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SIMPLE GROUPS OF MORLEY RANK 5 ARE BAD

ADRIEN DELOROAND JOSHUAWISCONS

Abstract. We show that any simple group ofMorley rank 5 is a bad group all of whose proper definable
connected subgroups are nilpotent of rank at most 2. The main result is then used to catalog the nonsoluble
connected groups of Morley rank 5.

The groups of finite Morley rank form a model-theoretically natural and impor-
tant class of groups that are equipped with a notion of dimension generalizing the
usual Zariski dimension for affine algebraic groups. This class is known to contain
many nonalgebraic examples, but nevertheless, there is an extremely tight con-
nection with algebraic geometry witnessed by, among other things, the following
conjecture of Cherlin and Zilber.

Algebraicity Conjecture. An infinite simple group of finite Morley rank is
isomorphic to an affine algebraic group over an algebraically closed field.
This conjecture appears in Cherlin’s early paper [7] analyzing groups of Morley
rank at most 3, but even in that very small rank setting, a potential nonalgebraic
simple group resisted all efforts to kill it until the recent work of Frécon [12] (see
also [15]). The configuration Cherlin encountered is that of a so-called bad group,
which is defined to be a nonsoluble group of finite Morley rank all of whose proper
definable subgroups are nilpotent-by-finite. Despite the spectre of bad groups, a fair
amount of progress has been made on the Algebraicity Conjecture. Most notable
is the deep result of Altınel, Borovik, and Cherlin from 2008 that established the
conjecture for those groups containing an infinite elementary abelian 2-group, [1].
The remaining cases to investigate turn out to be:

Odd type: when the group contains a copy of the Prüfer 2-group Z2∞ but no
infinite elementary abelian 2-group, and

Degenerate type: when the group contains no involutions at all.
It is a theorem, involving ideas by Borovik, Corredor, Nesin, and Poizat, that
bad groups are of degenerate type. As bad groups of rank 3 have now been dealt
with by Frécon, some understanding of degenerate type groups is no longer such an
unlikely dream. One may also hope to resolve the Algebraicity Conjecture for odd
type groups, and here there exists a reasonably solid theory. But even in the presence
of involutions, some extremely tight, nonalgebraic configurations have arisen. They

Received July 6, 2017.
2010Mathematics Subject Classification. Primary 20F11, Secondary 03C60.
Key words and phrases. finite Morley rank, simple group.

c© 2018, Association for Symbolic Logic
0022-4812/18/8303-0016
DOI:10.1017/jsl.2017.86

1217

0::7�
  �61�68/ ������� 2��������	������1�0.��6��1�.�� �����81�/.�
�1�.8�1: ��8.��

https://doi.org/10.1017/jsl.2017.86


1218 ADRIEN DELOROAND JOSHUAWISCONS

first appeared in Cherlin and Jaligot’s investigation of tame minimal simple groups
of odd type [9] and persisted into the more recent and more general N◦

◦ -context
studied by Jaligot and the first author in [11]. These configurations have been named
CiBo1, CiBo2, and CiBo3 and will be described in Section 1.1 below.
With the hope of shedding new light on theCiBo configurations, and hence on the
Algebraicity Conjecture for odd type groups, we decided to study these pathologies
in a small rank setting. Groups of rank 4 had already been addressed by the second
author in [18], so we took up rank 5. Unlike in [18], we did not shy away from the
heavy machinery. We were indeed successful in killing the CiBo configurations in
rank 5, which is perhaps not surprising, but more importantly, our analysis hints
at some general techniques: Moufang sets, and a closer study of involutions. Our
main result, which may in the future be pushed further, is as follows.
Theorem. A simple group of Morley rank 5 is a bad group all of whose proper
definable connected subgroups are nilpotent of rank at most 2.
Combining this theorem with several existing results, we obtain, with little effort,
a classification of groups of rank 5 (up to bad groups of low rank). Regarding
notation, F ◦(G) denotes the connected Fitting subgroup of G (see Section 2.1),
G ′ denotes the commutator subgroup of G , and we write G = A ∗ B if A and
B commute and generate G . Also, recall that a group is called quasisimple if it is
perfect, and modulo its centre, it is simple.
Corollary. If G is a nonsoluble connected group of Morley rank 5, then F :=
F ◦(G) has rank at most 2, and G is classified as follows.
• If rkF = 2, then either

− G/F ∼= SL2(K) acting naturally on F ∼= K2 with the extension split
whenever charK $= 2, or

− G = F ∗G ′′ with G ′′ ∼= (P)SL2(K).
• If rkF = 1, then either

− G = R ∗G ′′ with R/Z(R) ∼= AGL1(L) and G ′′ ∼= (P)SL2(K),
− G = F ∗G ′ with G ′ quasisimple and bad of rank 4, or
− G is quasisimple and bad of rank 5.

• If rkF = 0, then G ′ is quasisimple and bad of rank 4 or 5.
Consequently, rkF ≥ 1 whenever G contains an involution.
We have thus far presented our work as simply a testing ground for the study of
CiBo1, CiBo2, and CiBo3, but it may also have applications to the current study of
limits to the so-called degree of generic transitivity of a permutation group of finite
Morley rank. This was indeed the case with the classification of groups of Morley
rank 4, see [2 and 4].

§1. Background. Here we simply collect a handful of results on “small” groups
of finite Morley rank. For general reference on groups of finite Morley rank, we
recommend [1,5,13]. We assume familiarity with basic definability and connected-
ness notions [5, Section 5.2], Zilber’s Field Theorem [5, Theorem 9.1], and some
standard involution-related techniques [5, Section 10] such as 2-Sylow theory and
Brauer-Fowler estimates. We also use the fundamental notion of a decent torus [8].
For a group G , let I (G) stand for the set of its involutions. The Prüfer 2-rank
pr2(G) is the maximal r such that

⊕
r Z2∞ is contained in a Sylow 2-subgroup of
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G , Z2∞ being the Prüfer 2-group. The 2-rankm2(G) is simply the maximal rank (in
the algebraic sense) of an elementary abelian 2-subgroup ofG . As usual,H ◦ stands
for the connected component of a subgroupH ≤ G .

1.1. N◦
◦ -groups and CiBo.

Definition 1.1. A group of finite Morley rank G is called an N◦
◦ -group if for

every nontrivial, definable, abelian, connected subgroup A ≤ G , the connected
component of its normalizer, N◦(A), is soluble.

The condition for being an N◦
◦ -group is a local analog of minimal simplicity and

implies a sense of smallness of the group. The only nonsoluble, algebraicN◦
◦ -groups

are those of the form (P)SL2. The CiBo configurations are, at present, unavoidable
complications in the study of N◦

◦ -groups for which the Centralizer of an involution
is a Borel subgroup. (A Borel subgroup is a maximal connected definable soluble
subgroup.)
Fact 1.2 (Special case of [11]). Let G be an infinite, connected, nonsoluble N◦

◦ -
group of finite Morley rank with involutions, but without an infinite subgroup of
exponent 2. Further assume thatC ◦(i) is soluble for all i ∈ I (G). Then the involutions
of G are conjugate, and G is of one of the following types:
CiBo1: pr2(G) = m2(G) = 1, andC (i) is a self-normalizing Borel subgroup ofG ;
CiBo2: pr2(G) = 1,m2(G) = 2, C ◦(i) is an abelian Borel subgroup of G inverted
by any involution in C (i)− {i}, and rkG = 3 · rkC (i);

CiBo3: pr2(G) = m2(G) = 2,C (i) is a self-normalizing Borel subgroup ofG , and
if i $= j ∈ I (G), then C (i) $= C (j);

Algebraic: G ∼= PSL2(K).

1.2. Small groups and small actions. Here we briefly summarize the existing
results about groups of small Morley rank.
Fact 1.3 ([14]). If A is a connected group of rank 1, then A is either a divisible
abelian group or an elementary abelian p-group for some prime p.
Fact 1.4 ([7]). If B is a connected group of rank 2, then B is soluble. If B is
nilpotent and nonabelian, then B has exponent p or p2 for some prime p, and if B is
nonnilpotent, then B/Z(B) ∼= K+ !K× for some algebraically closed field K .
A nilpotent p-group of bounded exponent is called p-unipotent; such subgroups
play an important role in the analysis of soluble groups and their intersections.
The main result for groups of rank 3 takes the following very satisfying form as a
result of the aforementioned efforts of Frécon. Sadly, the situation in rank 4 is not
yet so clear.
Fact 1.5 ([7 and 12]). A nonsoluble, connected group of rank 3 is isomorphic to
(P)SL2(K) for some algebraically closed field K .
Fact 1.6 ([18, Theorem A]). A simple group of rank 4 is a bad group whose
definable proper subgroups have rank at most 1.
Finally, the ubiquity of the following result of Hrushovski in the study of groups
of small rank is hard to overstate; despite nontrivial intersection with the above, we
prefer to state it separately.
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Fact 1.7 (Hrushovski, see [5, Theorem 11.98]). LetH be a group of finiteMorley
rank acting faithfully, transitively and definably on a definable setX of rank and degree
1. Then rkH ≤ 3, and if rkH > 1, there is a definable algebraically closed field K
such that the action of H on X is equivalent to AGL1(K) = K+ ! K× acting on
A1(K) = K or PGL2(K) acting on P1(K) = K ∪ {∞}.

§2. Local analysis.

Setup. Let G be a simple group of Morley rank 5.

The primary goal of the present section is to show that theDeloro-Jaligot analysis
of Fact 1.2 applies toG ; that is, we aim to establish the following proposition. (Note
that, since G has rank 5, Fact 1.2 immediately rules out the possibility that G is of
type CiBo2.)
Proposition 2.1. The group G is an N◦

◦ -group that either has no involutions or is
of type CiBo1 or CiBo3.
First notice that by Fact 1.7, G has no definable subgroups of rank 4. Conse-
quently, if A $= 1 is a connnected soluble subgroup of G , then N◦(A)/A has rank
at most 2, so N◦(A) is soluble by Fact 1.4. Combining this with the classification
of even and mixed type simple groups from [1], we easily arrive at the following
lemma.
Lemma 2.2. The group G is an N◦

◦ -group of odd or degenerate type.
To apply the Deloro-Jaligot analysis to G , it remains to prove solubility of cen-
tralisers of involutions—this, however, requires knowledge of intersections of Borel
subgroups, which is where we begin. However, after solubility is obtained in Section
2.1, we shall in Section 2.2 study intersections a bit more for later use.

2.1. Solubility of centralisers. Since G is an N◦
◦ -group, G enjoys certain general

so-called “uniqueness principles” [11, Fact 8]. However, the small rank context
allows for a much stronger version with the effect of completely short-cutting
Burdges’ elaborate unipotence theory, on which we shall therefore not dwell.
Recall that the connected Fitting subgroup F ◦(H ) of a groupH is its character-
istic subgroup generated by all definable, connected, normal nilpotent subgroups
of H ; when H has finite Morley rank, F ◦(H ) is definable and nilpotent [5, Theo-
rem 7.3]. Also, for soluble connectedH of finiteMorley rank, one hasH ′ ≤ F ◦(H )
[5, Corollary 9.9], andC ◦

H (F
◦(H )) ≤ F ◦(H ) [5, Proposition 7.4]; finally,H/F ◦(H )

is a divisible abelian group [5, Theorem 9.21]. Borel subgroups were defined at the
beginning of Section 1.1.
Lemma 2.3. If B is a rank 3 Borel subgroup of G , then rkF ◦(B) ≥ 2.
Proof. By Zilber’s Field Theorem and the aforementioned fact that
C ◦
H (F

◦(H )) ≤ F ◦(H ) for connected soluble H of finite Morley rank, one has
rkF ◦(B) > 1. *
Lemma 2.4. For i ∈ I (G), C ◦(i) is soluble.
Proof. First observe that by torality [6, Theorem 3], Ci = C ◦(i) contains i .
If Ci is not soluble, then it has rank 3; as it contains i in its centre, Fact 1.5 yields
Ci + SL2(K) in characteristic not 2. In particular, the Prüfer rank ofG is 1. Torality
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again and the conjugacy of Sylow 2-subgroups (alternatively, of maximal decent
tori) imply that involutions are conjugate inG and Sylow 2-subgroups ofG are like
that of SL2(K).
Let j ∈ I (G) be a generic conjugate of i , and set A := (Ci ∩ Cj)◦ > 1. Since i
is the only involution in Ci , the group A contains no involutions: it is therefore a
unipotent (in the algebraic sense) subgroup of Ci , contained in the Borel subgroup
Bi = NCi (A) of Ci (respectively Bj = NCj (A) in Cj). Of course i ∈ Bi .
Since i $= j, one has Bi $= Bj , so N := N◦(A) ≥ 〈Bi , Bj〉 has rank at least 3.
Now,N is soluble sinceG is anN◦

◦ -group, so rkN = 3. HoweverN is nonnilpotent
since otherwise i ∈ Z(N) by the so-called rigidity of tori [5, Theorem 6.16] (or [5,
Section 9.2, Exercise 3]) which would imply that j = i by the structure of the Sylow
2-subgroup. So, by Lemma 2.3, the Fitting subgroup F := F ◦(N) has rank exactly
2. If F contains some involution ! , then by the rigidity of tori again ! is central inN ,
so using the structure of the Sylow 2-subgroup, i = ! = j, which is a contradiction.
Now let k be an involution generic over i and j. If Ak := (Ck ∩ N)◦, which is
nontrivial by rank considerations, contains an involution, it can only be k, which
then normalises A against genericity. Hence, Ak is again a unipotent subgroup of
Ck ; in particular it has no involutions. By a standard “torsion-lifting” argument [5,
Section 5.5, Exercise 11], AkF has no involutions, so it is proper in N . Since F has
rank 2, one gets Ak ≤ F .
But also, A ≤ F and Ak $= A since otherwise k normalises A, against gener-
icity. Thus, the rank 2, nilpotent group F contains two distinct infinite abelian
subgroups—it is a classical consequence of the normaliser condition [5, Lemma
6.3] (or of [5, Section 6.1, Exercise 5]) that F itself is abelian. In particular
F ≤ Nk := N◦(Ak).
By conjugacy of involutions inG and of unipotent subgroups in Ci , the groupsA
and Ak are however G-conjugate, so N and Nk are as well. The latter is therefore a
rank 3 Borel subgroup with no involutions in Fk := F ◦(Nk). Lifting torsion again,
FFk has no involutions, it must be that F = Fk . Taking normalisers, N = Nk , so k
normalises N , against genericity again. *
Proof of Proposition 2.1. Fact 1.2 now applies toG , and as rank considerations
rule out the possibility that G is of the form PSL2 or CiBo2, Proposition 2.1 is
proven. *

2.2. More on uniqueness principles. We now continue the local analysis of G
(without using Fact 1.2) and give two auxiliary results that build on Lemma 2.3.

Lemma 2.5. If B1 $= B2 are two Borel subgroups of G , then (F ◦(B1) ∩
F ◦(B2))◦ = 1.

Proof. Let X = (F ◦(B1) ∩ F ◦(B2))◦, and suppose that X $= 1.
First notice that X cannot be normal in both B1 and B2 since otherwise
B1 = N◦(X ) = B2, a contradiction.
We now show thatX cannot be normal in either. If sayX ! B1, thenX cannot be
normal inB2, soX < F ◦(B2). By the normaliser condition,K2 := N◦

F ◦(B2)
(X ) > X .

Of course K2 ≤ N◦(X ) = B1. If K2 ! B1 then K2 ≤ F ◦(B1), against the definition
of X . In particular B1 has rank 3 and is nonnilpotent. By Lemma 2.3, F ◦(B1)
has rank 2 and so does K2. Also, X has rank 1. Now the rank 1 group X being
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normal in the nilpotent groups F ◦(B1) and K2 is central in each, hence also in
B1 = 〈K2, F ◦(B1)〉. Since B1 is not nilpotent, the rank 2 factor group " = B1/X
is not either, so by Fact 1.4, its structure is known: modulo a finite centre it is
isomorphic to some K+ ! K×. Since K2 $≤ F ◦(B1), K2 covers "/F ("), so K2
contains an infinite divisible torsion subgroup. Lifting torsion, there is at most one
definable infinite subgroup of K2 containing no divisible torsion, and if it exists, it
must be definably characteristic in K2.
Now, still assuming X ! B1, recall that X cannot be normal in B2. However,
whether B2 is nilpotent or not, one has K2 ! B2, so X cannot be definably char-
acteristic in K2. Thus, as observed above, X must contain divisible torsion. Since
rkX = 1, X is a decent torus so is contained in the (unique) maximal decent torus
of F ◦(B2). By the rigidity of tori, X is central in B2. This is a contradiction, and we
conclude that X is normal in neither B1 nor B2.
Consider N := N◦(X ). As above K2 > X ; likewise K1 := N◦

F ◦(B1)
(X ) > X , so

N = 〈K1, K2〉 is a rank 3 Borel subgroup. But now X = (F ◦(B1) ∩ F ◦(N))◦ is
normal in N , against the preceding analysis. *
It follows that no Borel subgroup of rank 3 (if there is any) can be nilpotent as it
would intersect its conjugates non-trivially.
Corollary 2.6. If B1 $= B2 are two rank 3 Borel subgroups of G , then either
rk(B1 ∩ B2) = 1, or there exist commuting involutions i and j for which B1 = C ◦(i)
and B2 = C ◦

2 (j).
Proof. As G has rank 5, rk(B1 ∩ B2) ≥ 1. Now, assume that H := (B1 ∩ B2)◦
has rank 2. Consider the canonical map from H to B1/F ◦(B1) × B2/F ◦(B2); by
Lemma 2.5 it has a finite kernel. Thus, the connected group H ′ is finite, so H is
abelian. Also, B1 = H ·F ◦(B1) since otherwiseH = F ◦(B1) implying that the rank
3 groupB2 contains the rank 2 subgroups F ◦(B1) andF ◦(B2), which by Lemma 2.5
have a finite intersection.
Set A1 := (H ∩ F ◦(B1))◦ and A2 := (H ∩ F ◦(B2))◦. By Lemma 2.5,
(A1 ∩ A2)◦ = 1. Since F ◦(B1) has rank 2, A1 must be central in F ◦(B1), and as H
is abelian, we find that A1 is central in B1 = H · F ◦(B1). Moreover, B1/A1 must be
of the formK+!K× modulo a finite centre, soH/A1 ∼= K× for some algebraically
closed field K of characteristic not 2 (using Lemma 2.2). But, H = A1 · A2, so A2
contains some involution j, and B2 = C ◦(j). An analogous argument shows that
B1 = C ◦(i) for some involution i ∈ A1, which commutes with j, so we are done. *

§3. Using the N◦
◦ -analysis. By Proposition 2.1, the simple rank 5 group G has

no involutions or is of type CiBok for k ∈ {1, 3}. Different cases beg for distinct
methods.

3.0. The bad case. Let us quickly address the case without involutions.
Proposition 3.1. IfG has no involutions, thenG is a bad group all of whose proper
definable connected subgroups are nilpotent of rank at most 2.
Proof. Suppose G has a subgroupH of rank 3 and divide into cases.
First, assume thatH is nonsoluble. Then having no involutions,H is a bad group
of rank 3: hence for g /∈ N(H ), the intersection H ∩Hg has rank 1. So, the orbit
of Hg under conjugation by H has rank 2, and as X := {Hg : g ∈ G} has rank 2
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and degree 1, we find that the action of G on X is generically 2-transitive, i.e., that
there is a unique generic orbit on X ×X . Lifting torsion, this creates an involution
in G , a contradiction. (Of course there is Frécon’s Theorem as well.)
Now suppose that H is soluble. To avoid the same contradiction as above, for
generic g, the intersection H ∩Hg has rank 2, but this contradicts Corollary 2.6.
So G has no definable, connected, proper subgroup of rank 3. Having no
involutions, its rank 2 subgroups are nilpotent; G is a bad group. *

3.1. Killing CiBo1: Moufang sets. We target the following proposition.
Proposition 3.2. The groupG cannot have type CiBo1.

Setup. Assume G has type CiBo1 (see Fact 1.2).

The two main ingredients of our analysis in this case are (a small fragment of)
the theory of Moufang sets and the Brauer-Fowler computation. The latter will be
used later; for the moment we focus on the former.Moufang sets encode the essence
of so-called split BN -pairs of (Tits) rank 1, and as such, they sit at the low end of
an important geometric framework. (So low, in fact, there is no honest geometry to
speak of, at least not in the sense of Tits.)

Definition 3.3. For a set X with |X | ≥ 3 and a collection of groups {Ux : x ∈
X} with each Ux ≤ Sym(X ), we say that (X, {Ux : x ∈ X}) is aMoufang set if for
P := 〈Ux : x ∈ X 〉 the following conditions hold:
1. each Ux fixes x and acts regularly on X \ {x},
2. {Ux : x ∈ X} is a conjugacy class of subgroups in P.
We call P the little projective group of the Moufang set, and each Ux is called a root
group. The 2-point stabilisers in P are called the Hua subgroups.

The result we require is the following, though likely we could do with less if we
were willing to work a little harder.
Fact 3.4 (see [17, Theorem A]). Let (X, {Ux : x ∈ X}) be a Moufang set of
finite Morley rank with abelian Hua subgroups and infinite root groups that contain
no involutions. If the little projective group P of the Moufang set has odd type, then
P ∼= PSL2(K) for some algebraically closed field K .
Lemma 3.5. There are no rank 3 Borel subgroups of G .
Proof. Assume that B is a rank 3 Borel subgroup of G , and let X be the set
of G-conjugates of B. We now consider the permutation group (X,G), and show
that it is associated to a Moufang set. For " ∈ X , let U" := F ◦("). Of course
the stabiliser of " is N(") and N◦(") = " . As a consequence of Corollary 2.6 in
type CiBo1 (and the fact that X has degree 1), we find that G acts 2-transitively on
X with each 2-point stabiliser of rank 1. We now claim that U" acts regularly on
X \ {"}.
First, we show transitivity. As X has rank 2 and degree 1, it suffices to show that
U" has no orbits of rank 0 or 1 other than {"}. By connectedness of U" , a rank 0
orbit is a fixed point ofU" , butU" is too large to be contained in a 2-point stabiliser.
Next, a rank 1 orbit gives rise to a rank 1 subgroup A" := U" ∩ N(#) for some
# $= " . By 2-transitivity, A# := U# ∩ N(") also has rank 1, and by Lemma 2.5,
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A◦
" $= A◦

# . Thus, the 2-point stabiliser G",# has rank 2, which is a contradiction. So
U" acts transitively on X \ {"}.
We now show that the action of U" on X \ {"} is free. Suppose u ∈ U" fixes #
for # $= " , so u ∈ U" ∩ N(#). First, if U" is abelian, then the transitivity of U" on
X \ {"} forces u to be in the kernel of the action of G on X , and simplicity of G
implies that u = 1. Thus, we may assume that U" is a nilpotent nonabelian group
of rank 2. Thus, U" is p-unipotent (see Section 1.2 for the definition), and u is a
p-element. Of course,U# is also p-unipotent, so by [5, Section 6.4], u has an infinite
centraliser in Z◦(U#), which has rank exactly 1. Hence u centralises Z◦(U#). We
now have that C ◦(u) ≥ 〈Z◦(U"), Z◦(U#)〉.
We still aim at proving freeness of U" on X \ {"}. Briefly suppose C ◦(u) to
be soluble. Then every p-unipotent subgroup of C ◦(u) lies in F ◦(C ◦(u)) (since
H/F ◦(H ) is divisible for soluble connected H , see the beginning of Section 2.1); if
C ◦(u) is a Borel subgroup, this contradicts Lemma 2.5. Hence rkC ◦(u) = 2; as it
is generated by two distinct rank 1, bounded exponent groups, it is abelian. Now
Z◦(U" ) ≤ N◦(Z◦(U#)) = #, against Lemma 2.5 again. So, C ◦(u) is a nonsoluble
group of rank 3. By the work of Frécon (or the fact that since " ∩ # normalizes
〈Z◦(U" ), Z◦(U#)〉 = C ◦(u), Z◦(U") · (" ∩ #)◦ is a rank 2 subgroup of C ◦(u)), we
find that C ◦(u) ∼= (P)SL2(K), and as this cannot happen inside of a CiBo1 group
(by looking at the structure of the Sylow 2-subgroup), we conclude that the action
of U" on X \ {"} is free.
This shows that (X, {U" : " ∈ X}) is aMoufang set, and by connectedness results
forMoufang sets (see [16, Proposition 2.3]), eachHua subgroup is a connected rank
1, hence abelian, group.Moreover,we claim thatU" contains no involutions. Indeed,
if U" contained an involution, it would contain a maximal 2-torus T , the definable
hull d (T ) of which would be central in " by rigidity. But then, "/d (T ) would be
a nonnilpotent group of rank 2 without involutions. This is a contradiction, so
the root groups of the Moufang set have no involutions. By Fact 3.4, we have a
contradiction. *

Notice that since we are in type CiBo1, using the work of Frécon one could now
even claim that G has no definable subgroups of rank 3 at all.

Proof of Proposition 3.2. The proof combines Brauer-Fowler computations
and genericity arguments, the latter being mostly [6, Theorem 1] which asserts
that the definable hull of a generic element contains a maximal decent torus (in our
case a nontrivial 2-torus will suffice). Let i, j ∈ G be independent involutions and
set x = ij. This strongly real element is no involution.
First we argue that Bi = C ◦(i) has rank 2; of course, by Lemma 3.5, the rank
is at most 2. Consider C = C ◦(x), which is normalised by i ; by the structure of
the Sylow 2-subgroup,C contains no involutions. If C were not soluble it would be
of the form PSL2(K) or a bad group; the first case contradicts the structure of the
Sylow 2-subgroup and the second contradicts the solubility ofBi as bad groups have
no involutive automorphisms [5, Proposition 13.4] (besides not existing in rank 3).
Thus, C is soluble, so by Lemma 3.5 again, rkC ≤ 2.
Consider the map $ : I (G) × I (G) → G mapping (i, j) to x. Notice that the
image is the set of strongly real elements. By the structure of the Sylow 2-subgroup
and the genericity result we quoted in the first paragraph, the generic element is
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not strongly real, so the image set of $ has rank at most 4. On the other hand, the
fibre over x is in definable bijection with the set of involutions inverting x, i.e., of
involutions in C±(x) \C (x), where C±(x) is the group of elements centralising or
inverting x. Clearly the fibre has rank f ≤ rkC ≤ 2. The Brauer-Fowler estimate
is simply that, by additivity,

2 rk I (G) − f ≤ rk
(
$(I (G) × I (G)) ;

or put otherwise, since the map $ has nongeneric image, 5 < 2 rkBi + f.
In particular one must have rkBi = f = rkC = 2. Now there is a whole coset
of C consisting of involutions inverting x, so C is abelian, inverted by i . From this
we derive a highly nongeneric property. Suppose C (or of course any conjugate)
contains a generic element ofG . As the latter contains in its definable hull amaximal
2-torus, the structure of the Sylow 2-subgroup forces i ∈ C , which is impossible. So⋃
G C

g contains no generic element and we derive the contradiction as follows.
By theN◦

◦ -property togetherwith Lemma 3.5,C must be almost self-normalising.
Moreover if there is a nontrivial c ∈ C ∩ Cg for some g /∈ N(C ) then C ◦(c) ≥
〈C,C g〉 . As this centraliser is generated by two groups of rank 2 that are each
without 2-torsion, it can be no group of rank 3: hence C ◦(c) = G . But,G is simple,
so C ∩ Cg = {1}. Thus, C is disjoint from its proper conjugates, and a standard
computation now gives

rk
⋃

g∈G
C g = rk

(
G/NG(C )) + rk(C ) = rkG.

This shows that
⋃
G C

g contains a generic element: a contradiction. *

3.2. Killing CiBo3: conjugacy methods. To conclude the proof of our main
theorem, it remains to prove the following proposition.
Proposition 3.6. The groupG cannot have type CiBo3.

Setup. Assume G has type CiBo3 (see Fact 1.2).

We begin with some general observations.

Remark 3.7. Let i ∈ I (G). As distinct involutions give rise to distinct cen-
tralisers by Fact 1.2, no maximal 2-torus of Bi := C (i) is contained in F ◦(Bi); in
particularBi is not nilpotent. Since its Prüfer 2-rank is 2, by Zilber’s Field Theorem
one cannot have rkBi ≤ 2 (see also Fact 1.4). Hence rkBi = 3, and by Lemma 2.3,
F ◦(Bi ) has rank 2. Returning to maximal 2-tori and Zilber’s Field Theorem, one
sees that Bi/F ◦(Bi ) and F ◦(Bi ) both have Prüfer 2-rank 1. Consequently, Z◦(Bi )
is a rank 1 group containing divisible torsion, which in turn implies that F ◦(Bi) is
abelian.

Lemma 3.8. If i, j are noncommuting involutions, then C (i, j) has rank 1 and
contains a unique involution.
Proof. Let H := C (i, j). Since i and j do not commute, Bi := C (i) and Bj :=
C (j) differ. Consequently, rkH = 1 by Corollary 2.6, andH ◦ is abelian (Fact 1.3).
Now if pr2(H

◦) = 2, thenH ◦ contains i and j, which implies that i and j commute,
a contradiction. Therefore pr2(H

◦) ≤ 1. If pr2(H ◦) = 0, then H ◦ ≤ F ◦(Bi ) and
H ◦ ≤ F ◦(Bj), against Lemma 2.5. Hence pr2(H

◦) = 1, so H ◦ contains a unique
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involution k. Now if ! ∈ I (H ), then ! commutes with both i and k, which commute
themselves; by the structure of the Sylow 2-subgroup, ! ∈ {i, k, ik}. The same
shows that ! ∈ {j, k, jk}, and therefore ! = k. So I (H ) = {k}, which is what we
wanted. *
Proof of Proposition 3.6. Let X = {(i, j) ∈ I (G)2 : ij $= ji}, which G defin-
ably permutes by conjugation.Notice thatX has rank 4.ByLemma3.8, the stabiliser
H = C (i, j) of any pair in X has rank 1, so every orbit of G is generic in X . Thus,
G is transitive on X . Fix (i, j) ∈ X . Let k be the unique involution of C (i, j), so
C (i, j) = C (i, j, k) ≤ C (i, jk). Notice that i and jk do not commute, so by transi-
tivity, there is a g ∈ G such that ig = i and jg = jk. Now,C (i, j) ≤ C (i, jk) being
conjugate, equality holds. Thus, g normalises this group, so it centralises k. Finally,
jg
2
= j, so g2 ∈ C (j, k). However, since j and k commute, C (j, k) contains a

Sylow 2-subgroup of G ; this forces g ∈ C (j, k), a contradiction. *

§4. Proof of the main corollary. We now take up the classification of nonsoluble
connected groups of Morley rank 5. Facts 1.4 and 1.5 as well as the following
corollary to Fact 1.6 will be used frequently in our analysis.
Fact 4.1 ([18, Corollary A] together with [12]). If G is a nonsoluble connected
group of Morley rank 4, then for F := F ◦(G), rkF ≤ 1, and G is classified as
follows.
1. rkF = 1 and G = F ∗Q with Q ∼= (P)SL2(K), or
2. rkF = 0 and G is a quasisimple bad group.

Setup. Let G be a nonsoluble connected group of rank 5; set F := F ◦(G).

Since connected groups of rank 2 are soluble, we have that rkF ≤ 2 and that
rkG ′ ≥ 3.
Lemma 4.2. If G has a definable, connected, normal subgroup Q of rank 3, then
G = H ∗Q with Q ∼= (P)SL2(K) andH connected and soluble. Consequently, in this
case we have 1 ≤ rkF ≤ 2 and Q = G ′′.
Proof. Since G is nonsoluble, the same is true of Q, so (invoking [12]) we find
thatQ ∼= (P)SL2(K) for some algebraically closed fieldK . By [1, II, Corollary 2.26],
G = Q ∗ C (Q). As rkC (Q) = 2, C ◦(Q) is soluble. *
Lemma 4.3. If rkF = 0, then G ′ is quasisimple and bad of rank 4 or 5.
Proof. Assume rkF = 0. By Lemma 4.2, G ′ has rank 4 or 5, and in either case,
F ◦(G ′) = 1. Now, if Q is a nontrivial proper definable connected normal subgroup
of G ′, then it must be that Q has rank 3 and Q = G ′′. Consequently, Lemma 4.2
implies that F is nontrivial, a contradiction, so no such Q exists. Thus, if N is any
proper normal subgroup ofG ′, then [N,G ′], which is definable and connected, must
be trivial, so every proper normal subgroup of G ′ is central in G ′.
We now have that G ′ is quasisimple with a finite centre, so combining our main
theoremwith Fact 4.1, we find thatG ′ modulo its finite centre is a bad group.Hence
G ′ is bad. *
Lemma 4.4. If rkF = 1 and G is quasisimple, then G is a bad group.
Proof. By Fact 4.1, we find thatG/F is a bad group, and since F = Z◦(G), it is
easy to see that G must also be bad. *
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Lemma 4.5. If rkF = 1 and G is not quasisimple, then either G = H ∗ G ′′ with
H/Z(H ) ∼= AGL1(L) and G ′′ ∼= (P)SL2(K), or G = F ∗ G ′ with G ′ a rank 4
quasisimple bad group.

Proof. Assume rkF = 1. By considering the generalized Fitting subgroup of
G , we see that G contains some proper definable normal quasisimple subgroup Q
(see [1, I, Section 7]). If Q has rank 3, then, by Lemma 4.2, G = H ∗ Q with H
connected and soluble and Q ∼= (P)SL2(K) for some algebraically closed field K .
Since rkF = 1, H is nonilpotent, so H/Z(H ) ∼= AGL1(L) for some algebraically
closed field L. Clearly, in this case, Q = G ′′. It remains to consider the case when
Q has rank 4. By Fact 4.1, we find that Q is bad and that F intersects Q in a finite
set. Thus, G = F ∗Q, and it must be that Q = G ′. *
Lemma 4.6. If rkF = 2 and F ≤ Z(G), then G = F ∗Q with Q ∼= (P)SL2(K).
Proof. Again by considering the generalized Fitting subgroup of G , we see that
G contains some definable normal quasisimple subgroup Q. Note that the theory
of central extension prohibits G = Q (see [1, II, Proposition 3.1]. If Q has rank 3,
we are done, so assume thatQ has rank 4. Here, Q ∩ F has rank 1, so by Fact 4.1,
we find thatQ = F (Q) ∗R with R quasisimple. But this contradicts the fact thatQ
is quasisimple. *
Lemma 4.7. If rkF = 2, then either G = F ∗ G ′′ with G ′′ ∼= (P)SL2(K) or F is
G-minimal.

Proof. Assume that F has a definable G-normal subgroup A of rank 1. Then,
by Fact 4.1, G/A = F/A ∗ R/A for some definable connected subgroup R of G
containing A with R/A quasisimple. As R has rank 4, we find thatR = A ∗Q with
Q ∼= (P)SL2(K). Certainly, Q = G ′′. *
So, it remains to treat the case where F is G-minimal (hence abelian) and
noncentral. The key is, of course, [10].

Lemma 4.8. If F is an abelian noncentral rank 2 subgroup of G , then there is an
algebraically closed field K for which F ∼= K2 and G/F ∼= SL2(K) acting naturally
on F . Moreover, if char(K) $= 2, then the extension splits as G = F ! C (i) for i an
involution of G .

Proof. By [10, Theorem A], there is an algebraically closed field K for which
F ∼= K2 and G/C (F ) ∼= SL2(K) in its natural action. Since C (F ) is a finite
extension of F , the theory of central extensions can be applied to G/F to see
that C (F ) = F . Now, assume char(K) $= 2, and let i be an involution of G . Set
H := C (i). The image of i in G/F inverts F , so as F has no involutions, we find
that G = F ! C (i), see [3, Lemma 9.3]. *

§5. Acknowledgements. The second author was partially supported by the
National Science Foundation under grant No. OISE-1064446. This paper was born
inDecember of 2013while the first authorwas a visiting professor atNYUShanghai
and the second author came for a visit—the authors are indebted toNYU Shanghai
for its generous hospitality and financial support.
The authors would also like to acknowledge the efforts of the anonymous referee
whose comments, among other things, served to significantly streamline the section

0::7�
  �61�68/ ������� 2��������	������1�0.��6��1�.�� �����81�/.�
�1�.8�1: ��8.��

https://doi.org/10.1017/jsl.2017.86


1228 ADRIEN DELOROAND JOSHUAWISCONS

on CiBo3. Incidentally, there was a casualty: the geometry of involutions. But
geometry is not dead and will return in due time.
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