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1. Introduction

This work belongs to the topic of first-order representation theory, i.e. representation
theory viewed through an elementary lens. Here the focus in on the category of explicitly
constructible objects, or what mathematical logic calls the definable category; a conse-
quence is that we avoid any reference to characters. This is not motivated by the mere
‘purity of methods’ but by questions in model theory. The topic is naturally emerging
out of several recent works, rooted in the 2008 article of Alexandre Borovik and Gre-
gory Cherlin [5] and pushed further by papers such as [9,6,3,7,4]. (Another road to the
effective understanding of geometric algebra is black boz algebra as in [8] and ongoing
work.) We stress that, though inspired by model theory, the present article is likely to
be of broad interest; no exposure to model theory is required to understand our work.

We give a significant expansion and clarification of a classical result by Leonard Dick-
son from 1908 on the minimal linear representations of symmetric groups. Our Theorem
identifies the minimal faithful representations of Sym(n) and Alt(n) on finite or infinite
abelian groups in the presence of a rudimentary notion of dimension but no a priori—and
often no a posteriori—vector space structure. This may be viewed as a natural evolu-
tion of linear representation theory, one which focuses more on ‘elementary’ properties
(e.g. generators and relations) and less on higher structure. In the case of algebraic
groups, which we keep in mind for the future, our point of view would be quite in the
spirit of the Chevalley-Steinberg approach. We stress that our context does not allow for
character theory nor even Maschke’s Theorem, making matters non-trivial though basic.

All that remains from the usual linear theory is a loose form of dimensionality. The
study of structures whose definable sets are equipped with one of various notions of
dimension is a central theme in model theory, and our work here treats numerous classes
at once—including groups of finite Morley rank and o-minimal groups, but also finite
groups—in a common, natural, and new setting.

Our original motivation was a set of concrete model-theoretic problems. One such is
an application to permutation groups possessing a high degree of generic transitivity.
A study of these was initiated in the setting of groups of finite Morley rank in work
by Borovik and Cherlin where they posed the problem of showing that generic (n + 2)-
transitivity on a set of Morley rank n implies that the group is PGL,, 1 (K) in its natural
action on P(K). More information and explicit connections to the present work can be
found in [5] as well as in the 2018 paper of Tuna Altinel and the third author [2], which
solves the n = 2 case. The present work grew out of the third author’s desire to generalise
the n = 2 approach to n > 3, but the topic turned out extremely interesting in its own
right.
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1.1. The result

Our main result generalizes a century-old theorem by Dickson [11] and its more recent
companions [14,15]; it also corrects and expands on [5, Lemma 4.6]. In doing so, our
treatment handles simultaneously the finite and the ‘tame infinite’, in a sense that model
theory seeks to carve out.

We study Sym(n) and Alt(n)-modules V' that carry a basic notion of dimension on
certain groups (and quotients) definable—in the logical sense—from V and the acting
group. To the logician we must stress that our dimension need not apply to all definable
sets; we only require it to be defined on the intersection of the ‘definable universe’ in
the sense of logic and the ‘variety generated by V'’ in the sense of universal algebra.
This intuition is axiomatised in Section 2 via the definitions of a modular universe and
an additive dimension; the relevant notions of connectedness (dim-connectedness) and
irreducibility (dc-irreducibility) are also key.

As one expects, the ‘characteristic’ of a module is an important parameter: V is said
to have prime characteristic p if it has exponent p and characteristic 0 if it is divisible.
This definition allows for modules without a well-defined characteristic such as Z/12Z; it
also allows for torsion modules of characteristic 0 such as the Priifer quasi-cyclic groups
Cpeo.

In the classical setting, the minimal faithful representations for Sym(n) and Alt(n)
are canonical and easy to construct, assuming n is large enough. Among other places,
they appear in [11], but we briefly describe them here. This also gives us the opportunity
to introduce notation.

Notation (standard module). Let S := Sym(n).

(1) Let perm(n,Z) = Zey & --- @ Zey,, be the Z[S]-module with S permuting the e;
naturally. There are two obvious submodules:
o std(n,Z) :=[S,perm(n,Z)] = {> ", cie; : ¢; € Z and Y ¢; = 0};
o Z(perm(n,Z)) := Cpermn,z)(S) = {>_,; cei : c € L},
using usual notation for commutators and centralisers. Over Z these are disjoint but
not so in general.
(2) For any abelian group L (considered as a trivial S-module), define:
e perm(n, L) := perm(n,Z) ®z L;
o std(n, L) := [S,perm(n, L)] = std(n,Z) ®z L;
o Z(std(n, L)) = Cstd(n,L)(S)~
We arrive at the canonical subquotient:
e std(n, L) = std(n, L)/Z(std(n, L)),
which we refer to as the (reduced) standard module over L.
(3) When L = C}, is cyclic of order k, we simply write perm(n, k), std(n, k), and std(n, k).

Remarks.
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o Notice how Z(std(n, L)) = {d e;®a: a € Q,(L)}, so std(n, L) differs from std(n, L)

only when ,,(L) # 0. (Here §,,(L) denotes the set of elements of order dividing n.)
» The module perm(n, L) may be realised as L™ under o(a1,...,a,) = (ag-101);-- -,
Ag-1(n)); it is easily constructed from L together with the action of each element of
S. Model theorists will recognize this as an interpretable object, which we simply call

definable.

The classical setting is std(n,p) for p a prime. Here, std(n, p) is irreducible of dimen-
sion n — 1 whenever p { n (with the same true for std(n,Q)). However, when p | n and
n > 5, the module std(n, p) is faithful and irreducible of dimension n — 2, a point which
fails for std(4, 2). Less classical is the following example regarding actions on tori.

Example. Notice how a maximal torus of GL,(C) is a Sym(n)-module via the action of
the Weyl group. As Sym(n)-modules, one finds that

e perm(n,C*) is isomorphic to a maximal torus of GL,(C);
);

e std(n,C*) is isomorphic to a maximal torus of SL,,(C
e std(n,C*) is isomorphic to a maximal torus of PSL,(C).

The various finite subgroups of nfP-roots of unity yield finite submodules C <
Z(std(n,C*)), each naturally isomorphic to some Z < Z(SL,(C*)). In each case,
std(n, C*)/C is isomorphic to the maximal torus of SL,,(C)/Z. The modules std(n,C*)/
C all satisfy the relevant notion of irreducibility here (dc-irreducibility) and must be
accounted for in our classification.

We now state our main result. In what follows, Mod(G, d, ¢) denotes the class of all G-
modules (§ 2.1) that carry an additive dimension (§ 2.2) and are dim-connected (§ 2.3) of
dimension d and characteristic ¢ (§ 2.4). Also, V € Mod(G, d, q) is dc-irreducible (§ 2.5)
if V' contains no non-trivial, proper, dim-connected G-submodule. Details are in § 2; the
proof is in § 3.

Theorem. Let G = Alt(n) or Sym(n). Suppose V. € Mod(G,d,q) is faithful and dc-
irreducible with d < n. Assume n > 7; if G = Alt(n) and q = 2, further assume n > 10.

Then there is a dim-connected submodule L <V such that the structure of V' falls
into one of the following cases:

q d Structure of V
g>0andq|n | n—2 | isomorphic to std(n,L) or sgn ® std(n, L)
g>0andqfn | n—1 | isomorphic to std(n, L) or sgn ®std(n, L)

qg=0 n—1 covered by std(n, L) or sgn ® std(n, L)

Moreover, when q = 0, the kernel of the covering map is (Z?:_ll (e; —en)) ® K, in usual
notation, for some K < Q,(L).



L.J. Corredor et al. / Journal of Algebra 623 (2023) 1-33 5

Remarks.

o Note that ¢ = char L, and if ¢ > 0, std(n, L) is completely reducible as € y std(n, q)
for X an IFg-basis of L. The situation when ¢ = 0 is complicated by tori like those
given in the example above.

o The restrictions on n are optimal. For example, in characteristic 3, one has Alt(6) ~

PSL2(Fg) with the adjoint representation in dimension 3. In characteristic 2, Alt(9)
has three faithful representation over Fy of (least) degree 8 [1]. The two exceptional
representations were missed in [14, (4.5) Lemmal; this was corrected by G.D. James
in [13, Theorem 6].
In our more general setting, one can still establish the lower bound of 8 on the
dimension of a faithful Alt(9)-module in characteristic 2, but we do not achieve (nor
even try for) identification. (See the remark following the proof of the Geometrisation
Lemma.)

1.2. Lingering questions

The Theorem places natural restrictions on n, but in fact, the minimal dimension of
a faithful Sym(n)-module is indeed as expected for all n as a consequence of our First
Geometrisation Lemma, where we also identify those of dimension (n — 2). However,
identification of the dc-irreducible modules in Mod(Sym(5), 4) and Mod(Sym(6),4) re-
mains open. (Do note that Mod(Sym(5), 4, 2) contains irreducible modules coming from
the so-called Specht module for the partition (3,2). See for example [12, 5.2 Example].)

Identification of the minimal faithful Alt(n)-modules for small n is also open. Recon-
structing the adjoint action of Alt(6) ~ PSLy(Fg) is a problem of particular interest. One
also has Alt(8) ~ SL4(FF2) with the natural action as well as the particularly exceptional
Alt(5): it appears as SLa(IF4) in characteristic 2, as PSLy(5) in characteristic 5, and as
the symmetries of a regular icosahedron in all other characteristics (over a field where 5
is a square). Table 1 summarizes the conjectural lower bounds.

Table 1

Conjectural minimal dimension for
faithful Alt(n)-modules in characteris-
tic p with small n.

p 2 3 5 7 >7or O
Alt(5) 2 3 3 3 3
Alt(6) 4 3 5 5 5
Alt(7) 4 6 6 5 6
Alt(8 4 7 7 7 7

Problem. Identify the minimal faithful Sym(n)- or Alt(n)-modules for all n.

Of course, one could target higher-dimensional dc-irreducible Sym(n)- Alt(n)-
modules, but this appears to be out of reach at present. However, simply identifying
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a reasonable lower bound for the dimension of the ‘second smallest’ dc-irreducible mod-
ule would be welcome. Following the classical case, we expect something along the lines
of n(n —5)/2 (see [13]).

Problem. Let G = Alt(n) or Sym(n) with n sufficiently large. Prove that if V €
Mod(G,d, q) is faithful and de-irreducible with d < n(n — 5)/2, then up to tensor-
ing with the signature, V' is standard (i.e. the structure of V is as in the Theorem) with
(n—2)dim L <d < (n—1)dim L and intermediate values are possible only when ¢ = 0.

As should be clear, we are operating under the conjectural principle that although our
context is quite general, the minimal objects still fall into the familiar linear-algebraic
setting, a principle well-aligned with the recent work of Borovik [7]. We quite believe in
this and would thus love to see a counter-example to shatter our illusion.

The problem of determining the minimal dimension of a group carrying a faithful
action of Sym(n) or Alt(n) seems both interesting and relevant in the nonabelian case as
well. With additional definability /compatibility hypotheses, the soluble case can easily
be controlled. For nonsoluble groups, we propose the following crude bound, which is
likely far from optimal.

Problem. Let H be a nonsoluble group on which Alt(n) acts faithfully and definably by
automorphisms. Suppose there is a nonabelian notion of dimension, say Morley rank,
making H dim-connected. Show dim H > n for sufficiently large n.

Notice that low values of n will complicate the picture even for Sym(n): for example,
Sym(5) ~ PGLy(5), which can be construed as 3-dimensional.

For the present article we however stick to the abelian case. The proof of the Theorem
will be in § 3; we first turn to the general setting.

2. The context

We now give the setting for our study of Sym(n)- and Alt(n)-modules. In addition
to defining modules equipped with an additive dimension, we also present notions of
connectedness, irreducibility, and the characteristic. In short, the goal of this section is
to fully explain the phrase ‘let V € Mod(G, d, q) be dec-irreducible’

The landscape will likely be both familiar and surprising to the reader versed in model
theory. We seek a notion of dimension that encompasses simultaneously the linear dimen-
sion over F), for finite representations as well as model-theoretic dimensions (e.g. Morley
rank) for infinite representations. The context we present is extremely natural, yet looks
new to us. (Unfortunately, somewhat conflicting terminology with Frank Wagner’s recent
‘dimensional groups’ was unavoidable [16].)

We first define modules (§ 2.1) with an additive dimension (§ 2.2), and the notion of
dim-connectedness (§ 2.3). We discuss the characteristic of a module (§ 2.4) and then
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introduce classes Mod(G, d, q) as well as the relevant notion of irreducibility (§ 2.5).
The overview concludes with our key tool: an expected Coprimality Lemma (§ 2.6).

2.1. Modular universes and modules

A balance is difficult to strike between categorical generality and model-theoretic
care for elementary constructions. We opted for a categorical vision but avoided any
specialised language. We believe the categorist will instantly grasp the context, and the
logician will readily check that it generalises definable universes. Do note that we use
ker f and im f to refer to the kernel and image of f in the algebraic sense.

Definition. A modular universe is a subcategory U of the category Ab of abelian groups
satisfying the following closure properties.

o [INVERSES] If f € Ar(U) is an isomorphism, then f=* € Ar(U).

o [PrRODUCTS] If V4, V5 € Ob(U) and f1, fo € Ar(U), then Vi x V2 € Ob(U), and Ar(U)
contains f; X fo, the projections m; : V7 x Vo — V;, and the diagonal embeddings
Ak V= ‘/lk.

o [sEcTIONS] If W < V are in Ob(i), then V/W € Ob(U) and Ar(U) contains the
inclusion ¢ : W — V and quotient p : V. — V/W maps.

o [KERNELS/IMAGES] If f : V4 — V5 is in Ar(U), then ker f,im f € Ob(U), and for all
W1, Ws € Ob(U),

— if Wy < ker f, the induced map f: Vi /Wy — Vs is in Ar(U);
— if im f < Wy < V4, the induced map f: Vi — Wa is in Ar(U).

o [Z-MODULE STRUCTURE] If V € Ob(lf), then Ar(U) contains the sum map o: V x

V — V and the multiplication-by-n maps p,: V — V.

The objects of a modular universe U are called its modules and the arrows its compatible
morphisms.

Remarks.

o We could not find an official categorical name for our setting. ‘Topologising, abelian
subcategory’ does not suffice; the axiom of inverses is of importance to us, but we
won’t go as far as assuming that the subcategory is replete.

e The axioms immediately allow for restrictions of compatible maps and the computing
of inverse images. Indeed, if f : Vi — V4 is in Ar(Y) with W7 < V4 in Ob(Y), then
the restriction of f to Wy is f o for ¢ : W; — V; the inclusion. And for Wy < V5 in
Ob(U), f~*(Ws) is the kernel of po f for p: Vo — Vo /Ws the quotient map.

e Model theorists might expect a ‘characterisation of arrows’ which we do not require:
f € Ar(U) if and only if its domain, image and graph are in Ob(lf).
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Examples.

o From algebra: the category of all abelian groups or of all abelian p-groups (equipped
with all group morphisms) forms a modular universe; both are full subcategories of
Ab. An important variation is the category of all abelian p-groups of finite Priifer
p-rank. (Such groups can contain only finite powers of the quasi-cyclic group Cpeo;
the maximal such power is called the p-rank.)

For a given ring R, the category of R-modules (equipped with all R-morphisms) is
a modular universe.

e From Lie theory: the collection of all abelian Lie groups (with Lie morphisms) forms
a modular universe after adjusting the notion of < (which has to be closed).

¢ From universal algebra: the variety generated by a given abelian group V (with group
morphisms) forms a modular universe; this can be computed as HSP(V'), which is
the collection of all Homomorphic images of Subgroups of Products of V.

o From model theory: the abelian part of the ‘interpretable universe’ (which we call
definable) forms a modular universe; specifically, this is looking at the category of
all abelian groups definable in some first-order theory equipped with the definable
group morphisms.

o If V is a module of a universe U, then there is a smallest subuniverse containing
V. This is contained in both HSP(V) and the abelian-definable universe Uger from
model theory. Notice that the intersection HSP et (V) = HSP(V) NUger (V') might be
substantially smaller than Uger if we add a highly extrinsic, secondary abelian struc-
ture on some non-definable subsets of V. (Typically, if K is one of the pathological
fields with non-minimal K* constructed by model theorists, then HSP4e¢(K ) will
miss the exotic multiplicative subgroup.)

Modular universes allow for a variety of additional constructions. We highlight several
important ones after giving the relevant notion of a G-module for our setting.

Definition. Suppose V' is a module in the universe U. If a group G acts on V' by compatible
morphisms of U, we say that V is a G-module in U.

In model-theoretic terms, we are assuming that G acts by definable automorphisms,
but we are not assuming definability of the action, viz. definability of the triple (G, V).
For instance, G itself need not be definable.

Universe Properties. Let U be a modular universe.

(i) [MEET/JOIN] If V1, V5 <V are modules in U, then so are Vi N Va and Vi + V.
(i) [EXTENSIONS] Suppose Vi,Va <V are modules in U with Vi + Vo =V. If f;: V; —
W are compatible morphisms that agree on Vi N V,, then there is a compatible

f:V = W extending both.
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(iii) [PERMUTATION MODULES] If V' is a module in U, then perm(n,V) is a Sym(n)-
module in U.

(iv) [ENVELOPING ALGEBRAS| If V is a G-module in U for some group G, then each
map in the subring of End(V) generated by G is compatible.

Proof. Assume Vi, V5 <V are modules in Y. Let 0 : V x V — V be the addition map
and Ay, : V — V¥ the diagonal embedding.

(i) Note that V; NVo = Ay (Vi x V) and Vi + Vo = o (V) x V3).

(ii) Let g be the restriction of o to V4 x Vo, and set I := {(a, —a) : a € V1 NVa} = kerg.
Then the induced isomorphism g: Vi x Vo /I — V is in Ar(U), so g *
Define h : V4 x Vo — V via restriction of o o (f1 X (f2 0 p—1)) to Vi x Vi, where
p—1:V — V is inversion; then h computes f; — fo. Since I < ker h, the induced
map h: Vi x Vo /I — V is in Ar(U), and f := hog ' € Ar(U) extends both f; and
f2.

(iii) As a set, we may identify perm(n,V) with V" € Ob(l/) and the canonical sum-
mands Ve; with (0, kermy (for mp : V" — V the k*B-projection). Now, for
a € Sym(n), viewed as the automorphism of V™ permuting the coordinates nat-
urally, we must show o € Ar(Y). Let A be the diagonal embedding of V"™ into
(V™)™ Then a = (mq-1(1) X == X Ta-1(n)) © A,

(iv) The (extended) sum map oy : V¥ — V may be inductively defined as o o (op_1 x
Idy ) so is in Ar(U). Further, Ar(U) contains the multiplication-by-n maps fi,: V —

is as well.

V for each n € Z. Thus, for ¢1,...g9x € G and ny,...,n; € Z, the image of > n;g;
in End(V') is o o [(ftn, ©91) X -+ X (fin,, © gr)] © Ag € Ar(U). O

2.2. Additive dimensions

Definition. Let &/ be a modular universe. An additive dimension on U is a function
dim: Ob(U) — N such that for all f: V — W in Ar(i4),

dimV = dimker f + dimim f.
This property will be called additivity.

Examples. Each of the following has an additive dimension:

e the universe of finite-dimensional vector spaces over a fixed field, equipped with the
linear dimension;

o the universe of abelian p-groups of finite Priifer p-rank, with dimension the p-rank;

o the universe of all abelian groups definable in a theory of finite Morley rank, with
dimension the Morley rank;

¢ the universe of all abelian groups definable in an o-minimal structure, equipped with
o-minimal dimension;
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o the universe of abelian Lie groups, equipped with Lie (manifold) dimension.

Remarks. The following remarks are better understood in relation to say, behaviour of

Morley rank, but can be read independently.

No assumption is made on when the dimension increases nor how; as a matter of
fact, any multiple of a dimension function is again one.

There need not be a descending chain condition (‘DCC’) on objects. This calls for a
modified notion of connectedness in § 2.3.

No relationship between finiteness and 0-dimensionality is implied. Thus, we handle
in the same operational setting I} (n-dimensional, in finite group theory) and Z
(0-dimensional, in Lie theory).

It is unclear whether the non-abelian case is restrictive enough for a general theory
to emerge. Typically, handling commutators requires the dimension to be defined on
subsets, not only subgroups.

For example, we do not know about free groups or Tarski monsters; the question
seems to be of interest but beyond our expertise.

We briefly mused on the possibility of determining natural criteria for a pre-
dimension—defined only on submodules of some V—to extend to a genuine dimen-
sion on subquotients as well, but this remains mostly unexplored. Such topics are
nontrivial in model theory.

Remarks (for model theorists). Our work stems from model theory but we wish to stress

a couple of differences.

o The focus is on group subquotients instead of general definable sets. (One could

define dim on cosets but we will not need that.)

e« We work with a dimension on a universe containing a fized group structure and

make no demands on its behaviour in elementary extensions. Thus dimension is not
required to be a ‘strong’ invariant (viz. a property of the theory); as a matter of fact,
an elementary extension need not bear a dimension function.

Morley rank and o-minimal dimension are strong invariants. We do not have an exam-
ple of (the definable universe of) an abelian group V' carrying an additive dimension
and an elementary extension V* not admitting one.

Arguably we touch here the difference between first-order (definability in one struc-
ture) and model-theoretic (definability in family, viz. in elementary extensions)
properties; or between model-theoretic algebra and model-theory properly speaking.

Dimension Properties. Let (U, dim) be a modular universe with an additive dimension,

from which we take modules.

(i) dim{0y} = 0.
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(i) If W <V, then dimW < dim V.
(iii) dim(Vy x Vo) = dim V; + dim Va.
(iv) If V1,Vo <V, then dim(V; + V) = dim V; + dim V, — dim(V; N Va).

Proof. For the first, apply additivity to the identity map ¢ : V' — V. The second follows
from additivity of the quotient map p : V. — V/W (and that dim is non-negative).
For the third, additivity of the projection 71 : Vi x Vo — Vj shows dim(V; x V3) =
dim V; + dim(ker ), so the result then follows from the fact that {0y, } x V2 and V4
are compatibly isomorphic. For the final point, apply additivity to the restriction of o
to Vi x Va (using that the kernel is compatibly isomorphic to V1 N V3). O

Definition. If (U, dim) is a modular universe with an additive dimension and V' € Ob(lf),
we call V' a module with an additive dimension, leaving U implicit from context.

In practice, we often have in mind HSP4es(V) (viz. those homomorphic images of
submodules of powers of V' which are model-theoretically definable) when we say V is a
module with an additive dimension.

2.8. dim-connectedness

We now present a weak form of connectedness, which is not the classical one in
mathematical logic.

Definition. A module V with an additive dimension is called dim-connected (for
dimension-connected), or simply a dc-module, if every proper submodule W < V in
U satisfies dim W < dim V.

Examples.

e The only de-module of dimension 0 is {0}.

o Every finite-dimensional vector space over F, is dim-connected with respect to the
linear dimension.

o If the dimension function satisfies ‘dimA = 0 <= A is finite’, then V is dim-
connected if and only if V' is connected in the usual model-theoretic sense of having
no proper subobjects of finite index. But this is not so in general as we assume neither
implication.

Remarks.

« If V contains a dc-submodule V4¢ < V with dim V¢ = dim V, then V9 is unique
(hence invariant under U-automorphisms of V') and called the dc-component of V.
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« If W < V and both have dc-components, then W9 < V9 Indeed, additivity
implies dim((W9° + Vd¢)/Vde) = 0, so dim(W¢/Wd° N Vde) = 0 also. Then dim-
connectedness of W9 forces Wde = Jyde n yde,

o If U satisfies the descending chain condition on objects, then dc-components exist.
The converse is false (0-dimensional Z).

e In the universe of divisible abelian p-groups of finite Priifer rank, the dc-component
of V is the largest subtorus entirely contained in V.

e The dc-component of a group of finite Morley rank or an o-minimal group is its
connected component.

o In general, even if dc-components exist, the index [V : V9] need not be finite (0-
dimensional V).

We now highlight various operations preserving dim-connectedness.

Connectedness Properties. Let (U, dim) be a modular universe with an additive dimen-
sion, from which we take modules.

(i) If V1 is dim-connected and f: Vi — Va is compatible, then im f is dim-connected.
(i) If Vi and Va are dim-connected, then so is Vi x Vs.
(iti) If V1,Vo <V and Vi and Vy are dim-connected, then so is Vi + V.

Proof.

(i) Let Wy < im f be a submodule of maximal dimension. Set Wy = f~1(W3) > ker f,
and let g: W7 — Ws be the restriction of f. Then dim W7 = dimker g+dimim g =
dimker f + dimim f = dim V;. By dim-connectedness, W1 = Vi, so Wy = im f.

(ii) Suppose Z < Vj x V4 is a submodule of maximal dimension. Let 7; : V' — V; be the
projections and 77 the restrictions to Z. Notice that ker 7; is compatibly isomorphic
with V;, hence dim-connected of the same dimension; of course ker 77 < ker ;.
Then dimV; + dim Vs = dim(V; x V2) = dimZ = dimim7? + dimker7? <
dim im 7; +dim ker 7m; = dim V; +dim V5. By dim-connectedness, one finds ker 7rlz =
{0} x Vo< Zand Vi x {0} < Z,s0 Z > (V1 x {0}) + ({0} x Vo) =V} x Va.

(iii) Apply the first two points to the sum map V3 x Vo — Vi + V5. O

2.4. The characteristic of a module
Definition. Let V' be a module with an additive dimension. We say that:

o V has characteristic p, for p a prime, if it is of exponent p;
o V has characteristic 0 if it is divisible.

Remarks.
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o A module need not have a well-defined characteristic: consider Z/6Z.
o Modules of characteristic 0 may well contain torsion: consider Cpe.

Characteristic Lemma. Let V' be a module with an additive dimension. If V is dim-
connected, then V has a finite-length, Auty (V)-invariant, dim-connected composition
series 0 = Vg < -+ <V, =V inU withn < dimV and each factor either of prime
exponent or divisible.

Proof. We proceed by induction on dim V; the only de-module of dimension 0 is {0}.
Let p be a prime; consider the multiplication by p morphism. The image pV < V is
dim-connected, so either pV < V and we apply induction, or pV = V. In the latter case,
V' is p-divisible, and we resume with another prime. 0O

Examples.

o Not all interesting modules have a characteristic. Any embedding Alt(4) —
GL2(Z/4AZ) makes V = (Z/4AZ)? a faithful, 2-dimensional Alt(4)-module of exponent
4. It is not minimal, but Alt(4) is faithful on neither 2V nor V/2V. (This of course
relates to solubility; one should always be careful with std(4,4).)

o Let I be infinite and T' = @, Cp~ as a pure group. We suspect there is a non-trivial
additive dimension on HSPg.¢(T"); however Morley rank is infinite. Hence our setting
seems to allow for tori of infinite Priifer rank.

Divisibility Properties. If V' is a dc-module with an additive dimension and p is a prime,
then V' is p-divisible iff Q,(V) := {v € V : pv = 0} has dimension 0. In particular, if
W <V is a dc-submodule and V has a characteristic, then V and W have the same
characteristic.

Proof. The multiplication by p morphism has kernel Q,(V); since V is dim-connected,
the map is onto if and only if the kernel has dimension 0. When restricted to W, the
kernel is Q,(W) =W nQ,(V). O

Remark. In the case where V' = (Cpeo )™ (which has characteristic 0) with p > 2 a prime,
it is well-known (for instance [10]) that the restriction morphism:

p: Aut(V) — Aut(Q,(V))

kills no element of finite order. (There is a kernel {£1}" if p = 2.) We could however
not make profit of this remark in our present work.
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2.5. De-irreducibility and classes Mod(G, d, q)

Definition. A dim-connected G-module V is de-irreducible (as a G-module), if it has no
non-trivial, proper, dim-connected G-submodule.

Notation. Mod(G, d) is the class of all dim-connected G-modules of dimension exactly
d. (They are not required to all live in a common universe; here one browses through
universes and dimension functions.) Subclasses Mod(G, d, q) specify the characteristic.

By the Characteristic Lemma (§ 2.4), dc-irreducible modules always have a charac-
teristic.

2.6. Coprimality results

We now let finite cyclic groups act on our modules; as one imagines, the characteristic
plays a crucial role. Bear in mind that we do not assume the existence of dc-components
for submodules (see remarks in § 2.3); this explains why we avoid centralisers and prefer
to work in terms of ad and tr.

Notation. Let V be a (g)-module, where g has order p.

e Let adgzl—gandtrg:1+g+..._|_gp—1.
o Let By =imad, and Cy = im try.

When g acts compatibly on V' (in some universe), the Universe Properties ensure that
ady and tr, are compatible endomorphisms, so B, and C; are submodules. Be careful
that Cy does not stand for the centraliser (though always Cy < Cy(g)); for instance, if
g is an involution acting in characteristic 2, then tr, = ady and Cy = B,. However, in
characteristic not p, pathologies are confined as shown below.

Coprimality Lemma. Let p be a prime and V be a p-divisible, dim-connected {(g)-module
with an additive dimension, where g has order p. Then V = By+Cy and dim(B,NCy) =
0.

Proof. As B, and C, are images under compatible endomorphisms of V', they are dc-
submodules. Notice how adgotry = trgoady =1 —¢? = 0 in End(V), so B, < kertr,
and C; < kerad,. However one sees kerad, Nkertry, < QP(V), which is 0-dimensional
by the Divisibility Properties. Thus,

dim Cy = dimimtrg = dim V' — dimker try > dimkerad, > dim Cy,

so equality holds. Then:
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dim(By 4+ Cy) = dim By + dim C; = dimimad, + dimkerad, = dimV,
and V = B, + C, by dim-connectedness. O
Remarks.

o The lemma proves that B,NCy < Q,(V), so if V has characteristic a prime different

from p, then B, N Cy = 0. But in characteristic 0, B, N Cy need not be trivial, nor
even finite.
For instance let T, Ty ~ Cy with central involutions i1, 45, and « an involution
inverting 77 while centralising T5. Let S = (11 & T»)/ (i1i2). Notice how B, =
(1—a)S =T and C, = (1 +«)S = T; intersect. Finally take an infinite direct sum
of copies of S and say it has dimension 1.

 The proof also shows Cy < kerad, = Cy(g) has the same dimension: hence Cy (g)
has a dc-component, which equals Cy. (Acting on a p-torus of infinite Priifer rank,
one can produce examples with [Cy(g) : Cy] = o0.) However, without assuming
p-divisibility, Cy (g) need no longer have a de-component.

The conclusion of the Coprimality Lemma is a ‘quasi-direct’ decomposition for V.
(This terminology has other meanings in the literature.)

Definition. If A,,..., A, are submodules of a module V, the sum Y A; is said to be
quasi-direct if dim " A; = >~ dim A;, in which case we write > A; = A1 (H) -~ () A,.

Remark. Note that S 7 A; is quasi-direct if and only if both: .77 A; is quasi-direct,
and dim (An N ZT_l Ai) =0.

The following lemma highlights an important application of the Coprimality Lemma—
it will be used often in the sequel.

Weight Lemma. Let E be a finite elementary abelian 2-group and V a 2-divisible, dim-
connected E-module with an additive dimension. Then V decomposes into a quasi-direct
sum of dim-connected weight submodules Vy where X\ : V. — {£1} is a group morphism
and each e € E acts on Vy as A(e). Each X\ is called a weight of E and V) the corre-
sponding (dim-connected) weight space.

Proof. Write E = Ey @ (e). By the Coprimality Lemma, V = B, (+) C. with e inverting
the first factor and centralizing the latter. Applying induction to the action of Ey on
each of B, and C, then yields the desired result. O

Remark. If V' is a 2-divisible, dim-connected G-module and K < G is a Klein four-
subgroup whose nontrivial elements are conjugate in G, then the spaces attached to



16 L.J. Corredor et al. / Journal of Algebra 623 (2023) 1-33

non-trivial weights have constant dimension ¢, and dim V' = dim Cy (K) + 3¢. This will
be used repeatedly.

3. The proof

The proof of the Theorem will be assembled from three components: the Recognition
Lemma (§ 3.1) provides an elementary geometric condition sufficient to identify the stan-
dard Sym(n)-module (and its quotients in relevant characteristics); the Extension Lemma
(§ 3.2) uses an analogous geometric condition to identify when an Alt(n)-module extends
to Sym(n) in such a way that Recognition applies; and the Geometrisation Lemma (§ 3.3)
details how Alt(n)-modules of low dimension naturally possess the geometric condition
needed to invoke Extension (and thus Recognition). Notably, the first two of these results
are quite general with hypotheses only on the existence of a dimension function, and no
restriction on its values.

Notation.

1. Elements. We reserve i, j, k, ... for elements of {1,...,n}. Permutations are typically
denoted by lower-case Greek letters, reserving:

o 7,7’ for transpositions;

e «, f3 for bi-transpositions;

e 7,0 for 3-cycles.

We indicate that permutations o1 and o2 have disjoint supports |o1| and |o2| by

writing o1 L os.

2. Subgroups.

« We avoid stabiliser notation G;; and Gy; jy. Instead, if S = Sym(n) and I C
{1,...,n}, we let S; < S be the subgroup of permutations with support contained
in I. For 0 € S, we let S, = S|, and S,1 = S|,c. Likewise in Alt(n).

For instance, whenever V is an S-module, the subgroup S,1. < Cg(o) acts on
B, =imad, <V, as defined in § 2.6. However S, need not act on B,.

o We often consider subgroups of A = Alt(n) isomorphic to Sym(k). Typically, for

|[I| <n —2 and symbols k, ¢ ¢ I, we let:

SR = AU ((Sr\ Ap) - (k0))

_ o if  e(o)=1
- {o(k;é) it eo)=-1"7F Symm} ’

a subgroup of Alt(n) isomorphic to Sym(I). When there is no ambiguity we simply
write Xj.

o We use K for Klein four-groups of bitranspositions, with K;;x, the Klein four-group
having support {4, j, k, £}.
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Also, recall:

o from § 2.5, that Mod(G, d, q) stands for the class of dim-connected G-modules of
dimension d and characteristic ¢;

e from § 2.5 as well, the notion of dc-irreducibility meaning irreducibility in the class
of dim-connected G-modules;

« from § 2.6, that for V' a G-module and g € G, we define By := [g, V] = im ad, where
ady, =1 — g € End(V).

3.1. Recognising the standard module

The Recognition Lemma constructs a natural covering module under assumptions of
an elementary geometric nature. In prime characteristic (or in the torsion-free case), the
kernel is known, and the isomorphism type fully determined.

Recall from § 1.1 that std(n,Z) = (fi,..., fan—1) is the Sym(n)-submodule of the
permutation module perm(n,Z) = (e, ..., e,) generated by f; = e; —e,. For any abelian
group L, std(n, L) :=std(n, Z) ®z L, and std(n, L) = std(n, L) /Csd(n,1)(Sym(n)).

Recognition Lemma. Let n > 1, S := Sym(n), and V € Mod(S,d,q) be faithful and
dc-irreducible. Suppose that for any transposition T, one has [S” ., B;] = 0.

Then for some abelian group L and arrow ¢ in U, there is a surjective morphism
p: std(n, L) > V of S-modules. Moreover:

e if0#q|n, then ker p = Cyiq(n,)(S) and V ~ std(n, L);
e if0#qtn, thenkerp =0 and V ~ std(n, L) ~ std(n, L);
o ifq=0, then ker p = (c) ® K where ¢ = Z?;ll fi and K < Q. (L) is 0-dimensional.

Remark. In the first two cases, V' is completely reducible into a direct sum of isotyp-
ical summands std(n,F,); when V is torsion-free, the same is true with summands of
the form std(n, Q). However, actions on tori could give rise to non-trivial quotients (in
characteristic 0).

Proof. The case of n < 2 is clear, so we suppose n > 3. By dc-irreducibility, V' = [S, V].
Now transpositions (in) generate S,so V =[S, V] = Z?;ll Bi(in); this will be used several
times below.

Claim 1 (local equations). Let i # j. Then ad(;;) =1 — (ij) acts as:
2 on B(U)

(jk) on By for k ¢ {i,j}
0 on Bk for {k, ¢} L {i,5}.

Proof of Claim. This is obvious on B;;); of course 2 = 0 is a possibility.
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We turn to the middle case. Let A := S’. First, note that B;;) N By is S-invariant.
Indeed, it is S(;jx)-invariant as it is inverted by both (ij) and (jk); by our main as-
sumption, it is also centralised by (A(;j)1, Agryr) = A;1, implying S-invariance. Now
let a € Br), and write:

[1 = (ij)]a— (jk)a = [1 = (i) — (jk)]a = —[1 — (ij) — (jk)](ik)a
B 5:

= — [(ik) — (jK)(ik)]a+ (ikj)a.
~——

€Bjk) €Bjk)

Thus, X := [1 - (ij) — (jk)] Bix) is a dim-connected subgroup of B(;; N B(jx). As noted
above, B(;;y N By is S-invariant, so ) .g0oX is a dim-connected and S-invariant
subgroup of B;;) N By < V, hence trivial by dc-irreducibility. Hence X = 0, as
desired.

It remains to verify the third equation, for which we may assumen > 4. As [A,., B;] =
0, each 7/ L 7 gives rise to the same B := tr,.(B,), which is centralised by S,.. We
aim to show B = B;.

For s € S, s(B(t.j)) = B(J;(i)s(j)), so VT = D it B(t.j) is S-invariant. Notice how
ad ;) B(de) = ad ;) tri;) (Be) = 0, and (by the second local equation)

ad (i) (Biyy) = (7k) By = (k) tre (Bary) = (7k) tr ey (5k) By
= tr(xe) B(”) = B(t])
Thus, ad(;;) V' = B(Jgj). By dc-irreducibility, V* equals 0 or V, so either B(Jgj) =
ad ;) VT =0 or B(tj) = ady) vVt = ad(;;) V' = Bj. The latter is our goal, so it
remains to consider B(Jgj) =0.

Assume B(Jgj) = 0. If ¢ = 2, we have the desired result since 0 = B(tj) = trie)(Baj)) =
ad,e)(Bij)). If ¢ # 2, then Coprimality implies that B(;;) = B(ye); conjugating, this
quickly contradicts de-irreducibility when n > 5. If n = 4, then V' = B(12) + B(23) + B(34);
since B(12) = B(as), one has V' = B2y + B23). Moreover, V' = B(13) + B(23) is a K-
invariant decomposition (for K the Klein four-group) with the first factor centralised
by (12)(34) and the second by (23)(14). Now apply the Weight Lemma. By faithfulness
and dc-irreducibility, Cy (K) is zero-dimensional. Since involutions in K are S-conjugate,
none inverts V. However by zero-dimensionality of Cy (K), the involution (23)(14) inverts
B2y, and (12)(34) inverts B(a3). So (13)(24) inverts V: a contradiction. ¢

We construct a covering S-module as follows:

o let L := B(1p) as a trivial S-module;
o let V= std(n, L) as an S-module, and define f; = e; — e, as usual;
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e let ¢ : V — V be the additive map such that ¢(f; ® £) = (1) - £, where (11) is
interpreted as the identity.

Every element of V has a unique decomposition as Z?:_ll fi®l; for ¢; € L, so ¢ is indeed
well-defined and additive. Note that in the image of ¢, we use the non-trivial action of
S on B(ln) < V.

By the Universe Properties of § 2.1, perm(n, L) is an S-module in U, so each f; ® L,
being the image of perm(n, L) under ad;y), is also in ¢. Taking the sum, we find that
V is an S-module in U. Now let wi: fi®L—V be (li)orom where ¢ : L — V is the
inclusion map and 7; is the restriction to f; ® L of the i*"-projection of perm(n, L) = L".
Thus, each ¢; is compatible so their common extension to 1% (which is @) is as well.

Claim 2 (covering). ¢ is a surjective morphism of S-modules.

Proof of Claim. Notice that ¢(f; ® £) € (1i) - Bun) = B(n). Therefore imgp >
Z:’;ll B(iny =V, so ¢ is surjective. It remains to prove covariance. We use Claim 1
freely.

Since {(jn) : 1 < j <n—1} generates S and {f; ®£:1<i<n—1,£ € L} generates
V, it is enough to treat the basic cases. If ¢ = 7, then

e((in) - (fi @ 0)) = —p(fi ® £) = (in) - o(f; ® 0).
If i # j, then
() - (f: 0) = (i — f5) ® ) = (1)l — (1)L,
To compute (jn) - o(f; ® £), we consider separately j =1 or not. If j =1,
(1n) (1) = (1i)(in)l = (13)[(in) — 1 + 1] = —(13)*0 + (1i)L,
completing this case. And if j # 1,

(jn) (1)l = (1) (jn)t = (1)[(jn) — 1+ 1] = (1) (1) + (19)¢L,
which establishes this case since (15)¢ € B(;y) is centralised by (1i). ¢
Claim 3 (kernel control).

o If0#q|n, thenkero = Cy(S) and V ~std(n, L);

e if0#qtn, thenkerp =0 and V ~ std(n, L) ~ std(n, L);
o ifq=0, then ker p = (¢) ® K where ¢ = E?;ll fi and K < Q, (L) is 0-dimensional.
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Proof of Claim. Let ¢ = Z?;ll fi € std(n,Z). We first contend that:

o HCy(9) =Cp(S)={c®l:le L:nl=0}=(c) QZ§ Qn(L) ~ Q,(L).

Notice at once that ¢ generates the centraliser of Sym(1,...,n — 1), in symbols
Cstd(n,z)(Spt) = (c); the same holds in std(n, L), viz. Cy(S,1) = (¢) ® L. Also, in
std(n,Z) one sees (In)c = ¢ —nf1, so Cp(S) = {c®@ L : nl = 0} = (c) ® Qp(L) ~
Z ®z (L) ~ Q,(L). It remains to prove ¢~ }(Cy (S)) = C(S). The latter is clearly
contained in the former; we now show that v € Cy(S) is in the image of Cy(S5). As
noted after Claim 1, v = Z?:_ll v; with v; € B(;,). Applying ad(;;) and using the lo-
cal computations, we see that (in)v; + (1n)v; = 0, implying that v; = (1¢)vy. Thus,
v =" 1) = plc@ ).
We may now finish the proof. Clearly ker ¢ < ¢~ *(Cy (S5)) = Cy(S).

« First suppose ¢ # 0 and ¢ { n. Then Q,(L) and Cy(S) > kerg are trivial, so
V ~ V =std(n, L). (The same holds if V' is torsion-free.)

o Next suppose ¢ # 0 and ¢|n. Then L = Q,(L) so Cyp(S) = (¢) ® L ~ L; the
image p(Cy(S)) = Cv(S) is now a quotient module of L, hence dim-connected. By
dc-irreducibility of V, Cy(S) is trivial, so Cy,(S) = ker . Hence V ~ V/kerp =
std(n, L). (The last is seen by recalling that ¢ is prime and std(n,F,) is irreducible.)

« Finally suppose ¢ = 0. Recall that €, (V') is 0-dimensional by the Divisibility Prop-
erties. Subgroups of (¢) ® Q, (L) ~ Q,(L) are of the form (c) ® K for K < Q, (L),
and ker ¢ is one such. ¢

This completes the proof of the Recognition Lemma. O

One can also rephrase Claim 2 of the Recognition Lemma as follows, with no reference
to dimensionality.

Corollary. Let V' be an abelian group equipped with an irreducible, faithful action of
Sym(n). Suppose that for any two distinct transpositions 7,7’ one has de(T - e(g)g =
0. Then V is a homomorphic image of some std(n, L).

Proof. The assumption implies [1 — (i)][1 — (k¢)] = 0 (when 7 L 7') and [1 — (ij)][1 —
(ik)] = (Jk)[1 — (ik)] (when 7 £ 7') in End(V). Hence V satisfies the conclusion of
Claim 1, which is enough to produce a covering map ¢: std(n,Z) ®z B, — V. O

3.2. Extending an Alt(n)-module to Sym(n)

We now turn to Alt(n)-modules, giving a geometric condition (analogous to that for
the Recognition Lemma) under which an Alt(n)-module extends to a Sym(n)-module
subject to Recognition. But do note that the two lemmas, Recognition and Extension,
are independent.
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Extension Lemma (cf. [14,15]). Letn > 7, A := Alt(n), and V € Mod (A, d, q) be faithful
and dc-irreducible. Suppose that for any bi-transposition «, one has [Aq1, Bo] = 0. Then:

o ifq =2 there is a unique compatible action of Sym(n) extending the Alt(n)-structure;
e if ¢ # 2 there are exactly two such, obtained from each other by tensoring with the
signature.

Moreover, up to tensoring with the signature, the extension satisfies that for any trans-
position T € S := Sym(n), one has [S;+,B;] = 0.

Remark. If n > 8 the main assumption is equivalent to: for any 3-cycle 7, one has
[A,1,B,] = 0. The “y’-version is however stronger if n = 7.

Proof. The bulk of the proof is devoted to existence; uniqueness will result afterwards.
We aim to extend the action of Alt(n) to Sym(n); to that end, we first identify what
should be B;; = [(j), V], which (up to tensoring with the sign representation) should
be thought of as a line that we will call L(;;). In the standard module, L;;) can be
computed as B, N B, using any bi-transposition « that swaps ¢ and j and any 3-cycle
7 satisfying |a| N |y| = {4, j}. (There are certainly other ways to isolate B,y such as by
intersecting B, and Bg for a and § distinct bi-transpositions that both swap ¢ and j;
this was in fact our original point of view.)

Claim 1. Let i # j be given. For distinct a,b, k ¢ {i,j}, set
Lijy = madij)(ab) © adije) -

Then L;jy is nontrivial and independent of the choice of a,b,k. Moreover, L;;) =
(Bij)(ab) N Biji))*, and [Agi jyo, Lj] = 0.

Proof of Claim. For distinct a,b, k ¢ {i, j}, let L(;;) := imad;;)ap) © ad(ijr), Viz. L) :=
ad(i;)(ab) Bijk)- Set « := (ij)(ab) and vy := (ijk).

We first prove centralisation by Ay, ;31 and independence from a, b, k. Note that the
group (A,.)" is generated by its bi-transpositions # (when n = 7, this fails for A, .
itself), which all commute with v and satisfy:

adg(B,) = adgoad, (V) = ad, oadg(V) = ad,(Bg) < [As., Bg] =0,

implying that [(A,.)’, B,] = 0. Also notice that a inverts 7. In particular ad, leaves
im ad,, invariant; hence L;jy < B, N B, so by assumption and what we just noted, L;;
is centralised by (Ayr,(A,1)") = Ay jye (even if n = 7). And as Ay, ;30 > Alt(5) is
3-transitive off of {,j}, we also find that L(,;y is independent of the choice of a, b, k.
We now show the ‘moreover’ part, viz. L;;y = (Ba N B.)d¢. This will follow from
Coprimality and dim-connectedness of L;;y = ad, oad, (V). If char V' # 2, then letting o
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act on B, we find By, = L;;)(Htro(By). Now BoNtre(By) < BoNC, has dimension 0, so
dim(B,NBy) = dim(BaN(Lij) (Htra(By)) = dim L) +dim(BaNtre (B,)) = dim L.
And if char V' # 3, write V = B, (+) C,, an a-invariant decomposition. Applying ada,
we find that B, = L;;) +ads(C,) with B, Nad,(C,) being 0-dimensional. As before,
we find that dim(B, N B,) = dim L.

It remains to show that L;;y is nontrivial, which is equivalent to showing that «
does not centralise B,. Suppose it does. Conjugating, o centralises By for all £ ¢
{i,j,a,b} and also B(ape for all £ ¢ {i, j,a,b}. Thus, Cy () contains both [Ag, 31, V]
and [Ay;;y1, V], hence all of [A, V]. This contradicts our assumptions of dc-irreducibility
and faithfulness. ¢

Remark. There is a counterexample to Claim 1 when n = 6. In the case of the adjoint
representation of Alt(6) ~ PSLy(Fy), [A,+, Ba] = 0 and L(;;) has positive dimension,
but L;;) is not independent of the choice of a, b, k.

The next claim establishes various expected properties of the L;;y; recall that L;;
is a proxy for B;j.

Claim 2 (Geometry of lines).

(1) V= Zi;éj Lijy-
(2) If {i,j} # {k, £} are distinct pairs, then L;jy N L = 0.
(8) If i,j,k, ¢,z are distinct symbols, then:
o ad(r) (Liiz)) = Lijys
* adgj) ko) (L)) = L)
(4) Liij) < Lawy + Liny-

Proof of Claim. Clearly ). ) L;;) is A-invariant so must be equal to V', establishing
(1).
We now handle (2) and will prove that distinct lines are disjoint. We first consider
disjoint index sets; by conjugacy, we may take i, j, k, £ to be 1,2,3,4. Using Claim 1,
L12) N Lzay < Biasy N Oy ((125)) < Q3(V),
but on the other hand:

L12) N Lzgy < Baayse) N Cv ((12)(56)) < Qa(V).

Thus, L2y N L34y = 0, so lines with disjoint index sets are disjoint; we turn to inter-
secting sets. Notice that L(12) N L(23) < B(12)(5) N B(23ys) < Cv((123)). Hence:

L(12) N L(23) < B(123) N Cv((123)) < Q3(V)
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On the other hand L2y N L(2g) < B(12)(34) N B(2s)(14) < Cv((13)(24)), so

L(12) N L(23) < B(12)(34) N [Cv((13)(24)) N Cv<(123))]
< B(igyae) N Cv((12)(34)) < Q2(V).

Therefore L(12) N L(23y = 0; distinct lines are disjoint.
We now prove (3). Here we take i, j, k, z to be 1,2, 3,4. Let a = (12)(56), 8 = (23)(56),
and v = aff = (123). We show ad (L14)) = L(12). Observe:

ady=1-0af=1-8+(1—a)B=adg+ads0f. ()

If v € L(igy, then v € Cy(B), so applying (x) we find ad,(v) = ads(v) € B,. Thus
ad, (L)) < (ByNB )i =1L (12), by Claim 1. And as 7 - L(14) = L(24), we have L4y N
Cv(v) < Laay N Lay = 0 by (2), so L4y Nkerad, is trivial. Thus, dimad,(L(14)) =
dim L 14y = dim L y3), forcing ad, (L(14)) = L(12)-

For the second part of (3), we keep a, 3,7 as before and show adg L 24y = L (23). Now,
B = av, so here adg = ad, +ad, 0y. But ad 0y(L(24)) = ada(L(s4y) = 0, so by our
previous work adg(L(24)) = ad(L(24)) = L(23)-

For (4), consider H := Eﬁ% 5 Sym(3), and observe that [H,B(123)] =
ad(13)(45)(B(123)) + ad(23)(45)(B(123)) = L3y + L23). Of course, [H, B(123)] also con-
tains ad(12)45)(B123)) = L1z).- €

For I C {1,...,n} with |I| > 2, define

> Lij):

(1,)CT

Claim 3. Let I,J C {1,...,n} with |I|,|J| > 2. The following hold:

(1) Vi,.my = V;

(2) zf\IﬁJ| Z 1, then V]UJ :V]+VJ,'

(3) if [I| <n —3, then Vi N Lgpy = 0 for a,b ¢ I;
(4) the sum L9y + L(ag) + -+ L(n—2,—1) is direct;
(5) [AILaVI] =0;

(6) [Ar,V] = Vr provided |I| > 3.

Proof of Claim. Part (1) is merely Claim 2(1), and (2) follows readily from Claim 2(4).
Parts (5) and (6) are also fairly immediate. Indeed, [Ars, Vi] =2 5 cr[Are, L] =0
by Claim 1, and if |I| > 3, then

[Ar,V Z By = Z Ljy + Lijr) = Z Lij).-

[vICT (4,5,k)CT (1,9)CI



24 L.J. Corredor et al. / Journal of Algebra 623 (2023) 1-33

For (3), choose distinct a,b,k ¢ I; set X := L) NV Let @ € I\ {a,b,k} and
v := (iak). Then using all of Claim 2 we find ad,(X) < L) N Le) = 0, 50 X <
Liapy N Y(L(ab)) = Lap)y N Lkpy = 0. This establishes (3), and (4) now follows readily by
induction. <

For fixed i # j, let
E; ; = {a| a is a bi-transposition exchanging ¢ and j}.

The final ingredient we need to define the action of a transposition 7 is the hyperplane
representing Cy (1), which we now define as H,. (Regarding our definition below, recall
that C,, = tr, V, and though always contained in Cy (), it may be significantly smaller.)

Claim 4. Let H;j; = ZQGEU Ca. For distinct k,a,b & {i,7}, we have V = Vy; ; 13 +
H(ij) with V{i,j,k:} N H(ij) < Cv((ij)(ab)). Further, V{Z"j}L < H(z‘j)-

Proof of Claim. We first show Vi; 1+ < H;;). Let (k) L (ij). If ¢ = 2, then since
ad, = try for every bi-transposition a, one has Ly < Bijyey = Clijyeey < Hijy- If
q # 2, then taking (z,y) L {7, j,k,£}, one has by 2-divisibility Lty < Clijyay) < Hij)-
In either case, Vi; j11 < H(;;). Moreover, any two a, 3 € E; j agree modulo [Ay; jy1, V],
so using Claim 3(6),

Cﬁ < Ca + [A{i,j}La V] = CD‘ + V{i»j}L’

Thus, we have in fact shown H;;) = Cq + Vi, j;1 for any a € E; ;.
Fix distinct k,a,b ¢ {i,j}. Since V; jy1 < H(j), Claim 3(1,2) imply V = Vi jxy +
H;;). Also, for a = (ij)(ab), by Claim 2(3) one has ada (Vi k1) < Lj), and

ada Hij) = ada(Ca + Vi j31) = ada(Co + Viijanyt +Vikapt) < Vikapy-
—_——
<Cv(a)

By Claim 3(3), Lij)y N Vikapy = 0, 80 ado (Vyijky NH(ij)) = 0, meaning Vi; j k3 N Hj) <
Cy(a). ¢

Remark. If ¢ # 2, then one even has V' = H;;) + L), while if ¢ = 2 then L;;) <
H;jy. We however give a characteristic-independent endgame, treating reflections and
transvections at once.

Claim 5. There are compatible involutive operators {7(;) : i # j} C Auty(V') such that
Jor ¥ := (1) i #j) and S := Sym(n) we have:

e the map (ij) — 7(;j) extends to an isomorphism S ~ % with A =X';

o the image of S(;jy+ centralises By, ..
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Proof of Claim. Fix any k ¢ {i,j}. By Claim 3(5) Vy; j x} is centralised by A(;jz)+, so
every choice of o = (ij)(ab) with a,b ¢ {i,j, k} yields the same action on V{; ;x}. Using
Claim 4, define 7(;;) (currently depending on k) to agree with any such a on Vi; ;13
while centralising H,;), which makes sense as the intersection lies in Cy (o). Also, notice
how [T(ij)7 V)= [T(ij); V{i,j,k}} = o, Ly + L(jk)] = Lj by Claim 2(3,4).

We claim that our definition of 7(;;) does not depend on the choice of k. Fix distinct
k, k" ¢ {i,j}, with corresponding 7;;) and T(/Z-j). Consider the decomposition given by
Claim 3(1,2):

V' =Viijkwy + Vit

Note that V{i,j,k,k’} = V{i,j,k} +L(kk:’) = V{i,j,k’} +L(kk’)- For a,b ¢ {i,j,k,k'}, T(ij) and
(ij)(ab) agree on Vi, ; xy (by definition) and on Ly, which they both centralise since
Lgrry < Vi jyr < Hjy by Claim 4. Hence 7(;5) and (ij)(ab) agree on V; j x xy- The same
holds for T(/ij), s0 Ty = (ij)(ab) = T(/ij) on Vi, jrky- And as 7(;;) and T(Iij) centralise
Viijve < Hyj), they agree globally. This completes the definition of the transpositions;
they are in U by the existence of compatible extensions from the Universe Properties.

We now verify that 7(;;y7(;x) = (ijk). Fix distinct £, a,b ¢ {4, j, k}. Similar to as above
(with ¢ replacing k'), consider

V= Viijkey T Vit

Since we may define 7(;;y and 7(;;) using the common parameter £, we find as before that
T(ijy acts on Vi 5wy = Vi gy + Lkey = Vigk,ey + Loy as (i5)(ab) and ;1) as (jk)(ab).
Since each of 7(;;y, T(jx), and (ijk) centralise Vi, ; 11, we are done.

These relations (which also imply that disjoint transpositions commute) guarantee
¥ >~ Sym(n) with 3" = A. As noted, By,
disjoint brackets, which clearly implies that the image of S(;;). centralises By ,.,. €

= L;), so distinct transpositions give rise to

This proves existence and it remains to deal with uniqueness.

Claim 6. If S < Auty (V) represents any compatible action of Sym(n) extending Alt(n),
then up to tensoring with the signature, S = 3.

Proof of Claim. Say that S is generated by transpositions ¢(;;). We prove that, up to
tensoring, each transposition ¢(;;) coincides with 7(;;) as defined in Claim 5. Clearly for
any s € S one has s(L(;j)) = L(s(i)s(j))-

Consider the action of t = t;;y on Ly = L;;y; write L} = try(Ly). Of course £ = dim L;
and ¢t = dim L] do not depend on t; as a matter of fact for s € S we still have
S(Lz;j)) = L&i)s(j)). We shall prove that up to tensoring with the signature, L;” = 0 for
any transposition t € S.

First, we show that, up to tensoring, we may assume 2¢/* < /. Here is an argument we
shall repeat in the proof of the First Geometrisation Lemma, Claim 2. In characteristic
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2, one has (t + 1)2 = 0, so im(1 +t) < ker(1 + t). Also, restricting t to L;, we have
that dimker(1 + ¢) + dimim(1 + ¢) = dim L; = ¢; hence 2¢T < £. In characteristic
not 2, up to tensoring, we may exchange tr; with ad, hence try(L;) with ad;(L;), and
therefore assume the same. So up to tensoring (to no effect if ¢ = 2), 2¢* < £. Under
this assumption, we prove {(;;) = 7(;j), viz. uniqueness.

We first contend L?_u) < L?‘lg) + L?‘zg). Let a € L?_u)? by Claim 2(4) there is a
decomposition a = a13 + az3 with a1z € L(13) and az3 € L(23). Notice how a = t(12ya =
t(12)a23 + t(12)a13, S0 as L3y N L3y = 0, we find that t(;5) swaps ai3 and ags. Our
approach is to show that we similarly have t(13ya = a3 and t(23ya = ai3; then, as
t(13) (L?_lz)) = Lag
Bi23) < kertr(qz3) from Claim 2(3):

) and t(23)(L?'12)) = L?‘lg), we will be done. Now, using as3 € L(3) <

0= a23 + (123)&23 + (123)2a23
= ag3 + taz)t(2)azs + (132)azs
= az3 +tazyas + (132)azs
= s +tas)a—tas)azs + (132)ags .
~N e — Y——
€L<23) €L (23) €L(12) EL(IQ)

Disjointness of lines proves t(13ya = a3, and similarly we find #(23ya = a13. Thus, a3 €

+ +
L(23) and a3 € L(13),

We claim that t(;;) inverts L(;;) and centralises Vi; ;1. Let vVt o= Zi# Léj). It

as desired.

is Alt(n)-invariant so equals 0 or V' by dc-irreducibility. And from our work above,
VT = L?EZ) + L?‘B) +o 4 L?;L_Ln). Since we are assuming 2£7 < £, Claim 3(1,4) now
yields:

dimV* < (n— 10+ < Q

< (n—2)<dimV,
so V* <V, implying VT = 0. In particular, t(ij) inverts L(;;), and then by Claim 1, we
see that for (k€) L (i5), tey = t(ij)(ij) (kL) centralises L.

We now prove that t;;) and 7(;;) agree everywhere. By Claim 3(1,2), V' = V{; 1y +
Vi 1+, with both maps centralising the latter term. By definition, 7(;;) acts on Vi; j )
as (ij)(ab) for any (ab) L (ij), and as t(qp) centralises Vi, jxy, ti;) also acts on Vi ;i
as (ij)(ab). We are done. ¢

This completes the proof of the Extension Lemma. O

Remark. Uniqueness does not hold without assuming compatibility of the action of S:
one could break L = Lt ¢ L~ into abstract pieces (e.g. viewing the complex field as a
real vector space), producing a non-compatible decomposition V = V+ @& V=, one being
the sign-tensored version of the other.
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3.3. The Geometrisation Lemma

Here we establish that Sym(n)- and Alt(n)-modules of sufficiently low dimension
necessarily carry the geometric structure of the standard module, leading to their iden-
tification by our previous work.

We begin by treating the minimal case for Sym(n). The authors disagree on the
significance and relevance in the present paper of isolating this situation; it is to the
reader to decide. Nevertheless, the First Geometrisation Lemma will be used in the proof
of the significantly more powerful Geometrisation Lemma. Do note that the special case
addressed here holds for all n (trivially for n < 3). As a result, we need to account for
Sym(6)-modules that are ‘quasi-equivalent’ to std(6,2) via a twisting of the module by
an outer automorphism of Sym(6).

First Geometrisation Lemma. Letn > 3, S := Sym(n), and V € Mod(S, d, q) be faithful.
Then d > n — 2; if equality holds, then n > 5, and for any transposition T € S, we are
in one of the following cases:

* up to tensoring with the signature, V' satisfies [S! ., B;] = 0;
e n =206,q =2, and up to composing the action with some o € Out(Sym(6)), V
satisfies [S! ., B;] = 0.

Remarks.

e The (reduced) standard module is not faithful when n = 3, 4.
o The proof requires going to quotients, so dealing with objects which are not subob-
jects. See Remarks on p. 7.

Proof. Let S = Sym(n) and A = S’. We begin with the soluble cases.
Claim 1. If n € {3,4}, then d >n — 1.

Proof of Claim. Suppose d < n — 2. If n = 3, then the action cannot be faithful since
involutions must either centralise or invert a 1-dimensional dc-module, forcing A to act
trivially.

If n = 4, then for the same reason d = 2, and if ¢ # 2, then the Weight Lemma yields a
contradiction. So if n = 4, then ¢ = 2, and involutions act quadratically (with (i — 1) =
0). By faithfulness, for bi-transpositions « # (3, one has dim B, = dim Bg = 1. Thus,
Ba = (Cy ()4, and letting o act on Bg, one finds B < (Cy ()4, forcing B, = Bg.
Hence, B, = [A’, V] is S-invariant, but then A centralises the 1-dimensional dc-modules
[A",V] and V/[A",V]. Then A’ # 1 centralises V, a contradiction to faithfulness. ¢

From now on n > 5. We may thus also suppose that d is minimal such that V is
faithful; consequently, V' is now dc-irreducible.
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Assume d < n — 2; we shall identify the module. Let b = dim B, which does not
depend on the transposition 7.

Claim 2 (‘up to tensoring’). We may assume 2b < d.

Proof of Claim. If ¢ = 2 then 7 acts quadratically, viz. (1 — 1)? = 0. Hence B, =
im(1—7) < ker(1—7). On the other hand, dim ker(1—7)+dim im(1—7) = d; hence 2b < d.
(This argument already appeared in the Extension Lemma, Claim 6; it will be used
again in the Geometrisation Lemma, Claim 2.) If ¢ # 2 then by the Coprimality Lemma,
V = B, (+) C,. Tensoring with the signature morphism, which we denote by &, exchanges
7 with —7, hence B, with C, so up to tensoring, we may assume dim B, < dim C; and
2b<d. ¢

Claim 3. If n € {5,6}, we are done.

Proof of Claim. Let n < 6 and 7 be a transposition. If b = 1, then S, must centralise or
invert B, forcing A, 1 to centralise B, so we may assume b > 2. Since d > 2b, we have
reduced to the case of n =6, d =4, and b = 2. Moreover, by Claim 1, S;1 ~ Sym(4) is
faithful on neither B, nor V/B,, so bi-transpositions in S,. are quadratic. Thus ¢ = 2,
and it remains to deal with this exotic configuration.

We claim that for any 3-cycle v one has B, = V. We have seen that K,.. = A’
is trivial on each of B, and V/B;, so on each factor, all 3-cycles from S, have the
same action. Let  be one such 3-cycle. Notice how B; = ad,(B;) (+) try(B;) is an S,1-
invariant decomposition, so if either factor is 1-dimensional, then v € A’ , centralises
both, a contradiction. So, ad,(B;) has dimension 0 or 2, and the analogous statement
holds (with analogous proof) for V/B;. Thus, dim B, is 2 or 4. If 7 centralises V/B-
then B, < B; and equality holds. Then B, = B; = B, for any other 3-cycle in S, 1;
conjugating, we contradict dc-irreducibility. If v centralises B, we find Cyy, = B; = C,
again a contradiction. This shows B, = V.

Now let v, d be disjoint 3-cycles and ¢ = 4. If B, =V as well, then tr, = trs = tre =
0, forcing:

0=1+¢+¢
=147+ (-1—7v)(-1-9)
=7+9,
a clear contradiction. So By < V.
Let o be any outer automorphism of Sg; as well-known, it swaps (the class of) v with

(that of) ¢. So tensoring with o, we no longer have b = 2. Hence, in this exotic case as
well, we reduced to b = 1, implying that A, . centralises B,. ¢

Claim 4. If n > 7, we are done.
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Proof of Claim. Induction on n; let 7 be a transposition. Consider the action of S, 1 ~
Sym(n—2)on B..Nown—2>5anddmB, =b< 2 <2 -1<n—4=(n—2)—2.
By induction, S,. cannot be faithful on B. Since n > 7, the group A, = S’ is in the
kernel of the action; it centralises B, as wanted. ¢

This completes the first geometrisation argument. 0
We now present our main geometrisation result.

Geometrisation Lemma. Let A = Alt(n) and V € Mod(A,d, q). Suppose d < n and that
either

e ¢g=2andn >10; or
e ¢#2andn > 7.

Then for any bi-transposition a € A one has [A,1, Bo] = 0.

Proof. We want to show that A, 1 acts trivially on B,; by conjugacy the desired property
does not depend on «. The proof will by induction on n, but methods depend on the
value of q. Let b = dim B,.

Claim 1 (odd case). If ¢ # 2, then we are done.
Proof of Claim. Let K = {1, a;,a;, .} be a four-group of bitranspositions on the same

support. Let A = {Xg, Ai, Aj, A\g } be the weights with A\g = 1 and \; = o, viz. A\;(a;) =1
while A; (o) = A\;(a) = —1. By the Weight Lemma there is a decomposition, in obvious

v ()

AEA

notation,

Notice at once By, = Vi, +Vy,. Of course, A+ ~ Alt(n—4) normalises all weight spaces.
Actually, we have more. There is A, < X; < Ca(e;) with ¥; ~ Sym(n — 4); the group
¥; normalises V), and V), while swapping Vy, and V), . (Typically, if o; = (12)(34),
we take 3; = ESE), which exchanges a; = (13)(24) and ay = (14)(23), hence also the
relevant weights.)

Now, suppose that A, does not centralise B,. Then there is i such that A,. does
not centralise V),. The action extends to one of ¥;.

Let a = dim Vj,, which does not depend on i # 0. As we are assuming [A, 1, Vy,] # 0,
we find 1 <a< %.

e The case n = 7 requires scrutiny. The only nontrivial subcase is when d = 6, a =
2, and V. = Vy, + V), + Vj,. Also ¥; ~ Sym(3) acts on V), and the action of
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¥, = A,v is nontrivial. Therefore an involution 7 € ¥; will satisfy dim[r, V),] = 1.
As ¥; swaps Vy, and V),, which have dimension 2, dim[r, V), + V),] = 2. As a
conclusion, dim B, (V) = 3, but 7 is a bitransposition of A, hence dim B, = 3 = 2aq,
a contradiction.

The same argument removes n = 8. (A possible 1-dimensional V), causes no prob-
lem.)

If n > 9, the action of ¥; on V), is faithful, and the First Geometrisation Lemma
yields n — 6 <a < % < %(n — 1), a contradiction.

Hence A, centralises B, as claimed. ¢

Remark. Assuming V is faithful, one can even show a = 1 fairly directly; however it also

is a consequence of applying Extension and Recognition.

Claim 2 (even case). If ¢ = 2 then we are done.

Proof of Claim. Suppose the action of A, on B, is not trivial. As in Claim 1, this
action extends to a faithful action of some ¥ ~ Sym(n — 4) with A 1 <X < C4(at).

Let b := dim B,,, for a a bitransposition; by quadraticity, b < %. (See the proof of the

First Geometrisation Lemma, Claim 2).

e The case n = 10 requires a close look. Here, b < 4.

Observe that ¥ is also faithful on V/B,. If not, then any disjoint bi-transposition
B8 L o will satisfy Bg < B,, whence equality; conjugating, we find that B, is A-
invariant and centralised by all bi-transpositions, a contradiction. Hence B,,V/B, €
Mod(X) are both faithful.

By the First Geometrisation Lemma, the ¥-module B, is known (be careful that
dim(V/By) could be 5). Now choose v = (ijk) € A,+. Inspection of the possible
structures for B, € Mod(X,4,2) gives that [y, B,] has dimension 2 if B, is the
standard module; for the exotic twist, the dimension is 3. Looking at V/B,, we
certainly have dim[y, V/B,] > 2; otherwise, for any (ij)(ab) € A,+ inverting v, the
group (7, (i5)(ab)) ~ Sym(3) does not act faithfully on the 1-dimensional [y, V/B,],
a contradiction since ¢ # 3. Using dim B, = dim[vy, V] = dim[y, B,] + dim[y, V/B,]
by the Coprimality Lemma, we find that 4 < dim B, < d.

Turn to the action of ESE) ~ Sym(7) on both B, and C,. It must be faithful on
at least one, so by the First Geometrisation Lemma, one has dimension at least 6
(and the other at most 3). All this shows dim B, > 6 and dim C, < 3. In particular
Ay
contradiction.

1 centralises C, so Cy = Cy for any 3-cycle 4/ L ~. Conjugating, we find a

Assume n > 11. The action of ¥ on B, is faithful, so the First Geometrisation
Lemma yields n — 6 < b < % < %(n —1). This is an immediate contradiction when
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n > 12, and when n = 11, the First Geometrisation Lemma further implies that ¢
divides n — 4 = 7, again a contradiction. ¢

This completes the proof of the Geometrisation Lemma. 0O

Remark. Although we are not able to identify the minimal faithful V'€ Mod(Alt(9), d, 2)
(bearing in mind that there are three such in the classical setting), we can still easily
show that the minimal dimension is n — 1. Indeed, with notation as above, notice first
that if the action of A1 on B, is trivial, then Extension followed by Recognition shows
that d > n — 1 (since 2 1 9). And if the action of A,+ on B, is not trivial, the First
Geometrisation Lemma (applied to ¥ = Sym(5)) shows that b > 4 (since 2 1 5), so by
quadracity, 4 < b < %, as desired.

3.4. Assembling the Theorem

Proof of the Theorem. Let S := Sym(n) and A := Alt(n). Suppose G = A or S and
V € Mod(G, d, q) is faithful and dec-irreducible with d < n. We always assume n > 7; if
G = Alt(n) and ¢ = 2, we further assume n > 10.

We first assume that V is dc-irreducible as an A-module. In this case, we are done ex-
cept when V' € Mod(S,d,2) with 7 < n < 9. This follows immediately from applying (in
order) the Geometrisation Lemma, the Extension Lemma, and the Recognition Lemma.
We are also using that d < n forces dim L = 1 (with notation as in the Recognition
Lemma) and d = n — 2 or n — 1, according to the value of q.

We next address when V' € Mod(S, d, 2), aiming to show A, centralises B, for 7 € S
a transposition. Set b := dim B;; as usual, by quadraticity, 2b < d. If A1 = Alt(n — 2)
does not centralise B, then the First Geometrisation Lemma (applied to S;1) implies
that b > n — 4, with equality only possible if 2 | n — 2. Thus, 2(n —4) < 2b<d <n—1,
son =7and b =n— 4. But then 2 | 5. Thus AL centralises B,, and the Recognition
Lemma applies.

So it remains to dispose of the case when V' is dc-irreducible as an S-module but not
as an A-module. Assume this is the case, and consider a dc-irreducible A-series for V. By
our work above, each factor is either a trivial module or is standard, and by simplicity of
A, some factor is nontrivial, hence of dimension at least n — 2. Thus d = n— 1, and there
must be an A-submodule W < V such that either dimW =n — 2 and dim V/W =1 or
vice versa. The former implies W = [A, V], against de-irreducibility of V' as an S-module.
The latter implies W < Cy (A), hence equality by the structure of V/W again violating
dc-irreducibility as an S-module. O
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