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Abstract. We show that the only transitive and generically 4-transitive action of a group of finite
Morley rank on a set of Morley rank 2 is the natural action of PGL3 on the projective plane.
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1. Introduction

The notion of generic n-transitivity was first introduced in the context of algebraic groups
by Popov [Pop07] and later by Borovik and Cherlin [BCOS8] for groups of finite Morley
rank. Morley rank is a model theoretic notion of dimension, and for an algebraically
closed field (considered in the language of fields), the Morley rank of a Zariski closed set
is equal to its Zariski dimension. As such, the algebraic groups over algebraically closed
fields are the primary examples of groups of finite Morley rank. In fact, it was conjectured
by Cherlin and Zil’ber over three decades ago that every simple group of finite Morley
rank is an algebraic group over an algebraically closed field; the conjecture is still open.

We will work in the finite Morley rank category and defer to [Poi87], [BN94], and
[ABCO08] for the necessary background. The question we address is interesting even when
restricted to the algebraic context, and the reader without knowledge of groups of finite
Morley rank is encouraged to, if necessary, translate “rank” to “dimension” and ‘“defin-
able” to “constructible.” The main point is that, although we have a notion of dimension,
we have no topology. In what follows, rank always refers to Morley rank.

Definition 1.1. A definable action of a group G of finite Morley rank on a definable set
X is said to be generically n-transitive if G has an orbit O on X" such that the rank of
X" — O is strictly less than the rank of X”. In this case, the action is generically sharply
n-transitive if G acts regularly on O, i.e. the stabilizer of any n-tuple from O is trivial.
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Note that by [Tit52] and [Hal54] ordinary sharp 4-transitivity does not exist on any infinite
set, and if one works in the algebraic category, ordinary 4-transitivity does not exist either
(see [Kno83]). In contrast, the action of GL,(C) on C" is generically sharply n-transitive
for each n, and one has the feeling that this is the right notion of transitivity in this setting.
We address the following conjecture about natural limits to generic n-transitivity.

Conjecture A ([BCOS8, Problem 9]). If (X, G) is a transitive and generically (n + 2)-
transitive permutation group of finite Morley rank with G connected and rk X = n, then
(X, G) is equivalent to (P"(K), PGL,,11(K)) for some algebraically closed field K.

The conjecture holds when X has rank 1 as a consequence of the much stronger Fact 4.30,
but relatively little is known when X has rank 2. If the action is by automorphisms on an
abelian group of rank 2, then [Del09] shows that one does not exceed generic 2-transitivity
(with the analogous result in rank 3 now established as a corollary of the very recent
[BD16]). The main result in the general rank 2 setting is due to Gropp [Gro92] who
shows that if one assumes generic sharp n-transitivity then n is at most 5. Note that
in the algebraic setting one should get a lot of mileage out of [Pop07] (regardless of
the rank of X—though only in characteristic 0) when combined with the O’Nan—Scott
type theorem of Macpherson and Pillay [MP95]. Here, we prove the conjecture in full
generality for sets of rank 2.

Theorem A. If (X, G) is a transitive and generically 4-transitive permutation group of
finite Morley rank with tk X = 2, then (X, G) is equivalent to (IP’Z(K), PGL3(K)) for
some algebraically closed field K.

Combining Theorem A with Fact 4.30 and Lemma 4.23, one immediately obtains the
following corollary.

Corollary A. If G is a simple group of finite Morley rank with a definable subgroup of
corank 2, then tkG < 8, and if tk G = 8, then G = PGL3(K) for some algebraically
closed field K.

‘We mention that although many parts of our analysis appear to be tightly tied to the case of
rank 2, several pieces seem rather general (or at least generalizable), e.g. our preliminary
recognition theorem, Proposition 5.1. Further, we illustrate the importance of the so-called
Y -groups (see Subection 4.4). These groups allow one to identify the prospective Weyl
group, and as such, they should be an integral part of future work on Conjecture A.

Focusing on the case where G is connected, we prove Theorem A in two steps. After
some preparation, we establish the theorem under the additional restriction of generic
sharp® n-transitivity; this is Theorem A.l. By generic sharp® n-transitivity, we mean a
generically n-transitive action for which tk G = rk X", i.e. the connected component of
the stabilizer of a generic n-tuple in X" is trivial. It then more-or-less remains to show that
generically 4-transitive actions for which a generic 4-point stabilizer has rank less than 2
are in fact generic sharply® 4-transitive; this is Theorem A.2. Everything is properly glued
together in Section 8 where we also give the reduction of Theorem A to the case where
G is connected.
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The paper is organized as follows. Section 2 gives some basic examples of generic
multiple transitivity, and Section 3 lays out a handful of definitions and results on groups
of small Morley rank. Both sections are brief. The general permutation group-theoretic
terminology and tools for our analysis are given in Section 4. Section 5 is where our proof
of Theorem A really begins. This section is devoted to proving a natural approximation
to Theorem A, namely Proposition 5.1; the approach is very geometric. In Section 6, we
prove Theorem A.1. It seems worth noting that our analysis in Section 6 first establishes
the bound of 4 on the degree of generic transitivity before showing that Proposition 5.1
applies. The bound comes entirely from the presence of a large X-group. Section 7 con-
tains the proof of Theorem A.2, and Section 8 tidies everything up.

2. Examples

We briefly give some examples of generic multiple transitivity. Throughout this section K
denotes an algebraically closed field definable in some ambient structure of finite Morley
rank. This includes the algebraic setting where the ambient structure is just K considered
in the language of fields. Fix a positive integer #, and let V be the vector space K”.

Example 2.1. The natural action of GL,, (K) on V is generically sharply n-transitive; the
generic orbit in V" consists of the ordered bases for V.

Of course, similar statements hold for AGL,, and PGL,,.

Example 2.2. The natural actions of AGL,(K) on V and PGL,(K) on P(V) are both
generically sharply (n + 1)-transitive.

The situation changes dramatically if one considers, say, PSp, where the degree of generic
transitivity becomes bounded independent of n. This is just one instance of Fact 2.4,
which provides a bit of evidence for Conjecture A.

Example 2.3. If n = 2m, then the natural action of PSp,(K) on P(V) is generically
3-transitive but not generically 4-transitive. To see this, we first fix a symplectic ba-
sis e1, f1,...,em, fm for V, ie. [e;,e;] = [fi, fj] = 0 and [e;, f;] = §;; for all
1 < i,j < m. Now, one can compute that the orbit of ({e1), (f1), (e1 + f1 + €2)) is
generic in (P(V))? and that the stabilizer of the triple has no chance to have a generic
orbit on P(V).

To better see why generic 4-transitivity fails, let H be the stabilizer of (e) and ( f1) in
PSp,, (K), and let O be the generic orbit of H on P(V). If the action of PSp,,(K) on P(V)
is generically 4-transitive, then the action of H on O must be generically 2-transitive.
Setting W := (e1) @ (f1), we have an H -invariant decomposition V = W @ WL, s0 (er)
and (f1) determine an H -invariant projection 7 : P(V) — P(W). Thus, the action of H
on 1 (0O) is a quotient of the action of H on O, so the degree of generic transitivity of
the former action is at least as large as that of the latter (see Lemma 4.17). As P(W) is a
1-dimensional projective space and H fixes two points, H acts on P(W) as a torus, so the
action of H on 7 (O) cannot be generically 2-transitive.
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Fact 2.4 ([Pop07, Theorem 1]). If G is a simple algebraic group over an algebraically
closed field of characteristic 0, then the maximum degree of generic transitivity among
all nontrivial actions of G on irreducible algebraic varieties, denoted gtd(G), is given by
the following table.

type of G Ay B,,n>3 Cy,n>2 Dyn>4 Egs E; Eg F; Gy
etd G n+2 3 3 3 4 3 2 2 2

For more on the algebraic setting, we refer the reader to [PopO7]. Finally, we consider
products of known actions; here we find it rather satisfying that we are not restricted to
the algebraic category.

Example 2.5. If G| acts generically #;-transitively on X; and G, acts generically ,-
transitively on X, then the coordinatewise action of G| x G, on X x X is generically
t-transitive with + = min(#q, 7). In particular, if L is an algebraically closed field, pos-
sibly of characteristic different from that of K, with K and L definable in some ambient
structure of finite Morley rank, then the action of GL,(K) x GL,,(L) on K" x L™ is
generically min(n, m)-transitive.

3. Groups of small rank

As mentioned in the introduction, background on groups of finite Morley rank can be
found in [Poi87], [BN94], and [ABCO8]. In this section, we collect some specialized
results about groups of small Morley rank. We first need a few definitions. It should be
mentioned that our definition of a unipotent group is definitely not standard.

Definition 3.1. Let G be a group of finite Morley rank. Then

e G is called a decent torus if G is divisible, abelian, and equal to the definable hull of
its torsion subgroup,

e G is called a good torus if every definable subgroup of G (including G) is a decent
torus, and

e G is said to be unipotent if G is connected, nilpotent, and does not contain a nontrivial
decent torus.

3.1. Groups of rank at most 3

Most of the results in this subsection can be found in Cherlin’s paper [Che79], though the
first is due to Reineke.

Fact 3.2 ([Rei75]). If A is a connected group of rank 1, then A is either a divisible
abelian group or an elementary abelian p-group for some prime p.

Fact 3.3 ([Che79]). Let B be a connected group of rank 2. Then B is solvable. If B
is nilpotent and nonabelian, then B has exponent p or p* for some prime p. If B is
nonnilpotent, then
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(1) B= B’ x T with T a good torus containing Z(B),
(2) B/Z(B) = Kt x K* for some algebraically closed field K, and
(3) every definable automorphism of B of finite order is inner.

The following fact follows almost immediately from the previous one, but a proof can be
found in [Wis16].

Fact 3.4. If B is a connected group of rank 2, then any one of the following implies that
B is abelian:

(1) B normalizes a nontrivial decent torus,
(2) B contains two distinct unipotent subgroups of rank 1, or
(3) B is nilpotent and contains two distinct definable connected subgroups of rank 1.

Recall that the Fitting subgroup of a group G is the subgroup F(G) generated by all
normal nilpotent subgroups, and in a group of finite Morley rank, the Fitting subgroup
is nilpotent and definable. A group is called quasisimple if it is perfect, and modulo its
center, it is simple. Also, we say that a group of finite Morley rank is a bad group if it is
a connected nonsolvable group such that every proper definable subgroup is nilpotent. It
is unknown if bad groups exist.

Fact 3.5 ([Che79]). Let G be a connected group of rank 3.
(1) If tk F(G) > 1, then G is solvable.
(2) If 7k F(G) = O, then either
(a) G is a quasisimple bad group, or
(b) G = (P)SL,(K) for some algebraically closed field K.

3.2. Groups of rank 4

Fact 3.7 below, which is a corollary of the following fact, will be used in Subsection 6.1
where it is more-or-less responsible for our proof of Theorem A.1 getting off the ground.
Note that for a group G with subgroups A and B, we write G = A % B if A and B
commute and generate G, i.e. G is the central product of A and B.

Fact 3.6 ([Wisl6, Corollary A]). Let G be a connected group of rank 4.
(1) If tk F(G) = 2, then G is solvable.
(2) If 'k F(G) = 1, then either

(a) G is a quasisimple bad group, or

(b) G = F(G) * Q for some quasisimple subgroup Q of rank 3.
3) If tk F(G) = O, then either

(a) G is a quasisimple bad group, or

(b) G has a normal quasisimple bad subgroup of rank 3.
In particular, 1k F(G) > 1 whenever G has an involution.
Fact 3.7 ([Wisl6, Corollary B]). If G is a connected nonsolvable group of rank 4 act-
ing faithfully, definably, transitively, and generically 2-transitively on a definable set of
rank 2, then there is an algebraically closed field K for which G = Z(G) - Q with
Z(G) = K* and Q = (P)SL,(K).
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4. Permutation groups

We now give the essential definitions and some permutation-group-theoretic background
for our study of generically n-transitive actions. Our main references for this material are
[BCO8] and [Wis16].

Definition 4.1. A pair (X, G) is called a permutation group if G is a group with a (fixed)
faithful action on the set X. We say that (X, G) has finite Morley rank if G, X, and
the action of G on X are all definable in some ambient structure of finite Morley rank.
Additionally, if (X, G) is a permutation group of finite Morley rank that is generically
n-transitive but not generically (n 4 1)-transitive, we say that n is the degree of generic
transitivity and write gtd(X, G) = n.

Before going further, it will be helpful to make some basic remarks about generic n-
transitivity. These remarks will frequently be used without explicit mention or reference.

Remark 4.2. Let (X, G) be a generically n-transitive permutation group of finite Morley
rank.

(1) As a consequence of the additivity of Morley rank in the context of groups, (X, G) is
easily seen to be generically (n — 1)-transitive.

(2) If x is in the generic orbit of G on X, then G, is generically (n — 1)-transitive on X,
again by the additivity of the rank.

(3) If X is infinite and n > 2, then the previous point implies that the 1-point stabilizers,
for points in the generic orbit, are infinite.

(4) By restricting the action to the generic orbit of G on X, one obtains a transitive action
that is still generically n-transitive. This yields a natural reduction of many arguments
to the transitive case, but when we want to understand the structure imposed on the
original X, we will explicitly assume transitivity at the outset.

4.1. Connectedness results

We tend to focus on transitive permutation groups (X, G) for which G is connected. In
this case, X is also connected, i.e. of degree 1, by general principles. If G is not connected,
we may still be able to use the following fact to establish connectedness of X.

Fact 4.3 ([BCOS8, Lemma 1.8(3)]). If an infinite permutation group of finite Morley rank
(X, G) is generically 2-transitive, then X is connected.

Note that when X is connected, the definition of generic n-transitivity reduces to G having
an orbit O on X" with tkO = rk X". One frequently used consequence of X being
connected is that, in this case, fixing a generic subset of X is equivalent to fixing all of X.

Fact 4.4 ([BCO8, Lemma 1.6]). If (X, G) is an infinite transitive permutation group of
finite Morley rank with X connected, then only the identity fixes a generic subset of X.

This fact appears in a variety of disguises. We now highlight an important one, which will
be used frequently in what follows.
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Lemma 4.5. Let (X, G) be an infinite transitive permutation group of finite Morley rank
with X connected. Assume that H and K are definable subgroups of G such that H fixes
some x € X, while the orbit of K on x is generic.

(1) If K < N(H), then H = 1.
(2) If H < N(K), then H acts faithfully on K.

Proof. First suppose that K < N(H). Then H fixes all of the K-conjugates of x. Since
the orbit of K on x is generic, H fixes a generic subset of X, so by Fact4.4, H = 1.
Next assume that H < N(K). Certainly K < N(Cpg(K)), so applying the first point
with Cy (K) in place of H, we find that Cy (K) = 1. O

We now change the focus to G and mention some connectedness results for point stabi-
lizers.

Fact 4.6 ([Wisl16, Lemma 3.5]). Assume that (X, G) is a transitive permutation group
of finite Morley rank with G connected. If some definable subgroup of G has a regular
and generic orbit on X, then all 1-point stabilizers are connected.

Our main application of the previous fact requires a definition.

Definition 4.7. Let (X, G) be a permutation group of finite Morley rank. We say that
(x1,...,x,) € X" is in general position if the orbit of G on X" containing (xy, ..., X,)
is of maximal rank among all such orbits. The stabilizers of n-tuples in general position
are called generic n-point stabilizers.

For generically n-transitive actions, the following lemma shows that in the definition of
a tuple in general position we can replace the tuple by the set of its coordinates. We
will do this frequently below. Lemma 4.8 also shows that generically n-transitive groups
contain a section isomorphic to the full symmetric group Sym(n); this will be exploited
in Subsection 4.4.

Lemma 4.8. Let (X, G) be a generically n-transitive permutation group of finite Morley
rank, and (x1, ..., x,) € X" in general position. Then every permutation of (x1, ..., Xn)
is in general position.

Proof. Permuting coordinates induces a rank-preserving definable bijection of X”. As a

result, the image under such a bijection of the orbit containing (x1, ..., x,) also has a non-
generic complement. Thus, the image and the initial orbit have nonempty intersection.
Since the image is also an orbit, they are in fact equal. O

Fact 4.9 ([Wisl6, Lemma 3.7]). Let (X, G) be an infinite transitive permutation group
of finite Morley rank with G connected. Ifn := gtd(X, G) > 2 and a generic (n—1)-point
stabilizer is abelian-by-finite, then

(1) the generic k-point stabilizers are connected for allk <n — 1,
(2) the generic (n — 1)-point stabilizers are self-centralizing in G,
(3) the action is generically sharply n-transitive, and

4) G is centerless.
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Actually, the previous fact has been stated in a slightly expanded form, but it is easy
to deduce from the original. Indeed, all but the third point come directly from [Wis16,
Lemma 3.7] and imply that a generic (n — 1)-point stabilizer is abelian. Thus, if H is
a generic (n — 1)-point stabilizer, then H must have a generic orbit on X, and as H is
abelian, Fact 4.4 implies that H must act regularly on the generic orbit. This implies the
third point. We now mention a pair of reductions to connected groups.

Lemma 4.10. If (X, G) is a permutation group of finite Morley rank with X connected,
then (X, G) is n-transitive if and only if (X, G°) is n-transitive.

Proof. Only the forward direction is nontrivial. Assume that (X, G) is n-transitive. Let
X™ be the subset of X" consisting of those tuples for which all entries are pairwise
distinct. We need to show that G° acts transitively on X . Note that X" is a definable
subset of X", and that X" — X is a union of a finite number of definable subsets each
of rank strictly less than the rank of X”. Thus X and X" both have the same rank
and degree. Most importantly, we find that X has degree 1, since X was assumed to
be connected. Now, G is transitive on X so every orbit of G° on X ) has full rank
in X As X has degree 1, G° has a single orbit on X . O

Fact 4.11 ([BCO8, Lemma 1.9]). If (X, G) is a transitive permutation group of finite
Morley rank with X connected, then gtd(X, G) = gtd(X, G°).

We close this subsection with a useful lemma that relates multiple generic transitivity to
the generation of connected groups.

Lemma 4.12. If (X, G) is a generically 2-transitive permutation group of finite Morley
rank with x, y € X in general position, then G° = ((G,)°, (G,)°).

Proof. If we identify X with the (right) coset space G,\G, our assumptions imply that
the orbit of G on the coset G, has full rank in G,\G, i.e. t(k Gx\(G,Gy) = tk G,\G.
Thus, rk G =1k G, Gy, so (Gx)° and (Gy)° generate G°. m]

4.2. Primitivity, quotients, and covers

When there is a high degree of generic transitivity relative to the rank of the set being
acted upon, one expects to encounter some sort of primitivity. This is, of course, implied
by Conjecture A.

Definition 4.13. Assume that a group G, a set X, and an action of G on X are all de-
finable in some ambient structure. The action is said to be definably primitive if every
definable (with respect to the ambient structure) G-invariant equivalence relation is either
trivial or universal; whereas the action called virtually definably primitive if every defin-
able G-invariant equivalence relation either has finite classes or finitely many classes.

For permutation groups of finite Morley rank, it turns out that definable primitivity often
coincides with ordinary primitivity.
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Fact 4.14 ([MP95, Proposition 2.7]). If (X, G) is a definably primitive permutation
group of finite Morley rank with infinite point stabilizers, then (X, G) is primitive.

For transitive actions, there is an inclusion-preserving bijection from the set of G-invariant
equivalence relations on X to the set of subgroups of G containing a fixed point stabilizer
G,. Specifically, if ~ is a G-invariant equivalence relation on X and X is the class of x,
then the bijection takes ~ to the setwise stabilizer Gx. The inverse takes an overgroup H
of G to the equivalence relation whose classes are the G-translates of the orbit x H. Thus,
a transitive action is primitive if and only if a point stabilizer is a maximal subgroup of G,
and one also obtains the following analogous characterizations of definable and virtually
definable primitivity.

Fact 4.15 ([BCOS8, Lemma 1.13]). Let (X, G) be a transitive permutation group defin-
able in some ambient structure, and fix x € X. Then

(1) (X, G) is definably primitive if and only if G is a maximal definable subgroup of G,
and

(2) (X, G) is virtually definably primitive if and only if for every definable subgroup H
containing Gy, either |G : H| or |H : G| is finite.

If (X, G) is a permutation group and ~ is a G-invariant equivalence relation on X, then G
acts naturally on X/~, and we call (X/~, G) a quotient of (X, G). Note that a quotient
may no longer be faithful. As mentioned above, for (X, G) transitive, the definable quo-
tients of (X, G) correspond to the definable subgroups of G containing G,. By moving
to any proper definable overgroup of G, of maximal rank, one sees that every transitive
permutation group of finite Morley rank has a virtually definably primitive quotient, but
in fact we can often find a quotient that is definably primitive.

Fact 4.16 ([BCOS8, Lemma 1.18]). Let (X, G) be a transitive permutation group of finite
Morley rank. Then

(1) (X, G) has a nontrivial virtually definably primitive quotient, and
(2) if (X, G) has a nontrivial virtually definably primitive quotient with infinite point
stabilizers, then (X, G) has a nontrivial definably primitive quotient.

We will often pass to definably, or at least virtually definably, primitive quotients, and
when we are in a context of generic n-transitivity, the following is essential.

Lemma 4.17 ([BCO8, Lemma 6.1]). Let (X, G) be a transitive permutation group of
finite Morley rank with n = gtd(X, G). If x1,...,x, € X are in general position
and (X, G) is any infinite definable quotient, then gtd(X, G) > n, and the images of
X1y ...r Xy in X arein general position.

Proof. The transitivity of G on X easily transfers to (X, G), so the classes in X have
constant rank. If O C X" is the orbit of G on (xy, ..., x,), then it is not hard to see that
the image of O in X" is a G-orbitin X of full rank. As we need only address n > 2, we
can take X, hence X, to be connected, so (Y, G) is generically n-transitive. O

On occasion we will want to assume that point stabilizers are connected. This amounts to
passing to a finite cover.
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Definition 4.18. If G is a definable group acting on definable sets X and 5(\ then we
call X a definable cover of X if there is a definable surjective G-invariant map 7 :
X — X, 1e (X, G) is equivalent to a quotient of (X G). If the fibers of 7 are finite,
we say that Xisa finite cover of X.

Moving from a transitive permutation group to a transitive finite cover amounts to moving
to a subgroup of finite index in a point stabilizer. If (X, G) is primitive, any nontrivial
cover will certainly not be primitive and may even fail to be virtually definably primitive.
However, we do have the following. Note that we assume G is connected.

Lemma 4.19. Ler (X, G) be an infinite transitive permutation group of finite Morley

rank v/v\ith G connected and n := gtd(X, G). If x1,...,x, € X are in g\eneral position
and (X, G) is anyAdeﬁnable transitive finite cover of (X, G), then gtd(X, G) = n, and
any X1, ..., X, € X that project to x1, . . ., x,, are in general position.

Proof. As the covering map has finite fibers, X and X have the same rank. Further, both
sets are connected since G is connected and the actions are transitive. Now, if O C X" is

the orbit of G on (%, .. xn) then O projects to the generic orbit of G on X". Since the
fibers of the projection from X to X, hence from X" to X", are finite, we find that O has
the desired rank. O

Early in our proof of Theorem A.1, we will show that the generic (n — 1)-point stabilizers
are abelian-by-finite. We will also be in a virtually definably primitive context, so we will
have access to the following result.

Corollary 4.20. Let (X, G) be a transitive virtually definably primitive permutation
group of finite Morley rank with G connected. If n := gtd(X, G) > 2 and a generic
(n — 1)-point stabilizer is abelian-by-finite, then the action is primitive.

Proof. If we pass to a definably primitive quotient of (X, G) with kernel K, then as the
classes in the quotient are finite, K° = 1 (using the fact that connected groups act trivially
on finite sets). Thus, K is finite and hence central since G is connected. By Fact 4.9, K =
1. Further, Fact 4.9 applies to the quotient, so the 1-point stabilizers in the quotient are
connected. As there is no kernel, the 1-point stabilizers from the quotient coincide with the
original 1-point stabilizers, so (X, G) is definably primitive. By Remark 4.2(3), generic
2-transitivity ensures that the point stabilizers are infinite, so the action is primitive by
Fact 4.14. O

In the situation where the 1-point stabilizers are abelian, we obtain the following char-
acterization of the 1-dimensional affine group. In our proof of Theorem A.1, this can be
used to show that a generic (n — 2)-point stabilizer is not virtually definably primitive.

Fact 4.21 ([Wisl6, Proposition 3.8]). Let (X, G) be an infinite transitive and virtually
definably primitive permutation group of finite Morley rank with abelian point stabiliz-
ers. If G is connected and the point stabilizers have rank at least tk X, then (X, G) =
(K, AGL;(K)) for some algebraically closed field K.
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Finally, we mention that, in the presence of primitivity, there is an essential connection
between the degree of generic transitivity and the rank of the group. The following fact
is stated in a slightly stronger form than the proposition it references; the stated form is
clear from the original proof.

Fact 4.22 ([BCOS, Proposition 2.3]). If (X, G) is a primitive permutation group of finite
Morley rank with tk X = r, then

kG <r-gtd(X,G)+r@r—1)/2.
We will need the following very slight modification of the previous fact.

Lemma 4.23. If (X, G) is a transitive virtually definably primitive permutation group of
finite Morley rank with G connected and tk X = r, then

kG <r-gtd(X,G)+r(r—1)/2.

Proof. If r = 0, there is nothing to show, so assume that X is infinite. If (X, G) has
finite point stabilizers, then tk G = r, and we are done since gtd(X, G) > 1. Thus, we
assume that (X, G) has infinite point stabilizers, so Fact 4.16 yields an infinite definably
primitive quotient (X, G) with kernel K. As the classes in the quotient are finite, the
kernel is also finite, so the ranks of X and G coincide with those of X and G /K . Further,
Lemma 4.19 shows that gtd(?, G/K) = gtd(X, G), so we may assume that (X, G) is
definably primitive. Again, if (X, G) has finite point stabilizers, then we are done, so by
Fact 4.14, (X, G) is primitive. The previous fact now applies. O

4.3. Actions of solvable groups

Theorem A and, more generally, Conjecture A are about finding limits on the degree of
generic transitivity; the following is in a similar vein but certainly in a different direction.

Proposition 4.24 (cf. [Pop07, Proposition 1]). Let (X, G) be an infinite transitive per-
mutation group of finite Morley rank.

(1) If G° is nilpotent, then gtd(X, G) = 1.
(2) If G° is solvable, then gtd(X, G) < 2.

Proof. If there is a counterexample to the first point, then we can produce a counterexam-
ple (X, G) for which G is connected and the action is definably primitive. Let us elaborate
abit. If (X, G) is generically 2-transitive, then X is connected by Fact 4.3, so by Fact4.11,
we may assume that G is connected. Next, replace X by a nontrivial (hence infinite) vir-
tually definably primitive quotient by moving to a proper definable subgroup of maximal
rank that contains a point stabilizer. By Lemma 4.17, moving to a quotient preserves
generic 2-transitivity, and of course, we can ignore the kernel. Now Fact 4.16 applies
since generic 2-transitivity implies that point stabilizers are infinite by Remark 4.2(3),
and we obtain our desired counterexample. Now fix an x € X. By primitivity, we find
that G = Z(G) x G, and the action of G, on X — {x} is equivalent to the action of G
on Z(G) by conjugation. Certainly, generic 2-transitivity is impossible.
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For the second point, we consider, as before, a counterexample for which we addi-
tionally assume that G is connected and the action is definably primitive. Fix an x € X,
and let Z denote the center of the Fitting subgroup of G. Now we find that G = Z < Gy.
As Z acts regularly on X, Z must be self-centralizing, so Z contains F(G). However,
this implies, by [ABCO8, I, Lemma 8.3], that G/Z is abelian. Thus G, is abelian, so by
the first point, the action of G, on X — {x} is not generically 2-transitive. Thus, (X, G)
cannot be generically 3-transitive. O

4.4. The X-groups

The next definition singles out particular subgroups that are essential to the study of gener-
ically n-transitive actions.

Definition 4.25. Let (X, G) be a permutation group of finite Morley rank. If x, ..., x,
are elements of X in general position, define X (xi,..., Xk—1; Xk, ..., Xn) to be the
subgroup of Gy, .. x,) that fixes x,...,x, pointwise; when there is no semicolon,
¥ (x1,...,x,) is defined to be Gy, ... x,}-

Let us give a couple of examples to keep in mind; the latter is the most relevant for the
following.

Example 4.26. Let K be an algebraically closed field. Set V := K3, and fix an ordered
basis B := (e, e, e3) for V.

(1) Consider GL3(K) acting naturally on V. This action is generically 3-transitive, and
Y. (eq, €2, e3) is the group of permutation matrices (with respect to 3). This recovers
the Weyl group.

(2) Consider PGL3(K) acting naturally on P(V). This action is generically 4-transitive
with X ({e1), (e2), (e3); (e1 + e2 + e3)) equal to (the image in PGL3(K) of) the
group of permutation matrices. Thus, in a slightly different way, we again recover
the Weyl group.

When (X, G) is generically n-transitive, X(x1, ..., x,)/Gy,... x, is the full symmetric
group on {xy, ..., X,}, and, as in the above examples, if we have a generically sharply
n-transitive action, then ¥ (xp, ..., x,) is equal to Sym(xy, ..., x,). This is extremely
useful when combined with the following lemma.

Lemma 4.27. Let (X, G) be an infinite permutation group of finite Morley rank with
n = gtd(X, G) > 2 and x1, ..., x, € X in general position. Then X(x1, ..., Xp—1; Xn)
acts faithfully on (Gy, .. x,_,)°.

Proof. First note that X is connected by Fact 4.3. Thus, we may apply Lemma 4.5 with
H=%X(x1,...,xs—1;xp) and K = (Gy,,... x,_,)°- O

Lemma 4.27 leads naturally to the consideration of actions of Sym(n), or rather covers
of Sym(n), on connected groups of finite Morley rank. Such actions were also consid-
ered in [BCOS], but the most relevant result for us, namely [BC08, Lemma 4.6], is not
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entirely correct as it omits many representations of symmetric groups over the field with
2-elements (see [Dic08] or the introduction to [Dye79]). However, we will only be con-
cerned with actions of Sym(n) on connected groups of rank at most 2, so we can quickly
prove the little that we need. We will make frequent use of the basic fact that if « is a
definable involutory automorphism of a connected group G of finite Morley rank, and
Cg (@) is finite, then « inverts G (see [ABCOS, I, Lemma 10.3]).

Lemma 4.28. Assume that Sym(n) acts definably on a connected group A of Morley
rank 1. Then Alt(n) is contained in the kernel.

Proof. By rank considerations, every transposition of Sym(rn) must either fix or invert
all of A. If some transposition fixes A, the kernel contains a transposition, so it is all of
Sym(n). Otherwise, every transposition inverts A, so Alt(n) fixes A. O

Lemma 4.29. If Sym(n) acts definably and faithfully on a connected group A of Morley
rank 2, thenn < 3.

Proof. Towards a contradiction, assume that n > 4. Choose ¥ < Sym(n) with ¥ =
Sym(4); note that X' := [X, X] is nonabelian. We work in A x .

We first treat the case when A has a definable connected X-invariant subgroup N of
rank 1, i.e. A is not X-minimal. Now, A is solvable by Fact 3.3, so we may take N to be
normal in A. By the previous lemma, X’ centralizes A/N and N,so[[4, £'], X'] = 1. An
application of the three subgroups lemma for commutators shows that [/, X], A] = 1,
so [X’, ¥'] acts trivially on A. The action is faithful, so X’ is abelian, a contradiction.

Now assume that A is X-minimal. Thus, as A is solvable, A is abelian. Let V < X
be the normal subgroup of order 4, and let i, j, and k denote the three (commuting)
involutions of V. Note that C4 (i), C4(j), and Cy4 (k) are X-conjugate, so they all have the
same rank. If one of these centralizers is finite, then we find that i, j, and k each invert A,
which is impossible since k = ij. Since the action is faithful, C§ (i), C3(j), and C§ (k)
each have rank 1, and because A is X-minimal, these groups are pairwise distinct. As A
has rank 2, A = C§ (i) + C}(j), and since k normalizes both C§ (i) and C§ (), we find
that k inverts A. This is a contradiction. m]

4.5. Actions on sets of rank 1

It is hard to overstate the importance of the following fact; it underlies almost every aspect
of our proof of Theorem A.

Fact 4.30 (Hrushovski; see [BN94, Theorem 11.98]). Let (X, G) be a transitive permu-
tation group of finite Morley rank with X connected of rank 1. Then tk G < 3, and if
tk G > 1, there is a definable algebraically closed field K such that either

(1) (X, G) is equivalent to (K, AGL(K)), or
(2) (X, G) is equivalent to (P'(K), PSLy(K)).

Upon invoking Lemma 4.17, we obtain the following corollary for actions on sets of
rank 2.
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Corollary 4.31. Let (X, G) be a transitive permutation group of finite Morley rank
with G connected and tk X = 2. If gtd(X, G) > 4, then the action is virtually defin-
ably primitive.

Proof. Let (X, G) be a transitive permutation group of finite Morley rank with G con-
nected, rk X = 2, and gtd(X, G) > 4. Assume that the action is not virtually definably
primitive. Then by Fact 4.15(2) and the assumption that rk X = 2, a point stabilizer G
is contained in a definable subgroup H of rank rk G, 4 1 and corank 1 in G. This implies
that there is a (not necessarily faithful) quotient (X, G) with X of rank 1. As (X, G) is
transitive, (Y, G) is also transitive, and X has degree 1. Hence, Fact 4.30 applies. How-
ever, Lemma 4.17 implies that (X, G) is generically 4-transitive, which is impossible. O

The uninitiated reader may find the proof of Corollary 4.31 unnecessarily heavy. It is
not. Indeed, unlike ordinary multiple transitivity, generic multiple transitivity does not
automatically yield any form of primitivity. Conjecture A generalizes the special case
illustrated by Corollary 4.31 and proposes a setting sufficiently strong to achieve defin-
able primitivity. We will finish this section with an informative example of a generically
2-transitive action that is not virtually definably primitive.

Example 4.32. Let K be an algebraically closed field and G the affine group K+ x K*.
The group G acts on the affine line as follows: if (u,¢) € G and x € K, then (u, 1) - x =
tx + u. Using this action of G on K, we now consider the induced coordinatewise action
of G x G on K x K. This action is transitive. It is however not 2-transitive. Indeed, the
stabilizer of the pair ((x, y), (x’, y)) € K? x K? is trivial if x % x” and y # y/, while it
is isomorphic to 1 x K* (resp. K* x 1) if y = y’ (resp. x = x').

On the other hand, the existence of trivial 2-point stabilizers shows that the action
is generically 2-transitive. This does not suffice to conclude that the action is virtually
definably primitive. Indeed, any 1-point stabilizer in G x G is conjugate to K* x K*, and
this is contained in G x K*, a proper definable subgroup of G x G of rank strictly greater
than that of K* x K*.

It is worth noting that this example is not an artificial one. As the 2-point stabilizer in
the example at the beginning of Section 6 shows, this is in fact a configuration one has to
deal with.

4.6. Moufang sets

We will need a classification result from the theory of Moufang sets of finite Morley rank
to put the final touches on the proof of Theorem A.l. The bare minimum is included
below. For more background on Moufang sets, we recommend [DMS09]; specifics on a
context of finite Morley rank can be found in [Wis11].

Definition 4.33. For a set X with |X| > 3 and a collection {U, : x € X} of groups with
each U, < Sym(X), we say that (X, {Uy : x € X}) is a Moufang set if for G := (Uy :
x € X) the following conditions hold:
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(1) each U, fixes x and acts regularly on X — {x},
(2) {Ux : x € X} is a conjugacy class of subgroups in G.

We call G the little projective group of the Moufang set, and each U, for x € X is called
a root group. The 2-point stabilizers in G are called the Hua subgroups.

It is easy to see that G acts 2-transitively on X, and as such, the theory of Moufang
sets is about a special class of 2-transitive permutation groups. This class of 2-transitive
groups includes the sharply 2-transitive groups, but the motivating example for the subject
comes from the natural action of PSL, on the projective line where the root groups are
the unipotent radicals of the Borel subgroups.

Definition 4.34. We will say that a Moufang set (X, {U, : x € X}) with little projective
group G is interpretable in a structure if the root groups, X, G, and the action of G on X
are all interpretable in the structure. Now we define a Moufang set of finite Morley rank
to be a Moufang set interpretable in a structure of finite Morley rank.

In the end, we will only be interested in Moufang sets of finite Morley rank for which the
root groups and the Hua subgroups are both abelian. Using [BN94, Proposition 11.61]
when the Hua subgroups are trivial (this is the sharply 2-transitive case) and using a com-
bination of [Seg09, Main Theorem], [DMWO06, Theorem 6.1], and [Wis10, Theorem 1.1]
otherwise, one obtains the following classification theorem.

Fact 4.35. Let (X, {Uyx : x € X}) be a Moufang set of finite Morley rank with infinite
abelian root groups and abelian Hua subgroups. If G is the little projective group of the
Moufang set, then there is an algebraically closed field K for which (X, G) is isomorphic
10 either (K, AGL; (K)) or (P'(K), PSLy(K)).

5. Preliminary recognition of PGL3

The purpose of this section is to provide a general recognition result for PGL3 that approx-
imates Theorem A. This is where the geometry occurs; our eventual proof of Theorem A,
or rather Theorem A.1, will then “only” require us to show that the following proposition
applies.

Proposition 5.1. Let (X, G) be a generically 4-transitive permutation group of finite
Morley rank with tk X = 2. Further, suppose that

(1) the action is 2-transitive,
(2) the action is not 3-transitive, and
(3) ifx,y,z € X are in general position, then Fix((Gy y ;)°) = {x, y, z}.

Then (X, G) = (IF’Z(K), PGL3(K)) for some algebraically closed field K.

We remark that this proposition should generalize in an obvious way to higher dimen-
sional projective groups, but we have not taken this up here. Our proof builds a projective
plane and ultimately relies on the following theorem of Tent and Van Maldeghem, of
which we only give a partial account.
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Fact 5.2 ([TVMO2, 1.3. Theorem]). Let G be a group of finite Morley rank acting faith-
fully on a projective plane X with strongly minimal point rows and lines pencils. If G acts
transitively and definably on the set of ordered ordinary 3-gons, i.e. ordered triples of
noncollinear points, then (X, G) = (P2(K), PGL3(K)) for some algebraically closed
field K.

5.1. Defining the geometry

Definition 5.3. Let (X, G) be a generically 3-transitive permutation group of finite Mor-
ley rank. We define a relation £ on X3 by £(x, y, z) if and only if x, y, z are not in general
position. We read £(x, y, z) as “x, y, z are collinear.” We say x, y, z, w form a 4-gon if
no three of them are collinear.

The orbits of G on X3 are uniformly definable, as are their ranks, so £ is definable. Note
that, by definition, an ordered 3-gon is the same thing as a triple in X3 that is in general
position, so generic 3-transitivity translates to G acting transitively on ordered 3-gons.
Further, if (X, G) is generically 4-transitive, then any four points in general position form
a 4-gon, but there is no reason to believe that the points forming a 4-gon are necessarily
in general position.

Definition 5.4. For x, y € X in general position, define the line through x and y to be
Lyy = L(x,y, X) C X. A line will be any subset of X of the form £y, for some x and y
in general position, and the set of lines is denoted L.

Note that £,y is precisely the union of the nongeneric orbits of G y.

5.2. Refining the geometry

We carry the following setup throughout the current subsection.

Setup. Assume that (X, G) is as in Proposition 5.1. The third item from the proposition
will be referred to as the Fixed Point Assumption. We call the elements of X points, and
define the set £ of lines as above.

Notice that 2-transitivity is equivalent to each pair of distinct points being in general
position.

Lemma 5.5. Suppose thatx, y, z € X are three different points. Then z € £,y if and only
ify € by ifand only if x € £y;.

Proof. We see that z € £, if and only if x, y, and z are collinear, and as collinearity does
not depend on the order of the points, the lemma holds. O

We now aim to show that two distinct points determine a unique line. The following
lemma is the essential step.

Lemma 5.6. Letx,y € X be distinct. If 7 € £yy and z # x, then £y = L.
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Proof. Assume z € {yy with z # x.If z = y, there is nothing to prove, so we also
assume that z # y. First, we consider when there exists an a € £y, — £y, and show that
this implies that z is included in a finite orbit of Gy 4, contradicting the Fixed Point
Assumption.

By 2-transitivity, tk(Gy,y) = 1k(Gy,;), 50 tk(Gy,y/Gx y,z.a) = 1K(Gx,z/Gx y.z.0)-
We now bound 1k(Gy ./ Gy y,z,q). Since a € £, we have 1k(Gx /Gy z,a) < 1. Now,
y € £y by the previous lemma, so k(G /Gy ;y) < 1 as well. Of course this implies
that tk(Gx,z,a/ Gx,y,z,a) < 1, so we conclude that 1k(Gy ;/Gyx,y,z,a) < 2. Consequently,
tk(Gy,y/Gx,y,z,a) < 2, and we also know that k(G /Gy, y4) = 2 since x, y, a are
in general position. Thus, it must be that tk(Gy y.a/Gx,y z,a) = 0, so z is included in a
finite orbit of Gy 4, which contradicts the Fixed Point Assumption. We conclude that

Lyz C Lyy.
By the previous lemma, we may swap the roles of y and z in this argument, so we
also find that £, C £,. O

Proposition 5.7. Letx, y € X be distinct. Then £, is the unique line containing x and y.
Hence, any two lines intersect in at most one point.

Proof. Clearly x,y € £,,. Now assume that x, y € £, with a and b distinct elements
of X. We may assume that x # a, so by the previous lemma, £,, = £,x. Now y € £,
(since €4y = Lap), and y # x. Thus, £y, = £yx. O

Now, 2-transitivity ensures that G is transitive on the lines. Notice that a line is definable,
so the set of lines may be identified with the definable set G/ G, where Gy is the setwise
stabilizer of some fixed £ € L. Also, for a fixed x € X, G, is transitive on X — {x}, and
y ~ zif and only if £y, = £, defines an equivalence relation on X — {x}. Certainly, the
line pencil £(x) may be identified with the quotient. Using Lemma 4.17, we find that G
acts transitively and generically 3-transitively on £(x), so in particular £(x) is connected
by Fact 4.3. We collect some further details about the geometry.

Lemma 5.8. Let x, y, z € X be in general position. Then

(1) the point-row P(Lyy), i.e. the set £y, has rank 1,
(2) L(x) is strongly minimal,
(3) Gy, y,; acts transitively on L(x) — {{yy, £x;}.

Proof. If1k’P(£yy) # 1, thentk P(£,y) = 0. In this case, every orbit of Gy on P (£yy) is
finite. By the Fixed Point Assumption, £, = {x, y}, and this contradicts our assumption
that the action is not 3-transitive. Thus, tk P(£,,) = 1. Further, the lines in £(x) partition
the rank 2 set X — {x}, so as each line has rank 1, we find that £(x) also has rank 1. We
already noted that £(x) is connected, so it is strongly minimal.

For the third point, now G, acts transitively and generically 3-transitively on the
strongly minimal set £(x), so G induces PSL; on L£(x) by Fact 4.30. In particular, if K
is the kernel of the action of G, on L(x), then G, /K acts sharply 3-transitively on £(x).
Set T := Gy,y; and H := Gy, ¢,,- Now, H contains K, and by the structure of PSL;,
H/K is connected of rank 1. By the generic 4-transitivity of G on X, we know that T has
a generic orbit on X — {x}, so as the action of 7" on L£(x) can be identified with a quotient
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of T acting on X — {x} (see the discussion preceding the statement of this lemma), this
action must be generically transitive as well. Thus, the image of T in G, /K is infinite,
and as T is contained in H with H/K connected of rank 1, we find that T covers H in
the quotient. Since H acts transitively on £(x) — {€xy, £x;}, T does as well. O

Proposition 5.9. (X, £) is a projective plane.

Proof. Since any four points in general position form a 4-gon, it only remains to show
that every pair of lines intersect. Let £ and ¢’ be distinct lines. Fix x € £, and y,z € ¢
with y # z. If x € ¢/ we are done, so assume that x ¢ ¢’. Then x, y, z are in general
position, so by the previous lemma, G, , acts transitively on £(x) — {£yy, £x;}. Thus,
for w € ¢ different from y and z, we find that Gy, y,z moves £y, to £ while fixing 4
(setwise). Since £, intersects £’, so does £. ]

Proof of Proposition 5.1. Now G acts on the projective plane (X, £), and the plane has
strongly minimal line-pencils. Further, we have already noted that G is transitive on or-
dered 3-gons. Thus, in order to apply Fact 5.2, it remains to show that each point-row is
strongly minimal.

Fix aline £ and a point x not on £. Consider the function ¢ : P(£) — L(x) : y = £yy.
Since two points determine a unique line, this a definable injective function. Of course,
every pair of lines intersect, so ¢ is surjective. Since £(x) is strongly minimal, P(£) is as
well. O

6. Theorem A.1

In this section, we address the case of generic sharp® n-transitivity; this was defined in
Section 1.

Theorem A.1. If (X, G) is a transitive and generically sharply® n-transitive permuta-
tion group of finite Morley rank with G connected and tk X = 2, then

(1) nis at most 4, and
(2) ifn =4, then (X,G) = (]P’2(K), PGL3(K)) for some algebraically closed field K .

Setup. Let (X, G) be a transitive and generically sharply® n-transitive permutation group
of finite Morley rank with G connected and rk X = 2. Assume that n > 4, and fix
1,2,...,n € X in general position.

If o € Sym(4), we write g € o to mean that g is an element of G acting on {1, 2, 3, 4}
as o'; we are thinking of o as an element of G(1,23,4)/G1,2,3,4. If G123 4 is known to be
trivial, we write g = o as in this case there is a unique g realizing o. For example, by “let
g € (12)34” we mean “let g be an element of G swapping 1 and 2 and fixing 3 and 4.”
To prove Theorem A.1, we aim to apply Proposition 5.1. This does not require that
we know 7 in advance, but in fact, everything will proceed much more smoothly once we
know that the action is generically sharply 4-transitive. Our approach is as follows.

(1) Show that the action is generically sharply 4-transitive.
(2) Expose the structure of generic 2- and 3-point stabilizers.
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(3) Show that the action is 2-transitive.
(4) Prove the Fixed Point Assumption.

In the end, we will also show that the final three points imply that the action is not 3-
transitive. Item (2), which occurs as Proposition 6.6, is an important stepping stone for
what follows, so it seems worthwhile to briefly recall the structure of point stabilizers
in PGL3. Let K be an algebraically closed field. Fix an ordered basis (eq, ez, e3) for K 3
and set p; = (e1), p2 = (e2), p3 = (e3), pa = (e1 + e2 + e3). If G = PGL3(K), then

1 0 0 1 00 1 00
Gp=1* * x|, Gpp=10 % 0), Gppp;=(0 x 0
% % * k% 0 0 =

Thus, Gp,, p,.p; = K> x K> is a maximal torus of G, and the 2-point stabilizer G, p,
isequal to F(Gp,, p,) X Gp, py, ps With F(Gp, p,) = KT @ K. Note that G, p, is con-
nected and solvable, but it is properly contained in the Borel subgroup of lower triangular
matrices.

We begin with an observation which, incidentally, does not require that G ., is
finite. It is worth noting that the proof of the following lemma makes use of [BCO8,
Lemma 5.8], which in turn uses the classification of the simple groups of finite Morley
rank of even and mixed type. It is certainly possible that a more elementary argument
would suffice.

Lemma 6.1. The action is virtually definably primitive, and G has even or odd type.

Proof. Virtual definable primitivity is given by Corollary 4.31. If K is the kernel of a
definably primitive quotient, then as the classes in the quotient are finite, K° central-
izes every class. Thus, K is finite, so as G/K must have even or odd type by [BCOS,
Lemma 5.8], the same is true of G. O

6.1. Generic sharp 4-transitivity

The goal of the present subsection is the following proposition.

Proposition 6.2. The action is generically sharply 4-transitive with G| solvable and
G1,2,3 abelian.

Notice that this proposition also implies that the action is primitive by Corollary 4.20. We
begin by giving the desired bound on n.

Lemma 6.3. We have n = 4. Further, if (G12,3)° is nonabelian, then it is nonnilpotent
in characteristic 3.

Proof. Assume n > 5. Set ¥ := ¥(1,2,3,4;5,...,n), B :=(G1,..p—2)° and H :=
,,,,, n—1)°. Then /Gy, , = Sym(4), and ¥ is finite since G, is. The finiteness
of G1,..., also implies thattk B = 4 and rk H = 2.

If H is abelian, we may use Fact 4.9 to see that Gy, , = 1. This implies that ¥ =
Sym(4), so Lemma 4.29 provides a contradiction, via Lemma 4.27.

.....
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Next, if H is nilpotent and nonabelian, then H is p-unipotent for some prime p by
Fact 3.3, and we distinguish two cases. If B is nonsolvable, then H embeds into a rank 3
group of the form (P)SL, by Fact 3.7, which is clearly a contradiction. However, if B
is solvable, then H < F(B) (see [ABCO08, I, Corollary 8.4]), so as the conjugates of H
in B generate B by Lemma 4.12, we find that B is nilpotent. Since B acts generically
2-transitively on X, this contradicts Lemma 4.24.

Thus, it remains to treat the case when H is nonnilpotent. We know that ¥ acts faith-
fully on H, so by Fact 3.3, ¥ embeds into H/Z(H) = KT x K* for some algebraically
closed field K. Now, H/Z(H) is 2-step solvable while X is not, so we conclude that
n=4.

For the final point, we now have n = 4, so set ¥ := X(1,2,3;4). If H = (G123)°
is nonabelian, we may repeat the above arguments to see that H is nonnilpotent and X
embedsinto H/Z(H) = KT x K*. Since ¥ covers Sym(3), the only way this can happen
is if K has characteristic 3. O

Lemma 6.4. The group (G12)° is solvable.

Proof. Assume that B := (G1,2)° is nonsolvable; set H := (G1,2,3)°. By Fact 3.7, there
is then an algebraically closed field K for which B = Z(B) - Q with Z(B) = K* and
0 = (P)SL,y(K). Set Z := Z(B). As Z is central in B, Z intersects H trivially, and
H embeds into B/Z. Since H has rank 2, this implies that H is nonnilpotent with tori
isomorphic to K *.

Note that X(1,2;3,4)/G1.234 has order 2, so by [ABCO08, I, Lemma 2.18],
%(1,2;3,4) contains 2-elements swapping 1 and 2. Let o be a 2-element of
%(1,2; 3,4) — B such that a2 € B: we do not rule out the possibility that ¢ € G123 4.
Since H is nonnilpotent in characteristic 3 and « is a 2-element acting nontrivially on H
(by Lemma 4.27), we may apply Fact 3.3 to see that o« must centralize some good torus T
in H.

We now claim that « inverts Z. If not, then, as Z is connected of rank 1, o cen-
tralizes T Z, which is a good torus of rank 2. Since rk X = 2, [BC08, Lemma 3.11]
implies that the maximal 2-torus S of T Z is in fact a maximal 2-torus of G. Further, by
Lemma 6.1, G has odd type, so we may apply [BCO8, Corollary 5.16] to see that S con-
tains all 2-elements in C(S). This implies that @ € S < B, which contradicts our choice
of a. We conclude that « inverts Z.

Now, as Z covers B/Q, we see that Cp() < Q. However, H N Q has rank 1 and
is normal in H, so T is not contained in Q. Since T is centralized by «, we have a
contradiction. ]

The next lemma shows that G > 3 is abelian-by-finite, so in light of Fact 4.9, this will
complete the proof of Proposition 6.2.
Lemma 6.5. The group (G1.2.3)° is abelian.

Proof. Assume not. Set H = (G123)°, B := (G12)° and P := (G1)°. Then we
know B is solvable and H is nonnilpotent in characteristic 3. We will use the unipotent
radical of H to build a large unipotent subgroup U of G, not contained in any point
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stabilizer, with the property that (U N P)° < P. Further, (U N P)° will be normal in U,
and N ((U N P)°) will provide a contradiction to virtual definable primitivity.

Let U123 = F°(G12.3) be the unipotent radical of (G12,3)°, and similarly de-
fine U124, U134, and Uz34. Set U = (U123,U124,U134,U234) and A =
(U1,2,3, U1,2,4). We now work to show that A is abelian and normal in B. This will also
imply that U is abelian since every pair of subgroups in {U123, U124, U134, U234}
generate a subgroup that is conjugate to A.

Set F := F(B), and let Z be the connected center of F. Since B is solvable, we have
A < F by [ABCO08, I, Lemma 8.36]. Let B3 be the stabilizer of 3 in B. If B3Z = B,
then the orbit of Z on 3 has rank 2, and as Z centralizes U; 2 3, we find that U; 23 = 1
by Lemma 4.5. Thus B3Z has rank 3, so B3Z determines a rank 1 quotient of the action
of B on its generic orbit (see the discussion preceding Fact 4.16). As B acts generically
2-transitively on X, Lemma 4.17 implies that B acts generically 2-transitively on the
quotient as well. By Fact 4.30, the kernel of the quotient must have rank 2, and hence
must intersect H in an H-normal subgroup of rank 1. Thus, Uj 3,3 is in the kernel. Then
Ui 2.4 is as well, and we find that the connected component of the kernel must be A.
Hence, A is normal in B, and since A is a connected rank 2 nilpotent group with two
distinct connected rank 1 subgroups, we find that A is abelian by Fact 3.4.

We now move up to P; here we show that A = (A,U;34) = F°(P). Let
N := Np(A). By our work above, N > (B, Uj 34), and since Uj 34 is not in B, we
find that N has infinite index over B. Now, the orbit of P on 2 is generic, so as A fixes 2,
A is not normal in P by Lemma 4.5. Thus, N has rank 5. Let K be the kernel of the ac-
tion of P on the conjugates of A in P; this can be interpreted as a rank 1 set since N has
corank 1 in P. As P acts generically 3-transitively on its generic orbit, which contains
2, 3, and 4, P realizes _every permutation of {2, 3, 4}. Thus, A normalizes three distinct
P-conjugates of A, so A < K by Fact4.30. Since N contains B and the action of P on the
cosets of B is generically 3-transitive by Lemma 4.19, we find that the action of P on the
conjugates of A is also generically 3-transitive, so by Fact 4.30 and rank considerations,
K° = A = F°(P). ~

Now we are done: Since Uz 34 is not contained gl P, we End that N(A), which
contains G and U3 3 4, has infinite index over G 1. As A fixes 1, A is not normal in G by
Lemma 4.5, so as G is connected, we have a contradiction to virtual definable primitivity.

O

6.2. Structure of point stabilizers

Next, we work to expose the structure of G 2 and G 2 3; note that Proposition 6.2 implies
that G2 and G 2,3 are connected groups of rank 4 and 2, respectively. We prove the
following.

Proposition 6.6. We have G12 = F°(G12) %X G123 with F°(G12) unipotent and
abelian and G 23 a self-centralizing (hence maximal) good torus of G.

Lemma 6.7. The group G233 does not have two distinct definably characteristic con-
nected subgroups of rank 1.
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Proof. Suppose that A and B are distinct definably characteristic connected rank 1 sub-
groups of G12.3. Let £ := X(1,2,3;4). Then ¥ = Sym(3). By Lemma 4.28, the com-
mutator subgroup X’ centralizes both A and B, so ¥’ centralizes G1,2.3. However, this
contradicts Lemma 4.27. m}

Lemma 6.8. We have G12 = F°(G1,.2) % G123 with F°(G12) abelian.

Proof. Set H := G123, B := G2, F := F°(B), and Z := Z(F). Since B is solvable
and nonnilpotent (by Proposition 4.24) of rank 4, we find that F has rank 2 or 3 by
Fact 3.6.

We first work to show that F has rank 2; this will take several steps. Suppose tk F = 3.
Since F does not contain H by Lemma 4.12, B = FH, and the orbit of F on 3 is
generic. Hence Lemma 4.5 implies that no nontrivial element of Z fixes 3, so in particular
(HNF)*NZ = 1. We now claim that (H N F)° is torsion free. Since divisible torsion is
central in any connected nilpotent group of finite Morley rank, (H N F)° is not a decent
torus. Now, if (H N F)° is p-unipotent, then as H is abelian and covers the divisible
group B/F (see [ABCOS8, I, Lemma 8.3]), we find that H has two distinct definably
characteristic connected subgroups of rank 1. This contradicts the previous lemma, so
(H N F)° is torsion free. Additionally, since H N F is nontrivial and centralized by Z, the
orbit of Z on 3 cannot be generic by Lemma 4.5, so Z has rank 1.

Now, HZ determines a rank 1 quotient of the action of B on its generic orbit. By
Lemma 4.17 and the solvability of B, the quotient must be 2-transitive, and the kernel K
hasrank 2. Let A3 := (HN K)° and A4 := (G1,2,4MN K)°. Then both groups have rank 1,
and K° := (A3, Ay). Since H is abelian and contains the torsion free subgroup (H N F)°,
the previous lemma ensures that A3 is also torsion free. Of course the same is true of A4,
so by Fact 3.4, we conclude that K ° is abelian and torsion free. This also implies that K °
is contained in F, so A3 = (H N F)°.

Next, observe that B/K° is nonnilpotent, so it has a unipotent radical which must
be F/K°. Now, if F/K° is p-unipotent for some prime p, then F has a p-unipotent
subgroup U, and we find that /' = K° % U. This cannot happen since F is nonabelian,
so F/K° is torsion free. By Fact 3.3, the image of H in B/K° contains a 3-torus, so
H contains some 3-torus S. Since H also contains Az, the previous lemma says that the
definable hull of § is all of H. Also, considering the image of S in B/K°, we see that S
has Priifer 3-rank 1. Now, X := 3(1, 2, 3; 4) = Sym(3) has elements of order 3, and by
[ABCO08, I, Lemma 10.18], these elements must centralize S. But then they centralize H,
which contradicts Lemma 4.27 (and Fact 4.9). Finally, we conclude that F' has rank 2.

We now show that F is abelian; the splitting of B will then follow quickly. If H F # B,
then H F determines a rank 1 quotient of the action of B on its generic orbit, and the
kernel must contain F'. However, the quotient must be 2-transitive by Lemma 4.17, and
this contradicts the fact that B/ F is abelian by [ABCOS, I, Lemma 8.3]. Thus, HF = B,
H N F is finite, and F has a generic orbit on 3. Suppose that F' is not abelian. Then, by
Fact 3.3, F is p-unipotent for some prime p, and Z has rank 1. We return to the quotient
determined by HZ with K and A3 defined as before. Note that K ° is nonnilpotent since
K° N H contains A3 while F N H is finite. Thus, Z is the unipotent radical of K°, and
A3z is without p-torsion. Further, [F, A3] < (F N K)° = Z, so Az centralizes F/Z. We
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may use [ABCO8, I, Proposition 9.9] to lift the centralizer from the quotient and see that
Cr(A3) is infinite. As the structure of K° shows that Cr(A3) intersects Z trivially, we
find that F' contains a nontrivial proper connected subgroup different from Z, so F must
in fact be abelian by Fact 3.4. Further, since F has a generic orbit on 3, Lemma 4.5 shows
that FNH = 1. O

Proof of Proposition 6.6. Set H := G123, B := G12,and F := F°(B). By Lemma 6.8,
F contains B’, so [ABCO08, I, Lemma 8.3] implies that H is divisible abelian. Also, F has
a generic orbit on 3 since FH = B.

We now claim that H is contained in a definable subgroup of B of rank 3. If not,
then the action of G on its generic orbit is virtually definably primitive. In this case,
Fact 4.21 tells us that B acting on its generic orbit is equivalent to (L, AGL;(L)) for
some algebraically closed field L. Now, H generates a definable field isomorphic to L
in End(F), and as ¥(1,2; 3, 4) normalizes both H and F, the image of X(1,2;3,4)
in End(F) normalizes this field. Thus, X (1, 2; 3,4) acts L-linearly on F by [ABCO08,
I, Lemma 4.5]. However, F is 1-dimensional over L, so as H induces all of L*, there
must be a nontrivial element in H - X (1, 2; 3, 4) centralizing F. Since F has a generic
orbiton 3 and H - X(1, 2; 3,4) < G3, this contradicts Lemma 4.5.

Thus B has a definable rank 3 subgroup containing H, and this determines a quotient
of B acting on its generic orbit. Let K be the kernel of the quotient. Since the action of B
on its generic orbit is generically 2-transitive and B is solvable, this quotient must be 2-
transitive, so H K /K is arank 1 good torus. Thus, H/H N K, and hence H/(H N K)°, is
arank 1 good torus. Let A := (H N K)°; note that A has rank 1. Now, K ° is certainly not
contained in F since H N F = 1, so K° is nonnilpotent. As K ° has rank 2, we know the
structure of K°, and A must be a good torus. Now, H is a divisible abelian group which
is an extension of good tori, so H is a good torus by [ABCO08, I, Lemma 4.21]. Of course,
H is self-centralizing by Fact 4.9.

It only remains to show that F is unipotent. If not, then F contains a nontrivial decent
torus, and since F is abelian, there is a unique maximal decent torus of F. As a decent
torus has only finitely many elements of each finite order, the connected group H central-
izes the maximal decent torus of F', but this contradicts the fact that H is self-centralizing.

[m}

6.3. 2-transitivity
Proposition 6.9. The action of G on X is 2-transitive.

Proof. Since we already know that this action is definably primitive by Corollary 4.20,
each 1-point stabilizer has a unique fixed point, and as the 1-point stabilizers are also
connected, they each have a unique orbit of rank 0, namely the fixed point. Thus, by
generic 2-transitivity, we need only show that a 1-point stabilizer has no orbits of rank 1.
Recall that by generic sharp 4-transitivity, every 1-point stabilizer has rank 6.

We first show that every 2-point stabilizer in G is solvable-by-finite, even if the points
are not in general position. Assume not. Then there is some x € X for which the orbit
xG1 has rank 1, so G x has rank 5. Let K be the kernel of the action of G on xGy,
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and K, the kernel of Gy on 1G,. By Fact 4.30, G1/K; and G /K, both have rank at
most 3, so as every l-point stabilizer has rank 6, K1 and K, both have rank at least 3.
In particular, G{ /K7 and G} /K7 both have rank at most 2. Since connected groups
of rank 2 are solvable we ﬁnd that G° is solvable if either K7 or K7 is solvable. Thus,
we may assume that both K7 and K 2 are nonsolvable. Next, observe that K7 # K7 as
otherwise N (K7) would contaln both G and G, and force K| to be normal i 1n G. Thus
K7 and K? do not both have rank 5, so we may assume that K7 has rank at most 4.
Now, K7 is nonsolvable of rank 4, so by the structure of groups of rank at most 4 given in
Section 3, K} contains a unique, hence characteristic, component (subnormal quasisimple
subgroup) Q, which may of course be equal to K7. If K7 < K7, then Q would also be a
component of K ? since K7 normalizes K7, and we would find that Q is normal in both G
and G, hence in G. This cannot happen, so A := (K1 N Ky)° < K. As Ky, Ky < Gy 4,
rank considerations force A to be infinite. Since A is normal in K f and K f is not solvable,
we find that rk K7 = 4 and that A has rank 1 or 3, again using the fact that connected
groups of rank 2 are solvable. Combining tk K7 = 4,1k K7 > 3, and tkGy» = 5, we
find thattk A > 1. Thus A has rank 3, and the nonsolvability of K| implies that A is also
nonsolvable. Hence, A = @, and again this forces Q to be normal in G. We conclude that
GT, . 18 solvable.

Now, towards a contradiction, we assume that the 1-point stabilizers have rank 1 or-
bits. We show that, in this case, the solvable radical of a point stabilizer has rank 3. Choose
x € X for which xG1 has rank 1. With K defined as before, K} is solvable and normal
in G, so K{ < R(G1). Further, if R(G1) has rank larger than 3, then G1/R(G1) has
rank at most 2, and we find that G is solvable. Since G is generically 3-transitive, G
is not solvable by Proposition 4.24, so R(G1) has rank 3. Additionally, we can conclude
thatif y, z € X are not in general position then G, , contains R°(Gy) and R°(G;).

Next, observe that the generic orbits of G and G, with G as above, cannot coincide
since G acts transitively on X and is generated by G| and G, by Lemma 4.12. Thus, there
is an element of the generic orbit of G, which we may take to be 2, for which 2G has
rank less than 2. Further, 2 # x, so 2G, has rank 1. Note that (G| x N G2x)° = G2
by rank considerations. Set R := R°(G,). Then R < (G1,x N G2,)° by our previous
work. Finally, we throw G3 , into the mix. Observe that R N G3 x < G123 < Gy.
Now G123 is a self-centralizing good torus, so the G-conjugates of G123 generate G,
(see [ABCOS, IV, Lemma 1.14]). In particular, G 2,3 is not contained in a proper normal
subgroup of G, so RNG3 x < Gy.23. Thus, RNG3 , hasrank at most 1, so R - G° has
rank at least 34+ 4 — 1 = 6. Since R - G3» < Gy, the only possibility is that R - G3 + has
rank 6, but this implies that G, = R - G3 | is solvable. This is our final contradiction. O

6.4. Fixed points
Finally, we prove the Fixed Point Assumption.
Proposition 6.10. We have Fix(G12.3) = {1, 2, 3}.

Proof. First, assume that we can show Fix(G123) = Fix(G12) U {3}. Then this also
implies that Fix(G12,3) = Fix(G13) U {2}. Now, if x € Fix(G123) — {1, 2, 3}, then
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G1,2and G 3 both fix x, and as G 2 and G 3 generate G| by Lemma 4.12, we conclude
that G; = Gy. However, this is a contradiction since primitivity implies that 1-point
stabilizers have a unique fixed point.

Thus, it suffices to show that Fix(G12,3) = Fix(G1,2) U {3}. Towards a contradiction,
suppose that there is an x € Fix(G12,3) — Fix(G2) different from 3. We first show
that the orbit xG > has rank 1. Recall that G| 2 = F°(G12) ¥ G123, 50 F°(G12) acts
regularly on the generic orbit of G 2 on X. Thus, if x is in the generic orbit of G 2, then
G123 centralizes some nontrivial u € F°(G12). Since G 23 is self-centralizing, this is
a contradiction, sorkxGj 2 =l andtk G2, = 3.

Since G, contains the rank 2 maximal good torus G123, G2« has a unique
rank 1 unipotent subgroup, namely U := (G12.x N F(G1,2))°. By 2-transitivity, G| 2 =
Gix =Gy y,sowealsohave U = (G12x N F(G1x))° = (G12x N F(G2x))°. Now,
U is normal in G12,,, and as F(G12)° is abelian, U is also normal in F(G12)°. By
rank considerations, we find that U is normal in G| 3, and repeating the argument, we
conclude that N(U) contains G2, G1,x, and G2 . Let A := N&X (U). Then A contains
the nonequal connected rank 4 subgroups G , and G x, so A has rank at least 5. Since
U fixes points other than x, U is not normal in Gy, so A has rank equal to 5.

Now, A contains Gy, so A determines a rank 1 quotient O of G, acting on O :=
X — {x}. Let K be the kernel. Since G, is generically 3-transitive on O, Lemma 4.17 and
Fact 4.30 imply that G, induces PSL; on 0. Thus, A fixes, i.e. normalizes, a unique class
in O, namely the class of 1. Let Y be the class of 1, and set ¥ := Yy U {x}. We now aim
to show that A acts 3-transitively on Yy and that ¥ = Fix(U).

By construction of O (see the comments preceding Fact 4.16), Y, is precisely the orbit
of A on 1. Since the connected group A acts transitively on Yy, ¥ is connected (of rank 1).
We claim that 2 € Y. Since K is normal in G, and G, acts transitively (and faithfully) on
X — {x}, K is not contained in G x. But K is contained in A, so by rank considerations,
A = G2 K. Thus, the image of G, in the quotient covers A, and as 1-point stabilizers
in PSL; fix a unique point, G , fixes a unique class in O. Since Gax < A, Gy, fixes
Yy, and as G, also fixes 2, we conclude that Yo = 2. Hence, 2 € Yy. We now establish
the 3-transitivity of A on Y. We know that this action is transitive with Yy connected of
rank 1, so Fact 4.30 applies. The stabilizer of 1 in A is G, and since G 2  has corank 1
in G, we find that the orbit of G on 2 is generic in Yy. Thus, the action of A on Yy
is generically 2-transitive. Hence by Fact 4.30, if the action is not 3-transitive, then it is
sharply 2-transitive, and G 2  coincides with the kernel of this action. This would imply
that G1 2, is normal in A, but as G 2 x contains the self-centralizing good torus G123,
this would contradict the fact that G 2 3 is generous in A. We conclude that the action
of A on Y is 3-transitive, so A acts on Y as PSL,.

Next, we show that ¥ = Fix(U). Of course A normalizes U, and U fixes 1 and x.
Thus, since A acts transitively on Yy with 1 € Yj, we have Y C Fix(U). Let N be the
kernel of the action of A on Yy. Now, K is normal in A of rank 3, so as A/N is simple (of
the form PSLy), it must be that K - N = A or K° = N°. However, the latter is impossible
sincetk K = 3 and tk N = 2. Thus, N N K is finite, so as U < N, U is not contained
in K. Now if U were to fix some z ¢ Y, then U would fix a class in O in addition to Yo.
By the structure of 2-point stabilizers in PSL,, this would imply that U is a good torus



26 Tuna Altinel, Joshua Wiscons

modulo K. Since U is not contained in K and U is unipotent, this cannot happen. Thus
Y = Fix(U).

We are now all but done. Consider the action of N(U) on Y. By our assumption that
x ¢ Fix(G1,2), N(U) is not contained in G, since N(U) contains G . Since A < N(U)
is 3-transitive on Y — {x}, we find that the action of N(U) on Y is 4-transitive. This
contradicts Fact 4.30. O

6.5. Assembling the proof

Proof of Thereom A.1. We now verify that we may apply Proposition 5.1, and for this,
it only remains to show that the action is not 3-transitive. Suppose it is, so any three
pairwise distinct points of X are in general position. Consider P := G actingon Y :=
X — {1}. Then (Y, P) is 2-transitive, and for every pair of distinct y,z € Y, we have
Py = F°(Py) x Py, with U, := F°(Py) abelian. Thus, it is not hard to see that M :=
(Y,{Uy : y € Y}) is a Moufang set of finite Morley rank with little projective group
A:=(Uy:y €Y) < P (see Subsection 4.6). Indeed, the only nontrivial point to check
is that each pair U, and U, are conjugate, but this follows from the fact that, as A is
certainly transitive on ¥, A can conjugate Py to P, hence F°(Py) to F°(P;). Since Uy,
and Py ; are both abelian, M has abelian root groups as well as abelian Hua subgroups.
Thus Fact 4.35 applies. If A acts on Y as a 1-dimensional affine group, then the root
groups coincide with the 1-point stabilizers of this action, which are isomorphic to L*
for some algebraically closed field L. Since each U is unipotent by Proposition 6.6, this is
impossible, so A must act 3-transitively on Y. Now we find that G is sharply 4-transitive,
but this is also impossible since a sharply 4-transitive group must be finite (see [Tit52]
or [Hal54)). O

7. Theorem A.2

This section is devoted to the proof of the following theorem.

Theorem A.2. Let (X, G) be a transitive and generically 4-transitive permutation group
of finite Morley rank with G connected and tk X = 2. If a generic 4-point stabilizer has
rank less than 2, then it has rank 0.

We adopt the following setup for the remainder of the section; the goal is to find a contra-
diction.

Setup. Let (X, G) be a transitive and generically 4-transitive permutation group of finite
Morley rank with G connected and rk X = 2. Fix 1, 2, 3,4 € X in general position, and
assume that § := (G1,2,3,4)° has rank 1.

As before, ¥(1, 2, 3; 4) acts faithfully on (G 23)° by Fact 4.27, and if o € Sym(4), we
write g € o to mean g € G and g realizes o. Also note that (X, G) is virtually definably
primitive by Corollary 4.31.

Similar to the proof of Theorem A.1, our analysis begins (and in this case ends) by
fleshing out a detailed description of G 2. We then use the group X (1, 2, 3, 4) to drive
the resulting configuration to a contradiction.
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7.1. Initial analysis
Lemma 7.1. The group (G1.2.3)° is solvable.

Proof. Set H := (G1,23)° and ¥ := X(1, 2, 3;4). As H has rank 3, we look to Fact 3.5.
First, assume that H is a quasisimple bad group. Since ¥ has a quotient isomorphic to
Sym(3), ¥ has an involution, say i. By [BN94, Proposition 13.4], simple bad groups do
not have involutory automorphisms, so [H,i] < Z(H). Since H is connected, [H, i] is
also connected, and as Z(H) is finite, we find that [H, i] = 1. This contradicts the fact
that X acts faithfully on H, so H is not a quasisimple bad group.

Thus, if H is not solvable, then H = (P)SL,(K) for some algebraically closed
field K by Fact 3.5. In this case, ¥ acts on H as inner automorphisms (see [ABCOS,
II, Fact 2.25]), so & embeds into PSL,(K). Let S denote the Zariski closure of S in
PSL,(K). Since S is connected and of rank 1, S is abelian, so § is also abelian. Thus, by
the structure of PSL,(K), 'S must have Zariski dimension 1, and since S is connected, S
is Zariski connected. Thus, S lies in a Borel subgroup, which is of the form K % KX,
so as K1 and K * are connected in the ambient language, we must have S = S. Now, if
S is unipotent, then Ny (S) is a Borel subgroup. Of course ¥ < Ny (S§), so /S, which
has a quotient isomorphic to Sym(3), embeds into K *. This is a contradiction, so S is an
algebraic torus. In this case, [Ny (S5)/S| = 2, so again there is no room in Ny (S) for X.
We conclude that H is solvable. ]

The next lemma is an approximation to the fact, which will be shown later, that S is a
decent torus.

Lemma 7.2. Every definable rank 2 subgroup of (G12.3)° that contains S must contain
a nontrivial decent torus.

Proof. Suppose not. Set H := (G123)° B = (G12)° P = (G1)°, and ¥ :=
¥(1,2,3;4). Let V be a connected definable rank 2 subgroup of H containing S such
that V' contains no decent torus. Then V' is unipotent by Fact 3.3, and either V is abelian
or S = Z°(V). In either case, V centralizes S. Since X (1, 2, 3; 4) acts faithfully on H
(by Fact 4.27) and § < X(1, 2, 3;4), we find that V = C%,(S) by rank considerations.
Further, by considering the action of H on the rank 1 coset space V\ H, the fact that V
contains no decent torus implies that V coincides with the connected component of the
kernel of this action by Fact 4.30, so V is normal in H. If V is nonabelian, then S will
be characteristic in V and hence normal in H. However, Lemma 4.5 implies that S is not
normal in H, so V is abelian. In summary, C,(S) = V is a normal abelian unipotent
rank 2 subgroup of H.

We now proceed, with some small modifications, as in the proof of Lemma 6.5. Set
Ui23 = C%LM(S) = C;(S) with similar definitions for Uy 2 4, U134, and Uz 3 4. Set
U := (U123,U124,U134,Uz34) and A := (U123, U1,2,4). We first show that A/S
is abelian and A is normal in B; this will also imply, by using the action of X(1, 2, 3, 4)
on U, that U/S is abelian.

Note that A < C3(S) withrk A > 3. Since § is not normal in H, H is not contained
in A, so H A has rank strictly larger than the rank of A. Thus, if tk A > 4, then HA is
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generic in B, and A has a generic orbit on 3. Since A centralizes S, this would imply that
S = 1 by Lemma 4.5, so A must have rank 3. Then A/S is a rank 2 group generated by
two distinct connected unipotent subgroups, and A/S is abelian by Fact 3.4.

We now show that A is normal in B. Consider the action of B on Ult,?2,3 (the B-
conjugates of U;2.3), and let K be the kernel. By our work above, Np(U;2,3) con-
tains H and A, so Np(Uj23) has rank at least 4. As U; 23 fixes 3, Lemma 4.5 en-
sures that Np(U;23) # B. Thus, Np(Uj > 3) has rank 4, so Ufzj is a connected set
of rank 1. By Fact 4.30, B/K has rank 1, 2, or 3. Note that 3 and 4 are in the same
(generic) orbit of B on X, so Uj24 € UEZ,S' If B/K has rank 1, then K contains H
and (G1,2,4)°, but this contradicts the fact that B = (H, (G1,2.4)°) (see Lemma 4.12).
Thus B/K has rank 2 or 3. By the structure of B/K given in Fact 4.30, (Np(U;,2,3) N
Np(Uj2,4))° either coincides with K © or contains a decent torus. By rank considerations,
A = (Np(Ui23) N Np(Ui2.4))°, soas A is unipotent, we conclude that A = K° and A
is normal in B.

Set A := (A, Ui 3.4). Exactly as in the proof of Lemma 6.5, we find that A= F°(P)
and conclude that N (Z) has infinite index over G, contradicting virtual definable primi-
tivity. O

7.2. Structure of point stabilizers

We begin by studying the generic 3-point stabilizers.

Proposition 7.3. For H :== (G12,3)° and ¥ := X(1, 2, 3; 4), we have

(1) H=F°(H) x S,

(2) X acts faithfully on F°(H),

(3) S = L* for some algebraically closed field L, and
4) HNG4=S.

Proof. First, suppose that H is nilpotent. In this case, S is not a good torus as otherwise S
would be central in H (see [BN94, Corollary 6.12]). However, we have already observed
that Lemma 4.5 implies that S is not normal in H. Thus, S is unipotent. As S is not normal
in H, the Normalizer Condition for nilpotent groups of finite Morley rank implies that
N := Ny (S) has rank 2; recall that the Normalizer Condition states that every definable
subgroup of infinite index in a nilpotent group of finite Morley rank is of infinite index
in its normalizer. Since S < N, Lemma 7.2 implies that N contains a nontrivial decent
torus. Thus, S must be the only nontrivial unipotent subgroup of N, so S is characteristic
in N. Now, N is normal in H by the Normalizer Condition, so S is normal in H. This is
a contradiction, so H is nonnilpotent.

Let F := F°(H). Since H is nonnilpotent, F has rank 2. If S < F, then S is not a
good torus as otherwise S would be central in H. Thus, as in the previous paragraph, S
is characteristic in F. This is a contradiction, so S is not in F. Thus, H = F - S (we will
address F N S later). This implies that the orbit of F on 4 is generic, so X acts faithfully
on F by Lemma 4.5.
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We now claim that F must have some definable S-invariant subgroup of rank 1. If not,
we can use [ABCO08, I, Proposition 4.11] to linearize the action of S on F, and find that ¥
acts (faithfully) on F' as a subgroup of the multiplicative group of a field. This is absurd.
Thus, F has some definable connected S-invariant subgroup A of rank 1. Further, if S
does not centralize A, then we can linearize the action of S on A to find that S = L* for
some algebraically closed field L. Otherwise, if S does centralize A, then A is central in
H since F is either abelian or A = Z°(F) by Fact 3.4. Now, H is nonnilpotent, so H/A
is nonnilpotent. Thus, in this case, the image of S in H/A is L* for some algebraically
closed field L, and this implies that § = L* (see [Wis16, Corollary 2.7] for example).
We conclude that, in any case, S = L* and either A or F/A is isomorphic to L.

We now show that F N § = 1. First, if F is abelian, then F NS = 1 since S acts
faithfully on F. Now, if F is nonabelian, then F has exponent p or p? for some prime
p by Fact 3.3, so the characteristic of L is p. Thus, S has no p-elements, so we find that
FNnS=1

It only remains to address the final point. Set Hy := H N G4, and note that § = Hj.
Since § is not normal in H, Cg (S) has rank at most 2, and consequently Cy (S) N F(H)
has rank at most 1. As above, Fact 3.4 implies that (Cy (S) N F(H))® is central in F°(H),
hence in H. This yields C3;(S) = SZ°(H), so Q := Cy(S) is abelian. Also, S is a good
torus, so Q is of finite index in its normalizer. Since H is solvable, Q is self-normalizing
by [Fré00, Théoreme 1.2], so Hy < Q. Now, Hy acts faithfully on H by Lemma 4.5, so
H4 N Z°(H) = 1. By rank considerations, Q = Z°(H) x Ha, so Hy = S. ]

We obtain the following important corollary.

Corollary 7.4. The point stabilizers G1, G1,2, G123, and G123 4 are all connected, and
in particular ¥(1,2,3,4)/S = Sym(4).

Proof. The first and fourth points from Proposition 7.3 show that the orbit of F°(G1 2.3)
on 4 is generic and regular. Thus, everything follows from repeatedly applying Fact 4.6.
O

The next lemma and its corollary further clarify the structure of G 2 3.

Lemma 7.5. The group S is self-normalizing in G 2 3.

Proof. Set H := G123 and F := F°(H). The real work is to show that S is self-
centralizing in H. Suppose not. Since Cy (S) is connected by [AB08, Theorem 1], Cx (S)
must have rank at least 2, and as S is not normal in H, we find that Cy (S) has rank equal
to 2. By Proposition 7.3, Z := (Cy (S)NF)° has rank 1. As in the proof of Proposition 7.3,
we find that Z = Z°(H) and Cy(S) = SZ.

Now, H/Z is a nonnilpotent connected group of rank two, and we may apply Fact 3.3.
We find an algebraically closed field L for which F/Z = L* and S = L*.Let p > 0
be the characteristic of L. Note that Fact 3.3 does not preclude the possibility that some
nontrivial finite subgroup of S centralizes F//Z. We deal with this first. If S does not act
faithfully on F/Z, then there is an s € S of prime order ¢ # p for which [F,s] < Z.
Thus, commutation by s is a homomorphism from F to Z. Since S acts faithfully on F,
the kernel Cr(s) has rank 1 and certainly contains Z. Also, the image [F, s] must have
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exponent g since s has order g, so F/CF(s) is an elementary abelian g-group. Since
F/CF(s) is a quotient of the connected rank 1 group F/Z, it follows that F/Z = L7 is
also an elementary abelian g-group. As g # p, we have a contradiction, and we conclude
that S acts faithfully on F/Z.

Now, let K be the kernel of the action of X := ¥ (1,2, 3;4) on F/Z. Since S induces
all of L™, we find that ¥ = § x K, so by the previous corollary, K = Sym(3). Further,
K acts on Z, so K’ centralizes Z by Lemma 4.28. Let k € K be of order 3. Then commu-
tation by k is a homomorphism from F to Z, and arguing as in the previous paragraph,
we find that F/Z and Z are elementary abelian 3-groups. Also, Z is not centralized by
all of K as this would imply [[F, K], K] = 1 and hence (by the three subgroups lemma
for commutators) that K is abelian. Thus, some involution j € K acts nontrivially on Z.
Then either j inverts F or F = Z - Cr (k). In either case, as F has rank 2, F is abelian.

Let i € S be the unique involution; this exists since we now know that the charac-
teristic of L is 3. Since F is abelian, [F, i] is a connected subgroup of F that is inverted
by i. It follows that [F, i] has rank 1 with F = Z - [F, i]. Most importantly, [F, i] is
K -invariant. By Lemma 4.28, K’ centralizes both Z and [F, i], so K’ centralizes F. This
contradicts the fact that ¥ acts faithfully on F by Lemma 4.5. Thus, S is self-centralizing
in H. Further, S is a good torus, so Cg(S) = S is of finite index in its normalizer. Since
H is solvable, S is self-normalizing by [Fré00, Théoréme 1.2]. O

Corollary 7.6. The group F°(G13) is abelian and unipotent. In particular, it is self-
centralizing in G.

Proof. We will employ many of the same ideas as in the proof of Lemma 7.5. Set H :=
G123 and F := F°(H). First, any decent torus of F' would be normal, and hence central,
in H by [BN94, Theorems 6.8 and 6.9]. Since S is self-centralizing by Lemma 7.5, F must
be unipotent.

Now assume that F is not abelian. Set Z := Z°(F). By Fact 3.3, F has exponent p
or p? for some prime p. Using Lemma 7.5, we may linearize the action of S on Z, so there
is an algebraically closed field L for which Z = LT and § = L*, though S may have
a finite kernel when acting on Z. We now claim that S acts faithfully on F/Z. Indeed,
assume that some nontrivial s € S centralizes F/Z. By [ABCOS, I, Proposition 9.9],
C%(s) is not contained in Z, but this forces F to be abelian by Fact 3.4. Thus, § acts
faithfully on F/Z. Linearizing the action of S on F/Z, we find that ¥ = § x K with K
centralizing F/Z and K = Sym(3). Let k € K be of prime order different from p.
By [ABCO8, I, Proposition 9.9], C%.(k) is not contained in Z, so F is abelian by Fact 3.4.
Further, Cy (F), which we now know contains F', normalizes the generic orbit of F on X,
so as F acts regularly on this orbit, F = C(F). O

We now address G1 2. The following proposition will be the final ingredient needed to
prove Theorem A.2.

Proposition 7.7. The group G1.2/F°(G1,2) acts faithfully on F°(G,2) with the action
equivalent to the natural action of SLa(L) on L? for some algebraically closed field L.
Further, if B € 12(34), then 8 ¢ F°(G1.2)
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Proof. Set B := G1,2,and let Y be the generic orbit of B on X. We want to understand the
action of B on F°(B), and we begin by studying the action of B on Y. We will write B3
for G1,2,3. Note thattk B = 5 and tk B3 = 3.

We first show that (Y, B) has a rank 1 quotient, i.e. (¥, B) is not virtually definably
primitive. This will take some work. Towards a contradiction, assume that (Y, B) is vir-
tually definably primitive. We aim to push this configuration into the realm of Moufang
sets (see Subsection 4.6), so in particular, we will show that (Y, B) is 2-transitive. We first
claim that (Y, B) is definably primitive. Let (Y,B)bea definably primitive quotient of
(Y, B) with kernel K. Since the classes in the quotient are finite, K° is trivial, so K is
finite and central in B. Further, F°(B3) is self-centralizing in G by the previous corollary,
so K is contained in B3. As (Y, B) is transitive and faithful by Fact 4.4, it follows that
K is trivial. Since the classes in Y are finite and F°(B3) has a regular and generic orbit
on Y, we find that F°(B3) has a regular and generic orbit on Y. By Fact 4.6, the point sta-
bilizers in (Y, B) are connected, so as there is no kernel, the point stabilizers from (Y, B)
and (Y, B) coincide. Thus, (Y, B) is definably primitive.

To show that (Y, B) is 2-transitive, it remains to show that B3 has no rank 1 orbits
on Y. Towards a contradiction, suppose that the orbit of B3 on y € Y has rank 1. Set
A := (B3,y)°. Then A has rank 2. If A is unipotent, then the structure of B3 = G123
implies that A = F°(B3), and as By is B-conjugate to B3, this also implies that A =
F°(By). Thus, if A is unipotent, Ng(A) contains (B3, By) and thus coincides with B,
contradicting the faithfulness of (¥, B). We conclude that A contains a good torus, which
we know to be self-centralizing. Hence, A is nonnilpotent, and A has a unigque normal
definable connected subgroup of rank 1. Now let K3 be the kernel of the action of B3 on
its obit containing y, and let K, be the kernel of the action of By, on its orbit containing 3.
As Bj is solvable, we may apply Fact 4.30 to see that either A = K3 or K3 is a normal
rank 1 subgroup of A; a similar statement holds for K. Our previous observations now
imply that either K3 = K7 or one is characteristic in the other. In either case, we find
a nontrivial definable subgroup that fixes 3 and whose normalizer contains (B3, By). As
before, this contradicts the faithfulness of (Y, B). We conclude that B3 has no rank 1
orbits, so (Y, B) is 2-transitive.

For each y € Y, we now know that F°(B,) fixes y and acts regularly on Y — {y},
so the collection {F°(By) : y € Y} generates a group M < B that is associated to a
Moufang set with abelian root groups. Further, since B3 4 = § is abelian, the Moufang
set has abelian Hua subgroups, so we may apply Fact 4.35. If (Y, M) = (L, AGL(L))
for some algebraically closed field L, then F°(Bj3) is isomorphic to a point stabilizer in
(L, AGL{(L)). This implies that F°(B3) = L*, but this cannot happen since F°(B3) is
unipotent. Thus, (Y, M) = (L,PSL,(L)) for some algebraically closed field L. Under
this isomorphism, F°(B3) goes to the unipotent radical of a Borel subgroup of PSL; (L),
sork M = 3rk F°(B3). Since F°(B3) has rank 2 and B has rank 5, we have a contradic-
tion. Finally, we conclude that (Y, B) is not virtually definably primitive.

Now let (7, B) be any rank 1 quotient of (Y, B), let K be the kernel, and let 3 be
the class containing 3 in Y. As (Y, B) is generically 2-transitive, Lemma 4.17 implies
that the same is true of (7, B), so by Fact 4.30, B5/K must contain a good torus. Now,
by the faithfulness of (¥, B), K° is not contained in B3, so by rank considerations, B3
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covers Bz/K. Thus, the structure of B3 = G123 implies that S is notin K, so as § <
Bgﬁz, we find that (7, B) must be 3-transitive, again by Fact 4.30. Further, we see that
(K N B3)° is unipotent. Thus, K ° has rank 2 and is generated by distinct rank 1 unipotent
subgroups, namely (K N B3)° and (K N B4)°, so K° is abelian and unipotent by Fact 3.4.
Consequently, as B/K is of the form PSL,, it follows that K° = F°(B). Further, if
B € 12(34), then B swaps 3and4inY,so B ¢ K.

Since B/K is of the form PSL, with K /F°(B) finite, B/F°(B) is a perfect central
extension of PSLj, so it is of the form (P)SL,. Certainly B/F°(B) acts nontrivially on
F°(B), so [Del09, Fact 2.5] ensures that, regardless of the characteristic, B/ F°(B) is of
the form SL;. Finally, [Del09, Fact 2.7] identifies the action of B/F°(B) on F°(B) as the
natural one, which of course also implies that the action is faithful. O

7.3. Assembling the proof

Proof of Theorem A.2. Set H := G133, B := G2, and U := F°(B). By Proposi-
tion 7.7, B/ U acts faithfully on U as SL,(L) acts on L? for some algebraically closed
field L.

We first treat the characteristic # 2 case; assume that S has an involution i. Then the
image of i in the quotient B/U is nontrivial and central. Also, since the characteristic
is not 2 and F°(H) is unipotent, F°(H) has no involutions. Thus, F°(H) = VT @ V~
where V1 = Creay(i) and V™ := [F°(H), i] (see [ABCO8, I Lemma 10.4]). Since i
is central in B/U, V™ is not all of F°(H), so V' and V~ are both connected of rank 1.
Now, i is the unique involution of S, so ¥ := ¥(1, 2, 3; 4) must centralize i. Thus, X
acts on both V* and V. We can use S to linearize the action of £ on V~; let K be the
kernel. As S covers £ /K, Sym(3) = SK/S = K/K N S, and K N S has no involutions.
Further, K is finite, so S centralizes K. Thus, K is a central extension of Sym(3) by
K N §. Since K N § has no involutions, it is not hard to build a subgroup Ky < K
such that K = Ko x K N S, which implies that Ky = Sym(3). Of course, Ky also
actson V7T, so by Lemma 4.28, there are nontrivial elements of Ky fixing V+. However,
such elements centralize all of F, but as F has a generic orbit on 4, this contradicts
Lemma 4.5.

Thus, we now consider when § = L* for some field L of characteristic 2. Since S
has rank 1, the centralizer of S in X (1, 2, 3, 4) has index at most 2 by Lemma 4.28. We
claim that the index is 2. Indeed, choose 8 € 12(34). Note that as S has no involutions,
we may take § to be an involution by [ABCO08, I, Lemma 2.18]. By Proposition 7.7, the
image of B in B/U is nontrivial, and it certainly normalizes the image of S, the latter
being a maximal torus of B/U. Since B/U is of the form PSL, in characteristic 2, we
find that § is not in S, so B does not centralize S. We conclude that the transpositions
in £(1, 2, 3,4)/S invert S. In particular, any « € (12)34 inverts S. Again, we may take
a to be an involution. Now, B/U is of the form PSL,, so the action of @ on B/U is
inner. Since « fixes 3 and 4, « normalizes two distinct Borel subgroups of B/U, namely
the images of G 23 and G2 4. Thus, o acts on B/ U as an element of a torus. As « is
an involution and the characteristic is 2, « must act trivially on B/U. We conclude that
[B,a] <U,so S =[S,a] <U.This is a contradiction. O
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8. Theorem A

We now put the pieces together. We begin with a reduction to the connected case. By
the connected version of Theorem A, we mean Theorem A together with the additional
hypothesis that G is connected.

Lemma 8.1. Theorem A follows from the connected version of Theorem A.

Proof. Suppose that the connected version of Theorem A has been proven. Let (X, G)
be a transitive and generically 4-transitive permutation group of finite Morley rank with
rk X = 2. The punchline is that the connected version of Theorem A applies to (X, G°),
and from this, we can easily show that Proposition 5.1 applies to (X, G).

First, by Fact 4.3, X is connected. Then Lemma 4.10 and Fact 4.11 imply that (X, G°)
is transitive and generically 4-transitive. Thus, we may apply the connected version of
Theorem A to see that (X, G°) = (P*(K), PGL3(K)) for some algebraically closed
field K. We now check that Proposition 5.1 applies to (X, G). Since we know that (X, G°)
~ (P?(K), PGL3(K)), (X, G°) is certainly 2- but not 3-transitive, by Lemma 4.10 the
same is true of (X, G). It remains to verify the Fixed Point Assumption. Let x, y,z € X
be in general position. Using (X, G°) = (P2(K), PGL3(K)), we find that (G)x,y,z 18
connected, s0 (G°)x,y,; = (Gy,y,7)°. Further, Fix((G°®)y y,;)) = {x,y, z}, so we may
indeed apply Proposition 5.1 to (X, G). O

We now make precise the link between the connected version of Theorem A and The-
orems A.l and A.2. Of course, Theorem A.2 says that the second case in the following
lemma is impossible.

Lemma 8.2. Let (X, G) be a transitive permutation group of finite Morley rank with G

connected andtk X = 2. If n := gtd(X, G) > 4, then either

(1) (X, G) is generically sharply® n-transitive, or

(2) there exists a transitive permutation group of finite Morley rank (Y, H) with H con-
nected and tkY = 2 for which gtd(Y, H) = 4 and the generic 4-point stabilizers
have rank 1.

Proof. Since n > 4, (X, G) is virtually definably primitive by Corollary 4.31. Now,
by Lemma 4.23, a generic n-point stabilizer has rank at most 1. If such a stabilizer has
rank 0, (X, G) is generically sharply® n-transitive by definition. Otherwise, let H be the
connected component of a generic (n — 4)-point stabilizer, and consider the action of H
on its generic orbit in X, using Fact 4.11. O

Proof of Theorem A. By Lemma 8.1, we may assume that G is connected. Now we apply
the previous lemma in conjunction with Theorem A.2 to see that (X, G) is generically
sharply® n-transitive with n > 4. Theorem A.1 finishes things off. O
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