Journal of Algebra 402 (2014) 479-498

Contents lists available at ScienceDirect

Journal of Algebra

JOURNAL OF

www.elsevier.com/locate/jalgebra

Moufang sets of finite Morley rank of odd type ™

Joshua Wiscons

Mathematisches Institut, Universitat Minster, Einsteinstrasse 62, 48149 Minster, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 2 May 2013

Available online 17 January 2014
Communicated by Gernot Stroth

Keywords:
Moufang set
BN-pair

Finite Morley rank

We show that for a wide class of groups of finite Morley
rank the presence of a split BN-pair of Tits rank 1 forces
the group to be of the form PSL; and the BN-pair to be
standard. Our approach is via the theory of Moufang sets.
Specifically, we investigate infinite and so-called hereditarily
proper Moufang sets of finite Morley rank in the case where
the little projective group has no infinite elementary abelian
2-subgroups and show that all such Moufang sets are standard
(and thus associated to PSLa(F) for F' an algebraically closed
field of characteristic not 2) provided the Hua subgroups are
nilpotent. Further, we prove that the same conclusion can be
reached whenever the Hua subgroups are L-groups and the
root groups are not simple.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Moufang sets were introduced by Jacques Tits in [20] and capture the essence of split

BN-pairs of Tits rank 1. The classification of the finite Moufang sets was completed by

Christoph Hering, William Kantor, and Gary Seitz in [11], and there is now an effort to

better understand the infinite ones.

Moufang sets fall into one of two cases, proper and not proper, based on the permu-

tation group that they describe; a proper Moufang set is one for which the associated
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group is not sharply 2-transitive. The structure of infinite sharply 2-transitive groups
is poorly understood, but those with abelian point-stabilizers, i.e. those associated to
nonproper Moufang sets with abelian root groups, are easily shown to be of a single
flavor: one-dimensional affine groups over a field. With an eye towards classifying the
Moufang sets with abelian root groups, the recent work on Moufang sets is focused on
understanding those that are proper. An important example of such a Moufang set is
the one associated to PSLy(F') for F a field, see Example 2.3 below. This Moufang set
is denoted M(F), and a similar construction produces a canonical Moufang set, denoted
M(J), for any quadratic Jordan division algebra J. It is conjectured that every infinite
proper Moufang set with abelian root groups is of the form M(J) for some quadratic
Jordan division algebra J. When considering the rather restrictive class of Moufang sets
of finite Morley rank, this conjecture seems to have a positive answer, and here, all of the
Moufang sets appear to arise, as expected, from a field, see [9,21,22]. We now investigate
if it is possible for Moufang sets of finite Morley rank to have nonabelian root groups.
This is conjectured not to happen.

Conjecture. (See [6, Question B.17].) If M is an infinite proper Moufang set of finite
Morley rank, then M = M(F') for F' an algebraically closed field, and, hence, the little
projective group is isomorphic to PSLo(F).

Groups of finite Morley rank are groups equipped with a model-theoretic notion of
dimension, and it was conjectured by Gregory Cherlin and Boris Zil’ber in the late 70s
that every infinite simple group of finite Morley rank is in fact an algebraic group over
an algebraically closed field. As every simple algebraic group over an algebraically closed
field has a BN-pair, it is natural to try to understand the groups of finite Morley rank
with a BN-pair. In [12], Linus Kramer, Katrin Tent, and Hendrik van Maldeghem showed
that the simple groups of finite Morley rank with a BN-pair of Tits rank at least 3 are
all algebraic. Additionally, there are partial results when the Tits rank is 2; a survey of
these may be found in [19]. Thus, we find ourselves curious about the case of Tits rank 1,
and in this way, Moufang sets of finite Morley rank fit naturally into the investigation
of the Cherlin—Zil’ber Conjecture.

As the Sylow 2-subgroups of a group of finite Morley rank are conjugate, the analysis
of groups of finite Morley rank can be broken into four cases based on the structure
of the connected component S° of a Sylow 2-subgroup S. These cases, with names
corresponding to the characteristic of a possible interpretable field, are

Degenerate: S° is trivial,
Even: S° is nontrivial, nilpotent, and of bounded exponent (S° is 2-unipotent),
0dd: S° is nontrivial, divisible, and abelian (S° is a 2-torus), and

Mixed: S° contains a nontrivial 2-unipotent subgroup and a nontrivial 2-torus.
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In [2], Tuna Altmnel, Alexandre Borovik, and Gregory Cherlin proved that there are
no infinite simple groups of finite Morley rank of mixed type and that those of even type
are algebraic. Not too much is known about degenerate groups, but there is a growing
body of knowledge about groups of odd type. We will focus on Moufang sets whose little
projective group has odd type, and as the little projective group of an infinite Moufang
set of finite Morley rank is always connected and 2-transitive, the following fact shows
that we are only excluding the even type case.

Fact 1.1. (See [/, Lemma 5.8].) Let G be a definably primitive and generically 2-transitive
permutation group of finite Morley rank. Then G° is either of odd or of even type.

Our main reference for groups of finite Morley rank will be [2]; [13] and [6] provide
excellent introductions to the theory as well.
We now give the central definitions; the main results will follow.

Definition 1.2. For a set X with |X| > 3 and a collection of groups {U,: x € X} with each
U, < Sym(X), we say that (X,{U,: x € X}) is a Moufang set if for G := (U,: z € X)
the following conditions hold:

1. each U, fixes z and acts regularly on X — {z},
2. {U,: z € X} is a conjugacy class of subgroups in G.

We call G the little projective group of the Moufang set, and each U, for x € X is called
a root group. The Moufang set is proper if the action of the little projective group on X
is not sharply 2-transitive. The 2-point stabilizers are called the Hua subgroups.

Note that the little projective group of a Moufang set always acts 2-transitively on X.
Thus, the Hua subgroups are all conjugate as are the 1-point stabilizers and the root
groups.

Definition 1.3. We will say that a Moufang set (X, {U,: x € X}) with little projective
group G is interpretable in a structure if the root groups, X, GG, and the action of G
on X are all interpretable in the structure. Now we define a Moufang set of finite Morley
rank to be a Moufang set interpretable in a structure of finite Morley rank. Finally, we
say that a Moufang set of finite Morley rank has odd type, respectively even type, if the
little projective group has odd type, respectively even type.

It should be noted that in the previous works on Moufang sets of finite Morley rank the
root groups were not assumed to be interpretable. However, all of the papers addressed
the case of abelian root groups where one can easily show that the interpretability
of X, G, and the action of G on X forces the root groups to be interpretable as well.
Also, the interpretability of X and the action of G on X follows from the interpretability
of G and the root groups and thus could be omitted from the definition.
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We have two main results. The first treats Moufang sets whose Hua subgroups are
nilpotent, allowing the root groups to have an arbitrary structure. The second result is
complementary. It addresses Moufang sets with nonsimple root groups, this time placing
few restrictions on the Hua subgroup. The fact that neither theorem assumes the Mo-
ufang sets to be special (as defined in Section 2) is noteworthy as much of the theory of
infinite Moufang sets is built around this hypothesis.

Theorem A. Let M be an infinite hereditarily proper Moufang set of finite Morley rank
of odd type. If the Hua subgroups are nilpotent, then M = M(F) for F an algebraically
closed field.

The property of being hereditarily proper is defined in Section 3 and addresses the
issue that in proper, but not necessarily special, Moufang sets one may encounter root
subgroups for which the induced Moufang set is no longer proper. This is conjectured
not to happen outside of a few known small examples, see [17, Conjecture 2]. We make
the observation in Corollary 4.5 that a Moufang set whose little projective group has
odd type is automatically hereditarily proper if the root groups are without involu-
tions.

Our second theorem requires another definition. A group of finite Morley rank is an
L-group if every infinite definable simple section of odd type is isomorphic to an algebraic
group over an algebraically closed field; by definable section we mean a quotient of a
definable subgroup by one of its definable normal subgroups. The study of L-groups
(and L*-groups) is aimed at a classification of the simple groups of odd type that does
not rely on knowledge of degenerate type sections.

Theorem B. Let M be an infinite hereditarily proper Moufang set of finite Morley rank
of odd type. If the Hua subgroups are L-groups, then M = M(F) for F an algebraically
closed field unless both of the following occur:

e the root groups are simple of degenerate type, and
e the Hua subgroups have Priifer 2-rank at least 2.

The conclusion of the theorem states that the root groups are either very nice, i.e.
isomorphic to the additive group of a field, or very wild, i.e. simple degenerate type
groups with many nontrivial involutory automorphisms. In the context of Moufang sets,
the latter alternative seems exceptionally wild as it has been conjectured that the root
groups in any Moufang set should be nilpotent, see [8].

Let us also mention that the hypothesis that the Hua subgroups be L-groups is only
needed when addressing the case of abelian root groups. That is, our approach to The-
orem B is to show that, in a minimal counterexample, avoiding either of the final two
configurations implies that the root groups are abelian; we then appeal to the results of
[9] and [22] where the latter utilizes the L-hypothesis.
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Theorem B immediately yields the following corollary on K*-groups; a group of finite
Morley rank is a K*-group if every proper infinite definable simple section (regardless of
type) is isomorphic to an algebraic group over an algebraically closed field.

Corollary A. Let G be a simple odd type K*-group of finite Morley rank. If (B, N,U) is
a split BN -pair of Tits rank 1 for G with U definable and without involutions, then G is
isomorphic to PSLa(F) for F' an algebraically closed field, and (B, N,U) is a standard
BN -pair for G.

This corollary says something nontrivial even for simple algebraic groups over alge-
braically closed fields; note that such groups are K*-groups of finite Morley rank by
[13, Théoreme 4.13]. Of course, one is not worried about classifying the simple algebraic
groups, but the question of whether or not there are nonstandard BN-pairs in these
groups is interesting. For some recent and rather general results in this vein (but with
the restriction that “U” is nilpotent), one may see [15].

2. Moufang sets

We briefly give some background on Moufang sets. For a more thorough introduction
to the general theory, the reader is encouraged to see [7]. Specifics regarding a context
of finite Morley rank can be found in [22].

As shown in [10], every Moufang set can be constructed as follows from a (not neces-
sarily abelian) group (U;+, —,0) and a permutation 7 € Sym(U U {oo}) interchanging 0
and co. Define M(U, 7) to be (X, {U,: € X}) where each U, is a subgroup of Sym(X)
defined as follows:

1. for each u € U, «, is the permutation of X that fixes oo and sends each v € U to
U+ u;

2. Uso i ={ay:ue Ul

3. Up:=UZ; and

4. U, = U™ for each u € U*.

Given such a construction, there is, for each a € U*, a unique element of Uya,Up
interchanging 0 and oo, and it is referred to as fi,. It is a theorem of [10] that M(U, 7) will
be a Moufang set precisely when the set {Tpu,: a € U*} is contained in Aut(U). When
M(U, 1) is a Moufang set, the pointwise stabilizer of 0 and oo in the little projective
group is called the Hua subgroup, and it is generated by the set {uqup: a,b € U*}. We
said above that each 2-point stabilizer is called a Hua subgroup, but there should not
be any confusion as all 2-point stabilizers are conjugate. We will frequently use the fact
that for any h in the Hua subgroup and any a € U* we have that p” = jiay. Finally,
a Moufang set M(U, 7) is called special if the action of 7 on U* commutes with inversion.
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Fact 2.1. (See [17, Main Theorem].) If M(U, T) is a proper Moufang set with abelian root
groups, then M(U, T) is special.

Fact 2.2. (See [18, Theorem 1-2].) If M(U, T) is a special Moufang set, then either U is
an elementary abelian 2-group, or the Hua subgroup acts irreducibly on U.

Let us give an example of a (special) Moufang set. When we work in a setting of finite
Morley rank, it will be the only one we have in mind.

Example 2.3. Let F be a field. We define M(F') to be M(U, 7) where U := F* and 7 is
the permutation of X := U U{cc} swapping 0 and oo and sending each z € F* to —z~ 1.
Then M(F) is a (special) Moufang set, see [10, Example 3.1], with little projective group

PSLy(F).

As most of our work in the present paper does not assume U to be abelian, we will,
sadly, not be blessed with the rather cozy feeling that comes with being special. However,
finite Morley rank is quite adequate compensation. We will use the following fact often
and without specific reference.

Fact 2.4. (See [22, Proposition 2.3].) Let M be an infinite Moufang set of finite Morley
rank. The little projective group as well as all 1-point stabilizers, all 2-point stabilizers,
and all root groups are (definable and) connected.

2.1. Root subgroups

Root subgroups are the essential ingredient of an inductive approach to any theorem
about Moufang sets.

Definition 2.5. Let M(U, 7) be a Moufang set. A root subgroup of U is a subgroup V < U
such that there exists some v € V* with V*pu, = V*.

A root subgroup gives rise to a sub-Moufang set M(V, p) where p is the restriction of
ty to V U {oo} for some v € V*. This Moufang set will be the same for every v € V*
and will be called the Moufang set induced by V. Extremely useful is the fact that every
subgroup of the form Cy (h) for h in the Hua subgroup is a root subgroup. Also, one can
show that the root subgroup relation is transitive: if V' is a root subgroup of U and W
is a root subgroup of V' (in the Moufang set induced by V'), then W is a root subgroup
of U.

When pulling back information from an induced Moufang set to the original, we will
utilize the subgroups G(V') and H (V') defined below as well as the fact that the induced
little projective group can be identified with G(V')/Cgqvy(V).
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Definition 2.6. Let M(U, 7) be a Moufang set with little projective group G and Hua
subgroup H. For V a root subgroup of U, define

o G(V) :=(ay, thy: v € V*) <G, and
o H(V) := (yliw: v,w € V*) < H.

Fact 2.7. (See [22, Lemma 3.7].) Let M(U, 7) be an infinite Moufang set of finite Morley
rank. If V is an infinite definable root subgroup of U, then V induces an interpretable
Moufang set with G(V) definable and connected.

3. P*-Moufang sets

We now begin our analysis of P*-Moufang sets; this will be refined for the odd type
setting in Section 5. The results of this section are drawn from the author’s thesis and
are, for the most part, just mild generalizations of those in [22].

Definition 3.1. Let M := M(U, 7) be an infinite Moufang set of finite Morley rank.

o M is projective it Ml = M(F') for some algebraically closed field F'.

e A root subgroup is projective if it induces a projective Moufang set.

e M is a P*-Moufang set if every infinite proper definable root subgroup of U is
projective.

P*-Moufang sets are the critical objects of study when entertaining the idea that some
proper Moufang sets of finite Morley rank may not be projective. To make this explicit,
we restrict to so-called hereditarily proper Moufang sets.

Definition 3.2. Let M(U, 7) be an infinite Moufang set of finite Morley rank. Then M(U, 7)
is said to be hereditarily proper if it is proper and every infinite definable root subgroup
of U induces a proper Moufang set.

Since the root subgroup relation is transitive, every infinite definable root subgroup of
a hereditarily proper Moufang set induces a Moufang set that is also hereditarily proper.
Special Moufang sets are the primary examples of hereditarily proper Moufang sets.
Indeed, it is a fact that special Moufang sets are necessarily proper whenever the root
groups have at least 3 elements. As the property of being special easily passes to root
subgroups, we see that infinite special Moufang sets of finite Morley rank are hereditarily
proper. Of course, proper P*-Moufang sets are also hereditarily proper.

Lemma 3.3. If M(U, 7) is an infinite hereditarily proper Moufang set of finite Morley rank
that is not projective, then U contains an infinite definable root subgroup that induces a
proper P*-Moufang set that is also mot projective.
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Proof. Assume that M(U,7) is hereditarily proper and not projective. Let V be an
infinite definable nonprojective root subgroup that is of minimal rank among all such
root subgroups. Clearly V' induces a proper P*-Moufang set that is not projective. O

Let us fix some notation for the remainder of the present section.

Setup. M(U, ) is an infinite proper Moufang set of finite Morley rank. Let G be the
little projective group, H the Hua subgroup, and X := U U {co}.

3.1. Projective root subgroups

The following proposition is the starting point for all of our analysis. Note that for a
group B, we write B = Aj x Ay if A; and As are commuting subgroups that generate B,
i.e. B is the central product of A; and As.

Proposition 3.4. Let V' be an infinite definable projective root subgroup of U. Then
V induces a Moufang set with little projective group isomorphic to PSLy(F) for F an
algebraically closed field, and for Y :=V U {oo}, the following are true:

G(V) = SLa(F) or PSLo(F),

H(V) is definable and isomorphic to F*,

H(V) generates an interpretable field, isomorphic to F, in End(V),
Ny(V)=HV)«Cg(V) with HV)NCy(V) = Z(G(V)), and
Na(Y) = G(V) * Cu (V) with GV) N Cu (V) = Z(G(V)).

AR R .

Proof. The proof of this proposition is nearly identical to that of [22, Proposition 3.11].
We identify the induced little projective group with G(V)/Cgvy (V). As V is projec-
tive, there is an algebraically closed field F' such that G(V)/Cg vy (V) acting on Y is
isomorphic to PSLy(F') acting naturally on the projective line over F'.

By Fact 2.7, G(V) is definable and connected, and [16, Lemma 3.2(3)] says that G(V')
has center Cg vy (V). Additionally, the proof of [16, Lemma 3.2(4)] only requires that
the induced Moufang set be special, a hypothesis we certainly meet, so G(V) is perfect.
Now [22, Lemma 3.10] applies, and G(V') = SLy(F) or PSLy(F).

For the next two items, we first note that the pointwise stabilizer of 0 and oo in
G(V), namely H(V)Cgqvy(V), is definable and isomorphic to the stabilizer of 0 and oo
in SLy(F) or PSLy(F'). The third item is now clear, and to complete the second item,
we show that Cgvy(V) < H(V). The nontrivial case is when G(V) = SLy(F). Fix a
v € V*. Then, p, is in G(V){0,00} = G(V)o,00- When SLy(F') acts on the projective
line, each element that swaps 0 and co squares to the central involution. Thus, (u2) =
Z(G(V)) = Cg(v)(V), and the second item is complete as p2 is in H(V).

We now give the structure of Ny (V). Notice that H (V') is normal in Ny (V) and
is centralized by Cg (V). We have already mentioned that G(V) has center Cg vy (V),
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so we see that H(V) N Cy(V) = GV) N Cyx(V) = Z(G(V)), since H(V) contains
Z(G(V)). It remains to show that Ny (V) = H(V)Cg(V), which we do exactly as in [22,
Proposition 3.11]. Now, H(V') generates an interpretable field in End(V'), say F, and
N (V) acts on E as a group of field automorphisms. By [2, I, Lemma 4.5], Ny (V') acts
E-linearly on V. As V is 1-dimensional over E with H(V) inducing all of E*, we find
that Ng(V) = H(V)Cg (V). This completes the fourth item, and the final point now
follows from [16, Lemma 3.2(2)]. O

The proposition yields the following two important corollaries.

Corollary 3.5. If V is an infinite definable projective root subgroup of U and A is an
H(V)-invariant subgroup of U, then either V< A or VN A =0.

Proof. H(V) acts transitively on V* and normalizes VN A. O

Corollary 3.6. If V < W are two infinite definable projective root subgroups of U, then
V=w.

Proof. In light of Proposition 3.4, the proof of this corollary is identical to that of [22,
Corollary 3.13]. O

3.2. H-invariant projective root subgroups

We now collect a couple of items regarding H-invariant root subgroups. We begin
with a lemma that is a trivial, but important, consequence of Proposition 3.4.

Lemma 3.7. If V is an infinite definable H-invariant projective root subgroup of U, then
H=HV)*xC%(V), and in particular, H(V) < Z(H).

Proof. Everything follows directly from Proposition 3.4 upon remembering that H is
connected. O

The next proposition says that in a P*-setting either H is isomorphic to the multi-
plicative group of a field or H is close to acting irreducibly on U, in some weak sense.
Both conclusions are nice approximations to the situation for M(F).

Proposition 3.8. Assume that M(U, 1) is a P*-Moufang set. If U contains distinct infinite
proper definable H-invariant root subgroups V. and W, then H = H(V) = H(W).

Proof. We begin by showing that H is abelian. By Lemma 3.7, we have that H =
HV)*Cy(V) = HW) « Cy (W) with both H(V) and H(W) abelian. We claim that
Cyp(V)NCyx(W) = 1. If not, there is an h € H* with Cyy(h) containing both V and W.
Since, by assumption, Cy(h), V, and W are all projective, Corollary 3.6 implies that
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Cy(h) =V =W, which is a contradiction. We conclude that Cy (V)N Cyx(W) =1, so
H embeds into H/Cy (V) x H/Cgx(W). Thus, H is abelian.

To prove the proposition, we must show that Cy (V') and Cy (W) are both finite. Set
A= Cg(V)Cxg(W). We claim that A is central in Gyg o). To see this, first recall that
G10,00} 1s generated by H, which is abelian, and any y-map. As Cy (V) is centralized by
every i, withv € V*, Cg (V) < Z(G{o,00})- Similarly, we find that Cy (W) < Z(Gy0,00})s
so A < Z(Gyo,00})- We now show that A has at most four elements. Let a € A be
arbitrary. Then a € hCy (V) for some h € H(V'). For any v € V*, we have that

aCy (V) = (aCyr (V)" = (hCur (V)" =1 Cr(V) = a ' Cr(V),

where the second to last equality uses that V is projective and the u-maps invert the
Hua subgroup in PSLs. Thus, Cx (V) has index at most 2 in A, and a similar argument
shows that the same is true for Cy(W). Since Cy (V) N Cy(W) = 1, we conclude that
A has order at most four. O

4. When G has odd type

This short section begins our analysis of Moufang sets whose little projective group
has odd type. As before, we fix some notation.

Setup. M(U, 7) is an infinite (not necessarily proper) Moufang set of finite Morley rank.
Let G be the little projective group, H the Hua subgroup, and X := U U {oco}. Further,
assume that G is of odd type.

The following lemma makes use of a “generosity argument.” A definable subgroup of
a group of finite Morley rank is said to be generous if the union of the conjugates of
the subgroup is generic, i.e. has full rank in the group. A necessary condition for being
generous is to have “enough” conjugates, and we call a subgroup almost self-normalizing
if it has finite index in its normalizer. An important example of a generous subgroup in
any connected group of finite Morley rank is the connected component of the centralizer
of a decent torus, see [2, IV, Lemma 1.14]. Recall that a decent torus is a divisible abelian
group of finite Morley rank that is the definable hull of its torsion subgroup.

Lemma 4.1. If Cx(g) is finite for all g € G*, then G has odd type. If, additionally,
H is nontrivial, then H has odd type as well.

Proof. Define A to be H if H is nontrivial and G, otherwise. We show that A has odd
type.

Let T be the definable hull of a nontrivial 2-torus of G. Then T is a decent torus,
and C&(T) is generous in G. We now work to establish that A is generous in G, and
we begin by showing that A is almost self-normalizing. Let N := Ng(A). Then N acts
on Cx(A), which is a nonempty finite set. As N is connected, N fixes Cx(A). Since A
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is the full pointwise stabilizer of one or two points of Cx(A), it must be that N < A,
so A is almost self-normalizing. Now our assumption that Cx (a) is finite for all a € A*
implies the second condition of [2, IV, Lemma 1.25], so A is generous.

We conclude that UgeG C&(T9) and UgeG A9 have a nontrivial intersection, so
C&(T9) N A # 1 for some g € G. Choose a nontrivial a € C&(T9) N A. Now, TY is a
connected group acting on the finite set Cx (a). As before, TY fixes Cx(a),soT9 < A. O

The previous lemma allows us to extend [22, Proposition 3.9] to Moufang sets for which
U need not be abelian. The proof uses the following basic, but absolutely essential, fact
about centralizers of involutions in groups of finite Morley rank.

Fact 4.2. (See [2, I, Lemma 10.5].) If a connected group of finite Morley rank has a
definable involutory automorphism o with finitely many fized points, then the group is
abelian and « is inversion.

Corollary 4.3 (Zassenhaus Moufang sets). If M(U, 1) is proper and Cy(h) is finite for
all h € H*, then M(U, 7) 2 M(F) for some algebraically closed field F.

Proof. Tt suffices to show that U is abelian and then appeal to [22, Proposition 3.9], by
way of Fact 2.1. By Lemma 4.1, H contains an involution, and this involution acts on
the connected group U with finitely many fixed-points. Hence, U is abelian. O

We will, on several occasions, make use of the following result about degenerate type
groups.

Fact 4.4. (See [3, Theorem 1].) A connected degenerate type group of finite Morley rank
has no involutions.

With this fact in hand, we now use Lemma 4.1 to expose another class of hereditarily
proper Moufang sets. Recall that we are only considering when the little projective group
has odd type.

Corollary 4.5. If U has no involutions, then M(U, 7) is hereditarily proper.

Proof. First, Lemma 4.1 forces M(U, 7) to be proper. Let V be an infinite definable root
subgroup of U. As G has odd type, the little projective group of the induced Moufang set
has odd or degenerate type, but the latter case is ruled out by Fact 4.4 and the observation
that 2-transitive groups of finite Morley rank contain involutions. Now assume that the
induced Moufang set is not proper. Then the root groups of the induced Moufang set
coincide with the 1-point stabilizers in the induced little projective group. By Lemma 4.1,
the roots groups of the induced Moufang set have odd type. However, the root groups
of the induced Moufang set are subgroups of the original root groups, and we have a
contradiction. 0O
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The next corollary of Lemma 4.1 shows that hereditarily proper Moufang sets (in odd
type) always have nontrivial projective root subgroups.

Corollary 4.6. If M(U, 1) is proper, then every minimal infinite definable oot subgroup
of U is either projective or induces a nonproper Moufang set.

Proof. Assume that M(U, 7) is proper. Let V' be a minimal infinite definable root sub-
group, and let M’ be the Moufang set induced by V. Suppose that M’ is proper. It is
not hard to see that Corollary 4.3 applies to M’, so M’ is projective. Indeed, towards
a contradiction, suppose that some nontrivial element in the Hua subgroup of M’ fixes
infinitely many points of V. Then there is an h € H such that Cy(h) is infinite and
properly contained in V. As the intersection of root subgroups is again a root subgroup,
Cy(h) =V NCy(h) is a root subgroup, and we have contradicted the minimality of V.
We conclude that M is projective. O

We end this section with a final corollary of Lemma 4.1 showing that the structure
of hereditarily proper Moufang sets in odd type resembles that of PSLy in characteristic
not 2. The result will be used often. Notice that the corollary also shows, in combination
with Corollary 4.5, that (in odd type) M(U, 7) is hereditarily proper if and only if U has

no involutions.

Corollary 4.7. If M(U, 1) is hereditarily proper, then H has odd type, and U contains no
decent torus and, hence, no involutions.

Proof. Assume that M(U, 1) is hereditarily proper, and let V' be any minimal infinite
definable root subgroup. By Corollary 4.6, V' is projective, and Proposition 3.4 now shows
that H(V') contains a 2-torus.

To see that U contains no decent torus, we argue by contradiction. Let M(U, 7) be
a counterexample for which U is of minimal rank among all such counterexamples. Let
T < U be a decent torus. We have already seen that H has odd type, so let S be
a decent torus of H. By the conjugacy of maximal decent tori in U x H (see [2, IV,
Proposition 1.15] for example), S centralizes some conjugate of T" which, of course, also
lies in U. Thus, W := Cy(S) contains a decent torus. Now, W induces a Moufang set of
finite Morley rank M’ that is infinite and hereditarily proper. Further, the little projective
group of M’ must contain infinite Sylow 2-subgroups and is isomorphic to a section of G,
so it must have odd type. Since U is connected, the rank of W is less than the rank of U,
and we have contradicted the minimality of our counterexample.

Finally, G has odd type, so it must be that the Sylow 2-subgroups of U are finite as U
contains no divisible torsion. Since U is connected, we conclude that U has trivial Sylow
2-subgroups by Fact 4.4. O
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5. P*-Moufang sets in odd type

We now refine our analysis of P*-Moufang sets for the odd type setting. Of course, the
goal, which is not achieved here, is to show that these Moufang sets are each isomorphic
to M(F') some algebraically closed field F'. We do however show that these Moufang sets
fall into one of two extreme cases. Specifically, this section will prove the following.

Theorem 5.1. Let M(U, ) be an infinite proper P*-Moufang set of finite Morley rank of
odd type. Then either

1. the root groups are abelian, or
2. the root groups are simple.

Further, if the root groups are simple, then the Hua subgroup H is nonnilpotent with
pro H = mo H = 2, and H leaves invariant at most one proper nontrivial definable
subgroup of U which, if it exists, is a root subgroup.

Regarding the notation, the Priifer 2-rank of a group A, denoted pr, A, is the maximal
n such that the group contains a subgroup isomorphic to (Z(2°°))" where Z(2%) :=
{zeC: 22" =1 for some k € N}. The (regular) 2-rank of a group A, denoted msy A, is the
maximal rank of all elementary abelian 2-subgroups of A. One always has pry A < mg A.
We carry the following setup throughout the section.

Setup. M(U, 7) is an infinite proper P*-Moufang set of finite Morley rank. Let G be the
little projective group, H the Hua subgroup, and X := U U {oo}. Further, assume that
G is of odd type.

5.1. The structure of H

We temporarily focus our attention on H. Our first proposition is extremely important
as, among other things, it ensures that H contains a Klein 4-group whenever U is not
abelian. This will allow us to repeatedly exploit the following fact.

Fact 5.2. (See [3, Proposition 9.1].) Let K be a group generated by two distinct commut-
ing involutions. If K acts definably on a group of finite Morley rank A that is without
involutions, then A = (Ca(z): x € K*).

Proposition 5.3. If U is not abelian, then pro H = my H = 2.

Proof. Assume U is not abelian. We first show that pro H > 2. Let ¢ be an involution
of H, and set V := Cy(i). Let Y := V U {oco}. As U is not abelian, V is infinite (see
Fact 4.2), and hence projective. Let T be the 2-torus of H(V'), and recall that T is central
in Ny (V). We consider two cases.
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First, assume that ¢ ¢ T. By [5, Theorem 3], i is contained in some 2-torus of H,
say S. As S centralizes i, S < Ny (V), so S commutes with T'. Since ¢ ¢ T, T and S are
distinct commuting 2-tori, so pry H > 2.

Now we treat the case when i € T. We first show that Ny (V) and Ng(Y) are con-
nected. Let d(T") be the definable hull of T'. Notice that Cy (d(T)) < Cu (i) < Nu(V) <
Cy(d(T)). Thus, Ng(V) = Cyx(d(T)), so [1, Theorem 1] shows that Ng(V) is con-
nected. By [16, Lemma 3.2(2)], Na(Y) = G(V) * Ny (V). Hence, Ng(Y') is generated by
connected groups and is therefore connected as well.

As G has finite Morley rank, there is some involution w in Gyg o} — H. Let D be
the definable hull of (iw). As D < G{g,oc}, % and w are not D-conjugate. By [2, I,
Lemma 2.20], there is an involution k& € D (different from ¢ and w) that commutes with
both i and w. If k € H, then we may apply [5, Theorem 3] to find a 2-torus of Ny (V)
containing k, hence different from T'. Thus, we are done unless k € Go,o0cy — H.

The situation is now that i € T, k € Go o} — H, and [i,k] = 1. Since Ng(Y) is
connected, Proposition 3.4 tells us that Ng(Y) = G(V) % C% (V). As k centralizes ¢,
k € Ng(Y), so k = gec for some g € G(V) and some ¢ € C% (V). Notice that our
assumption that ¢ € H(V)NCy (V) forces G(V) = SLo(F') for some algebraically closed
field F'. Since, g € G(V) N Gyo,0y and g ¢ H, g must have order 4. As k has order 2,
¢ # 1. Since g and ¢ commute, ¢ has order dividing 4, and we conclude that C¢ (V)
contains an involution. Thus, C% (V') contains a 2-torus by Fact 4.4, and pry H > 2.

In both cases, pry H > 2. We conclude by showing that me H < 3. Towards a con-
tradiction, suppose that H has an elementary abelian 2-subgroup K of order 8. Choose
distinct involutions a, b, ¢ € K such that ¢ ¢ (a, b). For each j € K, set V; = Cy(j). Now,
b and c act on V,. If b centralizes V,, then Corollary 3.6 forces V, = V},, and thus, Fact 5.2
implies that U = V,, a contradiction. Since b does not centralize V,, Proposition 3.4 tells
us that b inverts V,. Similarly, ¢ inverts V,. Thus, bc centralizes V,, so Corollary 3.6
implies that V, = V4. By assumption, a # bc, so we may apply Fact 5.2 to again arrive
at the contradiction that V, =U. 0O

We now give a couple of quick corollaries. The first will be refined below in Proposi-
tion 5.8.

Corollary 5.4. U has at most one infinite proper definable H-invariant root subgroup.

Proof. Assume that U contains distinct infinite proper definable H-invariant root sub-
groups V' and W. Notice that U is not abelian as otherwise Facts 2.1 and 2.2 would
imply that H acts irreducibly on U. Thus, pro H > 2. However, Proposition 3.8 says
that H = H(V) = H(W). Since H(V) is isomorphic to the multiplicative group of a
field, it must be that pro H =1. O

Corollary 5.5. H contains at most one central involution. In particular, if H is nilpotent,

MU, 7) =2 M(F) for F an algebraically closed field.
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Proof. Suppose that H contains two distinct central involutions, and let K be the group
they generate. Notice that Cy(z) is finite for at most one z € K*, as otherwise, two
distinct involutions of H would invert U implying that their product fixes U. Thus,
there are distinet x,y € K* such that Cy(z) and Cy(y) are infinite proper definable
H-invariant root subgroups. By Corollary 5.4, Cy(x) = Cy(y). But then the fixed-point
spaces of every x € K* coincide (using Corollary 3.6), which contradicts Fact 5.2. Thus,
H contains at most one central involution.

Now consider when H is nilpotent. We claim that every 2-torus of H is central.
Indeed, the torsion subgroup of H has a unique Sylow 2-subgroup (simply because H is
nilpotent), and the connected component of this Sylow 2-subgroup must be a (or rather
the) maximal 2-torus of H since H has odd type. As this maximal 2-torus is normal
in H, it is in fact central in H by [2, I, Corollary 5.25], so every 2-torus of H is central,
as claimed. Since H contains at most one central involution, Proposition 5.3 implies that
U is abelian, and the rest now follows from Fact 2.1 and [9]. O

5.2. The structure of U

We now work to limit the structure of U. We begin with a couple of lemmas.

Lemma 5.6. Suppose that V' is an infinite proper definable H-invariant root subgroup of
U. Let i be the unique involution of H(V). The following are true.

1. G(V) 2 SLy(F) for some algebraically closed field F.
2. Cy (V) contains a unique involution, namely i.
3. H(V) — (i) acts freely on U*.

Proof. By Facts 2.1 and 2.2, U is not abelian, so Cy (i) is infinite. By Lemma 3.7,
i is central in H, so Cy (i) is again an infinite proper definable H-invariant root sub-
group of U. By Corollary 5.4, it must be that V' = Cy(i), so i € H(V) N Cu(V).
Using Proposition 3.4, we find that G(V) = SLo(F) for some algebraically closed
field F.

Now let 5 be any involution in Cg (V'); we will show that ¢ = j. Suppose i # j, and set
K = (i,j). By Corollary 3.6, Cy(j) = V, but then Fact 5.2 implies that V' = U, which
is a contradiction.

Finally, suppose that some h € H(V') has a proper nontrivial fixed-point space. Then
Cy(h) is an H-invariant root subgroup of U. We claim that Cy(h) must be infinite.
Since U is not abelian, H has distinct commuting involutions. Thus, Fact 5.2, applied to
Cy(h), shows that Cy(h) N Cy (k) # 1 for some involution k& € H. Notice that Cy (k) is
infinite since U is not abelian. By Corollary 3.5, Cy(h) contains Cy (k). Thus, Cy(h) is
infinite, so Corollary 5.4 forces V = Cy(h). As i is the only nontrivial element of H (V)
fixing V, h=14. O
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We now make a Morley rank calculation important to our eventual proof that “U not
simple implies U abelian.”

Lemma 5.7. If U has an infinite proper definable H-invariant root subgroup, then rk U >
rk H.

Proof. Suppose that U has a proper definable H-invariant root subgroup V', and, towards
a contradiction, assume that rtk U < rk H. We will show that the Moufang set is special
which, by Fact 2.2, is a contradiction. We will use a local approach to showing that
M(U, 7) is special: M(U, 7) is special if and only if (—a)u, = a for all a € U*, see |7,
Lemma 7.1.4].

Let a € U* be arbitrary. Since rk U < rk H, Cy(a) is nontrivial. Let h be a nontrivial
element in Cy(a), and set W := Cy(h). By Lemma 3.7, H(V) is central in H, so H(V)
acts on W. Now Lemma 5.6(3) implies that W is infinite. By the P*-hypothesis, W is
projective, so (—a)p, =a. O

Fact 2.2 says that the Hua subgroup of a special Moufang set almost always acts
irreducibly on U. The next proposition says that in our setting, which does not assume
that the Moufang set is special, either H acts definably irreducibly on U or there is
exactly one proper nontrivial definable H-invariant subgroup of U. Further, in the latter
case, the exceptional subgroup is in fact a root subgroup.

Proposition 5.8. If A is a proper nontrivial definable H-invariant subgroup of U, then H
has a unique central involution i and A = Cy(4). In particular, A is a root subgroup, so
A is infinite, connected, and abelian.

Proof. First note that Facts 2.1 and 2.2 imply that U is not abelian. Let K be any
subgroup of H generated by two distinct commuting involutions. For each x € K* set
V. = Cy(z). As U is not abelian, each V, is infinite. By Corollary 3.5, it must be that
VenNA=0orV, < Afor each x € K*. Apply Fact 5.2 to A to see that V; < A for
some i € K*. Further, Fact 5.2 applied to U ensures that V; N A = 0 for some k € K*,
since A is proper. Let j be the remaining involution in K. We have that either A = V;
or A= (V;, V).

If A =V, then A is a root subgroup, and Lemma 5.6 tells us that ¢ € H(V;). By
Lemma 3.7, 7 is central in H and, hence, the unique central involution by Corollary 5.5.

We now work to rule out the possibility that A = (V;,V}). Towards a contradiction,
assume that A = (V;, V}). The first step is to show that A is connected and abelian. We
observed above that Vi, N A = 0, so it must be that V; NV, = 0. Since V; and V; are root
subgroups, and hence connected, Zil’ber’s Indecomposability Theorem implies that A is
connected. Further, k£ acts on the connected group A without nontrivial fixed points, so
A is inverted by k. Thus A = V; x V; is connected and abelian.
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Next, we show that H has an infinite center and acts faithfully and irreducibly on A.
By Corollary 3.6, Ca(V;) NCr(V;) =1, so H acts faithfully on A. As k inverts A, k is in
the center of H, so Vj, is H-invariant. Set V :=Vj, and T := H(V). By Lemma 3.7, T' <
Z(H). To see that H acts irreducibly on A, first notice that Fact 5.2 and Corollary 3.5
would force any proper nontrivial definable H-invariant subgroup of A to be equal to V;
or V;. This situation would violate Corollary 5.4, so H must act definably irreducibly
on A. Thus, H acts irreducibly on A by [2, I, Lemma 11.3].

We now appeal to [2, I, Proposition 4.11] to see that T generates an interpretable alge-
braically closed field F' in End(A), A is a vector space over F, and H embeds into GL(A).
Next, we show that A is 2-dimensional over F. Note that V; is a subspace of A; it is an
eigenspace of i. Now, H(V;) is abelian, so H (V;) normalizes some 1-dimensional subspace
of V;. Of course, H(V;) acts transitively on V;, so it must be that V; is 1-dimensional
over F'. The same argument works for Vj, so A is 2-dimensional.

By [14, Théoréme 4], H' is either solvable or equal to SLa(F). Note that H' < Cy (V)
and that Cy (V) must act freely on A by Corollary 3.6. In particular, Cy (V') contains no
unipotent elements, in the algebraic sense, so H' must be solvable. Thus, H is connected
and solvable, so it is contained in a Borel subgroup of GL(A). As such, H normalizes some
1-dimensional subspace of A contradicting the fact that H acts irreducibly on A. O

The following corollary completes the proof of Theorem 5.1; the proof will use a variant
of Fact 4.2.

Fact 5.9. (See [2, I, Lemma 10.4].) If a group of finite Morley rank that is without
involutions has a definable involutory automorphism «, then a inverts each element of
some transversal for Cg(a) in G.

Corollary 5.10. Either U is simple, or U is abelian.

Proof. Assume that U is not abelian. We first treat the case when U is definably charac-
teristically simple. Let F*(U) be the generalized Fitting subgroup of U. As the Fitting
subgroup must have a trivial center, U embeds into Aut(F*(U)). Thus, it cannot be that
F*(U) = 0, so F*(U) = U. Since U is not abelian, U equals the layer of U. As H is
connected, it acts trivially on the finite set of components of U, so each component is
H-invariant. By Proposition 5.8, there cannot be more than one component. Thus, U is
quasisimple, but then it must be that U is simple.

To complete the proof, we show that U must be definably characteristically simple.
Suppose not, and let V' be a proper nontrivial definable characteristic subgroup of U.
Then H has a unique central involution k, and V' = Cy (k). By Fact 5.9, there is a
transversal for U/V consisting of elements inverted by k, so k inverts U/V. Also, U/V
is connected since U is connected.

We now derive a contradiction in much the same way as in Proposition 5.8 except
that we now must work with the quotient U/V. Set T := H(V'). Then, H =T % C (V)
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with T < Z(H). Let K be the group generated by k and any other involution of H
(using Proposition 5.3). Choose i € K — (k), and set j = ik. Also, let V; = Cy(i)
and V; = Cy(j). Observe that V; and V; are each different from V' and T-invariant, so
Corollary 3.5 shows that both intersect V trivially. Thus they embed into U/V.

We use bar notation to denote passage to the quotient U := U/V. Set M := Cy(U);
we also use bar notation for the quotient H := H/M. Recall that U is abelian. Now,
by Fact 5.2, U =V - ‘73 Since ¢ fixes V; and inverts Vj, it must be that Vin Vj is
trivial as otherwise U, and hence U, would have involutions, see |2, I, Proposition 2.18].
Thus, U = V; x ‘7J As Proposition 5.8 implies that V is the only proper nontrivial
definable H-invariant subgroup of U, H must act definably irreducibly on A. Thus,
H acts irreducibly on A by [2, I, Lemma 11.3]. Also, T acts freely on V;, so T embeds
into H. Thus, T generates an interpretable algebraically closed field F' in End(U), and
H embeds into GL(U). Further, we find, as in Proposition 5.8, that U is 2-dimensional
over F'.

We now show that H is solvable, and here the approach differs slightly from the proof
of Proposition 5.8. By [14, Théoreme 4|, H' = H is either solvable or equal to SLo(F).
We claim that H’ cannot be SLa(F) because it is too small. First recall that H < Cy (V).
Now, let f be the rank of F. By Lemma 5.7, tk H < rkU. Now, tk H =tk T +rk Cy (V)
and tk U = rk V +2f. Since rk T = rk V, we have that tk C; (V) < 2f. Thus rk H' < 2f,
so H' cannot be SLy(F). Thus, H is solvable. As in the proof of Proposition 5.8, this
yields a contradiction. O

6. Proofs of the main theorems

The main theorems follow rather quickly from Theorem 5.1.

Proof of Theorem A. Suppose that Theorem A is false, and let M = M(U,7) be a
counterexample. By Lemma 3.3, there is an infinite definable root subgroup V < U
that induces a proper P*-Moufang set M’ that is also not projective. However, the
induced Moufang set also satisfies the hypotheses of the theorem, and this contradicts
Theorem 5.1 or, more specifically, Corollary 5.5. O

For the proof of Theorem B, we begin with a lemma.

Lemma 6.1. Let M be an infinite hereditarily proper Moufang set of finite Morley rank
of odd type. Assume that the Hua subgroups are L-groups. Then either of the following
imply that M(U, 7) 2 M(F) for F an algebraically closed field:

1. the root groups are solvable, or
2. the Hua subgroup has Priifer 2-rank at most 1.
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Proof. Suppose that the lemma is false. Let M = M(U, 7) be a nonprojective Moufang
set satisfying the hypotheses of the lemma and one of the final two conditions. As be-
fore, we may use Lemma 3.3 to find an infinite definable root subgroup V < U that
induces a proper P*-Moufang set M’ that is not projective. The induced Moufang set
also satisfies the hypotheses of the lemma and one of the final two conditions, so The-
orem 5.1 implies that V is abelian. By Fact 2.1, M’ is also special. Now we may appeal
to [9, Theorem 2.1] when V is torsion free and [22, Theorem 3.1] when V' is elementary
abelian, the latter requiring the L-hypothesis, to see that M’ is projective, which is a
contradiction. O

Proof of Theorem B. Suppose that the theorem is false. By the previous lemma, there
must exist an infinite hereditarily proper Moufang set of finite Morley rank of odd type
whose Hua subgroups are L-groups and whose root groups are not solvable but also not
simple. Let M = M(U, 7) be a Moufang set satisfying these hypotheses whose root groups
have minimal rank among all such Moufang sets. Notice that the previous lemma also
implies that the Hua subgroup, H, has distinct commuting involutions ¢ and j. In what
follows, note that we are not in a P*-setting. However, we do know, by Corollary 4.7,
that U has no involutions.

We first claim that U has a proper nontrivial definable normal subgroup that is
H-invariant. If not, we would find that U is equal to its generalized Fitting subgroup.
Then, as U and H are connected, each component of U would be normalized by U and H,
and we would find that U is quasisimple, and hence simple. This would contradict the
nonsimplicity of the root groups, so it must be that U has a proper nontrivial definable
normal H-invariant subgroup A.

Let K := (i,j). For each z € K*, set V, := Cy(x). We now claim that for each
xr € K* either V, N A is trivial or equal to V.. Towards a contradiction assume that
A, :=V,N A is a proper nontrivial subgroup of V.. Let M, be the Moufang set induced
by V.. Then M, is also an infinite hereditarily proper Moufang set of finite Morley
rank of odd type whose Hua subgroups are L-groups. Further, A, is normalized by the
induced Hua subgroup, so M, is certainly not projective. By the previous lemma, V,
is not solvable, and the presence of A, shows that V, is not simple. We conclude that
M, violates the minimality of M, so it must be that V, N A is either trivial or all of V.
Further, we can use this observation to see that V, < A for some z € K*. Indeed, if V;
and Vj intersect A trivially, then both ¢ and j invert A, so in this case, k = ij would
centralize A. Thus, V, N A is nontrivial for some x € K*, so V,, < A for some z € K*.
Fix z € K* with V, < A.

Now, if A is finite, then z acts on the connected group U with finitely many fixed
points, so z inverts U. This is a contradiction, so A must be infinite. Since V, < A,
we find that x inverts U/A by Fact 5.9, so U/A is abelian. We now show that A is also
abelian. Applying Fact 5.2 to U it must be that V, is not contained in A for some y € K*.
As before, this means that V,, N A is trivial, so we may again use Fact 5.9 to see that y
inverts A. Thus, A is abelian, and this contradicts the nonsolvability of U. 0O



498 J. Wiscons / Journal of Algebra 402 (2014) 479-498

Acknowledgments

The author would like to thank Katrin Tent and Tuna Altinel for several valuable
suggestions and comments that led to a refinement of both the content and the presen-
tation of the paper. The author is also quite grateful to the referee for a very careful
reading of the article and many helpful recommendations.

References

[1] Altinel Tuna, Jeffrey Burdges, On analogies between algebraic groups and groups of finite Morley
rank, J. Lond. Math. Soc. (2) 78 (1) (2008) 213-232.

[2] Tuna Altinel, Alexandre V. Borovik, Gregory Cherlin, Simple Groups of Finite Morley Rank, Math.
Surveys Monogr., vol. 145, American Mathematical Society, Providence, RI, 2008.

[3] Alexandre Borovik, Jeffrey Burdges, Gregory Cherlin, Involutions in groups of finite Morley rank
of degenerate type, Selecta Math. (N.S.) 13 (1) (2007) 1-22.

[4] Alexandre Borovik, Gregory Cherlin, Permutation groups of finite Morley rank, in: Model Theory
with Applications to Algebra and Analysis, vol. 2, in: London Math. Soc. Lecture Note Ser., vol. 350,
Cambridge Univ. Press, Cambridge, 2008, pp. 59-124.

[5] Jeffrey Burdges, Gregory Cherlin, Semisimple torsion in groups of finite Morley rank, J. Math. Log.
9 (2) (2009) 183-200.

[6] Alexandre Borovik, Ali Nesin, Groups of Finite Morley Rank, Oxford Logic Guides, vol. 26, The
Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications.

[7] Tom De Medts, Yoav Segev, A course on Moufang sets, Innov. Incidence Geom. 9 (2009) 79-122.

[8] Tom De Medts, Yoav Segev, Katrin Tent, Special Moufang sets, their root groups and their py-maps,
Proc. Lond. Math. Soc. (3) 96 (3) (2008) 767-791.

[9] Tom De Medts, Katrin Tent, Special abelian Moufang sets of finite Morley rank, J. Group Theory
11 (5) (2008) 645-655.

[10] Tom De Medts, Richard M. Weiss, Moufang sets and Jordan division algebras, Math. Ann. 335 (2)
(2006) 415-433.

[11] Christoph Hering, William M. Kantor, Gary M. Seitz, Finite groups with a split BN-pair of rank 1. I,
J. Algebra 20 (1972) 435-475.

[12] Linus Kramer, Katrin Tent, Hendrik Van Maldeghem, Simple groups of finite Morley rank and Tits
buildings, Israel J. Math. 109 (1999) 189-224.

[13] Bruno Poizat, Groupes stables. Une tentative de conciliation entre la géométrie algébrique et la
logique mathématique (An attempt at reconciling algebraic geometry and mathematical logic), Nur
al-Mantiq wal-Ma'rifah (Light of Logic and Knowledge), vol. 2, Bruno Poizat, Lyon, 1987.

[14] Bruno Poizat, Quelques modestes remarques & propos d’une conséquence inattendue d’un résultat
surprenant de Monsieur Frank Olaf Wagner, J. Symbolic Logic 66 (4) (2001) 1637-1646.

[15] Gopal Prasad, Weakly-split spherical Tits systems in quasi-reductive groups, Amer. J. Math. (2012),
Accepted for publication.

[16] Yoav Segev, Finite special Moufang sets of odd characteristic, Commun. Contemp. Math. 10 (3)
(2008) 455-475.

[17] Yoav Segev, Proper Moufang sets with abelian root groups are special, J. Amer. Math. Soc. 22 (3)
(2009) 889-908.

[18] Yoav Segev, Richard M. Weiss, On the action of the Hua subgroups in special Moufang sets, Math.
Proc. Cambridge Philos. Soc. 144 (1) (2008) 77-84.

[19] Katrin Tent, BN-pairs and groups of finite Morley rank, in: Tits Buildings and the Model Theory
of Groups, Wiirzburg, 2000, in: London Math. Soc. Lecture Note Ser., vol. 291, Cambridge Univ.
Press, Cambridge, 2002, pp. 173-183.

[20] Jacques Tits, Twin buildings and groups of Kac-Moody type, in: Groups, Combinatorics & Geom-
etry, Durham, 1990, in: London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press,
Cambridge, 1992, pp. 249-286.

[21] Josh Wiscons, Special abelian Moufang sets of finite Morley rank in characteristic 2, J. Group
Theory 13 (1) (2010) 71-82.

[22] Josh Wiscons, On groups of finite Morley rank with a split BN-pair of rank 1, J. Algebra 330 (1)
(2011) 431-447.


http://refhub.elsevier.com/S0021-8693(14)00021-0/bib416C42753038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib416C42753038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4142433038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4142433038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4242433037s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4242433037s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib426F43683038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib426F43683038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib426F43683038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib427543683038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib427543683038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib426F4E653934s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib426F4E653934s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib444D6553653039s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4453543038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4453543038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib444D6554653038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib444D6554653038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib444D6557653036s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib444D6557653036s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib484B533732s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib484B533732s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4B54564D3939s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib4B54564D3939s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib506F423837s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib506F423837s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib506F423837s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib506F42303161s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib506F42303161s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib5072473131s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib5072473131s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib5365593038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib5365593038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib5365593039s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib5365593039s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib536557653038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib536557653038s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib54654B3032s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib54654B3032s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib54654B3032s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib54694A3932s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib54694A3932s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib54694A3932s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib57694A3130s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib57694A3130s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib57694A3131s1
http://refhub.elsevier.com/S0021-8693(14)00021-0/bib57694A3131s1

	Moufang sets of ﬁnite Morley rank of odd type
	1 Introduction
	2 Moufang sets
	2.1 Root subgroups

	3  P* -Moufang sets
	3.1 Projective root subgroups
	3.2 H-invariant projective root subgroups

	4 When G has odd type
	5  P* -Moufang sets in odd type
	5.1 The structure of H
	5.2 The structure of U

	6 Proofs of the main theorems
	Acknowledgments
	References


