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GROUPS OFMORLEY RANK 4

JOSHUAWISCONS

Abstract. We show that any simple group of Morley rank 4 must be a bad group with no proper
definable subgroups of rank larger than 1. We also give an application to groups acting on sets of Morley
rank 2.

§1. Introduction. This note investigates the structure of groups of Morley rank
4; in what follows, rank always refers to Morley rank. Our motivation is two-fold.
On one hand, a “classification” of groups of rank 4 has direct applications to
groups acting on sets of small rank. This was our initial point of view, and it is
responsible for our inclusion of Corollary B. More precisely, we are interested in
applying knowledge of groups of rank 4 to the exploration of generically sharply
n-transitive actions on sets of rank 2. An effort to understand these actions was
initiated by Gropp in [10], and their consideration sits inside of a larger project,
started by Borovik and Cherlin [4], to find a natural bound on the degree of generic
transitivity for definably primitive permutation groups of finite Morley rank that
depends only on the rank of the set being acted upon.
Our other reason for studying groups of rank 4 is to add ever-so-slightly to the
evidence that the Algebraicity Conjecture may hold for groups with involutions.
The Algebraicity Conjecture posits that every infinite simple group of finite Morley
rank is isomorphic to an algebraic group over an algebraically closed field, but the
unresolved possibility of a so-called “bad group” of rank 3 leaves the conjecture on
shaky ground.However, it is known that any simple group of rank atmost 3 that has
an involution is indeed algebraic, andourmain result extends this to rank 4. But, with
regards to the Algebraicity Conjecture, it is not so much our main result, but rather
the method of proof, that is important. The method, which exploits the geometry of
involutions in a potential counterexample, has previously illuminated various other
difficult configurations, e.g. the structure of bad groups and the structure of sharply
2-transitive groups, and as such, our work on this problem seems to suggest that
a study of this geometry may be useful in advancing the general theory of groups
with low Prüfer 2-rank.
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66 JOSHUAWISCONS

Theorem A. Any simple group of Morley rank 4 is a bad group with no proper
definable subgroups of rank larger than 1. In particular, there are no simple groups of
Morley rank 4 with involutions.

We stress that the proof of Theorem A is relatively elementary with the main
tool being Hrushovski’s characterization of groups acting transitively on strongly
minimal sets. Although we do employ a handful of other not so trivial results
(see Section 2 for example), we do not use the classification of the even and
mixed type simple groups nor do we use the theory of minimal simple groups,
e.g. [8, Théorème-Synthèse].
Our approach is as follows. Let G be a simple group of Morley rank 4. By
Fact 2.2, a proper definable connected subgroup B < G has rank at most 2, and
we “only” need to show that rkB = 2 gives rise to a contradiction. If such a B
exists, then the action of G on the right cosets of B is virtually definably primitive,
and we use this to prove that, for an appropriate choice of B, the action is quite
close to being sharply 2-transitive, see the remarks preceding Lemma 4.7. We will
have seen that B contains involutions, so in the case that the action is honestly
sharply 2-transitive, [5, Proposition 11.71] implies thatB has a normal complement,
contradicting the simplicity ofG . When sharp 2-transitivity is out of reach, it is only
barely out of reach, and we exploit a similar geometrical approach as in the proof of
[5, Proposition 11.71].
Theorem A yields the following corollary delineating the structure of groups of
rank 4 according to the rank of their Fitting subgroup. The Fitting subgroup of a
groupG is the subgroup F (G) generated by all normal nilpotent subgroups. Recall
that a group is said to be quasisimple if it is perfect, andmodulo its center, it is simple.
Also, for a group G , we write G = A ∗B if A and B are commuting subgroups that
generate G , i.e., G is the central product of A and B.

CorollaryA. Let G be a connected group of Morley rank 4.

1. If rkF (G) ≥ 2, then G is solvable.
2. If rkF (G) = 1, then either
(a) G is a quasisimple bad group, or
(b) G = F (G) ∗Q for some quasisimple subgroupQ of rank 3.

3. If rkF (G) = 0, then either
(a) G is a quasisimple bad group, or
(b) G has a normal quasisimple bad subgroup of rank 3.

In particular, rkF (G) ≥ 1 whenever G has an involution.

Finally, we give an application to groups of rank 4 with a generically 2-transitive
action on a set of rank 2; we show that such groups are either solvable or “approxi-
mately” GL2. A definable action of a group of finite Morley rank G on a definable
set X is said to be generically n-transitive if G has an orbit O on Xn such that the
rank of Xn −O is strictly less than the rank of Xn.

Corollary B. If G is a connected nonsolvable group of Morley rank 4 acting
faithfully, definably, transitively, and generically 2-transitively on a definable set of
rank 2, then there is an algebraically closed field K for which G = Z(G) · Q with
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Z(G) ∼= K× and Q ∼= (P)SL2(K). Additionally, the action of Q/Z(Q) on the
Z(G)-orbits is equivalent to (P1(K),PSL2(K)).

§2. Preliminaries. We collect some background results for our analysis; the
general theory of groups of finite Morley rank can be found in [1], [5], and [11].

2.1. Groups of small rank.

Definition 2.1. We call (X,G) a permutation group if G is a group acting faith-
fully on the set X , and we say that (X,G) has finite Morley rank if G , X , and the
action of G on X are all definable in some ambient structure of finite Morley rank.

Fact 2.2 (Hrushovski, see [5, Theorem 11.98]). Let (X,G) be a transitive per-
mutation group of finite Morley rank with X of rank 1 and (Morley) degree 1.
Then rkG ≤ 3, and if rkG > 1, there is an interpretable algebraically closed field K
such that either
1. (X,G) is equivalent to (K,AGL1(K)), or
2. (X,G) is equivalent to (P1(K),PSL2(K)).
Next, we gather some information about groups of rank 2. It should be noted
that our definition of a unipotent group is rather coarse and not standard, but in
the case of low Morley rank, it will suffice.

Definition 2.3. Let G be a group of finite Morley rank. Then
1. G is called a decent torus if G is divisible, abelian, and equal to the definable
hull of its torsion subgroup, and

2. G is said to be unipotent if G is connected, nilpotent, and does not contain a
nontrivial decent torus.

Fact 2.4 ([7]). Let B be a connected group of rank 2. Then B is solvable. If B
is nilpotent and nonabelian, then B has exponent p or p2 for some prime p. If B is
nonnilpotent, then
1. B = B ′ ! T with T a decent torus containing Z(B),
2. B/Z(B) ∼= K+ !K× for some algebraically closed field K , and
3. every automorphism of B of finite order is inner.
We now collect some easy consequences of the previous fact.
Lemma 2.5. If B is a connected group of rank 2, then any one of the following
implies that B is abelian:
1. B normalizes a nontrivial decent torus,
2. B contains two distinct unipotent subgroups of rank 1, or
3. B is nilpotent and contains two distinct definable connected subgroups of rank 1.
Proof. The first item follows immediately from the previous fact. For the third
point, assume that B is nilpotent and contains two distinct definable connected
subgroups each of rank 1. By the “Normalizer Condition” for nilpotent groups of
finite Morley rank, see [1, I, Proposition 5.3], both subgroups must be normal in
B, and hence, both have an infinite intersection with Z(B), see [1, I, Lemma 5.1].
Thus Z(B) = B. This establishes the third point, and the second now follows since
the hypothesis implies, upon invoking Fact 2.4, that B is nilpotent. &
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We will say a little more about nonnilpotent groups of rank 2 for which we need
a lemma (and its corollary). This is certainly well-known.
Lemma 2.6. If D is a divisible abelian group and A is a finite subgroup, then
D ∼= D/A.
Proof. The critical case is when D ∼= Zp∞ for some prime p. In this case, if A
has order m, then A is the unique subgroup of D of order m, so A is the kernel of
the map D → D : x (→ xm. By divisibility, the map is surjective, so in this case,
D ∼= D/A.
Now, the general case easily reduces to the case of A cyclic of prime power order,
so assume that A = 〈a〉 with a a p-element for some prime p. By the divisibility
of D, a is contained in a subgroup T that is isomorphic to Zp∞ . As T is divisible
and D is abelian, it is well-known that T has a complement H in D. Now we have
that D/A ∼= (T ×H )/(A × 1) ∼= T/A ×H , and as we have already observed that
T/A ∼= T , we are done. &
Corollary 2.7. If G is a connected group of finite Morley rank and N is a finite
normal subgroup for which G/N ∼= K× with K a field, then G ∼= K×.
Proof. This follows directly from the previous lemma since the hypotheses,
together with [1, I, Lemma 3.8], imply that G is divisible abelian. &
Lemma 2.8. Let B be a nonnilpotent connected group of rank 2. Set n := |Z(B)|.
Then Z(B) contains all elements of B of order dividing n, so Z(B) is the unique
subgroup of B of cardinality n.
Proof. Set Z := Z(B). By Fact 2.4, B is solvable, and Z is finite. Further,
B = B ′ ! T with T a decent torus containing Z, and B/Z ∼= K+ ! K× for some
algebraically closed field K . By the previous corollary, T ∼= K×, so T contains a
unique subgroup of order m for every m dividing n. Further, as B ′ ∼= K+, we see
that B ′ has no nontrivial elements of order dividing n.
Now, let g ∈ B be of orderm withm dividing n. AsT contains a unique subgroup
of order m, we find that the image of g in B/B ′ lies in the image of Z. Thus, we
may write g = uz for some u ∈ B ′ and some z ∈ Z. Now, 1 = gm = umzm, so
um ∈ B ′ ∩ Z. Hence, um = 1, so our previous observation implies that u = 1 and
g ∈ Z. &

2.2. Tori. Here we simply quote a pair of general facts about tori.
Fact 2.9 ([2, Theorem 1], [9, Corollary 2.12]). IfT is a decent torus in a connected
group of finite Morley rank, then C (T ) is connected.
Fact 2.10 ([6, Theorem 3]). Let p be a prime, and assume that G is a group of
finite Morley rank with no infinite elementary abelian p-group. Then every p-element
of G lies in a decent torus.

2.3. Strongly real elements. We end this section with the Brauer-Fowler Theorem
for groups of finite Morley rank.

Definition 2.11. An element of a group is said to be strongly real if it is the
product of two involutions.

Note that an element r is strongly real if and only if it is inverted by some
involution that is not equal to r.
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Fact 2.12 ([5, Theorem 10.3]). For every involution i of a group of finite Morley
rank G there is a nontrivial strongly real element r for which

rkG ≤ rkC (r) + 2 · rkC (i).

§3. Some permutation group theory. As mentioned in the introduction, Theo-
rem A reduces to a study of virtually definably primitive permutation groups with
connected point stabilizers of rank 2. The focus of this section is the case of abelian
point stabilizers; this is addressed by Proposition 3.8. We then conclude the section
with some analogs of Proposition 3.8 for the nonabelian case.

3.1. Primitivity. We begin by recalling the essential definitions. For more infor-
mation on the various notions of primitivity, we refer to [4].

Definition 3.1. Assume that a groupG , a setX , and an action ofG onX are all
definable in some ambient structure. We say that the action is definably primitive
if every definable (with respect to the ambient structure) G-invariant equivalence
relation is either trivial or universal; where as, we call the action virtually definably
primitive if every definable G-invariant equivalence relation either has finite classes
or finitely many classes.

As with the usual notion of primitivity, the above two analogs can be described
in terms of subgroups of G .

Fact 3.2 ([4, Lemma 1.13]). Let (X,G) be a transitive permutation group
definable in some ambient structure, and fix x ∈ X . Then
1. (X,G) is definably primitive if and only if Gx is a maximal definable subgroup
of G , and

2. (X,G) is virtually definably primitive if and only if for every definable subgroup
H with G ≥ H ≥ Gx either |G : H | or |H : Gx | is finite.

A quotient of a permutation group (X,G) is any permutation group of the form
(X/∼, G/K) with ∼ a G-invariant equivalence relation on X and K the kernel of
the (induced) action of G on X/∼. We often also refer to X/∼ together with the
(not necessarily faithful) action of G as a quotient of (X,G), which is more-or-less
harmless. An important observation to make is that every transitive permutation
group of finite Morley rank has a virtually definably primitive quotient, which
corresponds to a proper definable subgroup of maximal rank containing a point
stabilizer. The following fact says that we can often find a quotient that is in fact
definably primitive.

Fact 3.3 ([4, Lemma 1.18]). Let (X,G) be a transitive and virtually definably
primitive permutation group of finite Morley rank with infinite point stabilizers.
Then (X,G) has a nontrivial (but not necessarily faithful ) definably primitive quotient.
We now collect a handful of remarks on definably primitive groups.

Lemma 3.4. Assume that (X,G) is a definably primitive permutation group.
Let x, y ∈ X be distinct, and assume that Gx .= 1. Then
1. Gx .= Gy , and
2. Z(Gx) ∩Z(Gy) = 1.
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Further, if (X,G) has finite Morley rank and G◦
x .= 1, then G◦

x .= G◦
y , so in this case,

Gx has a unique orbit of rank 0, namely {x}.
Proof. Notice that “a ∼ b if and only if Ga = Gb” is a definable equivalence
relation onX . Thus, definable primitivity and nontrivial point stabilizers imply that
point stabilizers must be pairwise distinct.
To see thatZ(Gx)∩Z(Gy ) = 1, recall that definable primitivity implies that point
stabilizers are maximal proper definable subgroups. Thus, if g ∈ Z(Gx) ∩ Z(Gy),
then C (g) ≥ 〈Gx,Gy〉, so g ∈ Z(G). Since g fixes a point and G is transitive on
X , we find that g = 1. Similarly, if G has finite Morley rank and G◦

x = G◦
y , then

N(G◦
x ) ≥ 〈Gx,Gy〉, so G◦

x is normal in G . This forces G◦
x = 1. &

3.2. Generically regular subgroups. This subsection is devoted solely to the
following rather general (and rather useful) connectedness lemma.
Lemma 3.5. Assume that (X,G) is a transitive permutation group of finite Morley
rank with G connected. If some definable subgroup of G has a regular and generic
orbit on X , then all 1-point stabilizers of G are connected.
Proof. Assume thatH is a definable subgroup with a regular and generic orbit,
and choose x in the orbit. Set A := GxH . Now, A is a definable set, and since
Gx ∩H = 1, every element of A has unique representation as gh with g ∈ Gx and
h ∈ H . Thus, there is a definable bijection between A and Gx ×H . Further, as the
orbit of H on x is generic, we find that rkH = rkG − rkGx . Thus, A is generic in
G , and since G is connected, it must be that Gx is connected as well. &

3.3. Abelian point stabilizers. The goal of this subsection is to show that virtually
definably primitive actions with sufficiently large abelian point stabilizers are of one
flavor; this is Proposition 3.8. The result is not surprising, but there are a handful of
details to address. We begin with a slight generalization of a well know result about
2-transitive groups.
Lemma 3.6. If (X,G) is an infinite definably primitive and generically 2-transitive
permutation group of finite Morley rank with abelian point stabilizers, then (X,G) ∼=
(K,AGL1(K)) for some algebraically closed field K .
Proof. Let x ∈ X . By Lemma 3.4, Gx acts freely on X − {x}. Thus, every orbit
of Gx on X − {x} has the same rank, so generic 2-transitivity implies that Gx is
transitive on X − {x}. Hence, (X,G) is sharply 2-transitive, so (X,G) is equivalent
to (K,AGL1(K)) for some algebraically closed field K ; see [5, Proposition 11.61]
for example. &
The next lemma provides a connectedness result essential for our proof of
Proposition 3.8.
Lemma 3.7. Let (X,G) be an infinite transitive and generically n-transitive per-
mutation group of finite Morley rank with n ≥ 2. If (x1, . . . , xn) is in the generic
orbit of G on Xn and H := Gx1,...,xn−1 is abelian-by-finite, then G is centerless, and
C (H ◦) = H ◦. If, additionally, G is connected, then Gx1,...,xk is connected for every
k < n.
Proof. First note that generic 2-transitivity implies that X has degree 1, see
[4, Lemma 1.8(3)]. Let O be the generic orbit of H on X . By [4, Lemma 1.6],
N(O) acts faithfully on O. Now, O is connected, so H ◦ acts transitively on O.
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Thus, C (H ◦), which by assumption includes H ◦, acts regularly on O, and we
find that C (H ◦) = H ◦. Consequently, Z(G) ≤ H , so faithfulness implies that
Z(G) = 1.
Now assume thatG is connected. SinceH ◦ acts regularly onO, Lemma 3.5 shows
thatGx1 is connected. Clearly we can iterate this argument, usingH

◦ at each stage,
to see that Gx1,...,xk is connected for every k < n. &
We can now generalize Lemma 3.6 to the virtually definably primitive setting;
here we replace the generically 2-transitive assumption with a condition on the rank
of a point stabilizer.
Proposition 3.8. Let (X,G) be an infinite transitive and virtually definably prim-
itive permutation group of finite Morley rank with abelian point stabilizers. If G
is connected and the point stabilizers have rank at least that of X , then (X,G) ∼=
(K,AGL1(K)) for some algebraically closed field K .
Proof. Let (X,G) satisfy the hypotheses of the proposition, and note that this
implies thatX is connected. We first claim that the action is generically 2-transitive.
Fix x ∈ X . Since the point stabilizers are infinite, there is some y ∈ X that is not
fixed by G◦

x . In light of the fact that X is connected, the claim will follow from the
observation that Gx ∩Gy = 1. Indeed, if h ∈ Gx ∩ Gy , then 〈Gx,Gy〉 ≤ C (h), and
as G◦

x .= G◦
y , this shows thatC (h) has infinite index over Gx . By virtually definably

primitivity and the connectedness of G , we find that C (h) = G , so as h fixes a
point, h = 1.
Now by Fact 3.3, (X,G) has a definably primitive quotient (X,G) with finite
classes. LetM be the kernel of the action ofG onX . Since the classes in the quotient
are finite,M◦ fixes all ofX , soM is finite. Recalling thatG is connected, we find that
M is central, so the previous lemma shows us that in fact M = 1. Further, since
(X,G) is generically 2-transitive, (X,G) is as well, and the connectedness result
from the previous lemma implies that the point stabilizers from (X,G) and (X,G)
coincide, i.e., the classes in the quotient have cardinality 1. Thus, (X,G) is definably
primitive and generically 2-transitive with abelian point stabilizers. Lemma 3.6
applies. &
Corollary 3.9. Let G be a simple group of finite Morley rank and A < G a
maximal definable connected subgroup. If A is abelian, then 2 · rkA < rkG .

3.4. Groups acting on sets of rank 2. Here, in the context of groups acting on sets
of rank 2, we give a couple of approximations to Proposition 3.8 for actions with
nonabelian point stabilizers. The relevant result for the sequel is Corollary 3.12.
Lemma 3.10. Let (X,G) be a transitive and virtually definably primitive permuta-
tion group of finite Morley rank whose point stabilizers are connected and nilpotent.
Assume rkX = 2. IfG is connected and the point stabilizers have rank at least 2, then
any definably primitive quotient of (X,G) is 2-transitive.
Proof. Fix x ∈ X . First, we show thatGx has no rank 1 orbits on X . From this,
the lemma follows quickly. Towards a contradiction, assume thatO is a rank 1 orbit
of Gx , and let A be the kernel of the action of Gx onO. As Gx is nilpotent, Fact 2.2
implies that rkGx − rkA = 1. Thus, for every y ∈ O, A has corank 1 in Gy , so the
Normalizer Condition, together with the assumption that Gy is connected, shows
that A is normal in Gy . As Gx .= Gy , virtual definably primitivity implies that A is
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normal in G . This is a contradiction, so Gx has no rank 1 orbits on X . Thus, the
only obstacle to (X,G) being 2-transitive is the possibility that Gx fixes more that
just x, but we can remove this obstacle by passing to a definably primitive quotient.
Let (X,G) be a definably primitive (but possibly not faithful) quotient of (X,G).
Let x be the image of x in X . By Lemma 3.4, Gx , has no orbit of rank 0 other
than {x}. Now, if Gx has an orbit of rank 1 on X , then G◦

x = Gx would as well.
As the classes in the quotient are finite, this would imply that Gx acts nontrivially
on a rank 1 subset of X , and this in turn would imply that Gx has a rank 1 orbit
on X . This contradicts our work above, so Gx must have no orbits of rank 1.
Now, the connectedness of G implies that X has degree 1, so Gx acts transitively
on X − {x}. &
Lemma 3.11. Let (X,G) be a transitive and virtually definably primitive permuta-
tion group of finite Morley rank whose point stabilizers are connected and possess a
nontrivial center. Assume rkX = 2. If G is connected and the point stabilizers have
rank 2, then any definably primitive quotient of (X,G) is 2-transitive.
Proof. By theprevious lemma,wemay assume thatGx is not nilpotent.As before,
we first show that Gx has no orbits of rank 1. Indeed, assume that O is a rank 1
orbit, and let A be the kernel of the action of Gx on O. Since Z(Gx) .= 1, Fact 2.2
implies that A is nontrivial. Fix y ∈ O.
Now, if A has rank 1, then Lemma 2.5 implies that A◦ is unipotent. Of course
A◦ ≤ Gy , so Lemma 2.5 also tells us that A◦ is normal in Gy . Thus, N(A◦) ≥
〈Gx,Gy〉, so A◦ is normal in G . This is a contradiction.
Thus, A is finite. Hence, A is central in Gx , and Fact 2.2 implies thatZ(Gx) = A.
By Lemma 2.8, A is the unique subgroup of Gx of cardinality n := |A|. But then,
A is also the unique subgroup of Gy of cardinality n, so A is the center of Gy as
well. We conclude that A is central in G , which is again a contradiction. Thus, Gx
has no rank 1 orbits, and the rest follows as in the proof of the preceding lemma. &
Corollary 3.12. Let G be a simple group of rank 4 and B < G a definable
connected subgroup of rank 2. If B has a nontrivial center, then the action of G on the
coset space N(B)\G by right multiplication is 2-transitive.
Proof. Since G is simple, Fact 2.2 implies that G has no definable subgroups of
rank 3. Thus, B is a maximal definable connected subgroup of G , so the previous
lemma applies toG acting on the coset spaceB\G . It remains to observe thatN(B)
is a maximal definable subgroup of G , so the action of G on N(B)\G is definably
primitive. &

§4. Simple groups of rank 4. We now take up the proof of Theorem A. For the
remainder of this section, G denotes a simple group of rank 4 for which there is
some definable subgroup of rank 2.

Setup for Section 4. Let G be a simple group of rank 4, and assume thatG has
a definable subgroup of rank 2.

4.1. General remarks. The simplicity of G implies that G has no definable
subgroups of rank 3, so Corollary 3.9 yields the following important fact.

Remark 4.1. A definable abelian subgroup of G has rank at most 1.
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We now comment on tori in G . Certainly more could be said, specifically in
regards to the Weyl group, but the following will suffice for our purposes.

Lemma 4.2. If T is a maximal decent torus of G , then T is self-centralizing
and contained in some nonnilpotent Borel subgroup. Further, T ∼= K× for some
algebraically closed field K .

Proof. The main point is that G must contain some nonnilpotent subgroup
of rank 2. Indeed, if every connected rank 2 subgroup of G is nilpotent, then
G is a bad group, but Corollary 3.12 implies that G contains involutions. Since
simple bad groups do not have involutions, see [5, Theorem 13.3], G must contain
some nonnilpotent connected subgroup B of rank 2. Now, B is solvable and non-
nilpotent, so B contains a nontrivial decent torus S of rank 1. By Lemma 2.5 and
Remark 4.1,S = C ◦(S). ThusS is amaximal decent torus, and Fact 2.9 tells us that
S = C (S). As maximal decent tori are conjugate in any group of finiteMorley rank
(see [1, IV, Proposition 1.15]), wemay takeT to be S, and the first point is complete.
Now, by Fact 2.4, we know that B/Z(B) ∼= K+ ! K× for some algebraically
closed field K . Further, Z(B) ≤ T , so as T/Z(B) ∼= K×, we see that T ∼= K× by
Corollary 2.7. &

4.2. Borel subgroups. Recall that a Borel subgroup of a group of finite Morley
rank is defined to be amaximal definable connected solvable subgroup.As connected
groups of rank 2 are solvable and G has no subgroups of rank 3, a Borel subgroup
of G is the same as a maximal proper definable connected subgroup.

Proposition 4.3. Every Borel subgroup of G is self-normalizing and nonnilpotent
of rank 2. Further, G has even or odd type.

Proof. We first work to show that every definable connected rank 2 subgroup
of G is nonnilpotent. Let T be a maximal decent torus contained in some Borel
subgroup. Since T is self-centralizing, T is generous in G , i.e.,

⋃
TG is generic

in G . We refer to [1, IV, Section 1] for generalities on generosity. Now assume
thatG has a definable connected nilpotent (and nonabelian) subgroup A of rank 2;
we show thatA is also generous. First, note thatA is almost self-normalizing by rank
considerations. Thus, it suffices to show thatA∩Ag is trivial for every g ∈ G−N(A),
and by Corollary 3.12, we already know that A ∩ Ag is finite. Let g ∈ G −N(A),
and assume that a ∈ A ∩Ag is nontrivial. Let Z be the connected center of A; Z is
unipotent of rank 1 by Fact 2.4. Now, C ◦(a) contains 〈Z,Zg 〉, so C ◦(a) is abelian
by Lemma 2.5. As C ◦(a) has rank 2, this contradicts Remark 4.1, so we conclude
that A is generous.
Since T and A are generous, there is a nontrivial a ∈ A such that C (a) con-
tains a decent torus. Of course, C (a) also contains the unipotent subgroup Z.
Thus,C (a) has rank 2, and sinceC ◦(a) cannot be abelian, it must be nonnilpotent.
By Fact 2.4, A has exponent p or p2 for some prime p. Thus Z is an elementary
abelian p-group, so the tori in C (a) are isomorphic to K× for some algebraically
closed fieldK of characteristic p. As the tori in C (a) are self-centralizing, they con-
tain the p-element a, a contradiction. We conclude that every connected subgroup
of G of rank 2 is nonnilpotent.
Next, assume that some connected rank 1 subgroupA ofG is a Borel. Since every
nontrivial decent torus is properly contained in a Borel, A is not a decent torus.
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We claim that A is generous, and as before, it suffices to show that A ∩ Ag is trivial
for every g ∈ G − N(A). Let g ∈ G − N(A), and assume that a ∈ A ∩ Ag is
nontrivial. Then C ◦(a) is equal to 〈A,Ag 〉. Since A is not a decent torus, we find
that C ◦(a) is rank 2 and abelian. This is a contradiction, so A is generous. Thus, as
before, there is a nontrivial a ∈ A such that C (a) contains a decent torus, and of
course, C (a) also contains A. This is a contradiction. Thus, every Borel subgroup
of G has rank 2.
We now address self-normalization. Let B be a Borel subgroup of G . Let T be a
maximal decent torus of B, and recall that T is self-centralizing by Lemma 4.2.
Using the conjugacy of maximal decent tori in B, a Frattini argument yields
N(B) = BNN (B)(T ), so we need only show that NN (B)(T ) ⊂ B. Suppose not.
Since T is a decent torus, N(T )/C (T ) = N(T )/T is finite. Lifting torsion from
N(T )/T (see [1, I, Lemma 2.18]), we find an n inNN (B)(T )−T of finite order, and
by Fact 2.4, n acts on B as an inner automorphism. Again using Fact 2.4, it is not
hard to see that T is self-normalizing in B, so it must be that n centralizes T . Since
T is self-centralizing in G , we have a contradiction. Thus, B is self-normalizing.
At this point, it is also clear that G is not of degenerate type, so it remains to
show that G cannot have mixed type. Suppose that G is of mixed type. Let S be
the definable closure of a 2-torus, and let U be a 2-unipotent subgroup. We know
that both S and U are properly contained in (different) Borel subgroups. As S is
a maximal decent torus, S is conjugate to a decent torus normalizing U , but the
latter torus is without 2-torsion. &
As G has no definable subgroups of rank 3, the previous proposition implies that
every definable subgroup of G of rank 2 is connected.
Corollary 4.4. Let S ⊂ G . If rkC (S) = 2, then S is toral.
Proof. If rkC (S) = 2, then Proposition 4.3 implies that C (S) contains a
maximal decent torus T , and as T is self-centralizing, S ⊂ T . &
Corollary 4.5. Every unipotent subgroup is contained in a unique Borel subgroup.
Proof. LetU be unipotent. As every Borel subgroup has rank 2, the structure of
rank 2 groups implies thatU is normal in every Borel subgroup containing it. AsG
is simple, the normalizer of U has rank at most 2, so the normalizer is the unique
Borel containing U . &
We now use the Brauer-Fowler Theorem to find Borel subgroups of a particular
form.
Lemma 4.6. If G has even type, then the centralizer of some strongly real element
has rank 2, and if G has odd type, then the centralizer of any involution has rank 2.
Thus, some Borel subgroup of G has a nontrivial center.
Proof. By Fact 2.12, we find an involution i and a strongly real element r such
that rkC (r) + 2 · rkC (i) ≥ 4. Thus, i or r must have a centralizer of rank 2.
If G has even type, Corollary 4.4 shows that no involution has a rank 2 centralizer,
so in this case, C (r) has rank 2. Now assume G has odd type and that some
involution has a centralizer of rank 1. Clearly G has Prüfer 2-rank equal to 1, so
Fact 2.10 implies that all involutions are conjugate. Thus, every involution has a
rank 1 centralizer, so C (r) has rank 2. Let j be an involution inverting r, and
note that j normalizes C (r). Since C (r) is not abelian, j centralizes some infinite
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subgroup of C (r), so C (r) contains the connected centralizer of j. The connected
centralizer of j contains j by Fact 2.10, so j centralizes r. This implies that r is an
involution, which contradicts the fact that rkC (r) = 2. &
Thus, G is guaranteed to have some Borel subgroup B with a nontrivial center,
and we may invoke Corollary 3.12 to see that G has a 2-transitive action on B\G .
From this point of view, the next lemma is about the 2-point stabilizers in such an
action.
Lemma 4.7. Let B be a Borel subgroup of G with a nontrivial center. If g /∈ B,
then H := B ∩ Bg is finite, nontrivial, and toral in B with C (H ) of rank 2. Further,
C (H ) ∩ B has rank 1, so C (H ) and B are nonconjugate Borel subgroups.
Proof. By Corollary 3.12 and Proposition 4.3, the action of G on X := B\G
is 2-transitive, and by rank considerations, the 2-point stabilizers in this action
are finite. Thus, H is finite. Now, if H = 1, then G is sharply 2-transitive on
X . By Proposition 4.3, B certainly contains an involution, so we may apply
[5, Proposition 11.71] to see that G splits, a contradiction.
We now show thatH is toral in B. Let h ∈ H be nontrivial. Then h must have an
infinite centralizer in each of B and Bg . Since H is finite, C (h) must have rank 2,
so h is toral by Corollary 4.4. In particular, we find thatH intersects the unipotent
radical of B trivially, so H embeds into a decent torus. Thus, H is cyclic, so H is
contained in any torus of B that contains a generator ofH .
Finally, we note that C (H ) contains two distinct tori coming from B and Bg , so
C (H ) has rank 2. As we observed early on that the intersection of B with any of its
conjugates is finite, C (H ) is not a conjugate of B. &
Corollary 4.8. G has odd type.
Proof. Assume thatG has even type. By Proposition 4.3 and Fact 2.4, the Borel
subgroups ofG are precisely the normalizers of connected Sylow 2-subgroups ofG ,
so the conjugacy of connected Sylow 2-subgroups implies that all Borel subgroups
are conjugate. By Lemma 4.6,G has a Borel subgroup with nontrivial center, so the
Lemma 4.7 provides a contradiction. &
4.3. Strongly real elements. We now freely and frequently use that G has odd
type. The end game, which will come soon, exploits the action of G on its set of
involutions I . Since G must have Prüfer 2-rank equal to 1, Fact 2.10 implies that
this action is transitive, and our work in the previous subsection, together with
Corollary 3.12, shows that the action is in fact 2-transitive. However, we will also
need some information about strongly real elements of G .
We begin with a lemma. Recall that the 2-rankofG , denotedm2G , is themaximal
dimension over GF(2) of an elementary abelian 2-subgroup.
Lemma 4.9. The 2-rank of G is 1, so no involution is strongly real.
Proof. If i and j are commuting involutions of G , then j ∈ C (i). By Proposi-
tion 4.3 and Lemma 4.6,C (i) is nonnilpotent and connected of rank 2. By Fact 2.4,
m2 C (i) = 1, so i = j. &
Before we proceed, note that 2-transitivity ofG on I implies that the strongly real
elements of G are all conjugate.
Lemma 4.10. Let r ∈ G be strongly real. Then C ◦(r) is unipotent of rank 1 with
r ∈ C ◦(r), and consequently, r lies in a unique Borel subgroup.
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Proof. First, towards a contradiction, assume that A := C ◦(r) has rank 0.
In this case, the set rG is generic in G . However, as mentioned in the proof of
Proposition 4.3, if T is a maximal decent torus of G , then

⋃
TG is generic. As G is

connected, rG and
⋃
TG must intersect nontrivially. Since the elements of rG have

finite centralizers and the elements of
⋃
TG do not, we have a contradiction, so

rkA > 0. Now assume that A has rank 2. Write r := ij for involutions i and j.
Certainly i normalizes A, so i ∈ A by the self-normalization of Borel subgroups.
This implies that i commutes with r, hence with j, and this contradicts the fact that
m2G = 1. Thus, rkA = 1.
Now, assume that A is a decent torus. As i normalizes A, i must centralize the
unique involution of A. Since m2G = 1, i ∈ A, but the same clearly also holds for
j. As i .= j, A must be unipotent.
To prove that r ∈ C ◦(r), it suffices to prove it for some strongly real s .
Let H := C (i) ∩ C (j). We know that C (H ) contains i , and by Lemma 4.7, it
has rank 2. As i is not central in C (H ), i inverts the unipotent radical of C (H ).
Thus, every s in this unipotent radical is strongly real, and clearly s ∈ C ◦(s).
For the final point, observe that C ◦(r), hence r, must be contained in some
Borel subgroup by Proposition 4.3, and this Borel must be N(C ◦(r)). Now if an
arbitrary Borel B contains r, it must be that CB (r) is infinite. Thus, C ◦(r) < B, so
B = N(C ◦(r)). &
The previous lemma yields the following essential ingredient for our proof of
Theorem A.
Lemma 4.11. Let B be a Borel subgroup of G . If some nontrivial element of B is
inverted by an involution i , then i ∈ B.
Proof. Suppose that some nontrivial element r of B is inverted by an involution
i . If r = i , there is nothing to show, so we may assume that r is strongly real.
In this case, B is the unique Borel subgroup containing r, so i normalizes B. By the
self-normalization of Borel subgroups, i ∈ B. &
4.4. The proof of Theorem A.
Proof of Theorem A. We continue to assume that G is a simple group of rank
4 with a definable subgroup of rank 2. Thus, all of the results from this section
apply to G , and we are aiming for a contradiction. Our approach is inspired by
[5, Proposition 11.71]. We build a point-line geometry.
Let P be the set of involutions of G . For distinct i, j ∈ P define the line through
i and j to be !ij := {k ∈ P : (ij)k = ji}, and set L := {!ij : i, j ∈ P with i .= j}.
A point is incident with a line precisely when it is contained in the line. Note that
L can be identified with the set of strongly real elements modulo the relation that
identifies two strongly real elements if and only if they define the same line. Let us
give another characterization of !ij . Set r := ij, and let ! := !r. For k ∈ P , we
claim that k ∈ ! if and only if k ∈ N(C ◦(r)). Clearly every k in ! is in N(C ◦(r)).
Now, as i ∈ N(C ◦(r)) and i inverts r, we see thatN(C ◦(r)) does not have a central
involution. Thus every involution ofN(C ◦(r)) invertsC ◦(r), which contains r, and
the claim holds. Additionally, this allows us to see that the (setwise) stabilizer of !
is G! = N(C ◦(r)).
We now gather some basic information about the geometry. We already know
thatG acts 2-transitively on P, with P connected of rank 2, and G acts transitively
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on L as well. Thus, with our above observation thatG! = N(C ◦(r)), we find thatL
is also connected of rank 2, and it is not hard to see that the rank of the point-row
P(!) is 1. We now claim that two distinct points i and j lie on a unique line, namely
!ij . Suppose that i, j ∈ !s for s strongly real. Then i, j ∈ N(C ◦(s)), so r := ij is
in N(C ◦(s)) as well. Of course, r must have an infinite centralizer in N(C ◦(s)), so
C ◦(r) = C ◦(s). Thus, !ij = !s , so two distinct points lie on a unique line. This can
be used to define an equivalence relation onP −{i} by p ∼ q if and only if !ip = !iq .
As rkP(!) = 1, we find that the line-pencil L(i) has rank 1 as well. We summarize
our findings.

1. Both P and L are connected of rank 2.
2. Every point-row and every line-pencil has rank 1.
3. Two distinct points lie on a unique line.

Now, fix a line ! . Let L0 be the set of lines intersecting ! , and let L1 be the set
of lines not intersecting ! . We will show that L0 and L1 both have full rank in L,
and this will be our contradiction. We begin by computing the rank of L0. Since
distinct points lie on a unique line and every line-pencil has rank 1, we conclude
that rkL0 = rkP(!) + 1 = 2. Now let P1 be the set of points that do not lie on ! .
To compute the rank of L1, we show that the definable function P1 → L : i (→ ! i
has range in L1 and is injective. Let i and j be arbitrary distinct points not lying on
! . We claim that ! i ∩ ! = ∅ and ! i .= !j. Write ! = !s for s strongly real. If ! i and
! intersect, then either they intersect in a unique point centralized by i or the lines
are identical. As m2G = 1, it must be that ! i = ! , so i ∈ G! . As observed above,
this implies that i ∈ ! , so we conclude that ! i ∩ ! = ∅. Next, assume that ! i = !j .
Then ij ∈ G! , so Lemma 4.11 implies that i, j ∈ G! . This is again a contradiction,
so ! i .= !j . In summary, we have a definable injective function from the rank 2 set
P1 to L1, so L1 must also have rank 2. &

§5. Connected groups of rank 4. We now address Corollary A. The case when
F (G) has rank 2 is simply Fact 2.4. Also, we note that the final statement of
Corollary A follows from the fact that simple bad groups do not have involutory
automorphisms (see [5, Theorem 13.3]) together with the main result of [3].

Setup for Section 5. Let G be a connected group of rank 4.

Proposition 5.1. If rkF (G) = 0, then either

1. G is a quasisimple bad group, or
2. G has a normal quasisimple bad subgroup of rank 3.

Proof. SinceF ◦(G) is trivial, [1, Proposition 7.3] ensures thatG has a component
Q, i.e., Q is subnormal and quasisimple. Additionally, Q is definable, and as G is
connected, Q is normal. Certainly, Q must have rank at least 3, and Z(Q) is finite.
If Q has rank 4, then G = Q, and Theorem A applies to G/Z(G).
Nowassume thatQ has rank 3.Then eitherQ has nodefinable corank 1 subgroups
and Q is a bad group, or Q/Z(Q) is of the form PSL2. However, in the latter case,
we find that Q is of the form (P)SL2 and G = QC (Q), see [1, II, Corollary 2.26
and Proposition 3.1]. Certainly C (Q) has rank 1, so C ◦(Q) ≤ F (G) which is a
contradiction. Thus, if Q has rank 3, then G is an extension of a quasisimple bad
group of rank 3. &
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Proposition 5.2. If rkF (G) = 1, then either

1. G is a quasisimple bad group, or
2. G = F (G) ∗Q for some quasisimple subgroupQ of rank 3.

Proof. Set F := F ◦(G). We claim thatG is not solvable. IfG is solvable, wemay
use [1, Proposition 4.11] to linearize the action of G on F , but as F has rank 1, the
image of G in End(F ) has rank at most 1. However, G is solvable, so C ◦(F ) ≤ F
by [1, Proposition 7.3]. Thus G is not solvable, so G/F (G) is either a simple bad
group or of the form PSL2.
We now show that F is central. Suppose not. Then there is an x ∈ F for which
xG has rank 1. Let N be the kernel of G acting on xG . Of course N has rank at
most 3, and if N has rank 2 or 3, we find that G is solvable. Thus, Fact 2.2 implies
that G/N ∼= PSL2(K) for some algebraically closed field K , and N◦ = F . Let A1
and A2 be the connected components of the preimages in G of 2 distinct unipotent
subgroups of G/N , and note that G = 〈A1, A2〉. Since each Ai is a rank 2 group
with a rank 1 unipotent quotient, it must be that both are nilpotent. Thus, F is
central in both A1 and A2, so F is central in G .
Now, we again appeal to [1, Proposition 7.3] to see that G must contain some
component Q, and one finds that G = F ∗ Q. It remains to show that G is bad
when Q = G . Assume Q = G . First note that if G/Z(G) is of the form PSL2, then
[1, II, Proposition 3.1] implies that G has a finite center. Thus, it must be that
G/Z(G) is a simple bad group. LetA be a proper connected subgroup ofG . We aim
to show that A is nilpotent and conclude that G is a bad group. Let B := AF .
If B = G , then A is normal in G contradicting the fact that G is quasisimple.
Since G/Z(G) is a bad group of rank 3, B/F must have rank at most 1. Thus, B is
nilpotent, and the same is true of A. &

§6. Actions on sets of rank 2. Finally, we address Corollary B.
Proof of Corollary B. Let G satisfy the hypotheses of Corollary B, and let
X be a definable set of rank 2 on which G acts faithfully, definably, transitively,
and generically 2-transitively. Fix x ∈ X . Generic 2-transitivity implies that G has
involutions, so by Corollary A, Z := F ◦(G) has rank 1. Since Z is central and the
action is faithful,Gx∩Z = 1, andwe see thatB := ZGx has rank 3. By Corollary A,
G = Z ∗Q with Q quasisimple of the form (P)SL2.
Since Z is normal, the orbits of Z on X determine a quotient X of X where the
stabilizer of xZ is B. Let N be the kernel of the action on X , and note that Z is
contained in the kernel. Since groups of rank 2 are solvable and G is nonsolvable,
the only possibility is thatN has rank 1. By Fact 2.2,G/N is of the form PSL2, and
the action of Q/Z(Q) on X is equivalent to that of PSL2(K) on P1(K) for some
algebraically closed field K .
Next we show that Z ∼= K×. Set H := G◦

x . By generic 2-transitivity, G is
generated by H and any generic conjugate of H , so H is not contained in Q.
Now H/(H ∩ N) ∼= HN/N , and as the latter group is equal to a rank 2 subgroup
of G/N ∼= PSL2(K), the structure of PSL2(K) implies that H/(H ∩ N) is iso-
morphic to a Borel subgroup of PSL2(K). Now, H ∩ Q is normal in H and of
rank 1, so H ∩ Q contains the unipotent radical of H . Thus, H/(H ∩ Q) ∼= K×
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by Lemma 2.6. Now,H/(H ∩Q) ∼= G/Q, and the latter is isomorphic to Z/Z ∩Q.
By Corollary 2.7, Z ∼= K×.
It remains to show that Z(G) = Z. Let T be a rank 1 decent torus in Gx , and
notice thatC (T ) = C ◦(T ) = T ×Z, using Fact 2.9. Since T < Gx , T ∩Z(G) = 1,
and we find that Z(G) must be connected. &
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