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1. Introduction

This work belongs to the topic of first-order representation theory, i.e. representation 
theory viewed through an elementary lens. Here the focus in on the category of explicitly 
constructible objects, or what mathematical logic calls the definable category; a conse-
quence is that we avoid any reference to characters. This is not motivated by the mere 
‘purity of methods’ but by questions in model theory. The topic is naturally emerging 
out of several recent works, rooted in the 2008 article of Alexandre Borovik and Gre-
gory Cherlin [5] and pushed further by papers such as [9,6,3,7,4]. (Another road to the 
effective understanding of geometric algebra is black box algebra as in [8] and ongoing 
work.) We stress that, though inspired by model theory, the present article is likely to 
be of broad interest; no exposure to model theory is required to understand our work.

We give a significant expansion and clarification of a classical result by Leonard Dick-
son from 1908 on the minimal linear representations of symmetric groups. Our Theorem 
identifies the minimal faithful representations of Sym(n) and Alt(n) on finite or infinite 
abelian groups in the presence of a rudimentary notion of dimension but no a priori—and 
often no a posteriori—vector space structure. This may be viewed as a natural evolu-
tion of linear representation theory, one which focuses more on ‘elementary’ properties 
(e.g. generators and relations) and less on higher structure. In the case of algebraic 
groups, which we keep in mind for the future, our point of view would be quite in the 
spirit of the Chevalley-Steinberg approach. We stress that our context does not allow for 
character theory nor even Maschke’s Theorem, making matters non-trivial though basic.

All that remains from the usual linear theory is a loose form of dimensionality. The 
study of structures whose definable sets are equipped with one of various notions of 
dimension is a central theme in model theory, and our work here treats numerous classes 
at once—including groups of finite Morley rank and o-minimal groups, but also finite 
groups—in a common, natural, and new setting.

Our original motivation was a set of concrete model-theoretic problems. One such is 
an application to permutation groups possessing a high degree of generic transitivity. 
A study of these was initiated in the setting of groups of finite Morley rank in work 
by Borovik and Cherlin where they posed the problem of showing that generic (n + 2)-
transitivity on a set of Morley rank n implies that the group is PGLn+1(K) in its natural 
action on P (K). More information and explicit connections to the present work can be 
found in [5] as well as in the 2018 paper of Tuna Altınel and the third author [2], which 
solves the n = 2 case. The present work grew out of the third author’s desire to generalise 
the n = 2 approach to n ≥ 3, but the topic turned out extremely interesting in its own 
right.
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1.1. The result

Our main result generalizes a century-old theorem by Dickson [11] and its more recent 
companions [14,15]; it also corrects and expands on [5, Lemma 4.6]. In doing so, our 
treatment handles simultaneously the finite and the ‘tame infinite’, in a sense that model 
theory seeks to carve out.

We study Sym(n) and Alt(n)-modules V that carry a basic notion of dimension on 
certain groups (and quotients) definable—in the logical sense—from V and the acting 
group. To the logician we must stress that our dimension need not apply to all definable 
sets; we only require it to be defined on the intersection of the ‘definable universe’ in 
the sense of logic and the ‘variety generated by V ’ in the sense of universal algebra. 
This intuition is axiomatised in Section 2 via the definitions of a modular universe and 
an additive dimension; the relevant notions of connectedness (dim-connectedness) and 
irreducibility (dc-irreducibility) are also key.

As one expects, the ‘characteristic’ of a module is an important parameter: V is said 
to have prime characteristic p if it has exponent p and characteristic 0 if it is divisible. 
This definition allows for modules without a well-defined characteristic such as Z/12Z; it 
also allows for torsion modules of characteristic 0 such as the Prüfer quasi-cyclic groups 
Cp∞ .

In the classical setting, the minimal faithful representations for Sym(n) and Alt(n)
are canonical and easy to construct, assuming n is large enough. Among other places, 
they appear in [11], but we briefly describe them here. This also gives us the opportunity 
to introduce notation.

Notation (standard module). Let S := Sym(n).

(1) Let perm(n, Z) = Ze1 ⊕ · · · ⊕ Zen be the Z[S]-module with S permuting the ei
naturally. There are two obvious submodules:
• std(n, Z) := [S, perm(n, Z)] = {

∑
i ciei : ci ∈ Z and

∑
ci = 0};

• Z(perm(n, Z)) := Cperm(n,Z)(S) = {
∑

i cei : c ∈ Z},
using usual notation for commutators and centralisers. Over Z these are disjoint but 
not so in general.

(2) For any abelian group L (considered as a trivial S-module), define:
• perm(n, L) := perm(n, Z) ⊗Z L;
• std(n, L) := [S, perm(n, L)] = std(n, Z) ⊗Z L;
• Z(std(n, L)) := Cstd(n,L)(S).
We arrive at the canonical subquotient:
• std(n, L) = std(n, L)/Z(std(n, L)),
which we refer to as the (reduced) standard module over L.

(3) When L = Ck is cyclic of order k, we simply write perm(n, k), std(n, k), and std(n, k).

Remarks.
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• Notice how Z(std(n, L)) = {
∑

ei⊗a : a ∈ Ωn(L)}, so std(n, L) differs from std(n, L)
only when Ωn(L) %= 0. (Here Ωn(L) denotes the set of elements of order dividing n.)

• The module perm(n, L) may be realised as Ln under σ(a1, . . . , an) = (aσ−1(1), . . . ,
aσ−1(n)); it is easily constructed from L together with the action of each element of 
S. Model theorists will recognize this as an interpretable object, which we simply call 
definable.

The classical setting is std(n, p) for p a prime. Here, std(n, p) is irreducible of dimen-
sion n − 1 whenever p ! n (with the same true for std(n, Q)). However, when p | n and 
n ≥ 5, the module std(n, p) is faithful and irreducible of dimension n − 2, a point which 
fails for std(4, 2). Less classical is the following example regarding actions on tori.

Example. Notice how a maximal torus of GLn(C) is a Sym(n)-module via the action of 
the Weyl group. As Sym(n)-modules, one finds that

• perm(n, C∗) is isomorphic to a maximal torus of GLn(C);
• std(n, C∗) is isomorphic to a maximal torus of SLn(C);
• std(n, C∗) is isomorphic to a maximal torus of PSLn(C).

The various finite subgroups of nth-roots of unity yield finite submodules C ≤
Z(std(n, C∗)), each naturally isomorphic to some Z ≤ Z(SLn(C∗)). In each case, 
std(n, C∗)/C is isomorphic to the maximal torus of SLn(C)/Z. The modules std(n, C∗)/
C all satisfy the relevant notion of irreducibility here (dc-irreducibility) and must be 
accounted for in our classification.

We now state our main result. In what follows, Mod(G, d, q) denotes the class of all G-
modules (§ 2.1) that carry an additive dimension (§ 2.2) and are dim-connected (§ 2.3) of 
dimension d and characteristic q (§ 2.4). Also, V ∈ Mod(G, d, q) is dc-irreducible (§ 2.5) 
if V contains no non-trivial, proper, dim-connected G-submodule. Details are in § 2; the 
proof is in § 3.

Theorem. Let G = Alt(n) or Sym(n). Suppose V ∈ Mod(G, d, q) is faithful and dc-
irreducible with d < n. Assume n ≥ 7; if G = Alt(n) and q = 2, further assume n ≥ 10.

Then there is a dim-connected submodule L ≤ V such that the structure of V falls 
into one of the following cases:

q d Structure of V
q > 0 and q | n n− 2 isomorphic to std(n,L) or sgn⊗ std(n,L)
q > 0 and q ! n n− 1 isomorphic to std(n,L) or sgn⊗ std(n,L)

q = 0 n− 1 covered by std(n,L) or sgn⊗ std(n,L)

Moreover, when q = 0, the kernel of the covering map is 〈
∑n−1

i=1 (ei − en)〉 ⊗K, in usual 
notation, for some K ≤ Ωn(L).
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Remarks.

• Note that q = charL, and if q > 0, std(n, L) is completely reducible as 
⊕

X std(n, q)
for X an Fq-basis of L. The situation when q = 0 is complicated by tori like those 
given in the example above.

• The restrictions on n are optimal. For example, in characteristic 3, one has Alt(6) *
PSL2(F9) with the adjoint representation in dimension 3. In characteristic 2, Alt(9)
has three faithful representation over F2 of (least) degree 8 [1]. The two exceptional 
representations were missed in [14, (4.5) Lemma]; this was corrected by G.D. James 
in [13, Theorem 6].
In our more general setting, one can still establish the lower bound of 8 on the 
dimension of a faithful Alt(9)-module in characteristic 2, but we do not achieve (nor 
even try for) identification. (See the remark following the proof of the Geometrisation 
Lemma.)

1.2. Lingering questions

The Theorem places natural restrictions on n, but in fact, the minimal dimension of 
a faithful Sym(n)-module is indeed as expected for all n as a consequence of our First 
Geometrisation Lemma, where we also identify those of dimension (n − 2). However, 
identification of the dc-irreducible modules in Mod(Sym(5), 4) and Mod(Sym(6), 4) re-
mains open. (Do note that Mod(Sym(5), 4, 2) contains irreducible modules coming from 
the so-called Specht module for the partition (3, 2). See for example [12, 5.2 Example].)

Identification of the minimal faithful Alt(n)-modules for small n is also open. Recon-
structing the adjoint action of Alt(6) * PSL2(F9) is a problem of particular interest. One 
also has Alt(8) * SL4(F2) with the natural action as well as the particularly exceptional 
Alt(5): it appears as SL2(F4) in characteristic 2, as PSL2(5) in characteristic 5, and as 
the symmetries of a regular icosahedron in all other characteristics (over a field where 5
is a square). Table 1 summarizes the conjectural lower bounds.

Table 1
Conjectural minimal dimension for 
faithful Alt(n)-modules in characteris-
tic p with small n.

p 2 3 5 7 >7 or 0
Alt(5) 2 3 3 3 3
Alt(6) 4 3 5 5 5
Alt(7) 4 6 6 5 6
Alt(8) 4 7 7 7 7

Problem. Identify the minimal faithful Sym(n)- or Alt(n)-modules for all n.

Of course, one could target higher-dimensional dc-irreducible Sym(n)- Alt(n)-
modules, but this appears to be out of reach at present. However, simply identifying 
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a reasonable lower bound for the dimension of the ‘second smallest’ dc-irreducible mod-
ule would be welcome. Following the classical case, we expect something along the lines 
of n(n − 5)/2 (see [13]).

Problem. Let G = Alt(n) or Sym(n) with n sufficiently large. Prove that if V ∈
Mod(G, d, q) is faithful and dc-irreducible with d < n(n − 5)/2, then up to tensor-
ing with the signature, V is standard (i.e. the structure of V is as in the Theorem) with 
(n − 2) dimL ≤ d ≤ (n − 1) dimL and intermediate values are possible only when q = 0.

As should be clear, we are operating under the conjectural principle that although our 
context is quite general, the minimal objects still fall into the familiar linear-algebraic 
setting, a principle well-aligned with the recent work of Borovik [7]. We quite believe in 
this and would thus love to see a counter-example to shatter our illusion.

The problem of determining the minimal dimension of a group carrying a faithful 
action of Sym(n) or Alt(n) seems both interesting and relevant in the nonabelian case as 
well. With additional definability/compatibility hypotheses, the soluble case can easily 
be controlled. For nonsoluble groups, we propose the following crude bound, which is 
likely far from optimal.

Problem. Let H be a nonsoluble group on which Alt(n) acts faithfully and definably by 
automorphisms. Suppose there is a nonabelian notion of dimension, say Morley rank, 
making H dim-connected. Show dimH ≥ n for sufficiently large n.

Notice that low values of n will complicate the picture even for Sym(n): for example, 
Sym(5) * PGL2(5), which can be construed as 3-dimensional.

For the present article we however stick to the abelian case. The proof of the Theorem 
will be in § 3; we first turn to the general setting.

2. The context

We now give the setting for our study of Sym(n)- and Alt(n)-modules. In addition 
to defining modules equipped with an additive dimension, we also present notions of 
connectedness, irreducibility, and the characteristic. In short, the goal of this section is 
to fully explain the phrase ‘let V ∈ Mod(G, d, q) be dc-irreducible’.

The landscape will likely be both familiar and surprising to the reader versed in model 
theory. We seek a notion of dimension that encompasses simultaneously the linear dimen-
sion over Fp for finite representations as well as model-theoretic dimensions (e.g. Morley 
rank) for infinite representations. The context we present is extremely natural, yet looks 
new to us. (Unfortunately, somewhat conflicting terminology with Frank Wagner’s recent 
‘dimensional groups’ was unavoidable [16].)

We first define modules (§ 2.1) with an additive dimension (§ 2.2), and the notion of 
dim-connectedness (§ 2.3). We discuss the characteristic of a module (§ 2.4) and then 



L.J. Corredor et al. / Journal of Algebra 623 (2023) 1–33 7

introduce classes Mod(G, d, q) as well as the relevant notion of irreducibility (§ 2.5). 
The overview concludes with our key tool: an expected Coprimality Lemma (§ 2.6).

2.1. Modular universes and modules

A balance is difficult to strike between categorical generality and model-theoretic 
care for elementary constructions. We opted for a categorical vision but avoided any 
specialised language. We believe the categorist will instantly grasp the context, and the 
logician will readily check that it generalises definable universes. Do note that we use 
ker f and im f to refer to the kernel and image of f in the algebraic sense.

Definition. A modular universe is a subcategory U of the category Ab of abelian groups 
satisfying the following closure properties.

• [inverses] If f ∈ Ar(U) is an isomorphism, then f−1 ∈ Ar(U).
• [products] If V1, V2 ∈ Ob(U) and f1, f2 ∈ Ar(U), then V1 ×V2 ∈ Ob(U), and Ar(U)

contains f1 × f2, the projections πi : V1 × V2 → Vi, and the diagonal embeddings 
∆k : V1 → V k

1 .
• [sections] If W ≤ V are in Ob(U), then V/W ∈ Ob(U) and Ar(U) contains the 

inclusion ι : W → V and quotient p : V → V/W maps.
• [kernels/images] If f : V1 → V2 is in Ar(U), then ker f, im f ∈ Ob(U), and for all 

W1, W2 ∈ Ob(U),
– if W1 ≤ ker f , the induced map f : V1/W1 → V2 is in Ar(U);
– if im f ≤ W2 ≤ V2, the induced map f̌ : V1 → W2 is in Ar(U).

• [Z-module structure] If V ∈ Ob(U), then Ar(U) contains the sum map σ : V ×
V → V and the multiplication-by-n maps µn : V → V .

The objects of a modular universe U are called its modules and the arrows its compatible 
morphisms.

Remarks.

• We could not find an official categorical name for our setting. ‘Topologising, abelian 
subcategory’ does not suffice; the axiom of inverses is of importance to us, but we 
won’t go as far as assuming that the subcategory is replete.

• The axioms immediately allow for restrictions of compatible maps and the computing 
of inverse images. Indeed, if f : V1 → V2 is in Ar(U) with W1 ≤ V1 in Ob(U), then 
the restriction of f to W1 is f ◦ ι for ι : W1 → V1 the inclusion. And for W2 ≤ V2 in 
Ob(U), f−1(W2) is the kernel of p ◦ f for p : V2 → V2/W2 the quotient map.

• Model theorists might expect a ‘characterisation of arrows’ which we do not require: 
f ∈ Ar(U) if and only if its domain, image and graph are in Ob(U).
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Examples.

• From algebra: the category of all abelian groups or of all abelian p-groups (equipped 
with all group morphisms) forms a modular universe; both are full subcategories of 
Ab. An important variation is the category of all abelian p-groups of finite Prüfer 
p-rank. (Such groups can contain only finite powers of the quasi-cyclic group Cp∞ ; 
the maximal such power is called the p-rank.)
For a given ring R, the category of R-modules (equipped with all R-morphisms) is 
a modular universe.

• From Lie theory: the collection of all abelian Lie groups (with Lie morphisms) forms 
a modular universe after adjusting the notion of ≤ (which has to be closed).

• From universal algebra: the variety generated by a given abelian group V (with group 
morphisms) forms a modular universe; this can be computed as HSP(V ), which is 
the collection of all Homomorphic images of Subgroups of Products of V .

• From model theory: the abelian part of the ‘interpretable universe’ (which we call 
definable) forms a modular universe; specifically, this is looking at the category of 
all abelian groups definable in some first-order theory equipped with the definable 
group morphisms.

• If V is a module of a universe U , then there is a smallest subuniverse containing 
V . This is contained in both HSP(V ) and the abelian-definable universe Udef from 
model theory. Notice that the intersection HSPdef(V ) = HSP(V ) ∩Udef(V ) might be 
substantially smaller than Udef if we add a highly extrinsic, secondary abelian struc-
ture on some non-definable subsets of V . (Typically, if K is one of the pathological 
fields with non-minimal K× constructed by model theorists, then HSPdef(K+) will 
miss the exotic multiplicative subgroup.)

Modular universes allow for a variety of additional constructions. We highlight several 
important ones after giving the relevant notion of a G-module for our setting.

Definition. Suppose V is a module in the universe U . If a group G acts on V by compatible 
morphisms of U , we say that V is a G-module in U .

In model-theoretic terms, we are assuming that G acts by definable automorphisms, 
but we are not assuming definability of the action, viz. definability of the triple (G, V, ·). 
For instance, G itself need not be definable.

Universe Properties. Let U be a modular universe.

(i) [meet/join] If V1, V2 ≤ V are modules in U , then so are V1 ∩ V2 and V1 + V2.
(ii) [extensions] Suppose V1, V2 ≤ V are modules in U with V1 + V2 = V . If fi : Vi →

W are compatible morphisms that agree on V1 ∩ V2, then there is a compatible 
f : V → W extending both.



L.J. Corredor et al. / Journal of Algebra 623 (2023) 1–33 9

(iii) [permutation modules] If V is a module in U , then perm(n, V ) is a Sym(n)-
module in U .

(iv) [enveloping algebras] If V is a G-module in U for some group G, then each 
map in the subring of End(V ) generated by G is compatible.

Proof. Assume V1, V2 ≤ V are modules in U . Let σ : V × V → V be the addition map 
and ∆k : V → V k the diagonal embedding.

(i) Note that V1 ∩ V2 = ∆−1
2 (V1 × V2) and V1 + V2 = σ(V1 × V2).

(ii) Let g be the restriction of σ to V1×V2, and set I := {(a, −a) : a ∈ V1∩V2} = ker g. 
Then the induced isomorphism g : V1 × V2/I → V is in Ar(U), so g−1 is as well. 
Define h : V1 × V2 → V via restriction of σ ◦ (f1 × (f2 ◦ µ−1)) to V1 × V2, where 
µ−1 : V → V is inversion; then h computes f1 − f2. Since I ≤ kerh, the induced 
map h : V1 × V2/I → V is in Ar(U), and f := h ◦ g−1 ∈ Ar(U) extends both f1 and 
f2.

(iii) As a set, we may identify perm(n, V ) with V n ∈ Ob(U) and the canonical sum-
mands V ei with 

⋂
j $=i kerπk (for πk : V n → V the kth-projection). Now, for 

α ∈ Sym(n), viewed as the automorphism of V n permuting the coordinates nat-
urally, we must show α ∈ Ar(U). Let ∆ be the diagonal embedding of V n into 
(V n)n. Then α = (πα−1(1) × · · ·× πα−1(n)) ◦ ∆.

(iv) The (extended) sum map σk : V k → V may be inductively defined as σ ◦ (σk−1 ×
IdV ) so is in Ar(U). Further, Ar(U) contains the multiplication-by-n maps µn : V →
V for each n ∈ Z. Thus, for g1, . . . gk ∈ G and n1, . . . , nk ∈ Z, the image of 

∑
nigi

in End(V ) is σk ◦ [(µn1 ◦ g1) × · · ·× (µnk ◦ gk)] ◦ ∆k ∈ Ar(U). !

2.2. Additive dimensions

Definition. Let U be a modular universe. An additive dimension on U is a function 
dim: Ob(U) → N such that for all f : V → W in Ar(U),

dimV = dim ker f + dim im f.

This property will be called additivity.

Examples. Each of the following has an additive dimension:

• the universe of finite-dimensional vector spaces over a fixed field, equipped with the 
linear dimension;

• the universe of abelian p-groups of finite Prüfer p-rank, with dimension the p-rank;
• the universe of all abelian groups definable in a theory of finite Morley rank, with 

dimension the Morley rank;
• the universe of all abelian groups definable in an o-minimal structure, equipped with 

o-minimal dimension;
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• the universe of abelian Lie groups, equipped with Lie (manifold) dimension.

Remarks. The following remarks are better understood in relation to say, behaviour of 
Morley rank, but can be read independently.

• No assumption is made on when the dimension increases nor how; as a matter of 
fact, any multiple of a dimension function is again one.

• There need not be a descending chain condition (‘dcc’) on objects. This calls for a 
modified notion of connectedness in § 2.3.

• No relationship between finiteness and 0-dimensionality is implied. Thus, we handle 
in the same operational setting Fn

p (n-dimensional, in finite group theory) and Z
(0-dimensional, in Lie theory).

• It is unclear whether the non-abelian case is restrictive enough for a general theory 
to emerge. Typically, handling commutators requires the dimension to be defined on 
subsets, not only subgroups.
For example, we do not know about free groups or Tarski monsters; the question 
seems to be of interest but beyond our expertise.

• We briefly mused on the possibility of determining natural criteria for a pre-
dimension—defined only on submodules of some V —to extend to a genuine dimen-
sion on subquotients as well, but this remains mostly unexplored. Such topics are 
nontrivial in model theory.

Remarks (for model theorists). Our work stems from model theory but we wish to stress 
a couple of differences.

• The focus is on group subquotients instead of general definable sets. (One could 
define dim on cosets but we will not need that.)

• We work with a dimension on a universe containing a fixed group structure and 
make no demands on its behaviour in elementary extensions. Thus dimension is not 
required to be a ‘strong’ invariant (viz. a property of the theory); as a matter of fact, 
an elementary extension need not bear a dimension function.
Morley rank and o-minimal dimension are strong invariants. We do not have an exam-
ple of (the definable universe of) an abelian group V carrying an additive dimension 
and an elementary extension V ∗ not admitting one.
Arguably we touch here the difference between first-order (definability in one struc-
ture) and model-theoretic (definability in family, viz. in elementary extensions) 
properties; or between model-theoretic algebra and model-theory properly speaking.

Dimension Properties. Let (U , dim) be a modular universe with an additive dimension, 
from which we take modules.

(i) dim{0V } = 0.
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(ii) If W ≤ V , then dimW ≤ dimV .
(iii) dim(V1 × V2) = dimV1 + dimV2.
(iv) If V1, V2 ≤ V , then dim(V1 + V2) = dimV1 + dimV2 − dim(V1 ∩ V2).

Proof. For the first, apply additivity to the identity map ι : V → V . The second follows 
from additivity of the quotient map p : V → V/W (and that dim is non-negative). 
For the third, additivity of the projection π1 : V1 × V2 → V1 shows dim(V1 × V2) =
dimV1 + dim(kerπ1), so the result then follows from the fact that {0V1} × V2 and V2
are compatibly isomorphic. For the final point, apply additivity to the restriction of σ
to V1 × V2 (using that the kernel is compatibly isomorphic to V1 ∩ V2). !

Definition. If (U , dim) is a modular universe with an additive dimension and V ∈ Ob(U), 
we call V a module with an additive dimension, leaving U implicit from context.

In practice, we often have in mind HSPdef(V ) (viz. those homomorphic images of 
submodules of powers of V which are model-theoretically definable) when we say V is a 
module with an additive dimension.

2.3. dim-connectedness

We now present a weak form of connectedness, which is not the classical one in 
mathematical logic.

Definition. A module V with an additive dimension is called dim-connected (for 
dimension-connected), or simply a dc-module, if every proper submodule W < V in 
U satisfies dimW < dimV .

Examples.

• The only dc-module of dimension 0 is {0}.
• Every finite-dimensional vector space over Fp is dim-connected with respect to the 

linear dimension.
• If the dimension function satisfies ‘dimA = 0 ⇐⇒ A is finite’, then V is dim-

connected if and only if V is connected in the usual model-theoretic sense of having 
no proper subobjects of finite index. But this is not so in general as we assume neither 
implication.

Remarks.

• If V contains a dc-submodule V dc ≤ V with dimV dc = dimV , then V dc is unique 
(hence invariant under U-automorphisms of V ) and called the dc-component of V .
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• If W ≤ V and both have dc-components, then W dc ≤ V dc. Indeed, additivity 
implies dim((W dc + V dc)/V dc) = 0, so dim(W dc/W dc ∩ V dc) = 0 also. Then dim-
connectedness of W dc forces W dc = W dc ∩ V dc.

• If U satisfies the descending chain condition on objects, then dc-components exist. 
The converse is false (0-dimensional Z).

• In the universe of divisible abelian p-groups of finite Prüfer rank, the dc-component 
of V is the largest subtorus entirely contained in V .

• The dc-component of a group of finite Morley rank or an o-minimal group is its 
connected component.

• In general, even if dc-components exist, the index [V : V dc] need not be finite (0-
dimensional V ).

We now highlight various operations preserving dim-connectedness.

Connectedness Properties. Let (U , dim) be a modular universe with an additive dimen-
sion, from which we take modules.

(i) If V1 is dim-connected and f : V1 → V2 is compatible, then im f is dim-connected.
(ii) If V1 and V2 are dim-connected, then so is V1 × V2.
(iii) If V1, V2 ≤ V and V1 and V2 are dim-connected, then so is V1 + V2.

Proof.

(i) Let W2 ≤ im f be a submodule of maximal dimension. Set W1 = f−1(W2) ≥ ker f , 
and let g : W1 → W2 be the restriction of f . Then dimW1 = dim ker g+dim im g =
dim ker f + dim im f = dimV1. By dim-connectedness, W1 = V1, so W2 = im f .

(ii) Suppose Z ≤ V1×V2 is a submodule of maximal dimension. Let πi : V → Vi be the 
projections and πZ

i the restrictions to Z. Notice that kerπi is compatibly isomorphic 
with Vj , hence dim-connected of the same dimension; of course kerπZ

i ≤ kerπi. 
Then dimV1 + dimV2 = dim(V1 × V2) = dimZ = dim im πZ

i + dim kerπZ
i ≤

dim im πi+dim kerπi = dimV1+dimV2. By dim-connectedness, one finds kerπZ
1 =

{0} × V2 ≤ Z and V1 × {0} ≤ Z, so Z ≥ (V1 × {0}) + ({0} × V2) = V1 × V2.
(iii) Apply the first two points to the sum map V1 × V2 → V1 + V2. !

2.4. The characteristic of a module

Definition. Let V be a module with an additive dimension. We say that:

• V has characteristic p, for p a prime, if it is of exponent p;
• V has characteristic 0 if it is divisible.

Remarks.
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• A module need not have a well-defined characteristic: consider Z/6Z.
• Modules of characteristic 0 may well contain torsion: consider Cp∞ .

Characteristic Lemma. Let V be a module with an additive dimension. If V is dim-
connected, then V has a finite-length, AutU (V )-invariant, dim-connected composition 
series 0 = V0 < · · · < Vn = V in U with n ≤ dimV and each factor either of prime 
exponent or divisible.

Proof. We proceed by induction on dimV ; the only dc-module of dimension 0 is {0}. 
Let p be a prime; consider the multiplication by p morphism. The image pV ≤ V is 
dim-connected, so either pV < V and we apply induction, or pV = V . In the latter case, 
V is p-divisible, and we resume with another prime. !

Examples.

• Not all interesting modules have a characteristic. Any embedding Alt(4) ↪→
GL2(Z/4Z) makes V = (Z/4Z)2 a faithful, 2-dimensional Alt(4)-module of exponent 
4. It is not minimal, but Alt(4) is faithful on neither 2V nor V/2V . (This of course 
relates to solubility; one should always be careful with std(4, 4).)

• Let I be infinite and T =
⊕

I Cp∞ as a pure group. We suspect there is a non-trivial 
additive dimension on HSPdef(T ); however Morley rank is infinite. Hence our setting 
seems to allow for tori of infinite Prüfer rank.

Divisibility Properties. If V is a dc-module with an additive dimension and p is a prime, 
then V is p-divisible iff Ωp(V ) := {v ∈ V : pv = 0} has dimension 0. In particular, if 
W ≤ V is a dc-submodule and V has a characteristic, then V and W have the same 
characteristic.

Proof. The multiplication by p morphism has kernel Ωp(V ); since V is dim-connected, 
the map is onto if and only if the kernel has dimension 0. When restricted to W , the 
kernel is Ωp(W ) = W ∩ Ωp(V ). !

Remark. In the case where V = (Cp∞)n (which has characteristic 0) with p > 2 a prime, 
it is well-known (for instance [10]) that the restriction morphism:

ρ : Aut(V ) → Aut(Ωp(V ))

kills no element of finite order. (There is a kernel {±1}n if p = 2.) We could however 
not make profit of this remark in our present work.
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2.5. Dc-irreducibility and classes Mod(G, d, q)

Definition. A dim-connected G-module V is dc-irreducible (as a G-module), if it has no 
non-trivial, proper, dim-connected G-submodule.

Notation. Mod(G, d) is the class of all dim-connected G-modules of dimension exactly 
d. (They are not required to all live in a common universe; here one browses through 
universes and dimension functions.) Subclasses Mod(G, d, q) specify the characteristic.

By the Characteristic Lemma (§ 2.4), dc-irreducible modules always have a charac-
teristic.

2.6. Coprimality results

We now let finite cyclic groups act on our modules; as one imagines, the characteristic 
plays a crucial role. Bear in mind that we do not assume the existence of dc-components 
for submodules (see remarks in § 2.3); this explains why we avoid centralisers and prefer 
to work in terms of ad and tr.

Notation. Let V be a 〈g〉-module, where g has order p.

• Let adg = 1 − g and trg = 1 + g + · · · + gp−1.
• Let Bg = im adg and Cg = im trg.

When g acts compatibly on V (in some universe), the Universe Properties ensure that 
adg and trg are compatible endomorphisms, so Bg and Cg are submodules. Be careful 
that Cg does not stand for the centraliser (though always Cg ≤ CV (g)); for instance, if 
g is an involution acting in characteristic 2, then trg = adg and Cg = Bg. However, in 
characteristic not p, pathologies are confined as shown below.

Coprimality Lemma. Let p be a prime and V be a p-divisible, dim-connected 〈g〉-module 
with an additive dimension, where g has order p. Then V = Bg +Cg and dim(Bg∩Cg) =
0.

Proof. As Bg and Cg are images under compatible endomorphisms of V , they are dc-
submodules. Notice how adg ◦ trg = trg ◦ adg = 1 − gp = 0 in End(V ), so Bg ≤ ker trg
and Cg ≤ ker adg. However one sees ker adg ∩ ker trg ≤ Ωp(V ), which is 0-dimensional 
by the Divisibility Properties. Thus,

dimCg = dim im trg = dimV − dim ker trg ≥ dim ker adg ≥ dimCg,

so equality holds. Then:
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dim(Bg + Cg) = dimBg + dimCg = dim im adg + dim ker adg = dimV,

and V = Bg + Cg by dim-connectedness. !

Remarks.

• The lemma proves that Bg ∩Cg ≤ Ωp(V ), so if V has characteristic a prime different 
from p, then Bg ∩ Cg = 0. But in characteristic 0, Bg ∩ Cg need not be trivial, nor 
even finite.
For instance let T1, T2 * C2∞ with central involutions i1, i2, and α an involution 
inverting T1 while centralising T2. Let S = (T1 ⊕ T2)/ 〈i1i2〉. Notice how Bα =
(1 −α)S = T1 and Cα = (1 +α)S = T2 intersect. Finally take an infinite direct sum 
of copies of S and say it has dimension 1.

• The proof also shows Cg ≤ ker adg = CV (g) has the same dimension: hence CV (g)
has a dc-component, which equals Cg. (Acting on a p-torus of infinite Prüfer rank, 
one can produce examples with [CV (g) : Cg] = ∞.) However, without assuming 
p-divisibility, CV (g) need no longer have a dc-component.

The conclusion of the Coprimality Lemma is a ‘quasi-direct’ decomposition for V . 
(This terminology has other meanings in the literature.)

Definition. If A1, . . . , An are submodules of a module V , the sum 
∑

Ai is said to be 
quasi-direct if dim

∑
Ai =

∑
dimAi, in which case we write 

∑
Ai = A1 (+) · · · (+) An.

Remark. Note that 
∑n

1 Ai is quasi-direct if and only if both: 
∑n−1

1 Ai is quasi-direct, 
and dim

(
An ∩

∑n−1
1 Ai

)
= 0.

The following lemma highlights an important application of the Coprimality Lemma—
it will be used often in the sequel.

Weight Lemma. Let E be a finite elementary abelian 2-group and V a 2-divisible, dim-
connected E-module with an additive dimension. Then V decomposes into a quasi-direct 
sum of dim-connected weight submodules Vλ where λ : V → {±1} is a group morphism 
and each e ∈ E acts on Vλ as λ(e). Each λ is called a weight of E and Vλ the corre-
sponding (dim-connected) weight space.

Proof. Write E = E0 ⊕ 〈e〉. By the Coprimality Lemma, V = Be (+)Ce with e inverting 
the first factor and centralizing the latter. Applying induction to the action of E0 on 
each of Be and Ce then yields the desired result. !

Remark. If V is a 2-divisible, dim-connected G-module and K ≤ G is a Klein four-
subgroup whose nontrivial elements are conjugate in G, then the spaces attached to 
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non-trivial weights have constant dimension (, and dimV = dimCV (K) + 3(. This will 
be used repeatedly.

3. The proof

The proof of the Theorem will be assembled from three components: the Recognition 
Lemma (§ 3.1) provides an elementary geometric condition sufficient to identify the stan-
dard Sym(n)-module (and its quotients in relevant characteristics); the Extension Lemma 
(§ 3.2) uses an analogous geometric condition to identify when an Alt(n)-module extends 
to Sym(n) in such a way that Recognition applies; and the Geometrisation Lemma (§ 3.3) 
details how Alt(n)-modules of low dimension naturally possess the geometric condition 
needed to invoke Extension (and thus Recognition). Notably, the first two of these results 
are quite general with hypotheses only on the existence of a dimension function, and no 
restriction on its values.

Notation.

1. Elements. We reserve i, j, k, . . . for elements of {1, . . . , n}. Permutations are typically 
denoted by lower-case Greek letters, reserving:
• τ, τ ′ for transpositions;
• α, β for bi-transpositions;
• γ, δ for 3-cycles.
We indicate that permutations σ1 and σ2 have disjoint supports |σ1| and |σ2| by 
writing σ1 ⊥ σ2.

2. Subgroups.
• We avoid stabiliser notation Gi,j and G{i,j}. Instead, if S = Sym(n) and I ⊆

{1, . . . , n}, we let SI ≤ S be the subgroup of permutations with support contained 
in I. For σ ∈ S, we let Sσ = S|σ| and Sσ⊥ = S|σ|c . Likewise in Alt(n).
For instance, whenever V is an S-module, the subgroup Sσ⊥ ≤ CS(σ) acts on 
Bσ = im adσ ≤ V , as defined in § 2.6. However Sσ need not act on Bσ.

• We often consider subgroups of A = Alt(n) isomorphic to Sym(k). Typically, for 
|I| ≤ n − 2 and symbols k, ( /∈ I, we let:

Σ(k$)
I = AI 4 ((SI \AI) · (k())

=
{

σ if ε(σ) = 1
σ(k() if ε(σ) = −1 : σ ∈ Sym(I)

}
,

a subgroup of Alt(n) isomorphic to Sym(I). When there is no ambiguity we simply 
write ΣI .

• We use K for Klein four-groups of bitranspositions, with Kijk$ the Klein four-group 
having support {i, j, k, (}.



L.J. Corredor et al. / Journal of Algebra 623 (2023) 1–33 17

Also, recall:

• from § 2.5, that Mod(G, d, q) stands for the class of dim-connected G-modules of 
dimension d and characteristic q;

• from § 2.5 as well, the notion of dc-irreducibility meaning irreducibility in the class 
of dim-connected G-modules;

• from § 2.6, that for V a G-module and g ∈ G, we define Bg := [g, V ] = im adg where 
adg = 1 − g ∈ End(V ).

3.1. Recognising the standard module

The Recognition Lemma constructs a natural covering module under assumptions of 
an elementary geometric nature. In prime characteristic (or in the torsion-free case), the 
kernel is known, and the isomorphism type fully determined.

Recall from § 1.1 that std(n, Z) = 〈f1, . . . , fn−1〉 is the Sym(n)-submodule of the 
permutation module perm(n, Z) = 〈e1, . . . , en〉 generated by fi = ei−en. For any abelian 
group L, std(n, L) := std(n, Z) ⊗Z L, and std(n, L) = std(n, L)/Cstd(n,L)(Sym(n)).

Recognition Lemma. Let n ≥ 1, S := Sym(n), and V ∈ Mod(S, d, q) be faithful and 
dc-irreducible. Suppose that for any transposition τ , one has [S′

τ⊥ , Bτ ] = 0.
Then for some abelian group L and arrow ϕ in U , there is a surjective morphism 

ϕ : std(n, L) ! V of S-modules. Moreover:

• if 0 %= q | n, then kerϕ = Cstd(n,L)(S) and V * std(n, L);
• if 0 %= q ! n, then kerϕ = 0 and V * std(n, L) * std(n, L);
• if q = 0, then kerϕ = 〈c〉 ⊗K where c =

∑n−1
i=1 fi and K ≤ Ωn(L) is 0-dimensional.

Remark. In the first two cases, V is completely reducible into a direct sum of isotyp-
ical summands std(n, Fq); when V is torsion-free, the same is true with summands of 
the form std(n, Q). However, actions on tori could give rise to non-trivial quotients (in 
characteristic 0).

Proof. The case of n ≤ 2 is clear, so we suppose n ≥ 3. By dc-irreducibility, V = [S, V ]. 
Now transpositions (in) generate S, so V = [S, V ] =

∑n−1
i=1 B(in); this will be used several 

times below.

Claim 1 (local equations). Let i %= j. Then ad(ij) = 1 − (ij) acts as:





2 on B(ij)
(jk) on B(ik) for k /∈ {i, j}
0 on B(k$) for {k, (} ⊥ {i, j}.

Proof of Claim. This is obvious on B(ij); of course 2 = 0 is a possibility.
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We turn to the middle case. Let A := S′. First, note that B(ij) ∩B(jk) is S-invariant. 
Indeed, it is S(ijk)-invariant as it is inverted by both (ij) and (jk); by our main as-
sumption, it is also centralised by 〈A(ij)⊥ , A(jk)⊥〉 = Aj⊥ , implying S-invariance. Now 
let a ∈ B(ik), and write:

[1 − (ij)]a︸ ︷︷ ︸
∈B(ij)

− (jk)a︸ ︷︷ ︸
∈B(ij)

= [1 − (ij) − (jk)]a = −[1 − (ij) − (jk)](ik)a

= − [(ik) − (jk)(ik)]a︸ ︷︷ ︸
∈B(jk)

+ (ikj)a︸ ︷︷ ︸
∈B(jk)

.

Thus, X := [1 − (ij) − (jk)]B(ik) is a dim-connected subgroup of B(ij) ∩B(jk). As noted 
above, B(ij) ∩ B(jk) is S-invariant, so 

∑
σ∈S σX is a dim-connected and S-invariant 

subgroup of B(ij) ∩ B(jk) < V , hence trivial by dc-irreducibility. Hence X = 0, as 
desired.

It remains to verify the third equation, for which we may assume n ≥ 4. As [Aτ⊥ , Bτ ] =
0, each τ ′ ⊥ τ gives rise to the same B+

τ := trτ ′(Bτ ), which is centralised by Sτ⊥ . We 
aim to show B+

τ = Bτ .
For s ∈ S, s(B+

(ij)) = B+
(s(i)s(j)), so V + :=

∑
i$=j B

+
(ij) is S-invariant. Notice how 

ad(ij) B
+
(k$) = ad(ij) tr(ij)(B(k$)) = 0, and (by the second local equation)

ad(ij)(B+
(ik)) = (jk)B+

(ik) = (jk) tr(j$)(B(ik)) = (jk) tr(j$)(jk)B(ij)

= tr(k$) B(ij) = B+
(ij).

Thus, ad(ij) V
+ = B+

(ij). By dc-irreducibility, V + equals 0 or V , so either B+
(ij) =

ad(ij) V
+ = 0 or B+

(ij) = ad(ij) V
+ = ad(ij) V = B(ij). The latter is our goal, so it 

remains to consider B+
(ij) = 0.

Assume B+
(ij) = 0. If q = 2, we have the desired result since 0 = B+

(ij) = tr(k$)(B(ij)) =
ad(k$)(B(ij)). If q %= 2, then Coprimality implies that B(ij) = B(k$); conjugating, this 
quickly contradicts dc-irreducibility when n ≥ 5. If n = 4, then V = B(12)+B(23)+B(34); 
since B(12) = B(34), one has V = B(12) + B(23). Moreover, V = B(12) + B(23) is a K-
invariant decomposition (for K the Klein four-group) with the first factor centralised 
by (12)(34) and the second by (23)(14). Now apply the Weight Lemma. By faithfulness 
and dc-irreducibility, CV (K) is zero-dimensional. Since involutions in K are S-conjugate, 
none inverts V . However by zero-dimensionality of CV (K), the involution (23)(14) inverts 
B(12), and (12)(34) inverts B(23). So (13)(24) inverts V : a contradiction. ♦

We construct a covering S-module as follows:

• let L := B(1n) as a trivial S-module;
• let V̂ := std(n, L) as an S-module, and define fi = ei − en as usual;
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• let ϕ : V̂ → V be the additive map such that ϕ(fi ⊗ () = (1i) · (, where (11) is 
interpreted as the identity.

Every element of V̂ has a unique decomposition as 
∑n−1

i=1 fi⊗(i for (i ∈ L, so ϕ is indeed 
well-defined and additive. Note that in the image of ϕ, we use the non-trivial action of 
S on B(1n) ≤ V .

By the Universe Properties of § 2.1, perm(n, L) is an S-module in U , so each fi ⊗ L, 
being the image of perm(n, L) under ad(in), is also in U . Taking the sum, we find that 
V̂ is an S-module in U . Now let ϕi : fi ⊗ L → V be (1i) ◦ ι ◦ πi where ι : L → V is the 
inclusion map and πi is the restriction to fi⊗L of the ith-projection of perm(n, L) = Ln. 
Thus, each ϕi is compatible so their common extension to V̂ (which is ϕ) is as well.

Claim 2 (covering). ϕ is a surjective morphism of S-modules.

Proof of Claim. Notice that ϕ(fi ⊗ () ∈ (1i) · B(1n) = B(in). Therefore imϕ ≥∑n−1
i=1 B(in) = V , so ϕ is surjective. It remains to prove covariance. We use Claim 1

freely.
Since {(jn) : 1 ≤ j ≤ n − 1} generates S and {fi ⊗ ( : 1 ≤ i ≤ n − 1, ( ∈ L} generates 

V̂ , it is enough to treat the basic cases. If i = j, then

ϕ((in) · (fi ⊗ ()) = −ϕ(fi ⊗ () = (in) · ϕ(fi ⊗ ().

If i %= j, then

ϕ((jn) · (fi ⊗ ()) = ϕ((fi − fj) ⊗ () = (1i)(− (1j)(.

To compute (jn) · ϕ(fi ⊗ (), we consider separately j = 1 or not. If j = 1,

(1n)(1i)( = (1i)(in)( = (1i)[(in) − 1 + 1]( = −(1i)2( + (1i)(,

completing this case. And if j %= 1,

(jn)(1i)( = (1i)(jn)( = (1i)[(jn) − 1 + 1]( = −(1i)(1j)( + (1i)(,

which establishes this case since (1j)( ∈ B(jn) is centralised by (1i). ♦

Claim 3 (kernel control).

• If 0 %= q | n, then kerϕ = CV̂ (S) and V * std(n, L);
• if 0 %= q ! n, then kerϕ = 0 and V * std(n, L) * std(n, L);
• if q = 0, then kerϕ = 〈c〉 ⊗K where c =

∑n−1
i=1 fi and K ≤ Ωn(L) is 0-dimensional.
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Proof of Claim. Let c =
∑n−1

i=1 fi ∈ std(n, Z). We first contend that:

ϕ−1(CV (S)) = CV̂ (S) = {c⊗ ( : ( ∈ L : n( = 0} = 〈c〉 ⊗
Z

Ωn(L) * Ωn(L).

Notice at once that c generates the centraliser of Sym(1, . . . , n − 1), in symbols 
Cstd(n,Z)(Sn⊥) = 〈c〉; the same holds in std(n, L), viz. CV̂ (Sn⊥) = 〈c〉 ⊗ L. Also, in 
std(n, Z) one sees (1n)c = c − nf1, so CV̂ (S) = {c ⊗ ( : n( = 0} = 〈c〉 ⊗ Ωn(L) *
Z ⊗Z Ωn(L) * Ωn(L). It remains to prove ϕ−1(CV (S)) = CV̂ (S). The latter is clearly 
contained in the former; we now show that v ∈ CV (S) is in the image of CV̂ (S). As 
noted after Claim 1, v =

∑n−1
i=1 vi with vi ∈ B(in). Applying ad(1i) and using the lo-

cal computations, we see that (in)v1 + (1n)vi = 0, implying that vi = (1i)v1. Thus, 
v =

∑n−1
i=1 (1i)v1 = ϕ(c ⊗ v1).

We may now finish the proof. Clearly kerϕ ≤ ϕ−1(CV (S)) = CV̂ (S).

• First suppose q %= 0 and q ! n. Then Ωn(L) and CV̂ (S) ≥ kerϕ are trivial, so 
V * V̂ = std(n, L). (The same holds if V is torsion-free.)

• Next suppose q %= 0 and q|n. Then L = Ωn(L) so CV̂ (S) = 〈c〉 ⊗ L * L; the 
image ϕ(CV̂ (S)) = CV (S) is now a quotient module of L, hence dim-connected. By 
dc-irreducibility of V , CV (S) is trivial, so CV̂ (S) = kerϕ. Hence V * V̂ / kerϕ =
std(n, L). (The last is seen by recalling that q is prime and std(n, Fq) is irreducible.)

• Finally suppose q = 0. Recall that Ωn(V ) is 0-dimensional by the Divisibility Prop-
erties. Subgroups of 〈c〉 ⊗ Ωn(L) * Ωn(L) are of the form 〈c〉 ⊗K for K ≤ Ωn(L), 
and kerϕ is one such. ♦

This completes the proof of the Recognition Lemma. !

One can also rephrase Claim 2 of the Recognition Lemma as follows, with no reference 
to dimensionality.

Corollary. Let V be an abelian group equipped with an irreducible, faithful action of 
Sym(n). Suppose that for any two distinct transpositions τ, τ ′ one has 

∑
g∈〈τ,τ ′〉 ε(g)g =

0. Then V is a homomorphic image of some std(n, L).

Proof. The assumption implies [1 − (ij)][1 − (k()] = 0 (when τ ⊥ τ ′) and [1 − (ij)][1 −
(ik)] = (jk)[1 − (ik)] (when τ %⊥ τ ′) in End(V ). Hence V satisfies the conclusion of 
Claim 1, which is enough to produce a covering map ϕ : std(n, Z) ⊗Z B(1n) → V . !

3.2. Extending an Alt(n)-module to Sym(n)

We now turn to Alt(n)-modules, giving a geometric condition (analogous to that for 
the Recognition Lemma) under which an Alt(n)-module extends to a Sym(n)-module 
subject to Recognition. But do note that the two lemmas, Recognition and Extension, 
are independent.
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Extension Lemma (cf. [14,15]). Let n ≥ 7, A := Alt(n), and V ∈ Mod(A, d, q) be faithful 
and dc-irreducible. Suppose that for any bi-transposition α, one has [Aα⊥ , Bα] = 0. Then:

• if q = 2 there is a unique compatible action of Sym(n) extending the Alt(n)-structure;
• if q %= 2 there are exactly two such, obtained from each other by tensoring with the 

signature.

Moreover, up to tensoring with the signature, the extension satisfies that for any trans-
position τ ∈ S := Sym(n), one has [Sτ⊥ , Bτ ] = 0.

Remark. If n ≥ 8 the main assumption is equivalent to: for any 3-cycle γ, one has 
[Aγ⊥ , Bγ ] = 0. The ‘γ’-version is however stronger if n = 7.

Proof. The bulk of the proof is devoted to existence; uniqueness will result afterwards. 
We aim to extend the action of Alt(n) to Sym(n); to that end, we first identify what 
should be B(ij) = [(ij), V ], which (up to tensoring with the sign representation) should 
be thought of as a line that we will call L(ij). In the standard module, L(ij) can be 
computed as Bα ∩ Bγ using any bi-transposition α that swaps i and j and any 3-cycle 
γ satisfying |α| ∩ |γ| = {i, j}. (There are certainly other ways to isolate B(ij) such as by 
intersecting Bα and Bβ for α and β distinct bi-transpositions that both swap i and j; 
this was in fact our original point of view.)

Claim 1. Let i %= j be given. For distinct a, b, k /∈ {i, j}, set

L(ij) := im ad(ij)(ab) ◦ ad(ijk) .

Then L(ij) is nontrivial and independent of the choice of a, b, k. Moreover, L(ij) =
(B(ij)(ab) ∩B(ijk))dc, and [A{i,j}⊥ , L(ij)] = 0.

Proof of Claim. For distinct a, b, k /∈ {i, j}, let L(ij) := im ad(ij)(ab) ◦ ad(ijk), viz. L(ij) :=
ad(ij)(ab) B(ijk). Set α := (ij)(ab) and γ := (ijk).

We first prove centralisation by A{i,j}⊥ and independence from a, b, k. Note that the 
group (Aγ⊥)′ is generated by its bi-transpositions β (when n = 7, this fails for Aγ⊥

itself), which all commute with γ and satisfy:

adβ(Bγ) = adβ ◦ adγ(V ) = adγ ◦ adβ(V ) = adγ(Bβ) ≤ [Aβ⊥ , Bβ ] = 0,

implying that [(Aγ⊥)′, Bγ ] = 0. Also notice that α inverts γ. In particular adα leaves 
im adγ invariant; hence L(ij) ≤ Bα∩Bγ , so by assumption and what we just noted, L(ij)
is centralised by 〈Aα⊥ , (Aγ⊥)′〉 = A{i,j}⊥ (even if n = 7). And as A{i,j}⊥ ≥ Alt(5) is 
3-transitive off of {i, j}, we also find that L(ij) is independent of the choice of a, b, k.

We now show the ‘moreover’ part, viz. L(ij) = (Bα ∩ Bγ)dc. This will follow from 
Coprimality and dim-connectedness of L(ij) = adα ◦ adγ(V ). If charV %= 2, then letting α
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act on Bγ we find Bγ = L(ij)(+)trα(Bγ). Now Bα∩trα(Bγ) ≤ Bα∩Cα has dimension 0, so 
dim(Bα∩Bγ) = dim(Bα∩(L(ij)(+)trα(Bγ)) = dimL(ij)+dim(Bα∩trα(Bγ)) = dimL(ij). 
And if charV %= 3, write V = Bγ (+) Cγ , an α-invariant decomposition. Applying adα, 
we find that Bα = L(ij) + adα(Cγ) with Bγ ∩ adα(Cγ) being 0-dimensional. As before, 
we find that dim(Bα ∩Bγ) = dimL(ij).

It remains to show that L(ij) is nontrivial, which is equivalent to showing that α
does not centralise Bγ . Suppose it does. Conjugating, α centralises B(ij$) for all ( /∈
{i, j, a, b} and also B(ab$) for all ( /∈ {i, j, a, b}. Thus, CV (α) contains both [A{a,b}⊥ , V ]
and [A{ij}⊥ , V ], hence all of [A, V ]. This contradicts our assumptions of dc-irreducibility 
and faithfulness. ♦

Remark. There is a counterexample to Claim 1 when n = 6. In the case of the adjoint 
representation of Alt(6) * PSL2(F9), [Aα⊥ , Bα] = 0 and L(ij) has positive dimension, 
but L(ij) is not independent of the choice of a, b, k.

The next claim establishes various expected properties of the L(ij); recall that L(ij)
is a proxy for B(ij).

Claim 2 (Geometry of lines).

(1) V =
∑

i$=j L(ij).
(2) If {i, j} %= {k, (} are distinct pairs, then L(ij) ∩ L(k$) = 0.
(3) If i, j, k, (, x are distinct symbols, then:

• ad(ijk)(L(ix)) = L(ij);
• ad(ij)(k$)(L(ix)) = L(ij).

(4) L(ij) ≤ L(ik) + L(jk).

Proof of Claim. Clearly 
∑

i$=j L(ij) is A-invariant so must be equal to V , establishing 
(1).

We now handle (2) and will prove that distinct lines are disjoint. We first consider 
disjoint index sets; by conjugacy, we may take i, j, k, ( to be 1, 2, 3, 4. Using Claim 1,

L(12) ∩ L(34) ≤ B(125) ∩ CV ((125)) ≤ Ω3(V ),

but on the other hand:

L(12) ∩ L(34) ≤ B(12)(56) ∩ CV ((12)(56)) ≤ Ω2(V ).

Thus, L(12) ∩ L(34) = 0, so lines with disjoint index sets are disjoint; we turn to inter-
secting sets. Notice that L(12) ∩ L(23) ≤ B(12)(45) ∩B(23)(45) ≤ CV ((123)). Hence:

L(12) ∩ L(23) ≤ B(123) ∩ CV ((123)) ≤ Ω3(V ).
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On the other hand L(12) ∩ L(23) ≤ B(12)(34) ∩B(23)(14) ≤ CV ((13)(24)), so:

L(12) ∩ L(23) ≤ B(12)(34) ∩ [CV ((13)(24)) ∩ CV ((123))]

≤ B(12)(34) ∩ CV ((12)(34)) ≤ Ω2(V ).

Therefore L(12) ∩ L(23) = 0; distinct lines are disjoint.
We now prove (3). Here we take i, j, k, x to be 1, 2, 3, 4. Let α = (12)(56), β = (23)(56), 

and γ = αβ = (123). We show adγ(L(14)) = L(12). Observe:

adγ = 1 − αβ = 1 − β + (1 − α)β = adβ + adα ◦β. (∗)

If v ∈ L(14), then v ∈ CV (β), so applying (∗) we find adγ(v) = adα(v) ∈ Bα. Thus 
adγ(L(14)) ≤ (Bγ ∩Bα)dc = L(12), by Claim 1. And as γ ·L(14) = L(24), we have L(14) ∩
CV (γ) ≤ L(14) ∩ L(24) = 0 by (2), so L(14) ∩ ker adγ is trivial. Thus, dim adγ(L(14)) =
dimL(14) = dimL(12), forcing adγ(L(14)) = L(12).

For the second part of (3), we keep α, β, γ as before and show adβ L(24) = L(23). Now, 
β = αγ, so here adβ = adγ + adα ◦γ. But adα ◦γ(L(24)) = adα(L(34)) = 0, so by our 
previous work adβ(L(24)) = adγ(L(24)) = L(23).

For (4), consider H := Σ(45)
{1,2,3} * Sym(3), and observe that [H, B(123)] =

ad(13)(45)(B(123)) + ad(23)(45)(B(123)) = L(13) + L(23). Of course, [H, B(123)] also con-
tains ad(12)(45)(B(123)) = L(12). ♦

For I ⊆ {1, . . . , n} with |I| ≥ 2, define

VI :=
∑

(i,j)⊆I

L(ij).

Claim 3. Let I, J ⊆ {1, . . . , n} with |I|, |J | ≥ 2. The following hold:

(1) V{1,...,n} = V ;
(2) if |I ∩ J | ≥ 1, then VI∪J = VI + VJ ;
(3) if |I| ≤ n − 3, then VI ∩ L(ab) = 0 for a, b /∈ I;
(4) the sum L(12) + L(23) + · · · + L(n−2,n−1) is direct;
(5) [AI⊥ , VI ] = 0;
(6) [AI , V ] = VI provided |I| ≥ 3.

Proof of Claim. Part (1) is merely Claim 2(1), and (2) follows readily from Claim 2(4). 
Parts (5) and (6) are also fairly immediate. Indeed, [AI⊥ , VI ] =

∑
(i,j)⊆I [AI⊥ , L(ij)] = 0

by Claim 1, and if |I| ≥ 3, then

[AI , V ] =
∑

|γ|⊆I

Bγ =
∑

(i,j,k)⊆I

L(ij) + L(jk) =
∑

(i,j)⊆I

L(ij).
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For (3), choose distinct a, b, k /∈ I; set X := L(ab) ∩ VI . Let i ∈ I \ {a, b, k} and 
γ := (iak). Then using all of Claim 2 we find adγ(X) ≤ L(ak) ∩ L(ia) = 0, so X ≤
L(ab) ∩ γ(L(ab)) = L(ab) ∩ L(kb) = 0. This establishes (3), and (4) now follows readily by 
induction. ♦

For fixed i %= j, let

Ei,j := {α | α is a bi-transposition exchanging i and j}.

The final ingredient we need to define the action of a transposition τ is the hyperplane 
representing CV (τ), which we now define as Hτ . (Regarding our definition below, recall 
that Cα = trα V , and though always contained in CV (α), it may be significantly smaller.)

Claim 4. Let H(ij) :=
∑

α∈Ei,j
Cα. For distinct k, a, b /∈ {i, j}, we have V = V{i,j,k} +

H(ij) with V{i,j,k} ∩H(ij) ≤ CV ((ij)(ab)). Further, V{i,j}⊥ ≤ H(ij).

Proof of Claim. We first show V{i,j}⊥ ≤ H(ij). Let (k() ⊥ (ij). If q = 2, then since 
adα = trα for every bi-transposition α, one has L(k$) ≤ B(ij)(k$) = C(ij)(k$) ≤ H(ij). If 
q %= 2, then taking (x, y) ⊥ {i, j, k, (}, one has by 2-divisibility L(k$) ≤ C(ij)(xy) ≤ H(ij). 
In either case, V{i,j}⊥ ≤ H(ij). Moreover, any two α, β ∈ Ei,j agree modulo [A{i,j}⊥ , V ], 
so using Claim 3(6),

Cβ ≤ Cα + [A{i,j}⊥ , V ] = Cα + V{i,j}⊥ .

Thus, we have in fact shown H(ij) = Cα + V{i,j}⊥ for any α ∈ Ei,j .
Fix distinct k, a, b /∈ {i, j}. Since V{i,j}⊥ ≤ H(ij), Claim 3(1,2) imply V = V{i,j,k} +

H(ij). Also, for α = (ij)(ab), by Claim 2(3) one has adα(V{i,j,k}) ≤ L(ij), and

adα H(ij) = adα(Cα + V{i,j}⊥) = adα(Cα + V{i,j,a,b}⊥
︸ ︷︷ ︸

≤CV (α)

+V{k,a,b}) ≤ V{k,a,b}.

By Claim 3(3), L(ij)∩V{k,a,b} = 0, so adα(V{i,j,k}∩H(ij)) = 0, meaning V{i,j,k}∩H(ij) ≤
CV (α). ♦

Remark. If q %= 2, then one even has V = H(ij) + L(ij), while if q = 2 then L(ij) ≤
H(ij). We however give a characteristic-independent endgame, treating reflections and 
transvections at once.

Claim 5. There are compatible involutive operators {τ(ij) : i %= j} ⊂ AutU (V ) such that 
for Σ :=

〈
τ(ij) : i %= j

〉
and S := Sym(n) we have:

• the map (ij) 7→ τ(ij) extends to an isomorphism S * Σ with A = Σ′;
• the image of S(ij)⊥ centralises Bτ(ij) .
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Proof of Claim. Fix any k /∈ {i, j}. By Claim 3(5) V{i,j,k} is centralised by A(ijk)⊥ , so 
every choice of α = (ij)(ab) with a, b /∈ {i, j, k} yields the same action on V{i,j,k}. Using 
Claim 4, define τ(ij) (currently depending on k) to agree with any such α on V{i,j,k}
while centralising H(ij), which makes sense as the intersection lies in CV (α). Also, notice 
how [τ(ij), V ] = [τ(ij), V{i,j,k}] = [α, L(ik) + L(jk)] = L(ij) by Claim 2(3,4).

We claim that our definition of τ(ij) does not depend on the choice of k. Fix distinct 
k, k′ /∈ {i, j}, with corresponding τ(ij) and τ ′(ij). Consider the decomposition given by 
Claim 3(1,2):

V = V{i,j,k,k′} + V{i,j}⊥ .

Note that V{i,j,k,k′} = V{i,j,k} +L(kk′) = V{i,j,k′} +L(kk′). For a, b /∈ {i, j, k, k′}, τ(ij) and 
(ij)(ab) agree on V{i,j,k} (by definition) and on L(kk′), which they both centralise since 
L(kk′) ≤ V{i,j}⊥ ≤ H(ij) by Claim 4. Hence τ(ij) and (ij)(ab) agree on V{i,j,k,k′}. The same 
holds for τ ′(ij), so τ(ij) = (ij)(ab) = τ ′(ij) on V{i,j,k,k′}. And as τ(ij) and τ ′(ij) centralise 
V{i,j}⊥ ≤ H(ij), they agree globally. This completes the definition of the transpositions; 
they are in U by the existence of compatible extensions from the Universe Properties.

We now verify that τ(ij)τ(jk) = (ijk). Fix distinct (, a, b /∈ {i, j, k}. Similar to as above 
(with ( replacing k′), consider

V = V{i,j,k,$} + V{i,j,k}⊥ .

Since we may define τ(ij) and τ(jk) using the common parameter (, we find as before that 
τ(ij) acts on V{i,j,k,$} = V{i,j,$} +L(k$) = V{j,k,$} +L(i$) as (ij)(ab) and τ(jk) as (jk)(ab). 
Since each of τ(ij), τ(jk), and (ijk) centralise V{i,j,k}⊥ , we are done.

These relations (which also imply that disjoint transpositions commute) guarantee 
Σ * Sym(n) with Σ′ = A. As noted, Bτ(ij) = L(ij), so distinct transpositions give rise to 
disjoint brackets, which clearly implies that the image of S(ij)⊥ centralises Bτ(ij) . ♦

This proves existence and it remains to deal with uniqueness.

Claim 6. If S ≤ AutU (V ) represents any compatible action of Sym(n) extending Alt(n), 
then up to tensoring with the signature, S = Σ.

Proof of Claim. Say that S is generated by transpositions t(ij). We prove that, up to 
tensoring, each transposition t(ij) coincides with τ(ij) as defined in Claim 5. Clearly for 
any s ∈ S one has s(L(ij)) = L(s(i)s(j)).

Consider the action of t = t(ij) on Lt = L(ij); write L+
t = trt(Lt). Of course ( = dimLt

and (+ = dimL+
t do not depend on t; as a matter of fact for s ∈ S we still have 

s(L+
(ij)) = L+

(s(i)s(j)). We shall prove that up to tensoring with the signature, L+
t = 0 for 

any transposition t ∈ S.
First, we show that, up to tensoring, we may assume 2(+ ≤ (. Here is an argument we 

shall repeat in the proof of the First Geometrisation Lemma, Claim 2. In characteristic 
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2, one has (t + 1)2 = 0, so im(1 + t) ≤ ker(1 + t). Also, restricting t to Lt, we have 
that dim ker(1 + t) + dim im(1 + t) = dimLt = (; hence 2(+ ≤ (. In characteristic 
not 2, up to tensoring, we may exchange trt with adt, hence trt(Lt) with adt(Lt), and 
therefore assume the same. So up to tensoring (to no effect if q = 2), 2(+ ≤ (. Under 
this assumption, we prove t(ij) = τ(ij), viz. uniqueness.

We first contend L+
(12) ≤ L+

(13) + L+
(23). Let a ∈ L+

(12); by Claim 2(4) there is a 
decomposition a = a13 + a23 with a13 ∈ L(13) and a23 ∈ L(23). Notice how a = t(12)a =
t(12)a23 + t(12)a13, so as L(13) ∩ L(23) = 0, we find that t(12) swaps a13 and a23. Our 
approach is to show that we similarly have t(13)a = a23 and t(23)a = a13; then, as 
t(13)(L+

(12)) = L+
(23) and t(23)(L+

(12)) = L+
(13), we will be done. Now, using a23 ∈ L(23) ≤

B(123) ≤ ker tr(123) from Claim 2(3):

0 = a23 + (123)a23 + (123)2a23

= a23 + t(13)t(12)a23 + (132)a23

= a23 + t(13)a13 + (132)a23

= a23︸︷︷︸
∈L(23)

+ t(13)a︸ ︷︷ ︸
∈L(23)

− t(13)a23︸ ︷︷ ︸
∈L(12)

+ (132)a23︸ ︷︷ ︸
∈L(12)

.

Disjointness of lines proves t(13)a = a23, and similarly we find t(23)a = a13. Thus, a23 ∈
L+

(23) and a13 ∈ L+
(13), as desired.

We claim that t(ij) inverts L(ij) and centralises V{i,j}⊥ . Let V + :=
∑

i$=j L
+
(ij). It 

is Alt(n)-invariant so equals 0 or V by dc-irreducibility. And from our work above, 
V + = L+

(12) + L+
(23) + · · · + L+

(n−1,n). Since we are assuming 2(+ ≤ (, Claim 3(1,4) now 
yields:

dimV + ≤ (n− 1)(+ ≤ (n− 1)
2 ( < (n− 2)( ≤ dimV,

so V + < V , implying V + = 0. In particular, t(ij) inverts L(ij), and then by Claim 1, we 
see that for (k() ⊥ (ij), t(k$) = t(ij)(ij)(k() centralises L(ij).

We now prove that t(ij) and τ(ij) agree everywhere. By Claim 3(1,2), V = V{i,j,k} +
V{i,j}⊥ , with both maps centralising the latter term. By definition, τ(ij) acts on V{i,j,k}
as (ij)(ab) for any (ab) ⊥ (ij), and as t(ab) centralises V{i,j,k}, t(ij) also acts on V{i,j,k}
as (ij)(ab). We are done. ♦

This completes the proof of the Extension Lemma. !

Remark. Uniqueness does not hold without assuming compatibility of the action of S: 
one could break L = L+ ⊕ L− into abstract pieces (e.g. viewing the complex field as a 
real vector space), producing a non-compatible decomposition V = V + ⊕V −, one being 
the sign-tensored version of the other.
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3.3. The Geometrisation Lemma

Here we establish that Sym(n)- and Alt(n)-modules of sufficiently low dimension 
necessarily carry the geometric structure of the standard module, leading to their iden-
tification by our previous work.

We begin by treating the minimal case for Sym(n). The authors disagree on the 
significance and relevance in the present paper of isolating this situation; it is to the 
reader to decide. Nevertheless, the First Geometrisation Lemma will be used in the proof 
of the significantly more powerful Geometrisation Lemma. Do note that the special case 
addressed here holds for all n (trivially for n < 3). As a result, we need to account for 
Sym(6)-modules that are ‘quasi-equivalent’ to std(6, 2) via a twisting of the module by 
an outer automorphism of Sym(6).

First Geometrisation Lemma. Let n ≥ 3, S := Sym(n), and V ∈ Mod(S, d, q) be faithful. 
Then d ≥ n − 2; if equality holds, then n ≥ 5, and for any transposition τ ∈ S, we are 
in one of the following cases:

• up to tensoring with the signature, V satisfies [S′
τ⊥ , Bτ ] = 0;

• n = 6, q = 2, and up to composing the action with some σ ∈ Out(Sym(6)), V
satisfies [S′

τ⊥ , Bτ ] = 0.

Remarks.

• The (reduced) standard module is not faithful when n = 3, 4.
• The proof requires going to quotients, so dealing with objects which are not subob-

jects. See Remarks on p. 7.

Proof. Let S = Sym(n) and A = S′. We begin with the soluble cases.

Claim 1. If n ∈ {3, 4}, then d ≥ n − 1.

Proof of Claim. Suppose d ≤ n − 2. If n = 3, then the action cannot be faithful since 
involutions must either centralise or invert a 1-dimensional dc-module, forcing A to act 
trivially.

If n = 4, then for the same reason d = 2, and if q %= 2, then the Weight Lemma yields a 
contradiction. So if n = 4, then q = 2, and involutions act quadratically (with (i − 1)2 =
0). By faithfulness, for bi-transpositions α %= β, one has dimBα = dimBβ = 1. Thus, 
Bα = (CV (α))dc, and letting α act on Bβ , one finds Bβ ≤ (CV (α))dc, forcing Bα = Bβ . 
Hence, Bα = [A′, V ] is S-invariant, but then A centralises the 1-dimensional dc-modules 
[A′, V ] and V/[A′, V ]. Then A′ %= 1 centralises V , a contradiction to faithfulness. ♦

From now on n ≥ 5. We may thus also suppose that d is minimal such that V is 
faithful; consequently, V is now dc-irreducible.
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Assume d ≤ n − 2; we shall identify the module. Let b = dimBτ , which does not 
depend on the transposition τ .

Claim 2 (‘up to tensoring’). We may assume 2b ≤ d.

Proof of Claim. If q = 2 then τ acts quadratically, viz. (τ − 1)2 = 0. Hence Bτ =
im(1 −τ) ≤ ker(1 −τ). On the other hand, dim ker(1 −τ) +dim im(1 −τ) = d; hence 2b ≤ d. 
(This argument already appeared in the Extension Lemma, Claim 6; it will be used 
again in the Geometrisation Lemma, Claim 2.) If q %= 2 then by the Coprimality Lemma, 
V = Bτ (+)Cτ . Tensoring with the signature morphism, which we denote by ε, exchanges 
τ with −τ , hence Bτ with Cτ , so up to tensoring, we may assume dimBτ ≤ dimCτ and 
2b ≤ d. ♦

Claim 3. If n ∈ {5, 6}, we are done.

Proof of Claim. Let n ≤ 6 and τ be a transposition. If b = 1, then Sτ⊥ must centralise or 
invert Bτ , forcing Aτ⊥ to centralise Bτ , so we may assume b ≥ 2. Since d ≥ 2b, we have 
reduced to the case of n = 6, d = 4, and b = 2. Moreover, by Claim 1, Sτ⊥ * Sym(4) is 
faithful on neither Bτ nor V/Bτ , so bi-transpositions in Sτ⊥ are quadratic. Thus q = 2, 
and it remains to deal with this exotic configuration.

We claim that for any 3-cycle γ one has Bγ = V . We have seen that Kτ⊥ = A′
τ⊥

is trivial on each of Bτ and V/Bτ , so on each factor, all 3-cycles from Sτ⊥ have the 
same action. Let γ be one such 3-cycle. Notice how Bτ = adγ(Bτ ) (+) trγ(Bτ ) is an Sτ⊥-
invariant decomposition, so if either factor is 1-dimensional, then γ ∈ A′

τ⊥ centralises 
both, a contradiction. So, adγ(Bτ ) has dimension 0 or 2, and the analogous statement 
holds (with analogous proof) for V/Bτ . Thus, dimBγ is 2 or 4. If γ centralises V/Bτ

then Bγ ≤ Bτ and equality holds. Then Bγ = Bτ = Bγ′ for any other 3-cycle in Sτ⊥ ; 
conjugating, we contradict dc-irreducibility. If γ centralises Bτ we find Cγ = Bτ = Cγ′ , 
again a contradiction. This shows Bγ = V .

Now let γ, δ be disjoint 3-cycles and ζ = γδ. If Bζ = V as well, then trγ = trδ = trζ =
0, forcing:

0 = 1 + ζ + ζ2

= 1 + γδ + (−1 − γ)(−1 − δ)
= γ + δ,

a clear contradiction. So Bζ < V .
Let σ be any outer automorphism of S6; as well-known, it swaps (the class of) γ with 

(that of) ζ. So tensoring with σ, we no longer have b = 2. Hence, in this exotic case as 
well, we reduced to b = 1, implying that Aτ⊥ centralises Bτ . ♦

Claim 4. If n ≥ 7, we are done.
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Proof of Claim. Induction on n; let τ be a transposition. Consider the action of Sτ⊥ *
Sym(n − 2) on Bτ . Now n − 2 ≥ 5 and dimBτ = b ≤ d

2 ≤ n
2 − 1 < n − 4 = (n − 2) − 2. 

By induction, Sτ⊥ cannot be faithful on Bτ . Since n ≥ 7, the group Aτ⊥ = S′
τ⊥ is in the 

kernel of the action; it centralises Bτ , as wanted. ♦

This completes the first geometrisation argument. !

We now present our main geometrisation result.

Geometrisation Lemma. Let A = Alt(n) and V ∈ Mod(A, d, q). Suppose d < n and that 
either

• q = 2 and n ≥ 10; or
• q %= 2 and n ≥ 7.

Then for any bi-transposition α ∈ A one has [Aα⊥ , Bα] = 0.

Proof. We want to show that Aα⊥ acts trivially on Bα; by conjugacy the desired property 
does not depend on α. The proof will by induction on n, but methods depend on the 
value of q. Let b = dimBα.

Claim 1 (odd case). If q %= 2, then we are done.

Proof of Claim. Let K = {1, αi, αj , αk} be a four-group of bitranspositions on the same 
support. Let Λ = {λ0, λi, λj , λk} be the weights with λ0 = 1 and λi = α∨

i , viz. λi(αi) = 1
while λi(αj) = λi(αk) = −1. By the Weight Lemma there is a decomposition, in obvious 
notation,

V =
(+)

λ∈Λ

Vλ.

Notice at once Bαi = Vλj +Vλk . Of course, Aα⊥ * Alt(n −4) normalises all weight spaces. 
Actually, we have more. There is Aα⊥ < Σi < CA(αi) with Σi * Sym(n − 4); the group 
Σi normalises Vλ0 and Vλi while swapping Vλj and Vλk . (Typically, if αi = (12)(34), 
we take Σi = Σ(12)

α⊥ , which exchanges αj = (13)(24) and αk = (14)(23), hence also the 
relevant weights.)

Now, suppose that Aα⊥ does not centralise Bα. Then there is i such that Aα⊥ does 
not centralise Vλi . The action extends to one of Σi.

Let a = dimVλi , which does not depend on i %= 0. As we are assuming [Aα⊥ , Vλi ] %= 0, 
we find 1 < a ≤ d

3 .

• The case n = 7 requires scrutiny. The only nontrivial subcase is when d = 6, a =
2, and V = Vλi + Vλj + Vλk . Also Σi * Sym(3) acts on Vλi , and the action of 
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Σ′
i = Aα⊥ is nontrivial. Therefore an involution τ ∈ Σi will satisfy dim[τ, Vλi ] = 1. 

As Σi swaps Vλj and Vλk , which have dimension 2, dim[τ, Vλj + Vλk ] = 2. As a 
conclusion, dimBτ (V ) = 3, but τ is a bitransposition of A, hence dimBτ = 3 = 2a, 
a contradiction.

• The same argument removes n = 8. (A possible 1-dimensional Vλ0 causes no prob-
lem.)

• If n ≥ 9, the action of Σi on Vλi is faithful, and the First Geometrisation Lemma 
yields n − 6 ≤ a ≤ d

3 ≤ 1
3 (n − 1), a contradiction.

Hence Aα⊥ centralises Bα, as claimed. ♦

Remark. Assuming V is faithful, one can even show a = 1 fairly directly; however it also 
is a consequence of applying Extension and Recognition.

Claim 2 (even case). If q = 2 then we are done.

Proof of Claim. Suppose the action of Aα⊥ on Bα is not trivial. As in Claim 1, this 
action extends to a faithful action of some Σ * Sym(n − 4) with Aα⊥ < Σ < CA(α⊥).

Let b := dimBα, for α a bitransposition; by quadraticity, b ≤ d
2 . (See the proof of the 

First Geometrisation Lemma, Claim 2).

• The case n = 10 requires a close look. Here, b ≤ 4.
Observe that Σ is also faithful on V/Bα. If not, then any disjoint bi-transposition 
β ⊥ α will satisfy Bβ ≤ Bα, whence equality; conjugating, we find that Bα is A-
invariant and centralised by all bi-transpositions, a contradiction. Hence Bα, V/Bα ∈
Mod(Σ) are both faithful.
By the First Geometrisation Lemma, the Σ-module Bα is known (be careful that 
dim(V/Bα) could be 5). Now choose γ = (ijk) ∈ Aα⊥ . Inspection of the possible 
structures for Bα ∈ Mod(Σ, 4, 2) gives that [γ, Bα] has dimension 2 if Bα is the 
standard module; for the exotic twist, the dimension is 3. Looking at V/Bα, we 
certainly have dim[γ, V/Bα] ≥ 2; otherwise, for any (ij)(ab) ∈ Aα⊥ inverting γ, the 
group 〈γ, (ij)(ab)〉 * Sym(3) does not act faithfully on the 1-dimensional [γ, V/Bα], 
a contradiction since q %= 3. Using dimBγ = dim[γ, V ] = dim[γ, Bα] + dim[γ, V/Bα]
by the Coprimality Lemma, we find that 4 ≤ dimBγ < d.
Turn to the action of Σ(ij)

γ⊥ * Sym(7) on both Bγ and Cγ . It must be faithful on 
at least one, so by the First Geometrisation Lemma, one has dimension at least 6
(and the other at most 3). All this shows dimBγ ≥ 6 and dimCγ ≤ 3. In particular 
Aγ⊥ centralises Cγ , so Cγ = Cγ′ for any 3-cycle γ′ ⊥ γ. Conjugating, we find a 
contradiction.

• Assume n ≥ 11. The action of Σ on Bα is faithful, so the First Geometrisation 
Lemma yields n − 6 ≤ b ≤ d

2 ≤ 1
2 (n − 1). This is an immediate contradiction when 
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n ≥ 12, and when n = 11, the First Geometrisation Lemma further implies that q
divides n − 4 = 7, again a contradiction. ♦

This completes the proof of the Geometrisation Lemma. !

Remark. Although we are not able to identify the minimal faithful V ∈ Mod(Alt(9), d, 2)
(bearing in mind that there are three such in the classical setting), we can still easily 
show that the minimal dimension is n − 1. Indeed, with notation as above, notice first 
that if the action of Aα⊥ on Bα is trivial, then Extension followed by Recognition shows 
that d ≥ n − 1 (since 2 ! 9). And if the action of Aα⊥ on Bα is not trivial, the First 
Geometrisation Lemma (applied to Σ ∼= Sym(5)) shows that b ≥ 4 (since 2 ! 5), so by 
quadracity, 4 ≤ b ≤ d

2 , as desired.

3.4. Assembling the Theorem

Proof of the Theorem. Let S := Sym(n) and A := Alt(n). Suppose G = A or S and 
V ∈ Mod(G, d, q) is faithful and dc-irreducible with d < n. We always assume n ≥ 7; if 
G = Alt(n) and q = 2, we further assume n ≥ 10.

We first assume that V is dc-irreducible as an A-module. In this case, we are done ex-
cept when V ∈ Mod(S, d, 2) with 7 ≤ n ≤ 9. This follows immediately from applying (in 
order) the Geometrisation Lemma, the Extension Lemma, and the Recognition Lemma. 
We are also using that d < n forces dimL = 1 (with notation as in the Recognition 
Lemma) and d = n − 2 or n − 1, according to the value of q.

We next address when V ∈ Mod(S, d, 2), aiming to show Aτ⊥ centralises Bτ for τ ∈ S

a transposition. Set b := dimBτ ; as usual, by quadraticity, 2b ≤ d. If Aτ⊥ ∼= Alt(n − 2)
does not centralise Bτ , then the First Geometrisation Lemma (applied to Sτ⊥) implies 
that b ≥ n − 4, with equality only possible if 2 | n − 2. Thus, 2(n − 4) ≤ 2b ≤ d ≤ n − 1, 
so n = 7 and b = n − 4. But then 2 | 5. Thus A⊥

τ centralises Bτ , and the Recognition 
Lemma applies.

So it remains to dispose of the case when V is dc-irreducible as an S-module but not 
as an A-module. Assume this is the case, and consider a dc-irreducible A-series for V . By 
our work above, each factor is either a trivial module or is standard, and by simplicity of 
A, some factor is nontrivial, hence of dimension at least n −2. Thus d = n −1, and there 
must be an A-submodule W ≤ V such that either dimW = n − 2 and dimV/W = 1 or 
vice versa. The former implies W = [A, V ], against dc-irreducibility of V as an S-module. 
The latter implies W ≤ CV (A), hence equality by the structure of V/W , again violating 
dc-irreducibility as an S-module. !
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