3384
0.49 5110
0.51 5261
0.52 4187

0.571 3340
0.561 -
0.582 -
0.581 1940
0.604 1270
0.732 46
0.571 -

UMLS
Hits@10 MR

0.989 1.84
0.846 5.52
0.967 2.59
0.990 1.51

- --
-- --
-- -

0.991 1.49
- -

General models
KG-BERT (Yao et al., 2019)
PA LT B A S E (ours)
PA LT L A RG E (o urs)

0.420 153 0.524 97
0.434 149 0.679 62
0.444 144 0.693 61

0.990 1.47
0.988 1.65
0.990 1.57

Table 3: Link prediction results. Task-specific models are designed for knowledge graph completion, while general
models are task agnostic.

Method WN11
PA LT B A S E 93.3
w/o Prompt 91.7
w/o Calibrationmiddle 92.2
w/o Calibrationlast 93.0
w/o Calibrationboth 89.3
w/o Encoder 73.7
Finetuning 93.2

350 340

300

250

200

150

110
100

5
3.15

1.77

Table 4: Ablation study on WN11. We remove knowl-
edge prompt encoder, or knowledge calibration en-
coder, or the entire parameter-lite encoder.

BERTBASE PALTBASE BERTLARGE PALTLARGE

Model

Figure 2: Compare the number of tunable parameters
of PA LT and BERT.

3.5 Case Study

3.4 Parameter Efficiency Analysis

The advantage of PA LT is that only a small amount
of newly added parameters are tuned while all LM
parameters are fixed. This brings two benefits:
space-efficient model storage and efficient com-
putation. Here we compare the numbers of tunable
parameters of PA LT and BERT, and the detailed
calculation of PA LT is presented in Appendix B.
B E RT B A S E has 110M tunable parameters, while
PA LT B A S E has 1.77M. PA LT L A R G E has 3.15M
tunable parameters, while B E RT L A R G E has 340M.
PA LT B A S E only has 1.6% tunable parameters
of B E RT B A S E , and PA LT L A R G E has 0.9% of
B E RT L A R G E . We show the numbers of tunable
parameters of different models in Figure 2.

In this section, we perform a case study analy-
sis to illustrate why PA LT performs well. We
use BertViz (Vig, 2019) to visualize the attention
weights of PA LT . We take an example of a pos-
itive fact (h, r, t) : h = “evening clothes”, r =

“type of” and t = “attire” and show the attention
weights of the first, the middle and the last atten-
tion layers in Figure 3. In the first layer, the prompt
token attends to all tokens, indicating that it helps
to recall general knowledge. In the middle layer,
the attention weights concentrate on the most rele-
vant parts of the tokens. Specifically, the attention
weight between “type” and “clothes” is large. The
“type” token also pays attention to [SEP] token. It is
mainly because the [SEP] token marks the bound-
ary of two sentences and the pretrained LM uses it
as an aggregation representation of each sentence.

3867

In the last layer, different heads of [CLS] focus on
different parts of the text. For example, the first
head (in blue) attends to the tail entity. The seventh
head (in pink) attends to the head and relation. The
third head (in green) attends to prompt tokens. This
shows that [CLS] gathers task-specific knowledge
for the NSP classifier.

In Table 5, we give some examples of FB13 that
are improved by PA LT compared to the finetuning
approach (i.e., facts that are correctly predicted by
PA LT while KG-BERT fails). We further show the
comparison between attention weights of PA LT
and the finetuning approach in Appendix C.

Head Relation Tail Label

tetsuzan nagata cause of death murder 3
charles eliot gender male 3
bill burrud institution harvard university 3

lothar rendulic nationality germany 3
thomas abbt profession philosopher 3

samuel richardson profession priest 7
nathaniel wallich ethnicity white british 7

fu biao gender female 7
alan turing institution harvard law school 7
alan turing ethnicity israelis 7

Table 5: Samples of PA LT ’s correct predictions on
FB13, where the finetuning method (Yao et al., 2019)
outputs wrong predictions. Label 3 means gold posi-
tive fact and 7 indicates gold negative fact.

3.6 Error Analysis

We analyze the errors made by PA LT in this sec-
tion. Here we focus on analyzing relations with the
highest and lowest error rates. The detailed error
rate statistics are shown in Appendix D. Most of
PA LT errors are due to “domain” relations, with an
error rate of 14.7% for the relation “domain topic”
and 10.5% for “domain region”. The reason is that
we find the relations of the “domain” are not well
defined, and the boundary between relations can
be unclear. For the relation “subordinate instance
of”, PA LT performs the best with an error rate of
2.6%, since it is more related to semantic informa-
tion. We further analyze the attention weights of
some error cases in Figure 4. For the first case,
the [CLS] token attends mainly to the head and
relation tokens but little to the tail entity. This is
because “barbiturate” is a rare entity and the LM
does not capture much knowledge for it during pre-
training. PA LT fails on the second case mainly
because “domain topic” covers a wide range of
concepts. This results in a uniform distribution of
attention so it is difficult to make a correct predic-

tion. For the last case, [CLS] attends to both the
head and tail entities but little to the relations. This
leads to the error. We notice that most entities are
segmented into sub-words based on BERT ’s tok-
enizer. This may result in a poor understanding of
entities. We believe other pretraining paradigms
like span-masking (Joshi et al., 2020) will help and
leave it as future work.

4 Related Work

Pretrained LMs (Devlin et al., 2019; Liu et al.,
2019; Radford et al., 2019; Brown et al., 2020;
Lewis et al., 2020; Raffel et al., 2020; Wang et al.,
2022) have achieved state-of-the-art results in many
NLP tasks (Wang et al., 2018, 2019). Some work
also uses pretrained LMs for knowledge-driven
tasks (Yao et al., 2019; Omeliyanenko et al., 2020;
Aspillaga et al., 2021) by finetuning them on down-
stream tasks, which has been the de facto method to
achieve superior results. However, finetuning mod-
ifies all parameters, which requires a large amount
of computation and storage resources. Recently,
prompt-tuning (Shin et al., 2020; Liu et al., 2021b),
adaptors (Houlsby et al., 2019; Wang et al., 2021c;
Newman et al., 2022), and factual probing (He et
al., 2021; Petroni et al., 2019; Wang et al., 2020a,
2021b) are developed to transfer pretrained LMs
to downstream tasks and show improvements on
many NLP tasks. Gao et al. (2021) focus on prompt
based finetuning, while Jiang et al. (2020) follow
standard prompt formulation for a single token.

Compared to the existing methods, there are sev-
eral distinctive features of PA LT . First, instead of
using the output of a single [MASK] token, we lever-
age the next sentence prediction, which allows the
answers with arbitrary lengths. Second, we auto-
matically acquire the template using the natural
language descriptions of the relations available in
the downstream KGs. Besides, we also use the
corresponding entity descriptions in the cloze state-
ment, providing richer context. Third, our method
differs from prompt-tuning, which only inserts vir-
tual tokens into the input. Fourth, in contrast to
the empirical calibration procedures that are highly
customized for each task, our method automatically
learns a few calibration parameters for each task.
Overall, compared to previous methods, our ap-
proach is lightweight. The parameter-lite encoder
is unique and particularly useful for more NLP
tasks.

Traditional KG completion methods mainly rely

3868

´

(a) The first layer. (b) The middle layer. (c) The last layer.

Figure 3: Visualization of attention weights of different Transformer layers of PA LT . The 0th layer is the first
attention layer. The 7th layer is the attention layer after our middle calibration encoder. The 11th layer is the last
attention layer. Different color represents different attention heads. The darker the color is, the larger the attention
score.

(a) Has Instance. (b) Domain Topic. (c) Subordinate Instance.

Figure 4: The attention weights of the last layer of PA LT on three error cases involving different relations.

on graph structure information. They embed en-
tities and relations into a continuous vector space
and learn a score function based on these embed-
dings for triplets (Bordes et al., 2013; Wang et al.,
2014; Lin et al., 2015; Nickel et al., 2011; Bal-
aževic et al., 2019; Dettmers et al., 2018; Nguyen
et al., 2018; Cai and Wang, 2018). Unlike PA LT ,
these methods treat entities and relations as unique
identifiers and ignore their semantic meaning. An-
other line of research leverages text descriptions of
entities and relations for KG completion. For ex-
ample, KG-BERT (Yao et al., 2019) concatenates
the text description of entities and relations into
a sequence and feeds it into BERT, and finetunes
the task-specific models. LASS (Shen et al., 2022)
further uses both text and structure information to
solve different KG completion tasks under a uni-
fied LM finetuning framework. By contrast, we
present an alternative to finetuning for KG comple-
tion, and our method unifies different tasks in the
same model architecture.

5 Conclusion

We propose PA LT , a parameter-lite transfer of pre-
trained language models (LM) for knowledge graph
completion. To efficiently elicit general knowledge
of LMs learned about the task during pretraining,
we reformulate KG completion as a “fill-in-the-
blank” task. We then develop a parameter-lite en-
coder including two groups of parameters. First,
it contains a knowledge prompt encoder consist-
ing of learnable continuous prompt tokens to bet-
ter recall task-specific knowledge from pretrained
LMs. Second, it calibrates pretrained LMs rep-
resentations and outputs for KG completion via
two knowledge calibration encoders. As a result,
our method achieves competitive or even better
results than finetuning with far fewer tunable pa-
rameters. Both the task formulation and parameter-
lite encoder can be inspiring for a wide range of
knowledge-intensive tasks and deep LMs. We hope
this research can foster future research along the
parameter-lite knowledge transfer direction in NLP.

3869

´

6 Limitations Acknowledgements

As for the limitations of our method, the input
is constructed based on the natural language de-
scriptions of the entities and relations, and such
descriptions may need additional efforts to obtain
in different application scenarios. Although our
method achieves competitive results in the medical
domain (UMLS), the main finding of our study
is that our method is more capable of transfer-
ring general knowledge in LMs to KG completion
tasks. We welcome more studies on strengthen-
ing its performance in specific domains, e.g., using
domain-specific LMs for a particular domain (e.g.,
B ioBERT (Lee et al., 2020) for the medical do-
main). Finally, our method shares some common
limitations with most deep learning approaches.
For example, the decisions are not easy to inter-
pret, and the predictions can retain the biases of the
training data.

7 Ethical Considerations

We hereby acknowledge that all of the co-authors
of this work are aware of the provided ACM Code
of Ethics and honor the code of conduct. The fol-
lowings give the aspects of both our ethical con-
siderations and our potential impacts to the com-
munity. This work uses pretrained LMs for KG
completion. We develop an encoder especially the
knowledge calibration encoder to mitigate the po-
tential knowledge biases in pretrained LMs. The
risks and potential misuse of pretrained LMs are
discussed in (Brown et al., 2020). There are po-
tential undesirable biases in the datasets, such as
unfaithful descriptions from Wikipedia. We do
not anticipate the production of harmful outputs af-
ter using our model, especially towards vulnerable
populations.

8 Environmental Considerations

We build PA LT based on pretrained B E RT B A S E

and B E RT L A R G E . According to the estimation in
(Strubell et al., 2019), pretraining a base model
costs 1,507 kWhPUE and emits 1,438 lb CO2,
while pretraining a large model requires 4 times the
resources of a base model. Our methods only tune
1% parameters with fewer than 1% gradient-
steps of the number of steps of pretraining.
Therefore, our energy cost and C O2 emissions
are relatively small.

We would like to thank the anonymous reviewers
for their suggestions and comments. This paper
is partially supported by National Key Research
and Development Program of China with Grant No.
2018AAA0101902 and the National Natural Sci-
ence Foundation of China (NSFC Grant Numbers
62106008 and 62276002). This material is in part
based upon work supported by Berkeley DeepDrive
and Berkeley Artificial Intelligence Research. The
research was also supported in part by US DARPA
KAIROS Program No. FA8750-19-2-1004 and
INCAS Program No. HR001121C0165, National
Science Foundation IIS-19-56151, IIS-17-41317,
and IIS 17-04532.

References

Bo An, Bo Chen, Xianpei Han, and Le Sun. 2018.
Accurate text-enhanced knowledge graph represen-
tation learning. In NAACL: HLT, page 745–755.

Carlos Aspillaga, Marcelo Mendoza, and Alvaro Soto.
2021. Inspecting the concept knowledge graph en-
coded by modern language models. In Findings of
ACL, pages 2984–3000.

Ivana Balaževic, Carl Allen, and Timothy M.
Hospedales. 2019. Tucker: Tensor factorization for
knowledge graph completion. In EMNLP-IJCNLP,
page 5184–5193.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NeurIPS, page 2787–2795.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot
Learners. In NeurIPS, pages 1877–1901.

Liwei Cai and William Yang Wang. 2018. Kbgan: Ad-
versarial learning for knowledge graph embeddings.
In NAACL: HLT, page 1470–1480.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. In ACL, pages 6901–6914.

3870

ˇ ´

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In AAAI, pages
1811–1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL-IJCNLP, pages 3816–3830.

Tianxing He, Kyunghyun Cho, and James Glass. 2021.
An empirical study on few-shot knowledge probing
for pretrained language models. CoRR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In ICML, pages 2790–2799.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In ACL-IJCNLP, page
687–696.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. 2016.
Knowledge graph completion with adaptive sparse
transfer matrix. In AAAI, page 985–991.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Mart-
tinen, and Philip S. Yu. 2022. A survey on knowl-
edge graphs: Representation, acquisition, and appli-
cations. TNNLS, pages 494–514.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know. Trans. Assoc. Comput. Linguistics,
pages 423–438.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. TACL, pages 64–77.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2020. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinform., pages 1234–
1240.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-jan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In ACL, pages 7871–
7880.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI,
page 2181–2187.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing.
CoRR.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
Understands, Too. CoRR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized B E RT Pretrain-
ing Approach. CoRR.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Alexa T. McCray. 2003. An upper-level ontology for
the biomedical domain. Comp. Funct. Genomics,
page 80–84.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NeurIPS, pages 3111–3119.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and
Manohar Kaul. 2019. Learning attention-based
embeddings for relation prediction in knowledge
graphs. In ACL, pages 4710–4723.

Benjamin Newman, Prafulla Kumar Choubey, and
Nazneen Rajani. 2022. P-adapters: Robustly extract-
ing factual information from language models with
diverse prompts. In ICLR.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2018. A novel embed-
ding model for knowledge base completion based on
convolutional neural network. NAACL: HLT, page
327–333.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML, page
809–816.

Janna Omeliyanenko, Albin Zehe, Lena Hettinger, and
Andreas Hotho. 2020. LM4KG: improving common
sense knowledge graphs with language models. In
ISWC, pages 456–473.

Thomas Pellissier Tanon, Denny Vrandecic, Sebas-
tian Schaffert, Thomas Steiner, and Lydia Pintscher.
2016. From freebase to wikidata: The great migra-
tion. In WWW, page 1419–1428.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean
Maillard, Vassilis Plachouras, Tim Rocktäschel, and
Sebastian Riedel. 2021. K I LT : a benchmark for
knowledge intensive language tasks. In NAACL:
HLT, pages 2523–2544.

3871

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models
as knowledge bases? In EMNLP-IJCNLP, pages
2463–2473.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the
Lim-its of Transfer Learning with a Unified Text-to-
Text Transformer. JMLR, pages 1–67.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In ESWC, pages 593–607.

Jianhao Shen, Chenguang Wang, Linyuan Gong, and
Dawn Song. 2022. Joint language semantic and
structure embedding for knowledge graph comple-
tion. In COLING, pages 1965–1978.

Taylor Shin, Yasaman Razeghi, Robert L . Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In EMNLP,
pages 4222–4235.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
NeurIPS, page 926–934.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In ACL, pages 3645–3650.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In ICLR.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In CVSC, page 57–66.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In EMNLP, page 1499–1509.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML,
pages 2071–2080.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In ACL, page 37–42.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In NeurIPS, pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In
EMNLP, pages 353–355.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, and
Yi Chang. 2021a. Structure-Augmented Text Rep-
resentation Learning for Efficient Knowledge Graph
Completion. WWW, pages 1737–1748.

Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong,
Jie Tang, and Dawn Song. 2021b. Zero-shot infor-
mation extraction as a unified text-to-triple transla-
tion. In EMNLP.

Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong,
Jie Tang, and Dawn Song. 2022. DeepStruct: Pre-
training of language models for structure prediction.
In ACL.

Chenguang Wang, Xiao Liu, and Dawn Song. 2020a.
Language models are open knowledge graphs.
arXiv preprint arXiv:2010.11967.

Haoyu Wang, Vivek Kulkarni, and William Yang Wang.
2020b. Dolores: Deep contextualized knowledge
graph embeddings. In AKBC.

Rui Wang, Bicheng Li, Shengwei Hu, Wenqian Du, and
Min Zhang. 2020c. Knowledge Graph Embedding
via Graph Attenuated Attention Networks. IEEE Ac-
cess, pages 5212–5224.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021c. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of ACL-IJCNLP, pages 1405–1418.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, page 1112–1119.

Zhigang Wang and Juanzi Li. 2016. Text-enhanced rep-
resentation learning for knowledge graph. In IJCAI,
page 1293–1299.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016.
Transg: A generative model for knowledge graph
embedding. In ACL, page 2316–2325.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In AAAI,
page 2659–2665.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and L i Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In ICLR.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. CoRR.

3872

Zhanqiu Zhang, Jianyu Cai, and Jie Wang. 2020a.
Duality-induced regularizer for tensor factorization
based knowledge graph completion. In NeurIPS,
pages 21604–21615.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020b. Learning hierarchy-aware knowledge
graph embeddings for link prediction. In AAAI,
pages 3065–3072.

Zhao Zhang, Fuzhen Zhuang, Meng Qu, Fen Lin, and
Qing He. 2018. Knowledge graph embedding with
hierarchical relation structure. In EMNLP, page
3198–3207. AC L .

A Experimental Setup Details

We describe additional details of our experimen-
tal setup including implementation, datasets and
comparison methods in this section.

A.1 Implementation Details

We implement our algorithm using the Hugging
Face Transformers package. We optimize PA LT
with AdamW (Loshchilov and Hutter, 2019). The
hyper-parameters are set as follows. We use 8
GPUs and set the batch size to 32 per GPU, and set
the learning rate to [1.5�10−4, 1.5�10−5, 1�10−4,
1 �10−5] for WN11, FB13, FB15k-237, WN18RR,
respectively. We set the warm-up ratio to 0.1 and
set weight decay as 0.01. The number of training
epochs is 10 for link prediction and 40 for triplet
classification. For link prediction, we sample 5
negative samples for the head entity, relation and
tail entity, resulting in 15 negative triplets in total
for each sample. And for triplet classification, we
only sample one negative sample for each entity.
Note that the negative samples here are used for
training (Eq. 4), which are different from the candi-
date sets for link prediction during evaluation. We
adopt grid search to tune the hyper-parameters on
the dev set. For learning rates, we search from 1e-5
to 5e-4 with an interval of 5e-6. For the number
of negative examples, we test values in {1, 5, 10}.
For the remaining hyper-parameters, we generally
follow BERT ’s setup.

For model inputs, we use synset definitions as
entity descriptions for WN18RR, and descriptions
produced by Xie et al. (2016) for FB15k-237. For
FB13, we use entity descriptions in Wikipedia. We
use entity names for WN11 and UMLS. For all
datasets, we use relation names as relation descrip-
tions.

For PA LT architecture, we insert two knowledge
calibration encoders to the middle layer and last

layer of BERT. This applies to both PA LT B A S E

and PA LT L A R G E . For knowledge prompt encoder,
we add it to the input layer. In particular, 10
prompt tokens are added at 3 different positions
for PA LT B A S E on all datasets except for WN11. 2
prompt tokens are added at the beginning of WN11.
This is because the entity description of WN11 is
short. For PA LT L A R G E , we add 2 prompt tokens
at the beginning.

A.2 Datasets

We introduce the link prediction and triplet classifi-
cation datasets below.

A.2.1 Link Prediction

• FB15k-237. Freebase is a large collaborative
KG consisting of data composed mainly by its
community members. It is an online collection
of structured data harvested from many sources,
including individual and user-submitted wiki con-
tributions (Pellissier Tanon et al., 2016). FB15k
is a selected subset of Freebase that consists
of 14,951 entities and 1,345 relationships (Bor-
des et al., 2013). FB15K-237 is a variant of
FB15K where inverse relations and redundant
relations are removed, resulting in 237 relations
(Toutanova et al., 2015).

• WN18RR. WordNet is a lexical database of
semantic relations between words in English.
WN18 (Bordes et al., 2013) is a subset of
Word-Net which consists of 18 relations and
40,943 entities. WN18RR is created to ensure
that the evaluation dataset does not have inverse
relations to prevent test leakage (Dettmers et al.,
2018).

• UMLS. UMLS semantic network (McCray,
2003) is an upper-level ontology of the Unified
Medical Language System. The semantic net-
work, through its 135 semantic types, provides
a consistent categorization of all concepts repre-
sented in the UMLS. The 46 links between the
semantic types provide the structure for the net-
work and represent important relationships in the
biomedical domain.

A.2.2 Triplet Classification

• WN11 and FB13 are subsets of WordNet and
Freebase respectively for triplet classification,
where the Socher et al. (2013) randomly switch
entities from correct testing triplets resulting in a
total of doubling the number of test triplets

3873

https://doi.org/10.18653/v1/D18-1358
https://doi.org/10.18653/v1/D18-1358

with an equal number of positive and negative
examples.

A.3 Comparison Methods

We compare PA LT to three types of KG comple-
tion methods: shallow structure embedding, deep
structure embedding, and language semantic em-
bedding.2

A.3.1 Shallow Structure Embedding

TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), TransR (Lin et al., 2015), TransD (Ji et al.,
2015), TransG (Xiao et al., 2016), TranSparse-S
(Ji et al., 2016), DistMult (Yang et al., 2015),
ConvKB (Nguyen et al., 2018), ComplEx (Trouil-
lon et al., 2016), ConvE (Dettmers et al., 2018),
RotatE (Sun et al., 2019), R E F E (Chami et al.,
2020), HAKE (Zhang et al., 2020b), and ComplEx-
DURA (Zhang et al., 2020a) are methods based
only on the structure of the KG. DistMult-
HRS (Zhang et al., 2018) is an extension of Dist-
Mult which is combined with a three-layer hierar-
chical relation structure (HRS) loss. Each of these
methods proposes a scoring function regarding a
knowledge fact, without using the natural language
descriptions or names of entities or relations. The
scoring functions are shown in Table 6.

A.3.3 Language Semantic Embedding
• T E K E (Wang and Li, 2016) takes advantage of

the context information in a text corpus. The
textual context information is incorporated to ex-
pand the semantic structure of the KG and each
relation is enabled to own different representa-
tions for different head and tail entities.

• A AT E (An et al., 2018) is a text-enhanced KG
representation learning method, which can rep-
resent a relation/entity with different representa-
tions in different facts by exploiting additional
textual information.

• K G - B E RT (Yao et al., 2019) considers facts in
KG as textual sequences, where each textual se-
quence is a concatenation of text descriptions of
the head entity, the relation, and the tail entity.
Then KG-BERT treats the KG completion task as
a text binary classification task, and then solves
it by fine-tuning a pre-trained BERT.

• S tAR (Wang et al., 2021a) partitions each fact
into two asymmetric parts as in translation-
based graph embedding approach, and encodes
both parts into contextualized representations
by a Siamese-style textual encoder (BERT or
RoBERTa) (Wang et al., 2021a).

A.3.2 Deep Structure Embedding B Number of Tunable Parameters

• NTN (Neural Tensor Network) (Socher et al.,
2013) models entities across multiple dimensions
by a bilinear tensor neural layer.

• DOLORES (Wang et al., 2020b) is based on
bi-directional LSTMs and learns deep represen-
tations of entities and relations from constructed
entity-relation chains.

• K B G AT proposes an attention-based feature em-
bedding that captures both entity and relation
features in any given entity’s neighborhood, and
additionally encapsulates relation clusters and
multi-hop relations (Nathani et al., 2019).

• G A AT s integrates an attenuated attention mecha-
nism in a graph neural network to assign different
weights in different relation paths and acquire the
information from the neighborhoods (Wang et al.,
2020c).

2We refer the readers to (Ji et al., 2022) for a more com-
prehensive review of the KG completion methods.

Here we give a detailed calculation of the number
of tunable parameters of PA LT . We denote de as
the dimension of token embeddings and dh as the
hidden size in the pretrained LM, and np as the
number of prompts added in PA LT. The number of
tunable parameters for the prompt embeddings and
linear mapping weights is np �de + de �dh, and that
of knowledge calibration encoder is 2 � dh � dh. In
total, there are np �de + de �dh + 2�dh �dh tunable
parameters in PA LT . For B E RT B A S E , de = dh =
768, and for B E RT L A R G E , de = dh = 1024, and
we use np = 2 on WN11. As a result, PA LT B A S E
has 1.77M tunable parameters, and PA LT L A R G E
has 3.15M.

C Case Study

To illustrate the difference between PA LT and KG-
BERT, we show the attention weights of [CLS] in
the last layer in Figure 6. We can see that for KG-
BERT, most attention heads attend to the whole
sequence, while for PA LT each head attends to a
specific part of the sequence. For example, the third

3874

> >

h t

i
h

2

i
r −

2
hσ + t

1 1 2 2
 2

r r r r

1

Method Score Function

TransE
TransH
TransR
TransD

TransG

TranSparse-S

DistMult
ConvKB
ComplEx
ConvE
RotatE
R E F E
H A K E
ComplEx-DURA

− kh + r − tk
− h − w r h w r + r − t − w r tw r −

k M r h + r − M r t k
− w r w > + I h + r − w r w > + I t

P
i πr exp − k μ h + μ

σ 2
μ t k

− k M r (θ r) h + r − M r (θr) tk1/2 − M r θr h + r − M r θr t1/2
hr, h, t i

concat(g([h, r , t] � ω))w
<(hr, h, ti)

hσ(vec(σ([r, h] � Ω)) W) , ti
− kh ◦ r − tk2

−arctanh(k−hh, Ref (r) i �c tk)
RotatE − ksin((h + r − t)/2)k

ComplEx − hh, r i 2 − ktk2

h, r, t � R k

h, t, r, w r � R k

h, t � R k , M r � R k × d

h, t, wh wt � R k , r, w r � R d

h � N μh , σ 2 I , t � N (μt , Σ t) , μh , μ t � R k

h, t � R k , r � R d , M r (θr) � R k × d , M 1 θ1
, M 2 θ2

� R k × d

h, r, t � R k

h, r, t � R k

h, r, t � C k

h, r, t � R k

h, r, t � C k , |ri| = 1
h, r, t � R k

h, r, t � R k

h, r, t � C k

Table 6: The score functions fr (h, t) of shallow structure embedding models for KG embedding, where hi denotes
the generalized dot product, ◦ denotes the Hadamard product, σ denotes activation function and � denotes 2D
convolution. denotes conjugate for complex vectors, and 2D reshaping for real vectors in the ConvE model.
Ref (θ) denotes the reflection matrix induced by rotation parameters θ. �c is Möbius addition that provides an
analogue to Euclidean addition for hyperbolic space.

(colored green) head has large weights on prompts
and the tail entity, and the fourth (colored red) head
pays attention to the head entity and relation. This
demonstrates that PA LT recalls and calibrates re-
lated knowledge in a more disentangled way than
KG-BERT, and as a result, it succeeds to predict
this triplet as negative.

In Table 7 we demonstrate some triplets of
WN11 that are correctly predicted by PA LT while
KG-BERT fails.

Head Relation Tail Label
center has instance olfactory brain 3

family graminaceae member meronym meadow grass 3
botany domain region style 3

end has instance complete 3
fictionalise type of convert 3
archaeology domain region unreactive 7

cognitive content has instance diacritic 7
anura member meronym kuru 7

atlantic has part tocantins 7
sorb part of electric resistance 7

Table 7: Triplets of WN11 that are correctly predicted
by PA LT while KG-BERT fails. Label 3means a posi-
tive triplet and 7means negative.

D Error Analysis

Here we give the error rate of PA LT B A S E on each
relation of WN11 in Table 8. “Domain topic" and
“domain region" are the two relations with the
high-est error rates, while “subordinate instance of"
has the lowest error rate.

E Prompt Analysis

We evaluate different numbers and positions of
prompt tokens on WN11. We use a sequence X 1 -
X 2 -X 3 to denote the numbers of tokens added in

Relation Error Rate(%)
domain topic 14.7

domain region 10.5
has instance 8.3

member meronym 8.1
synset domain topic 7.4

similar to 7.1
has part 7.0
part of 5.7
type of 5.3

member holonym 3.9
subordinate instance of 2.6

Table 8: The error rates of triplet classification on different
relations.

different positions in order. For example, “2-0-0”
means we add 2 prompt tokens before the head
entity and no prompt tokens after the relation and
after the tail entity. The results are shown in Figure
7. We observe that “2-0-0” performs better than
“0-0-0”, and the difference between token
numbers and positions is marginal, meaning that
what mat-ters is whether to add prompt tokens or
not, and numbers and positions are not very
important.

F Effectiveness of Calibration

In this section, we show the effectiveness of knowl-
edge calibration encoder. We show the two layers
of attention weights of the original B E RT and our
calibrated PA LT in Figure 5. The left two are at-
tention weights in the middle layer and the right
two are in the last layer. For the original BERT, the

3875

A
cc

u
ra

cy

(a) BERT-middle (b) PALT-middle (c) BERT-last (d) PALT-last

Figure 5: Attentions weights of the original B E RT and PA LT .

(a) KG-BERT (b) PA LT

Figure 6: Comparison between the attention weights of
PA LT and KG-BERT. In this example, PA LT correctly pre-
dicts it as negative and KG-BERT fails.

0.95

0.94

0.93

0.92

0.91

0.90
0-0-0 2-0-0 0-2-0 0-0-2 2-2-2 3-3-3 5-5-5 10-10-10

Model Config

Figure 7: Accuracy for different numbers and positions of
prompt tokens on WN11.

attention weight in the middle layer between “type”
and “clothes” is small, but it is larger for the PA LT .
And in the last layer, the attention weights of the
original BERT between “[CLS]” and “clothes” and
“type” are smaller than those of PA LT. These
indi-cate that our knowledge calibration encoder
helps to calibrate pretrained LMs for KG
completion.

3876

