Mechanisms of variability underlying odor-guided locomotion.

Authors: Liangyu Tao¹ & Vikas Bhandawat¹.

¹School of Biomedical Engineering and Health Sciences, Drexel University.

5 Correspondence can be addressed to either LT (lt532@drexel.edu) or VB (vb468@drexel.edu).

Abstract

Changes in locomotion mediated by odors (odor-guided locomotion) are an important mechanism by which animals discover resources important to their survival. Odor-guided locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at many nodes along the circuit that performs sensorimotor transformation; we review these sources of variability in the context of the *Drosophila* olfactory system. While these sources of variability are important, we claim that the most important contributor to behavioral variability is the stochastic nature of decision-making during locomotion as well as the persistence of these decisions: Flies choose the speed and curvature stochastically from a distribution and locomote with the same speed and curvature for extended periods. This stochasticity in locomotion will result in variability in behavior even if there is no noise in sensorimotor transformation. Overall, the noise in sensorimotor transformation is amplified by mechanisms of locomotion making odor-guided locomotion in flies highly variable.

10

15

Introduction

25

30

35

40

45

50

Variability is a hallmark of behavior and is observed across timescales (Tinbergen 1951). On long timescales, variability has been studied in the migratory behavior of birds; birds display inter-individual variability in migratory patterns, timing, and kinematics (Potti 1998, Trierweiler, Klaassen et al. 2014, Fraser, Shave et al. 2019, Phipps, López-López et al. 2019). On shorter timescales, many studies have looked at variability in movement kinetics, kinematics, and endpoints of reaching movements (Gordon, Ghilardi et al. 1994, Messier and Kalaska 1999, van Beers, Haggard et al. 2004, Wu, Miyamoto et al. 2014). Even when movement kinematics, such as walking speed, is constrained to a constant value, studies in humans have shown that there is variability in properties such as step length and width (Sekiya, Nagasaki et al. 1997, Collins and Kuo 2013).

Given the ubiquity of behavioral variability, it is unsurprising that odor-guided locomotion in fruit flies or *Drosophila* also shows variability. One large body of literature has focused on the idea of behavioral valence (attraction vs repulsion) of flies to odors. Attraction or repulsion of a fly to an odor source is usually measured as the fraction of time a fly spends within an odorized region. These studies often utilize a wide array of odors and a wide range of behavioral assays ranging from a trap assay where a population of flies chooses between two odor traps to assays with a single fly in an arena with a single odorant zone (Figure 1A). Yet, regardless of the experimental setup or the odors used, there is a large variability in attraction (Figure 1A and Methods). This variability, measured as standard deviation (SD), can range from as low as 0.09 to as high as 0.52. When assuming a normal distribution, even a standard deviation of 0.09 shows a high level of variability as approximately 95% (±2 SD) of the flies will fall within 36% of the attraction range to an odor (e.g., an attraction between 0.3 and 0.66).

Recently, research on odor-guided locomotion has moved past simple measures of valence to the moment-by-moment change in locomotion that accompanies attraction or repulsion. This advance parallels advances in ethological techniques to perform pose estimation (Mathis, Mamidanna et al. 2018, Graving, Chae et al. 2019, Pereira, Aldarondo et al. 2019), identification of behaviors (Dankert, Wang et al. 2009, Kabra, Robie et al. 2013, Berman, Choi et al. 2014, Wiltschko, Johnson et al. 2015, Tao, Ozarkar et al. 2019), and high throughput experimentation (Branson, Robie et al. 2009, Buchanan, Kain et al. 2015, Werkhoven, Rohrsen

et al. 2019). In the context of fly locomotion and how odors affect it, one insight from studying the detailed mechanism is that fly locomotion is discrete, i.e., flies move at a surprisingly constant speed and curvature for extended periods before making sudden changes. This persistence means that instead of deciding on speed and curvature on every step, flies make decisions at the beginning of a "state" which can last several steps (hundreds of milliseconds). As we will discuss at length in this review, this persistence means that each decision will be important and small differences in choices will drive large variability in sensory experience and the spatial spread of a population of flies.

The effect of locomotor persistence on variability is well-described by a recent study that employed a hierarchical hidden Markov Model (HHMM). The HHMM is an unsupervised method to infer states based on speed and curvature in an unbiased way. The authors found that flies use about ten states – each state defined by characteristic speed and curvature that does not change much during the state - to walk around a small circular arena. These states are persistent and last about a second, a time during which a fly takes 10 steps on average. Although each fly in the dataset could have its own set of states, a single set of states modeled all the flies suggesting that flies utilize the same building blocks during locomotion; these building blocks account for locomotion both before the odor was turned on and during the odor period (Tao, Ozarkar et al. 2019). Although flies use the same states, there is large fly-to-fly variability in the time spent performing each state both in the absence and presence of odors. The variability in state usage results in behavioral variability since there is a large difference in speed and curvature between states. In contrast to between states, this model shows a tight distribution of kinematics within a state, implying that flies maintain consistent kinematics (speed and curvature) for about a second – a time during which the fly takes ~10 steps. Qualitatively, these states represent characterizations of different types of walking, stopping, and turning states.

The HHMM model shows that locomotion consists of persistent states where each state represents different types of walking, stopping, and turning states. The insights from the HHMM model – that persistence of a state can cause variability – can also be captured by a much simpler model with four states – walk, stop, turn, and boundary (Tao, Ozarkar et al. 2020) (Figure 1B). Each transition into a given state is well-described by the average kinematics (e.g., speed), but different transitions can have widely different speeds. The persistence is shown by the fact that

75

55

60

65

70

states last on average 700 milliseconds within which the variation in speed is much less than the variation observed across states (Figure 1B). The result of this variation is that the tracks of the fly and attraction to odors are highly variable even though each fly is executing the same algorithm (Figure 1B).

Both the variability in olfactory behavior (Figure 1A) and the role of the nature of locomotion itself in creating this variability (Figure 1B) has not been systematically explored. Here we will review potential mechanisms behind variability in odor-guided locomotion. At any moment a given fly has a given locomotor or search algorithm which is determined by its sensory environment and its state acting on its locomotor circuits. Odors affect attraction and repulsion by changing how these different locomotor states are used, and how different locomotor variables such as speed and curvature are chosen in a given state (Figure 1C). Thus, variability in olfactory behavior can result from differences in sensorimotor transformations which in turn can result from irreversible genetic differences, from reversible neuromodulatory differences, or from sampling noise. We will draw on work aimed at understanding both variability in odor valence and odor-driven locomotion. We will emphasize that the noise in sensorimotor transformations when coupled with persistence in locomotion can be an important source of variability in genetically identical flies. The review is organized into four main sections. In the first section, we will describe the processing steps in the fly's olfactory system. In the remaining three sections, we will discuss three sources of variability.

Signal processing in the *Drosophila* olfactory circuit

85

90

95

100

105

110

Olfactory processing in *Drosophila* can be broken down into three layers of processing (Figure 2A). First, odors are detected by receptors in olfactory receptor neurons (ORNs) located in the antennae and maxillary palps. ORNs can be segregated into distinct classes based on the expression of 51 ORN receptor types (de Bruyne, Clyne et al. 1999, de Bruyne, Foster et al. 2001, Bates, Schlegel et al. 2020). At the signal detection level, odorant-binding proteins (OBPs) facilitate the transport of odorants to bind with olfactory receptors (ORs). Beyond OBPs and ORs within a single sensillum, ORN signal transduction will be influenced by sensillar morphology, lymph fluid biochemistry, and physiological crosstalk between sensillar cells (Schmidt and Benton 2020).

Olfactory signal transduction will ultimately lead to ORN spiking activity. The rate of spiking increases immediately following odor onset, then adapts to a stable but elevated level. The level of activation for each class of ORN is dependent on the odorant, and also has a non-linear dependence on its concentration within the odor plume (Hallem, Ho et al. 2004, Hallem and Carlson 2006). The relationship between odor concentration and ORN spiking response also depends on stimulus history (Nagel and Wilson 2011, Martelli and Fiala 2019). At odor offset, the neural activity of many types of ORNs is inhibited for an extended period that can last for upwards of a few seconds.

The ORNs project to 51 glomeruli in the antennal lobe where they synapse with second-order projection neurons (PNs) which carry information into higher-order olfactory processing centers. PNs can be classified into uniglomerular PNs (uPNs) that receive input from a single glomerulus and multiglomerular PNs (mPNs) that receive input from multiple glomeruli (Figure 2A) (Bates, Schlegel et al. 2020). In addition to the PNs, local neurons (LNs) connect multiple glomeruli within the antennal lobe through lateral connections (Figure 2A). The computation in the antennal lobe results in an increase in the separability in odor representations and a decrease in variability in response to a given ORN class (Bhandawat, Olsen et al. 2007, Olsen, Bhandawat et al. 2010, Wilson 2013).

From the PNs, olfactory information is next transmitted to third-order processing centers called the mushroom body (MB) and the lateral horn (LH) (Figure 2A). In the MB, PNs form random synapses with on average 7 Kenyon cells (KC) in the MB calyx (Jefferis, Potter et al. 2007, Butcher, Friedrich et al. 2012, Caron, Ruta et al. 2013). The output of the MB calyx converges into a small set of 34 output neurons called mushroom body output neurons (MBONs) that are separated into 15 different compartments (Tanaka, Tanimoto et al. 2008, Aso, Sitaraman et al. 2014, Bates, Schlegel et al. 2020). Functional studies have shown that the MBON activity patterns likely encode the valence of an odor. This valence can be remapped or learned through synaptic plasticity brought about by dopaminergic neurons (DANs) that enervate each compartment of the MBONs (Aso, Sitaraman et al. 2014). DANs in turn can receive inputs from both the MBONs as well as input from the lateral horn output neurons (LHONs) (Dolan, Frechter et al. 2019, Li, Lindsey et al. 2020).

The LH is comprised of local neurons and output neurons. These neurons receive excitatory input from both the uPNs and mPNs as well as inhibitory input from the mPNs (Bates, Schlegel et al. 2020). The LHONs and MBONs project downstream into multiple fourth-order processing centers. The MB and the LH are highly interconnected via both direct connections (Aso, Sitaraman et al. 2014, Dolan, Frechter et al. 2019) as well as via recurrent connections from MBONs to PN axons in the LH (Bates, Schlegel et al. 2020). The specific function of the LH is currently being actively investigated, but specific classes of neurons have been shown to drive innate odor valence as well as specific locomotor programs such as turning or wingbeat

Genetics as a source of variability in *Drosophila* odor-guided locomotion

150

155

160

165

frequency during flight (Dolan, Frechter et al. 2019, Varela, Gaspar et al. 2019).

At each step described above, variability can arise from genetic differences which can affect different aspects of the sensorimotor transformation as reviewed below. First, subtle changes in genes that are directly involved in various aspects of olfactory processing can affect sensorimotor transformation. There is a growing body of evidence particularly at the level of ORNs that supports contribution due to this mechanism. Even in isogenic flies, accumulations of polymorphisms can lead to behavioral variability (Mollá-Albaladejo and Sánchez-Alcañiz 2021). For instance, naturally occurring single nucleotide polymorphism (SNP) in OBPs 99a-d has been shown to contribute to the phenotypical variability in the aversion to benzaldehyde (Wang, Lyman et al. 2007). The authors found in a follow-up study that SNPs in different OBPs in the 99a-d complex can have a varied effect on olfactory behaviors (Wang, Lyman et al. 2010). Similarly, natural polymorphisms in multiple ORs have been found to have a significant association with variations in odorant-specific valence (Rollmann, Wang et al. 2010, Richgels and Rollmann 2012).

SNPs can also affect olfactory behavior via network pathways involved in olfactory signal transduction, neurogenesis, and neural connectivity (Figure 2B) (Swarup, Huang et al. 2013, Arya, Magwire et al. 2015). A recent study provides evidence that genetic variation in the Or22 locus leads to significant differences in the functional neural response properties of its corresponding class of ORN, which in turn correlates with a preference for ethyl hexanoate, an odor that strongly stimulates this ORN (Shaw, Johnson et al. 2019, Shaw, Dent et al. 2021).

In addition to single-neuron effects, individuality in the genetic code can lead to wiring and structural variability in neural circuits (Figure 2B). A recent study looking at a large population of inbred flies over 9 different behavioral assays showed that individual differences in genes related to development (i.e., Hedgehog signaling, Wnt signaling) and neural function (i.e., vesicle release) may be involved with behavioral variability (Werkhoven, Bravin et al. 2021). This study also implicated genes involved in cellular respiration and protein translation in behavioral variability.

170

175

180

185

190

195

Genes underlying many genetic effects are not known; these effects may present themselves during careful anatomical studies. In the antennal lobe, electron microscopy studies show that the connectivity from ORN to PN are variable. In one study, the authors found that there is a high degree of synaptic variability, which leads to the contamination of ORN spike count information (Tobin, Wilson et al. 2017). Some variability in this connectivity will be compensated for. For instance, one hemisphere may have smaller PN dendritic sizes but compensate with more synapses to generate similar postsynaptic membrane potential responses to pre-synaptic ORN input. In addition to the ORN to PN connections, LNs have also been found to exhibit variability in fine-scale connectivity patterns which undergo both developmental and experience-dependent plasticity (Chou, Spletter et al. 2010). However, the extent to which this variability leads to variability in sensory processing and ultimately behavioral variability is unclear.

Finally, an important mechanism for genetic variability is the plasticity effect of different genes that alter olfactory valence (Figure 2B). In the MB, there are many genes shown to be important for olfactory memory (Kahsai and Zars 2011). It has been shown that while the tuning of individual MBON compartments is the same across hemispheres of an individual fly, the tuning of these compartments is different across animals. This source of individuality is linked to the rutabaga (rut) gene (Hige, Aso et al. 2015). In the MB, both the rut and dunce gene are involved in the synthesis and degradation of cAMP, and mutations in these genes have been shown to affect signal transduction (Renger, Ueda et al. 2000).

While these studies show that genetic variability can lead to individuality through potential changes in signal transduction and circuit wiring, they will not be the only source of this variability. For example, a recent study in the fly visual system showed that left/right wiring

asymmetry for a set of neurons called the dorsal cluster neurons is caused by stochastic wiring during development and not genetic differences. The extent of the wiring asymmetry explains the ability of individual flies to orient towards a visual object (Linneweber Gerit, Andriatsilavo et al. 2020).

Neuromodulation may drive shifts in valence through changing excitatory-inhibitory balance

200

205

210

215

220

225

A second mechanism for variability is through neuromodulation and internal states such as hunger which have been shown to drastically alter the behavioral valence of odors (Figure 2B). In the antennal lobe, such neuromodulators act upon both the LN and uPN to generate variability in attraction to odors. In a recent study, it was found that feeding flies a serotonin synthesis inhibitor (alpha-methyltryptophan) or expressing a mutant allele of the dopamine receptor gene (Dop1R1) resulted in a decrease in the variability of odor preference. Meanwhile, feeding flies a dopamine precursor (L-DOPA) increased odor preference variability (Honegger, Smith et al. 2020).

The effect of serotonin on the antennal lobe neurons is likely a result of action of a well-studied group of seorotonin neurons, that modulate both LN and PN activity, called the contralaterally serotonin-immunoreactive deutocerebral (CSD) neurons (Zhang and Gaudry 2016). These neurons are conserved among multiple insect taxa (Kent, Hoskins et al. 1987, Python and Stocker 2002, Dacks, Christensen et al. 2006). Interestingly, it was found that thermogenetic activation of the CSD neurons did not change the attraction to or variability in the attraction to the odors (Honegger, Smith et al. 2020). However, a recent paper in larvae showed that CSD neurons are necessary for hunger-driven changes in olfactory behavior. When satiated, larvae avoid geranyl acetate; when hungry, CSD neurons cause an increase in attraction to geranyl acetate by directly potentiating attraction mediating uPN responses while indirectly inhibiting aversion mediating mPN responses (Figure 3A) (Vogt, Zimmerman et al. 2021). The circuit motif of hunger promoting activity in attraction mediating neurons and reducing activity in aversion mediating neurons appears in both the antennal lobe (Root, Ko et al. 2011, Ko, Root et al. 2015) and mushroom body (MB) (Tsao, Chen et al. 2018).

Since the level of hunger can play a key role in behavioral variability, most laboratory studies control hunger though controlling starvation time. In the antennal lobe, the duration of

starvation leads to a negative exponential change in PN activity (Root, Ko et al. 2011). In the same study, it was shown that the mean time spent finding food follows a similar pattern. Such a mechanism suggests that changes in valence caused by variability in hunger levels should be less at large starvation values (Figure 3B). However, studies show that even after long periods (24+ hours) of starvation, there is a high degree of valence variability (Figure 1A). In such scenarios, variability can still arise from neuromodulation. This is because while the average effect of hunger on neural activity across individuals and trials saturates after long starvation periods, there is still variability in neural activity around the average.

230

235

240

245

250

255

Variability in sensorimotor transformation is amplified by stochastic and persistent behavioral choices

Rather than a continuous odor gradient, flies experience odors as pulses – odor plumes – resulting from turbulent winds (Crimaldi and Koseff 2001, Celani, Villermaux et al. 2014). Far from the odor source, the frequency of plume encounters is small. A fly will encounter a pulse of odor such as the one shown in Figure 4A (from an actual experiment) and respond with the corresponding ORN activity (Figure 4A). The behavioral variability comes from two sources. First, odorant history and differences in ORN activity experienced by flies across separate odor encounters will lead to changes in the average locomotor kinematics such as speed and curvature (Figure 4A).

Second, and a more dominant form of noise is the stochasticity in behavior itself. Flies will update their future locomotion by sampling from a probabilistic distribution which is parameterized based on past sensory information (Figure 4A). If flies continuously update their speed and curvature on a moment-by-moment basis, then the positional variability due to sampling noise will be small. However, the variability arising from sampling noise is magnified because flies maintain relatively consistent kinematics for long (hundreds of milliseconds to seconds, Figure 1B) periods. This can be shown using a simplified agent-based simulation where the agent moves at a constant speed and curvature based on samples from a gaussian distribution at fixed time intervals (Figure 4B and methods). The resultant spread of the flies in space increases as the interval between samples increases (Figure 4B). This means that two flies starting at the same position in space experiencing similar odor stimulus will have divergent positions and paths at the end of an instance of a locomotor state. In a spatially inhomogeneous

odorant environment, this spatial dispersion in positions will have knock-on effects as the sensory experience of different flies diverge leading to greater variability in behavior.

As the fly moves closer to the odor source, the frequency of odor encounters will increase. Effects discussed above will be further exacerbated as frequent odor encounters will drive history-dependent ORN firing rate adaptation which creates a potential for greater variety in possible responses. Consider a dynamically changing olfactory environment where the mean and variance of the stimulus is spatially conserved, if flies adopt a simple strategy of slowing down when not experiencing an odor plume, the mean in odor experience will increase (Figure 4C and methods). This increase in mean odor experience will depend on how much the fly decreases its speed. The gain in the ORN dose-response curve decreases with an increase in stimulus mean and variance (Gorur-Shandilya, Demir et al. 2017). At the population level, the sensitivity to odorant concentrations follows a power-law distribution and this response sensitivity adapts to stimulus intensity (Si, Kanwal et al. 2019). This means that flies can experience vastly different sensory input based on both statistics of the odorant environment and how the fly chooses to locomote within the environment.

In addition to the effect of recent sensory experience in driving behavioral variability, the sensorimotor transformations also exhibit adaptations over the course of tens of seconds to minutes. In a static odor landscape, the timescale of this adaptation coincides with changes in the attraction index (Tao, Wechsler et al. 2022). This adaptation likely reflects a longer timescale change in the perception of the odor based on the motivation of the fly (Figure 2B). In the MB, DANs modulate MBON neurons and induce plasticity of KC to MBON connections to cause changes in odor valence (Aso, Hattori et al. 2014). The output of MBONs makes a large number of connections with the LH, which is thought to drive innate behaviors and different motor programs (Dolan, Frechter et al. 2019). This suggests that the longer timescale adaptations in locomotion and valence can be driven by the MB. This process, which depends on each flies' experience and internal states may explain the variability in longer timescale odor valence and locomotion (Grunwald Kadow 2019).

Conclusions

260

265

270

275

280

285

Behavioral variability is a central feature of natural behaviors. Odor-guided locomotion performed by *Drosophila* is a key model system to study principles and sources of behavioral

variability. Traditionally, variability is commonly attributed to genetic and neuromodulatory factors. Indeed, even in isogenous populations, small amounts of genetic variability may cause variability in phenotype expression. Such a process may allow a population of animals to limit the risk of going extinct in an expectedly ever-changing environment. Meanwhile, neuromodulation allows animals to flexibly control their behaviors in response to their internal needs or wants. But beyond these factors, another less discussed source of variability arises from stochasticity of behavioral choices and their persistence. Over multiple rounds of decision, this source of variability will drive noticeable variability in attraction and spatial position across a population of flies. This source of variability might dominate other sources of variability in valence and locomotion especially when the genetics and internal states are experimentally controlled.

Materials and methods (Note that this is a review but we have done some analysis)

Data curation

290

295

300

305

Standard deviations (SD) reported in Figure 1A were obtained from the relevant articles through the raw data when available or through estimation of error bounds using WebPlotDigitizer (Rohatgi 2021). As most studies report the standard error of the mean (SEM), the SD was calculated by multiplying the SEM by the square root of the reported sample size. For papers with box plots, WebPlotDigitizer was used to obtain the interquartile range. Below is a table of the relevant figures that error bounds were reported from and the method used.

	Figure number	Method	
Suh et al., Nature 2004	Supplement 1	WebPlotDigitizer	
Larsson et al., 2004	Figure 7	WebPlotDigitizer	
Knaden et al., 2012	Figure 1	WebPlotDigitizer	
Semmelhack and Wang, 2009	Figure 2	WebPlotDigitizer	
Badel et al., 2016	Figure 1	WebPlotDigitizer	
Jung, Hueston, Bhandawat 2015	Figure 3	WebPlotDigitizer	
Tao, Ozarkar, Bhandawat 2020	Figure 1	Data	
Honneger et al., 2020	Figure 1	Data	

Agent model of sampling noise variability

The speed was sampled from a normal distribution with a mean of 5 mm/s and an SD of 0.5 mm/s. The curvature was sampled from a normal distribution with a mean of 60 degrees/s and an SD of 3 degrees/s. For each simulation, the duration of a trajectory is fixed and the sampling rate was set to 30 Hz. 1000 agents were initialized at the origin (x=0 mm, y=0 mm, and an orientation θ=0 degrees). At the start of each trajectory, each agent selects from the speed and curvature distribution. The position of each agent was then updated as follows:

$$\theta(t) = \theta(t-1) + \frac{k(t-1) + k(t)}{2} \tag{1.1}$$

$$x(t) = x(t-1) + s(t) * \cos(\theta(t))$$
(1.2)

$$y(t) = y(t-1) + s(t) * \sin(\theta(t))$$

$$\tag{1.3}$$

Where *k* is the sampled curvature and *s* is the sampled speed. After the agent has moved for the set duration, the agent initiates another trajectory by resampling from the speed and curvature distribution. This process repeats until a time of 5 seconds has passed.

The spread of agents at the end of the 5 second period can be approximated by a bivariate Gaussian distribution. These end positions were fit to a bivariate gaussian density function using MATLAB. The spread of this distribution was characterized by the generalized variance:

 $GV = det(\Sigma)$

Where Σ is the covariance matrix.

320

330

335

340

Agent model of locomotion induced changes in sensory input

To simulate a dynamically changing environment with conserved stimulus properties, we first segmented the odor space into grids of 10 mm by 10 mm. The temporal pattern of odor stimulus in each grid is modeled as a square wave with a 20% duty cycle and variable frequency sampled from a gaussian distribution centered around 0.5 Hz with a standard deviation of 0.1 Hz.

5000 agents were initialized at the origin (x=0 mm, y=0 mm, and an orientation θ =0 degrees). Each agent is set to move in trajectories lasting 0.5 seconds. At the end of each trajectory, the agent update' its speed based on its latest sensory experience. If the agent is in an odor plume (stimulus=1) at the time of trajectory transition, the agent will initiate a trajectory with a speed of 10 mm/s (On stimulus speed) and a curvature of 60 degrees/s. If the agent is instead not in an odor plume (stimulus=0), then the agent will initiate a trajectory with a speed slower than or equal to 10 mm/s (Off stimulus speed) and a curvature of 60 degrees/s. The direction of curvature is random (50/50 left vs right). The position of each agent is updated as described in equations 1.1-1.3. For each agent, we calculated the mean in stimulus over 2 minutes. Figure 4C2 shows the mean of the stimulus mean over all agents.

Citations

- Arya, G. H., M. M. Magwire, W. Huang, Y. L. Serrano-Negron, T. F. C. Mackay and R. R. H. Anholt (2015).
- "The Genetic Basis for Variation in Olfactory Behavior in Drosophila melanogaster." <u>Chemical Senses</u> **40**(4): 233-243.
 - Aso, Y., D. Hattori, Y. Yu, R. M. Johnston, N. A. Iyer, T.-T. B. Ngo, H. Dionne, L. F. Abbott, R. Axel, H. Tanimoto and G. M. Rubin (2014). "The neuronal architecture of the mushroom body provides a logic for associative learning." <u>eLife</u> **3**: e04577.
- Aso, Y., D. Sitaraman, T. Ichinose, K. R. Kaun, K. Vogt, G. Belliart-Guérin, P.-Y. Plaçais, A. A. Robie, N. Yamagata, C. Schnaitmann, W. J. Rowell, R. M. Johnston, T.-T. B. Ngo, N. Chen, W. Korff, M. N. Nitabach, U. Heberlein, T. Preat, K. M. Branson, H. Tanimoto and G. M. Rubin (2014). "Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila." <u>eLife</u> 3: e04580. Bates, A. S., P. Schlegel, R. J. V. Roberts, N. Drummond, I. F. M. Tamimi, R. Turnbull, X. Zhao, E. C. Marin,
- P. D. Popovici, S. Dhawan, A. Jamasb, A. Javier, L. Serratosa Capdevila, F. Li, G. M. Rubin, S. Waddell, D. D. Bock, M. Costa and G. S. X. E. Jefferis (2020). "Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain." <u>Current Biology</u> **30**(16): 3183-3199.e3186.

 Berman, G. J., D. M. Choi, W. Bialek and J. W. Shaevitz (2014). "Mapping the stereotyped behaviour of freely moving fruit flies." <u>Journal of The Royal Society Interface</u> **11**(99): 20140672.
- Bhandawat, V., S. R. Olsen, N. W. Gouwens, M. L. Schlief and R. I. Wilson (2007). "Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations."

 Nature Neuroscience 10(11): 1474-1482.

 Branson, K., A. A. Robie, J. Bender, P. Perona and M. H. Dickinson (2009). "High-throughput ethomics in large groups of Drosophila." Nat Methods 6(6): 451-457.
- Buchanan, S. M., J. S. Kain and B. L. de Bivort (2015). "Neuronal control of locomotor handedness in Drosophila." Proceedings of the National Academy of Sciences 112(21): 6700. Butcher, N. J., A. B. Friedrich, Z. Lu, H. Tanimoto and I. A. Meinertzhagen (2012). "Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx." J Comp Neurol 520(10): 2185-2201.
- Caron, S. J., V. Ruta, L. F. Abbott and R. Axel (2013). "Random convergence of olfactory inputs in the Drosophila mushroom body." Nature 497(7447): 113-117.
 Celani, A., E. Villermaux and M. Vergassola (2014). "Odor Landscapes in Turbulent Environments."
 Physical Review X 4(4): 041015.
- Chou, Y.-H., M. L. Spletter, E. Yaksi, J. C. S. Leong, R. I. Wilson and L. Luo (2010). "Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe." <u>Nature Neuroscience</u> **13**(4): 439-449.
 - Collins, S. H. and A. D. Kuo (2013). "Two Independent Contributions to Step Variability during Over-Ground Human Walking." PLOS ONE **8**(8): e73597.
- Crimaldi, J. P. and J. R. Koseff (2001). "High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume." <u>Experiments in Fluids</u> **31**(1): 90-102.
- Dacks, A. M., T. A. Christensen and J. G. Hildebrand (2006). "Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain." J Comp Neurol **498**(6): 727-746.

 Dankert, H., L. Wang, E. D. Hoopfer, D. J. Anderson and P. Perona (2009). "Automated monitoring and analysis of social behavior in Drosophila." Nat Methods **6**(4): 297-303.
- de Bruyne, M., P. J. Clyne and J. R. Carlson (1999). "Odor coding in a model olfactory organ: the Drosophila maxillary palp." J Neurosci 19(11): 4520-4532.
 de Bruyne, M., K. Foster and J. R. Carlson (2001). "Odor Coding in the Drosophila Antenna." Neuron 30(2): 537-552.

- Dolan, M.-J., S. Frechter, A. S. Bates, C. Dan, P. Huoviala, R. J. V. Roberts, P. Schlegel, S. Dhawan, R.
- Tabano, H. Dionne, C. Christoforou, K. Close, B. Sutcliffe, B. Giuliani, F. Li, M. Costa, G. Ihrke, G. W. Meissner, D. D. Bock, Y. Aso, G. M. Rubin and G. S. X. E. Jefferis (2019). "Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body." eLife 8: e43079.
 - Fraser, K. C., A. Shave, E. de Greef, J. Siegrist and C. J. Garroway (2019). "Individual Variability in
- Migration Timing Can Explain Long-Term, Population-Level Advances in a Songbird." <u>Frontiers in Ecology</u> and Evolution **7**: 324.
 - Gordon, J., M. F. Ghilardi and C. Ghez (1994). "Accuracy of planar reaching movements. I. Independence of direction and extent variability." <u>Exp Brain Res</u> **99**(1): 97-111.
 - Gorur-Shandilya, S., M. Demir, J. Long, D. A. Clark and T. Emonet (2017). "Olfactory receptor neurons use
- 400 gain control and complementary kinetics to encode intermittent odorant stimuli." <u>eLife</u> **6**: e27670.

 Graving, J. M., D. Chae, H. Naik, L. Li, B. Koger, B. R. Costelloe and I. D. Couzin (2019). "DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning." <u>eLife</u> **8**: e47994.

 Grunwald Kadow, I. C. (2019). "State-dependent plasticity of innate behavior in fruit flies." <u>Current Opinion in Neurobiology</u> **54**: 60-65.
- Hallem, E. A. and J. R. Carlson (2006). "Coding of Odors by a Receptor Repertoire." <u>Cell</u> **125**(1): 143-160. Hallem, E. A., M. G. Ho and J. R. Carlson (2004). "The molecular basis of odor coding in the Drosophila antenna." <u>Cell</u> **117**(7): 965-979.
 - Hige, T., Y. Aso, G. M. Rubin and G. C. Turner (2015). "Plasticity-driven individualization of olfactory coding in mushroom body output neurons." <u>Nature</u> **526**(7572): 258-262.
- Honegger, K. S., M. A. Y. Smith, M. A. Churgin, G. C. Turner and B. L. de Bivort (2020). "Idiosyncratic neural coding and neuromodulation of olfactory individuality in Drosophila."

 <u>Proceedings of the National Academy of Sciences</u> **117**(38): 23292.
 - Jefferis, G. S. X. E., C. J. Potter, A. M. Chan, E. C. Marin, T. Rohlfing, C. R. Maurer, Jr. and L. Luo (2007). "Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit
- and Pheromone Representation." <u>Cell</u> **128**(6): 1187-1203.
 - Kabra, M., A. A. Robie, M. Rivera-Alba, S. Branson and K. Branson (2013). "JAABA: interactive machine learning for automatic annotation of animal behavior." <u>Nat Methods</u> **10**(1): 64-67.
 - Kahsai, L. and T. Zars (2011). "Learning and memory in Drosophila: behavior, genetics, and neural systems." Int Rev Neurobiol **99**: 139-167.
- Kent, K. S., S. G. Hoskins and J. G. Hildebrand (1987). "A novel serotonin-immunoreactive neuron in the antennal lobe of the sphinx moth Manduca sexta persists throughout postembryonic life." <u>J Neurobiol</u> **18**(5): 451-465.
 - Ko, K. I., C. M. Root, S. A. Lindsay, O. A. Zaninovich, A. K. Shepherd, S. A. Wasserman, S. M. Kim and J. W. Wang (2015). "Starvation promotes concerted modulation of appetitive olfactory behavior via parallel
- neuromodulatory circuits." <u>eLife</u> **4**: e08298. Li, F., J. W. Lindsey, E. C. Marin, N. Otto, M. Dreher, G. Dempsey, I. Stark, A. S. Bates, M. W. Pleijzier, P. Schlegel, A. Nern, S.-y. Takemura, N. Eckstein, T. Yang, A. Francis, A. Braun, R. Parekh, M. Costa, L. K. Scheffer, Y. Aso, G. S. X. E. Jefferis, L. F. Abbott, A. Litwin-Kumar, S. Waddell and G. M. Rubin (2020).
 - "The connectome of the adult Drosophila mushroom body provides insights into function." <u>eLife</u> **9**: e62576.
- e62576.
 Linneweber Gerit, A., M. Andriatsilavo, B. Dutta Suchetana, M. Bengochea, L. Hellbruegge, G. Liu, K. Ejsmont Radoslaw, D. Straw Andrew, M. Wernet, R. Hiesinger Peter and A. Hassan Bassem (2020). "A neurodevelopmental origin of behavioral individuality in the Drosophila visual system." Science
 367(6482): 1112-1119.
- 435 Martelli, C. and A. Fiala (2019). "Slow presynaptic mechanisms that mediate adaptation in the olfactory pathway of Drosophila." <u>eLife</u> **8**: e43735.

- Mathis, A., P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis and M. Bethge (2018). "DeepLabCut: markerless pose estimation of user-defined body parts with deep learning." <u>Nature</u> Neuroscience **21**(9): 1281-1289.
- Messier, J. and J. F. Kalaska (1999). "Comparison of variability of initial kinematics and endpoints of reaching movements." <u>Exp Brain Res</u> **125**(2): 139-152.
 - Mollá-Albaladejo, R. and J. A. Sánchez-Alcañiz (2021). "Behavior Individuality: A Focus on Drosophila melanogaster." <u>Front Physiol</u> **12**: 719038.
 - Nagel, K. I. and R. I. Wilson (2011). "Biophysical mechanisms underlying olfactory receptor neuron dynamics." Nat Neurosci **14**(2): 208-216.
- dynamics." <u>Nat Neurosci</u> **14**(2): 208-216.
 Olsen, S. R., V. Bhandawat and R. I. Wilson (2010). "Divisive Normalization in Olfactory Population Codes." Neuron **66**(2): 287-299.
 - Pereira, T. D., D. E. Aldarondo, L. Willmore, M. Kislin, S. S. H. Wang, M. Murthy and J. W. Shaevitz (2019). "Fast animal pose estimation using deep neural networks." <u>Nature Methods</u> **16**(1): 117-125.
- Phipps, W. L., P. López-López, E. R. Buechley, S. Oppel, E. Álvarez, V. Arkumarev, R. Bekmansurov, O. Berger-Tal, A. Bermejo, A. Bounas, I. C. Alanís, J. de la Puente, V. Dobrev, O. Duriez, R. Efrat, G. Fréchet, J. García, M. Galán, C. García-Ripollés, A. Gil, J. J. Iglesias-Lebrija, J. Jambas, I. V. Karyakin, E. Kobierzycki, E. Kret, F. Loercher, A. Monteiro, J. Morant Etxebarria, S. C. Nikolov, J. Pereira, L. Peške, C. Ponchon, E. Realinho, V. Saravia, C. H. Sekercioğlu, T. Skartsi, J. Tavares, J. Teodósio, V. Urios and N. Vallverdú (2019).
- "Spatial and Temporal Variability in Migration of a Soaring Raptor Across Three Continents." <u>Frontiers in Ecology and Evolution</u> **7**: 323.
 - Potti, J. (1998). "Arrival Time from Spring Migration in Male Pied Flycatchers: Individual Consistency and Familial Resemblance." The Condor **100**(4): 702-708.
 - Python, F. and R. F. Stocker (2002). "Immunoreactivity against choline acetyltransferase, gamma-
- aminobutyric acid, histamine, octopamine, and serotonin in the larval chemosensory system of Dosophila melanogaster." <u>J Comp Neurol</u> **453**(2): 157-167.
 - Renger, J. J., A. Ueda, H. L. Atwood, C. K. Govind and C.-F. Wu (2000). "Role of cAMP Cascade in Synaptic Stability and Plasticity: Ultrastructural and Physiological Analyses of Individual Synaptic Boutons in Drosophila Memory Mutants." <u>The Journal of Neuroscience</u> **20**(11): 3980.
- Richgels, P. and S. Rollmann (2012). "Genetic Variation in Odorant Receptors Contributes to Variation in Olfactory Behavior in a Natural Population of Drosophila melanogaster." <u>Chemical senses</u> **37**: 229-240. Rohatgi, A. (2021). WebPlotDigitizer.
 - Rollmann, S. M., P. Wang, P. Date, S. A. West, T. F. C. Mackay and R. R. H. Anholt (2010). "Odorant receptor polymorphisms and natural variation in olfactory behavior in Drosophila melanogaster."
- 470 <u>Genetics</u> **186**(2): 687-697.
 - Root, C. M., K. I. Ko, A. Jafari and J. W. Wang (2011). "Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search." <u>Cell</u> **145**(1): 133-144.
 - Schmidt, H. R. and R. Benton (2020). "Molecular mechanisms of olfactory detection in insects: beyond receptors." Open Biol **10**(10): 200252.
- Sekiya, N., H. Nagasaki, H. Ito and T. Furuna (1997). "Optimal Walking in Terms of Variability in Step Length." Journal of Orthopaedic & Sports Physical Therapy 26(5): 266-272.
 - Shaw, K. H., C. I. Dent, T. K. Johnson, A. Anderson, M. de Bruyne and C. G. Warr (2021). "Natural variation at the Drosophila melanogaster Or22 odorant receptor locus is associated with changes in olfactory behaviour." bioRxiv: 2021.2005.2027.446061.
- Shaw, K. H., T. K. Johnson, A. Anderson, M. de Bruyne and C. G. Warr (2019). "Molecular and Functional Evolution at the Odorant Receptor Or22 Locus in Drosophila melanogaster." <u>Molecular Biology and</u> Evolution **36**(5): 919-929.

- Si, G., J. K. Kanwal, Y. Hu, C. J. Tabone, J. Baron, M. Berck, G. Vignoud and A. D. T. Samuel (2019). "Structured Odorant Response Patterns across a Complete Olfactory Receptor Neuron Population." Neuron **101**(5): 950-962.e957.
- Neuron 101(5): 950-962.e957.

 Swarup, S., W. Huang, T. F. C. Mackay and R. R. H. Anholt (2013). "Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior." Proceedings of the National Academy of Sciences of the United States of America 110(3): 1017-1022.
- Tanaka, N. K., H. Tanimoto and K. Ito (2008). "Neuronal assemblies of the Drosophila mushroom body." <u>J</u> Comp Neurol **508**(5): 711-755.
 - Tao, L., S. Ozarkar, J. M. Beck and V. Bhandawat (2019). "Statistical structure of locomotion and its modulation by odors." <u>eLife</u> **8**: e41235.
 - Tao, L., S. Ozarkar and V. Bhandawat (2020). "Mechanisms underlying attraction to odors in walking Drosophila." PLOS Computational Biology **16**(3): e1007718.
- Tao, L., S. P. Wechsler and V. Bhandawat (2022). "Sensorimotor transformation underlying odor-modulated locomotion in walking *Dosophila*." <u>unpublished</u>.
 Tinbergen, N. (1951). <u>The study of instinct</u>. New York, NY, US, Clarendon Press/Oxford University Press.
 Tobin, W. F., R. I. Wilson and W.-C. A. Lee (2017). "Wiring variations that enable and constrain neural computation in a sensory microcircuit." eLife 6: e24838.
- Trierweiler, C., R. H. G. Klaassen, R. H. Drent, K.-M. Exo, J. Komdeur, F. Bairlein and B. J. Koks (2014).
 "Migratory connectivity and population-specific migration routes in a long-distance migratory bird."
 Proceedings of the Royal Society B: Biological Sciences 281(1778): 20132897.
 Tsao, C.-H., C.-C. Chen, C.-H. Lin, H.-Y. Yang and S. Lin (2018). "Drosophila mushroom bodies integrate
 - Tsao, C.-H., C.-C. Chen, C.-H. Lin, H.-Y. Yang and S. Lin (2018). "Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior." <u>eLife</u> **7**: e35264.
- van Beers, R. J., P. Haggard and D. M. Wolpert (2004). "The Role of Execution Noise in Movement Variability." <u>Journal of Neurophysiology</u> **91**(2): 1050-1063.

 Varela, N., M. Gaspar, S. Dias and M. L. Vasconcelos (2019). "Avoidance response to CO2 in the lateral horn." PLOS Biology **17**(1): e2006749.
 - Vogt, K., D. M. Zimmerman, M. Schlichting, L. Hernandez-Nunez, S. Qin, K. Malacon, M. Rosbash, C.
- Pehlevan, A. Cardona and A. D. T. Samuel (2021). "Internal state configures olfactory behavior and early sensory processing in Drosophila larvae." Sci Adv 7(1).

 Wang, P., R. F. Lyman, T. F. C. Mackay and R. R. H. Anholt (2010). "Natural variation in odorant

recognition among odorant-binding proteins in Drosophila melanogaster." <u>Genetics</u> **184**(3): 759-767. Wang, P., R. F. Lyman, S. A. Shabalina, T. F. C. Mackay and R. R. H. Anholt (2007). "Association of

- Polymorphisms in Odorant-Binding Protein Genes With Variation in Olfactory Response to Benzaldehyde in Drosophila." <u>Genetics</u> **177**(3): 1655-1665.
 - Werkhoven, Z., A. Bravin, K. Skutt-Kakaria, P. Reimers, L. F. Pallares, J. Ayroles and B. L. de Bivort (2021). "The structure of behavioral variation within a genotype." <u>eLife</u> **10**: e64988.
 - Werkhoven, Z., C. Rohrsen, C. Qin, B. Brembs and B. de Bivort (2019). "MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology." PloS one **14**(11):
- Real-time GUI for Object-tracking), a platform for high-throughput ethology." <u>PloS one</u> **14**(11): e0224243-e0224243.
 - Wilson, R. I. (2013). "Early Olfactory Processing in Drosophila: Mechanisms and Principles." <u>Annual Review of Neuroscience</u> **36**(1): 217-241.
 - Wiltschko, A. B., M. J. Johnson, G. Iurilli, R. E. Peterson, J. M. Katon, S. L. Pashkovski, V. E. Abraira, R. P. Adams and S. R. Datta (2015). "Mapping Sub-Second Structure in Mouse Behavior." Neuron **88**(6): 1121
- Adams and S. R. Datta (2015). "Mapping Sub-Second Structure in Mouse Behavior." <u>Neuron</u> **88**(6): 1121-1135.
 - Wu, H. G., Y. R. Miyamoto, L. N. G. Castro, B. P. Ölveczky and M. A. Smith (2014). "Temporal structure of motor variability is dynamically regulated and predicts motor learning ability." <u>Nature Neuroscience</u> **17**(2): 312-321.

530 Zhang, X. and Q. Gaudry (2016). "Functional integration of a serotonergic neuron in the Drosophila antennal lobe." <u>eLife</u> **5**: e16836.

	Odors or		Lowest	Highest	Starvation
Study	Optogenetics	Assay	Variability	Variability	(hours)
Suh et al., Nature 2004	CO2	T-assay	0.27	0.52	0
Larsson et al., 2004	2 odors	Trap assay	0.08	0.12	48
Knaden et al., 2012	120 odors	Trap assay	0.11	0.74	24
Semmelhack and Wang, 2009	ACV	Quadrant assay		0.27	50
Badel et al., 2016	39 odors	Tethered flight	0.15	0.31	4-6
Jung, Hueston, Bhandawat 2015	2 odors	Ring assay	0.25	0.31	18-24
Tao, Ozarkar, Bhandawat 2020	Chrimson Orco	Ring assay		0.25	15-21
Honneger et al., 2020	4 odors	Linear assay	0.09	0.14	0

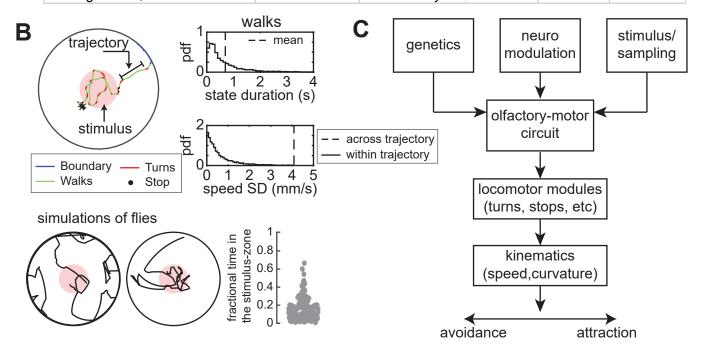


Figure 1. Persistence of locomotor states is an important contributor to variability in olfactory behavior. A. Examples of variability in attraction to odors. Most sources of variability is measured as the standard deviation (SD) in attraction index with the exception of Knaden 2012 and Jung 2015, where it is represented by the interquartile range. **B.** In a circular arena with a concentric odor zone, fly locomotion can be represented as discrete states such as walks and turns (different colors) which last 700 millisecond on average (dotted line). During each state flies move with relatively stable speed and curvature as compared to across trajectories (characterized by the SD). This persistence leads to variability in sample trajectories. Over many samples, simulations of flies (n=116) show a high a high degree of variability in the movement path and time spent in the odor zone (SD=0.12). **C.** Genetic factors, neuromodulation, and the dynamics of olfactory stimulus and sensorimotor sampling all can cause variability in the olfactorymotor circuit. This will result in variability in the performance of locomotor modules such as turns which results in variability in the time averaged attraction to odors. Panel **B** is adapted from Tao, Ozarkar, Bhandawat Plos Computational Biology 2020.

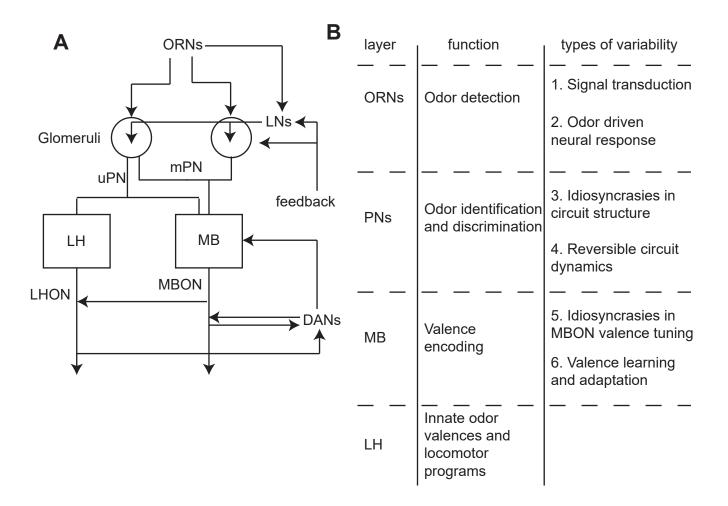


Figure 2. Information flow and properties of the *Drosophila* olfactory circuit. A. Information flow of the fly olfactory circuit. First orrder olfactory receptor neurons (ORNs) detect odors and synapse with uniglomerular and multiglomerular projection neurons (uPNs and mPNs respectively) in the glomeruli. Local neurons (LNs) provide lateral connections. PNs synpase into the mushroom body MB and lateral horn (LH), which act as third order processing centers. Dopaminergic neurons modulate MB activity. Mushroom body output neurons (MBONs) and lateral horn output neurons (LHONs) carry information into higher order circuits. **B.** A table of the main function at each layer of the olfactory circuit as well as where variability will arise.

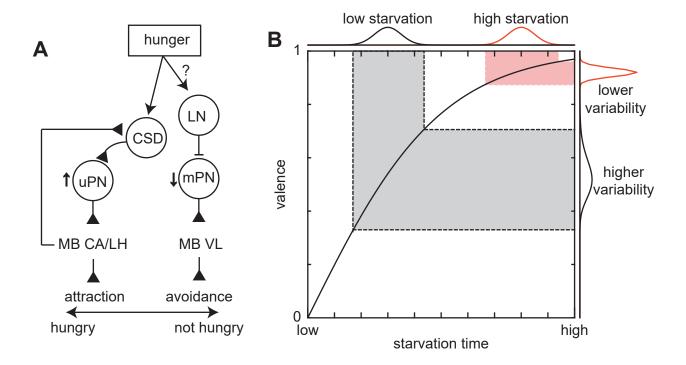


Figure 3. Effect of internal states on behavioral variability. A. Effect of hunger on larvae attraction or avoidance to geranyl acetate. When hungry, the CSD neuron potentiate attraction mediating uPN responses while LNs inhibite aversion mediating mPN responses through glutamertergic mPNs. This leads to a switch from avoidance to attraction through downstream connections to the mushroom body calyx (MB CA), mushroom body vertical lobe (MB VL), and lateral horn (LH). Figure based on Vogt et al., Science Advances 2021. B. The variability in behaviors such as attraction depends on the relationship between the behavior and internal states like hunger (represented by starvation time). In this cartoon, two groups of flies that have the same variance in starvation times, the flies that are starved more should show less variability in valence. However, experiments typically show a higher level of valence variance than that predicted by theoretical average relationship curves.

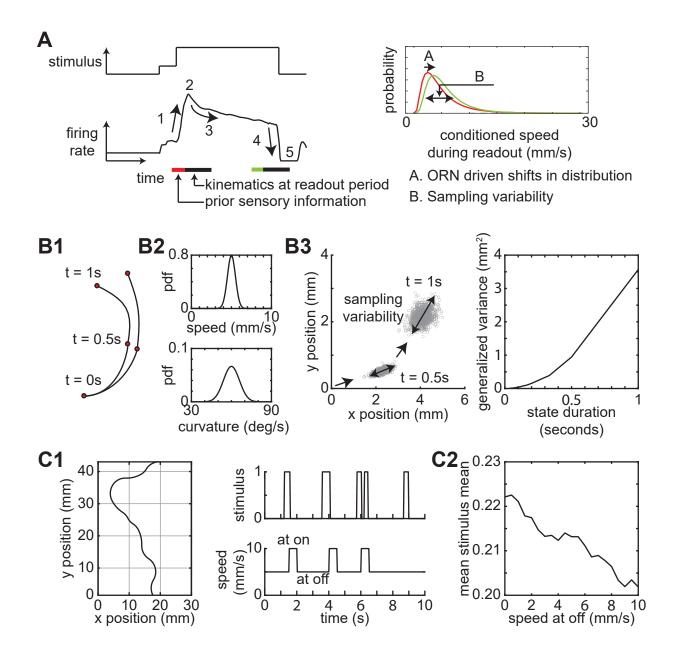


Figure 4. Variability due to sensorimotor transformations and sampling. A. A schematic of odor stimulus and ORN response. The response is characterized by a rising edge (1), peak response (2), adaptation (3), falling edge (4), and inhibition (5). The speed bouts of curved walks (readout period) conditoned on ORN activity follows a lognormal distribution. The distribution changes based on ORN activity. B1. Variability in sensorimotor transformation will result in sampling variability. B2. Toy example of two consecutive instances of curved walk with constant speed and curvature sampled from normal distributions. B3. Left: Positions from 1,000 simulations starting at position (0,0) facing in the positive x position with a trajectory persistence of 0.5 seconds show variability increases with consecutive samples. Right: The generalized variance in positions after 5 seconds increase with increasing state persistence. C. Effect of locomotor strategy on sensory experience. C1. Left: Sample 10 second trajectory of a fly moving through an environment with constant average stimulus intensity, but with variable frequencies at each spatial block (bounded by grey). Right: Stimulus experienced by the fly during the period as it chooses a lower speed when it experiences no odors. C2. The mean of the mean stimulus experienced by simulations of flies as a function of off speed (n=5,000/speed at off). See methods for further details about simulations in B and C.