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A reduction theorem for primitive binary permutation groups

Joshua Wiscons

ABSTRACT

A permutation group (X, ) is said to be binary, or of relational complexity 2, if, for all n,
the orbits of G (acting diagonally) on X? determine the orbits of G on X™ in the following
sense: for all Z,y € X", £ and y are G-conjugate if and only if every pair of entries from %
is G-conjugate to the corresponding pair from g. Cherlin has conjectured that the only finite
primitive binary permutation groups are S, groups of prime order, and affine orthogonal groups
V x O(V), where V is a vector space equipped with an anisotropic quadratic form; recently, he
succeeded in establishing the conjecture for those groups with an abelian socle. In this note,
we show that what remains of the conjecture reduces, via the O’Nan—Scott Theorem, to groups
with a nonabelian simple socle.

1. Introduction

This note focuses on binary permutation groups; that is, permutation groups of relational
complexity 2. The relational complexity of a group G acting on a set X is the smallest & (if one
exists) for which the orbits of G on X* ‘determine’ the orbits of G on X™ for all n. The precise
meaning of ‘determine’ will be made clear below, but whatever it is, one may rightly believe
that being binary is a rather restrictive hypothesis. Here, we address the following conjecture
of Cherlin; see [2, Section 3, 1, Conjecture 1].

CONJECTURE A. A finite primitive binary permutation group is either S,, acting naturally
on {1,...,n}, a cyclic group of prime order acting regularly, or an affine orthogonal group
V x O(V), where V is a vector space equipped with an anisotropic quadratic form and O(V')
is the full orthogonal group.

Relational complexity has its roots in Lachlan’s classification theory for finite homogeneous
structures (see [7] or [5]); however, little was known about relational complexity in specific
cases until the work of Cherlin, Martin, and Saracino [3], which was followed up by Saracino’s
remarkable and detailed analysis in [8, 9]. More examples were laid out in [2] where
Conjecture A also took form. The recent work [1] of Cherlin establishes the conjecture for
groups with an abelian socle, that is, affine groups, and here, using the O’Nan—Scott Theorem,
we reduce what remains to the case of groups with a nonabelian simple socle, that is, almost
simple groups. Specifically, we prove the following theorem.

THEOREM A. IfG is a finite primitive binary permutation group, then either

(i) G is affine,
(ii) G is almost simple, or
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(iii) G is a subgroup of a wreath product HwrS,,, in its product action, where H is a primitive
binary almost simple permutation group that is not 2-transitive.

In light of Cherlin’s solution for groups of affine type, Theorem A reduces Conjecture A to
the following conjecture specific to the almost simple case.

CONJECTURE A’. The only finite primitive binary permutation group with a nonabelian
simple socle is S,, in its natural action on {1,...,n}.

It is worth emphasizing that one should be able to say something interesting under a more
general k-ary hypothesis, but it is not clear, at present, what this might be. Our arguments
do not seem to immediately generalize beyond the binary case, so we have avoided the general
setting, for now.

2. Preliminaries

We first fix some notation and conventions that will be used throughout the article. From this
point on, all groups are finite. A permutation group is just a group with a fixed, faithful action
on some set. To emphasize both the group and the set, we may call (X,G) a permutation
group to mean that G is a group acting faithfully on the set X. We will often consider the
induced (diagonal) action of G on a power X™; the orbits of G on X" will be called n-types.
For z,y € X™ and H < G, we say that T and § are H-conjugate, denoted by T ~pg ¥, if they
lie in the same H-orbit. We denote the pointwise stabilizer of a subset Y C X by Gy. Unless
otherwise stated, groups will always act on the right.

2.1. Primitive groups

A permutation group (X, G) is primitive if X has no proper nontrivial G-invariant equivalence
relations. This is equivalent to G acting transitively with all point stabilizers being maximal
proper subgroups of G. Our main reference for primitive groups will be [4].

The analysis of primitive groups may be broken down according to the structure of the socle
of the group, that is, the subgroup generated by all minimal normal subgroups. We will denote
the socle of G by soc(G), and if G is a primitive group, then soc(G) will be a direct product of
isomorphic simple groups. We now give a very rough statement of the O’Nan—Scott Theorem:;
one may see [4, Subsection 4.8] for more details. We will elaborate on the various types as they
arise in our analysis.

Fact 2.1. Let (X, @) be a finite primitive permutation group. Set M := soc(G), and write
M = T* for some simple group 7. Then (X, Q) is of one of the following types.

Affine: M is abelian and acts regularly.

Regular nonabelian: M is nonabelian and acts regularly.

Almost simple: M is nonabelian simple and does not act regularly.

Diagonal: X may be identified with 7% modulo the equivalence relation given by the orbits
of T acting diagonally on T* by left multiplication (by the inverse); M acts coordinatewise
by right multiplication.

Product: G is a subgroup of a wreath product HwrsS,, in its product action, where H is
primitive of almost simple or diagonal type and M = (soc(H))™.
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2.2. Relational complexity

We will define the relational complexity of a permutation group below, but first, we mention
the connection to homogeneous structures. Let X = (X; Ry, ..., R,;) be a relational structure;
that is, for each 4, there is a positive integer n; for which R; is an n;-ary relation on X. Now,
every Y C X gives rise to an induced substructure Y = (Y; RY,..., RY ) where each R is the
restriction of R; to Y, and the structure X is called (ultra)homogeneous if every isomorphism
between induced finite substructures can be extended to an automorphism of X.

Consider the Petersen graph as a structure (V; E) with V' being the set of vertices and
E the edge relation. It is not hard to see that (V; E) is not homogeneous since there exist
independent triples of vertices that have a common neighbor as well as independent triples that
do not have a common neighbor. However, if we define a ternary relation N on V such that
(v1,v2,v3) € N if and only if v, va, and v have a common neighbor, then it can be shown
that the expanded structure (V; E, N) is indeed homogeneous. Thus, although the Petersen
graph is not homogeneous in the language of graphs, it becomes homogeneous after adding
in an appropriate ternary relation. Moreover, the relation N is definable (in a first-order way,
without parameters) from F, so (V; E, N) is model-theoretically equivalent to (V; E).

Returning to the general setting, the relational complexity of X is defined to be the least & (if
one exists) such that X is equivalent to a homogeneous structure all of whose relations are k-ary.
Note that if X is finite and if X is the expansion of X obtained by adding in, for all k& < [X],
the k-ary relations corresponding to the orbits of Aut(X) on X*, then X is homogeneous and
equivalent to X. In fact, k¥ < |X|—1 will do. As such, the relational complexity of a finite
relational structure is always defined and is at most |X| — 1. The conclusion of the previous
paragraph was that the relational complexity of the Petersen graph is 3.

We now change our focus from X to Aut(X) and translate the study of relational complexity
into the language of permutation groups. We begin with a preliminary definition.

DEFINITION 2.2. Let (X, G) be a permutation group.

(i) Tuples Z,y € X™ are equivalent if they are G-conjugate, that is, if they are in the same
n-type.
(ii) Tuples Z,y € X™ are k-equivalent (k < n) if every k-subtuple from Z is G-conjugate to
the corresponding k-subtuple from 3.
(iii) We say that k-types determine n-types (k < n) if, for every Z,§ € X", k-equivalence of
Z and g implies equivalence of T and .

DEFINITION 2.3. The relational complexity of a permutation group is the smallest k for
which k-types determine n-types for all n > k.

ExXAMPLE 2.4. Every nontrivial permutation group has relational complexity at least 2.
Indeed, assume that (X, G) is nontrivial, and let = # y € X be G-conjugate. Then the pairs
(x,2) and (z,y) are l-equivalent but not 2-equivalent.

REMARK 2.5. With the previous example in mind, it is not hard to see that the relational
complexity of a nontrivial permutation group is the smallest & > 2 for which k-types determine
n-types of tuples with pairwise distinct entries for all n > k. Indeed, if one assumes k-
equivalence for k > 2, then repeated entries in the first tuple must match up with conjugate
repeated entries in the second. Certainly the repetitions may then be ignored.

EXAMPLE 2.6. The natural action of S, on {1,...,n} is binary, that is, of relational
complexity 2. In light of the previous remark, this is a simple consequence of S,, being
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n-transitive. In fact, one finds that the only k-transitive permutation group with relational
complexity less than k + 1 is .S,, acting naturally on {1,...,n}. As such, the natural action of
A, on {1,...,n} has relational complexity n — 1.

See [1-3] for further background on relational complexity (also known as arity).

3. Regular nonabelian type

We now begin our proof of Theorem A by moving through the various socle types laid out
in Fact 2.1. We start with the case of a regular nonabelian socle. Our goal is the following
proposition.

PropPOSITION 3.1. Every finite primitive group of regular nonabelian type has relational
complexity at least 3.

We adopt the following setup for the remainder of the section; most of the necessary
information for this type can be found in [4, Theorem 4.7B].

SETUP. Assume that (X,G) is a finite primitive group with a regular, nonabelian socle
M. Since M acts regularly on X, we identify X with M, and setting H := G1, we have G =
M x H with M acting on X by right translation and H acting by conjugation. Furthermore,
M =Ty X --- x Ty with £ > 6 and each T; isomorphic to a fixed nonabelian simple group 7.
(In this case, G is isomorphic to a so-called twisted wreath product T twr, H.)

Ifa € X, m € M, and h € H, then we write the action of mh on a as a - mh := (am)" so as
to avoid confusion with the product amh in G. Note that H acts on X as automorphisms, and
so, in particular, (a=1)-h = (a-h)~!. We first work for an analog of [1, Corollary 1.4]; this
will be Lemma 3.3.

LEMMA 3.2. If (a1,as2), (b1,bs) € X2, then we have that (a1, as) ~g (b1,b2) if and only if
alagl ~H blbgl.

Proof. 1If (a1,az2) - mh = (by,bs) for some m € M and h € H, then
(ara3 ") - h = [(arm)(azm) '] - h = (a1m)" ((agm)~")" = biby .

Conversely, assume that (alaz_l) -h = blbgl for some h € H. Then g := a;lhbg takes a; to by,
and it is trivial to check that as - g = bs. ]

LEMMA 3.3. Assume that (X, Q) is binary. If a € X and h € H are such that [a,a - h] =1,
then there exists an h' € H swapping a and a - h.

Proof. The conclusion of the lemma is precisely that (a,a - h) ~pg (a - h,a). Since H acts on
X as automorphisms, this is equivalent to showing that (a,a™!-h) ~g (a-h,a™1), which is,
of course, equivalent to showing that (1,a,a=1 - h) ~g (1,a - h,a™'). Now, the action is binary,
so it suffices to show that (1,a,a=! - h) is 2-equivalent to (1,a - h,a™1). Since h and h~! fix 1,
the only nontrivial conjugacy to check is (a,a™1 - h) ~g (a-h,a™!), but this follows from the
previous lemma and our assumption that [a,a - h] = 1. UJ

DEFINITION 3.4. A subset of X (or tuple in X*) is called H-connected if all elements of
the subset (or entries of the tuple) are H-conjugate.
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By [4, Theorem 4.7B(ii)], H acts transitively on the set {T1,...,Tx}. Thus, for any a; € Ty
there exist as,...,ar € X such that each a; € T; and {ay,...,ar} is H-connected. Thus, we
are guaranteed the existence of (many) H-connected subsets of k commuting elements of X,
and every nontrivial a; € T} can be extended to at least one such subset.

LeMMA 3.5. Assume that (X,G) is binary. If (ai,...,a¢) is an H-connected tuple of
commuting elements of X, then (ay,...,a;) ~¢c (a7’,.. .,a[l). Further, if a; and afl are

H-conjugate, then (ai,...,ar) ~g (a7',...,a;").

Proof. Let 1<i<j</{ Since a; and a; commute and are H-conjugate, we apply
Lemma 3.3 to see that there is an element of H swapping a; and a;. Further, this implies that
aiaj_1 is H-conjugate to a;a; * 'a;, so we find that (a;,a;) ~q (a;*, aj_l) by Lemma 3.2.
Since the action is binary, we conclude that (ai,...,a¢) ~¢ (a7 ',...,a; ).

Now assume that a; is H-conjugate to a;l. Since (a1, ..., ar) is H-connected, we find that a;
is H-conjugate to a;l for all 1 < ¢ < £. Thus, for every ¢, we have that (1,a;) ~¢g (1,a;1). We
have already seen that (a;,a;) ~¢ (ai_l,aj_l) for all 1 <i<j</{, so the fact that (X,QG)
is binary implies that (1,a1,...,a¢) ~¢ (1,a1_1,...,azl). Of course, this is equivalent to
(a1,...,a¢) ~u (a7 .. ah). O

:ai

The final ingredient for our proof of Proposition 3.1 is the following general (and likely
well-known) lemma.

LEMMA 3.6. IfT is a nonabelian simple group with an automorphism « of order 2, then
« inverts, but does not centralize, some element of T'.

Proof. We work in T' x (). Consider [T, a], as a set. It is easy to see that « inverts every
element of [T, «]. Now, toward a contradiction, assume that [T, a] C C(«). If t € T, then «
centralizes a’a, so o commutes with af. We conclude that a? C C(a), and as the set o is
T-normal, we find that o’ C C(aT). In particular, A := (o) is abelian and T-normal. Further,
A is certainly nontrivial, so as T is nonabelian and simple, we see that TN A = 1. We conclude
that A = (), so T centralizes a. Since « is nontrivial, this is a contradiction. O

Proof of Proposition 3.1.  Assume that (X, G) is binary. We first claim that Ny (71)/Cu (T1)
contains an involution. Now, [4, Theorem 4.7B(iii)] states that Nz (71) has a composition factor
isomorphic to T, but in fact, the proof shows that such a factor appears in Ny (T1)/Cy(T1).
By the Feit-Thompson Theorem, Ny (T1)/Cr(T1) contains an involution.

We may now apply the previous lemma to see that there exists an a; € Ty such that a; # afl
and a; is H-conjugate to afl. Extend a; to an H-connected tuple (a1, aq,...,a;) with each
a; € T;, and note that a; commutes with a; for all 7 and j. By Lemma 3.5, there is some h € H
taking (ai,...,ax) to (a;',... 7a,?l). Now, by [4, Theorem 4.7B(ii)], H acts faithfully on
{T1,...,Ty}. Since h inverts some nontrivial element in each T;, we see that h must normalize
each T;. Thus, h =1, so (a1,...,ar) = (afl, e ,a,;l). We have a contradiction. |

4. Diagonal type

We now move to groups of diagonal type. We aim to prove the following proposition.

PROPOSITION 4.1. Every finite primitive group of diagonal type has relational complexity
at least 3.



296 JOSHUA WISCONS

Information on groups of diagonal type can be found in [4, Subsection 4.5]. We fix the
following setup.

SETUP. Assume that (X, G) is a finite primitive group of diagonal type. For some integer
k > 2, the socle of G is M := T x --- x Ty, where each T; is isomorphic to a fixed nonabelian
simple group 7. Fixing isomorphisms of each T; with T, we identify X with the set T X - - X
T, modulo the equivalence relation given by the orbits of T acting diagonally on X by left
multiplication (by the inverse); M acts coordinatewise by right multiplication. An arbitrary
element of X is written [a1, ..., ay] with each a; € T;, where [ay, ..., ax] := {(t " tay,...,t7tag) :
teT}. Set1:=1[1,...,1] and H := G1. Then H acts on X as a subgroup of AutT x Sj where
AutT acts diagonally and Sy permutes the components. Further, H contains InnT'

Our approach here will be similar to that for the regular nonabelian type in that we will
again find an element of the point stabilizer H that simultaneously ‘inverts’ a large tuple from
X. However, in this case, the entries of the ‘inverted’ tuple will all come from T}; whereas, in
the regular nonabelian case, different entries came from different 7;. As before, we first derive
an analog of [1, Corollary 1.4].

LEMMA 4.2. Assume that (X, G) is binary. For any nontrivial t € Ty and s € InnT there
isan h € Ny(T1) swapping [t,1,...,1] and [t°,1,...,1].

Proof. We aim to show that
(1,1, 1L, 8%, 1, .., 1)) ~a (1, 1t%, 1, ..., 1, 6, 1,000 1))

as any element taking the first tuple to the second must necessarily lie in H, hence in Ny (T})
since H < AutT x Si. Further, note that this is equivalent to showing that

(1, [t, 1, 1) 51, 1)) ~e (1[5, 1, 1, [ 1, ).

Now, we are assuming that the action is binary, and so, as H contains InnT, it is enough to
note that the map

[a1,az,...,a;] — [a1t®, ast, .. ., axt]

is an element of G, in fact M, that takes the pair ([¢,1,...,1],[t7%1,...,1]) to
([t5,1,..., 1], 74 1,...,1]). O

Proof of Proposition 4.1. Assume that (X, G) is binary. Let r € T be the product of two
noncommuting involutions from T'. Then, r is not an involution, and = is T-conjugate to 7~ 1.
Let r1 be the element of T corresponding to r under our fixed isomorphism. Enumerate the
conjugacy class of 1 in Ty as rq,...,r,, and set x; := [r;,1,...,1]. By the previous lemma,
there exists an h; ; € Ny (T1) swapping x; and ;. Further, since each r; is Tj-conjugate to
! Lemma 4.2 also shows that there exists a k; € Ny (Ty) swapping z; and x; 1 where

z; ' = [r;',1,...,1]. We now claim that there is an h € Ny(T}) that simultaneously ‘inverts’
every element of {z1,...,2,}, that is, that (z1,...,2,) ~n, () (27", ..., 2;1). As in the proof
of Lemma 4.2, this is equivalent to showing (1,z1,...,z,) ~ag (l,xl_l,.. b, Slnce the
action is assumed to be binary, it remains only to verify that (z;, ;) ~q (z; a7l and

setting m := (r; ', 7,...,7;) € M, it is easily checked that (z;,x;)him = (ml 1,1};1).

Let h € Aut(T) be the automorphism of 7' corresponding to h, and let C :=rT. Since h
simultaneously inverts the z;, it is not hard to see that h must invert every element of C, and
so, when restricted to C, h commutes with Inn(7T"). Thus, [Inn(T'), ] centralizes C, but then

[Inn(T), h] centralizes the subgroup generated by C. As T is simple, we find that [Inn(T), A]
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centralizes T, that is, h is a central automorphism. One easily computes that, for all s,t € T,
(Sﬁ)t’lth _ ((tstfl)fz)th' — (tfl)fz(tstfl)ﬁtﬁ — (tfltstflt)fz _ sz’

sot~1th e 7 (T') for all t € T'. Since T is nonabelian and simple, we conclude that h acts trivially
on T, but as h does not centralize r, we have a contradiction. |

5. Product type
Finally, we address product type.

ProrosiTiON 5.1. If G is a finite primitive binary group of product type, then G is
a subgroup of HwrS,, in its product action, where H is a primitive binary almost simple
permutation group that is not 2-transitive.

Here, in addition to drawing from [4], we also utilize [6]. We fix the following setup.

SETUP. Assume that (X, G) is a finite primitive group of product type. Identify X with
Y* (with k > 2) and G with a subgroup of W := HwrSy in its product action, where H is
a primitive subgroup of Sym(Y") of almost simple or diagonal type. Setting N :=soc(H), we
have M := soc(G) = N*.

Now, let 7 be the obvious projection from W to Sk, and set P to be the image of G under 7.
Further, if W is the preimage under 7 of the stabilizer of the first coordinate, then W; factors
as Wy = H x (kalwrSk,l), and we let m; be the projection of W7 onto the first factor H.
Finally, set G to be the image of (W; NG) under 7.

We first highlight two important properties of P and G (see the discussion following [6,

(2.3)))-

Fact 5.2. The action of P on {1,...,k} is transitive; the action of G; on Y is primitive
with soc(G1) = N.

We view the elements of X = Y* as row vectors and m-tuples of elements of X as m x k-
matrices. The elements of the base group H* then act ‘column-wise’ on the matrices, and
the top group permutes the columns. The proof of Proposition 5.1 is essentially the following
straightforward lemma modulo one outstanding case that we address below.

LEMMA 5.3 (see [3, Theorem 1]). The relational complexity of (X, Q) is at least as big as
the relational complexity of (Y,G1).

Proof. Let r be the relational complexity of (X, G); note that r > 2. We now consider
(Y, G1) and show that r-types determine m-types for all m > r. Indeed, take two r-equivalent
tuples ¢1,¢2 € Y™ viewed as m x 1 matrices. Appealing to Remark 2.5, we also assume that
neither ¢; nor ¢s have repeated entries. Fix y € Y. Let ¢ be the m x 1 matrix with each entry
equal to y, and form the m x k matrices A = (a1 éc- ¢) and B = (e:¢e- ). Now, viewing
A and B as elements of X™, we easily see that they are r-equivalent under the action of G
(in fact, W1 N G). Thus, by assumption, there is some g € G taking A to B. Since the first
columns of A and B are the only nonconstant columns, it must be that g € W3 NG, so the
image of g in G; takes & to ¢2. Hence, the r-types of (Y, G1) determine m-types for all m > r,
so the relational complexity of (Y, G1) is at most r. O
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Proof of Proposition 5.1.  Let (X, G) be as above, and now assume that the action is binary.
Thus, by the previous lemma (Y,G1) is binary. Additionally, soc(G1) =soc(H) = N, and
since H is a primitive group of almost simple or diagonal type, the same is true of G;. By
Proposition 4.1, the second option is not possible, so GGy is almost simple. It remains to show
that (Y, G1) is not 2-transitive.

Assume that (Y, G1) is 2-transitive. Since (Y, G1) is binary, this implies that G; = Sym(Y).
We now give an explicit example showing that this in turn implies that the 2-types of (X, G)
do not determine the 4-types. Thus, the action is not binary, which is a contradiction.

Since (X, G) is of product type, soc(G), hence N = soc(G1), is nonabelian, so N = Alt(Y)
with |Y| > 5. Thus, for every ¢1,%2 € Y* = X and every g =ho € G (h € H* and o € Sy),
there is a ¢’ € G such that (%1,%2)g" = (1, %2)0. Indeed, since G contains N*, the 2-transitivity
of N on Y implies that there is an m € Alt(Y)* for which (71, 72)mh = (§1,%2). Thus we say
that G realizes P on pairs from X.

We now identify Y with {1,...,¢} for some natural number ¢ > 5. Consider the following
matrices representing two tuples in X*:

11 1 1 11 1 1
1 2 2 9 12 2 9
A=13 3 3 5| and B=|g 5 4 3
3 4 4 4 4 3 4 4

We first claim that they are 2-equivalent, that is, that any two rows from A are G-conjugate
to the corresponding two rows in B. Clearly, we need only check pairs of rows that include the
fourth. Since (Y, N) is 2-transitive, we easily see that the first and fourth as well as second and
fourth rows of A are simultaneously conjugate (using elements in N*) to the corresponding
rows in B. Finally, we use our observation above that G realizes P on pairs from X together
with the fact that P is transitive on the coordinates to see that G contains an element (only
permuting coordinates) that takes the third and fourth rows of A to the corresponding rows
of B. We conclude that A and B are 2-equivalent, but they have no chance to be 4-equivalent
since the ‘column patterns’ are different. For example, the first column of A contains precisely
two distinct entries, so the image of A under an element of G must also contain a column with
precisely two distinct entries. ]

Acknowledgements. The author would like to acknowledge the warm hospitality of the
Hausdorff Research Institute for Mathematics where the work in this article began in the fall
of 2013 during the trimester program on Universality and Homogeneity. The author is also
grateful to Gregory Cherlin for the several enlightening and enjoyable conversations about
relational complexity while in Bonn. Additionally, the author is thankful to the anonymous
referee for a very careful reading of the paper and many helpful suggestions.

References

1. G. CHERLIN, ‘On the relational complexity of a finite permutation group’, J. Algebraic Combin. 43 (2016)
339-374.

2. G. CHERLIN, ‘Sporadic homogeneous structures’, The Gelfand mathematical seminars, 1996-1999, Gelfand
Mathematical Seminars (Birkhauser Boston, Boston, MA, 2000) 15—48.

3. G. L. CHERLIN, G. A. MARTIN and D. H. SARACINO, ‘Arities of permutation groups: wreath products and
k-sets’, J. Combin. Theory Ser. A 74 (1996) 249-286.

4. J. D. DixoN and B. MORTIMER, Permutation groups, Graduate Texts in Mathematics 163 (Springer, New
York, 1996).

5. J. F. KNIGHT and A. H. LACHLAN, ‘Shrinking, stretching, and codes for homogeneous structures’,
Classification theory (Chicago, IL, 1985), Lecture Notes in Mathematics 1292 (Springer, Berlin, 1987)
192-229.

6. L. G. KovAcs, ‘Primitive subgroups of wreath products in product action’, Proc. London Math. Soc. (3)
58 (1989) 306-322.



PRIMITIVE BINARY PERMUTATION GROUPS 299

7. A. H. LACHLAN, ‘On countable stable structures which are homogeneous for a finite relational language’,
Israel J. Math. 49 (1984) 69-153.

D. SARACINO, ‘On a combinatorial problem from the model theory of wreath products. I, II’; J. Combin.
Theory Ser. A 86 (1999) 281-305, 306-322.

D. SARACINO, ‘On a combinatorial problem from the model theory of wreath products. III’, J. Combin.
Theory Ser. A 89 (2000) 231-269.

8.

9.

Joshua Wiscons
Department of Mathematics
Hamilton College

Clinton, NY 13323

USA

jwiscons@hamilton.edu



	1. Introduction
	2. Preliminaries
	3. Regular nonabelian type
	4. Diagonal type
	5. Product type
	References

