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Abstract 
Changes in locomotion mediated by odors (odor-guided locomotion) are an important 

mechanism by which animals discover resources important to their survival. Odor-guided 

locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at 10 

many nodes along the circuit that performs sensorimotor transformation; we review these sources 

of variability in the context of the Drosophila olfactory system. While these sources of 

variability are important, we claim that the most important contributor to behavioral variability is 

the stochastic nature of decision-making during locomotion as well as the persistence of these 

decisions: Flies choose the speed and curvature stochastically from a distribution and locomote 15 

with the same speed and curvature for extended periods. This stochasticity in locomotion will 

result in variability in behavior even if there is no noise in sensorimotor transformation. Overall, 

the noise in sensorimotor transformation is amplified by mechanisms of locomotion making 

odor-guided locomotion in flies highly variable.    

20 



Introduction 

 Variability is a hallmark of behavior and is observed across timescales (Tinbergen 1951). 

On long timescales, variability has been studied in the migratory behavior of birds; birds display 

inter-individual variability in migratory patterns, timing, and kinematics (Potti 1998, Trierweiler, 

Klaassen et al. 2014, Fraser, Shave et al. 2019, Phipps, López-López et al. 2019). On shorter 25 

timescales, many studies have looked at variability in movement kinetics, kinematics, and 

endpoints of reaching movements (Gordon, Ghilardi et al. 1994, Messier and Kalaska 1999, van 

Beers, Haggard et al. 2004, Wu, Miyamoto et al. 2014). Even when movement kinematics, such 

as walking speed, is constrained to a constant value, studies in humans have shown that there is 

variability in properties such as step length and width (Sekiya, Nagasaki et al. 1997, Collins and 30 

Kuo 2013). 

 Given the ubiquity of behavioral variability, it is unsurprising that odor-guided 

locomotion in fruit flies or Drosophila also shows variability. One large body of literature has 

focused on the idea of behavioral valence (attraction vs repulsion) of flies to odors. Attraction or 

repulsion of a fly to an odor source is usually measured as the fraction of time a fly spends 35 

within an odorized region. These studies often utilize a wide array of odors and a wide range of 

behavioral assays ranging from a trap assay where a population of flies chooses between two 

odor traps to assays with a single fly in an arena with a single odorant zone (Figure 1A). Yet, 

regardless of the experimental setup or the odors used, there is a large variability in attraction 

(Figure 1A and Methods). This variability, measured as standard deviation (SD), can range from 40 

as low as 0.09 to as high as 0.52. When assuming a normal distribution, even a standard 

deviation of 0.09 shows a high level of variability as approximately 95% (±2 SD) of the flies will 

fall within 36% of the attraction range to an odor (e.g., an attraction between 0.3 and 0.66). 

 Recently, research on odor-guided locomotion has moved past simple measures of 

valence to the moment-by-moment change in locomotion that accompanies attraction or 45 

repulsion.  This advance parallels advances in ethological techniques to perform pose estimation 

(Mathis, Mamidanna et al. 2018, Graving, Chae et al. 2019, Pereira, Aldarondo et al. 2019), 

identification of behaviors (Dankert, Wang et al. 2009, Kabra, Robie et al. 2013, Berman, Choi 

et al. 2014, Wiltschko, Johnson et al. 2015, Tao, Ozarkar et al. 2019), and high throughput 

experimentation (Branson, Robie et al. 2009, Buchanan, Kain et al. 2015, Werkhoven, Rohrsen 50 



et al. 2019). In the context of fly locomotion and how odors affect it, one insight from studying 

the detailed mechanism is that fly locomotion is discrete, i.e., flies move at a surprisingly 

constant speed and curvature for extended periods before making sudden changes. This 

persistence means that instead of deciding on speed and curvature on every step, flies make 

decisions at the beginning of a “state” which can last several steps (hundreds of milliseconds). 55 

As we will discuss at length in this review, this persistence means that each decision will be 

important and small differences in choices will drive large variability in sensory experience and 

the spatial spread of a population of flies.  

 The effect of locomotor persistence on variability is well-described by a recent study that 

employed a hierarchical hidden Markov Model (HHMM). The HHMM is an unsupervised 60 

method to infer states based on speed and curvature in an unbiased way. The authors found that 

flies use about ten states – each state defined by characteristic speed and curvature that does not 

change much during the state - to walk around a small circular arena. These states are persistent 

and last about a second, a time during which a fly takes 10 steps on average. Although each fly 

in the dataset could have its own set of states, a single set of states modeled all the flies 65 

suggesting that flies utilize the same building blocks during locomotion; these building blocks 

account for locomotion both before the odor was turned on and during the odor period (Tao, 

Ozarkar et al. 2019). Although flies use the same states, there is large fly-to-fly variability in the 

time spent performing each state both in the absence and presence of odors. The variability in 

state usage results in behavioral variability since there is a large difference in speed and 70 

curvature between states. In contrast to between states, this model shows a tight distribution of 

kinematics within a state, implying that flies maintain consistent kinematics (speed and 

curvature) for about a second – a time during which the fly takes ~10 steps. Qualitatively, these 

states represent characterizations of different types of walking, stopping, and turning states.  

 The HHMM model shows that locomotion consists of persistent states where each state 75 

represents different types of walking, stopping, and turning states. The insights from the HHMM 

model – that persistence of a state can cause variability – can also be captured by a much simpler 

model with four states – walk, stop, turn, and boundary (Tao, Ozarkar et al. 2020) (Figure 1B). 

Each transition into a given state is well-described by the average kinematics (e.g., speed), but 

different transitions can have widely different speeds. The persistence is shown by the fact that 80 



states last on average 700 milliseconds within which the variation in speed is much less than the 

variation observed across states (Figure 1B). The result of this variation is that the tracks of the 

fly and attraction to odors are highly variable even though each fly is executing the same 

algorithm (Figure 1B). 

 Both the variability in olfactory behavior (Figure 1A) and the role of the nature of 85 

locomotion itself in creating this variability (Figure 1B) has not been systematically explored. 

Here we will review potential mechanisms behind variability in odor-guided locomotion. At any 

moment a given fly has a given locomotor or search algorithm which is determined by its 

sensory environment and its state acting on its locomotor circuits. Odors affect attraction and 

repulsion by changing how these different locomotor states are used, and how different 90 

locomotor variables such as speed and curvature are chosen in a given state (Figure 1C). Thus, 

variability in olfactory behavior can result from differences in sensorimotor transformations 

which in turn can result from irreversible genetic differences, from reversible neuromodulatory 

differences, or from sampling noise. We will draw on work aimed at understanding both 

variability in odor valence and odor-driven locomotion. We will emphasize that the noise in 95 

sensorimotor transformations when coupled with persistence in locomotion can be an important 

source of variability in genetically identical flies. The review is organized into four main 

sections. In the first section, we will describe the processing steps in the fly’s olfactory system. 

In the remaining three sections, we will discuss three sources of variability.  

Signal processing in the Drosophila olfactory circuit 100 

 

 Olfactory processing in Drosophila can be broken down into three layers of processing 

(Figure 2A).  First, odors are detected by receptors in olfactory receptor neurons (ORNs) located 

in the antennae and maxillary palps. ORNs can be segregated into distinct classes based on the 

expression of 51 ORN receptor types (de Bruyne, Clyne et al. 1999, de Bruyne, Foster et al. 105 

2001, Bates, Schlegel et al. 2020). At the signal detection level, odorant-binding proteins (OBPs) 

facilitate the transport of odorants to bind with olfactory receptors (ORs). Beyond OBPs and 

ORs within a single sensillum, ORN signal transduction will be influenced by sensillar 

morphology, lymph fluid biochemistry, and physiological crosstalk between sensillar cells 

(Schmidt and Benton 2020). 110 



 Olfactory signal transduction will ultimately lead to ORN spiking activity. The rate of 

spiking increases immediately following odor onset, then adapts to a stable but elevated level. 

The level of activation for each class of ORN is dependent on the odorant, and also has a non-

linear dependence on its concentration within the odor plume (Hallem, Ho et al. 2004, Hallem 

and Carlson 2006). The relationship between odor concentration and ORN spiking response also 115 

depends on stimulus history (Nagel and Wilson 2011, Martelli and Fiala 2019). At odor offset, 

the neural activity of many types of ORNs is inhibited for an extended period that can last for 

upwards of a few seconds.  

 The ORNs project to 51 glomeruli in the antennal lobe where they synapse with second-

order projection neurons (PNs) which carry information into higher-order olfactory processing 120 

centers. PNs can be classified into uniglomerular PNs (uPNs) that receive input from a single 

glomerulus and multiglomerular PNs (mPNs) that receive input from multiple glomeruli (Figure 

2A) (Bates, Schlegel et al. 2020). In addition to the PNs, local neurons (LNs) connect multiple 

glomeruli within the antennal lobe through lateral connections (Figure 2A). The computation in 

the antennal lobe results in an increase in the separability in odor representations and a decrease 125 

in variability in response to a given ORN class (Bhandawat, Olsen et al. 2007, Olsen, Bhandawat 

et al. 2010, Wilson 2013). 

 From the PNs, olfactory information is next transmitted to third-order processing centers 

called the mushroom body (MB) and the lateral horn (LH) (Figure 2A). In the MB, PNs form 

random synapses with on average 7 Kenyon cells (KC) in the MB calyx (Jefferis, Potter et al. 130 

2007, Butcher, Friedrich et al. 2012, Caron, Ruta et al. 2013). The output of the MB calyx 

converges into a small set of 34 output neurons called mushroom body output neurons (MBONs) 

that are separated into 15 different compartments (Tanaka, Tanimoto et al. 2008, Aso, Sitaraman 

et al. 2014, Bates, Schlegel et al. 2020). Functional studies have shown that the MBON activity 

patterns likely encode the valence of an odor. This valence can be remapped or learned through 135 

synaptic plasticity brought about by dopaminergic neurons (DANs) that enervate each 

compartment of the MBONs (Aso, Sitaraman et al. 2014). DANs in turn can receive inputs from 

both the MBONs as well as input from the lateral horn output neurons (LHONs) (Dolan, Frechter 

et al. 2019, Li, Lindsey et al. 2020).  



 The LH is comprised of local neurons and output neurons. These neurons receive 140 

excitatory input from both the uPNs and mPNs as well as inhibitory input from the mPNs (Bates, 

Schlegel et al. 2020). The LHONs and MBONs project downstream into multiple fourth-order 

processing centers. The MB and the LH are highly interconnected via both direct connections 

(Aso, Sitaraman et al. 2014, Dolan, Frechter et al. 2019) as well as via recurrent connections 

from MBONs to PN axons in the LH (Bates, Schlegel et al. 2020). The specific function of the 145 

LH is currently being actively investigated, but specific classes of neurons have been shown to 

drive innate odor valence as well as specific locomotor programs such as turning or wingbeat 

frequency during flight (Dolan, Frechter et al. 2019, Varela, Gaspar et al. 2019). 

Genetics as a source of variability in Drosophila odor-guided locomotion 
At each step described above, variability can arise from genetic differences which can 150 

affect different aspects of the sensorimotor transformation as reviewed below. First, subtle 

changes in genes that are directly involved in various aspects of olfactory processing can affect 

sensorimotor transformation. There is a growing body of evidence particularly at the level of 

ORNs that supports contribution due to this mechanism. Even in isogenic flies, accumulations of 

polymorphisms can lead to behavioral variability (Mollá-Albaladejo and Sánchez-Alcañiz 2021). 155 

For instance, naturally occurring single nucleotide polymorphism (SNP) in OBPs 99a-d has been 

shown to contribute to the phenotypical variability in the aversion to benzaldehyde (Wang, 

Lyman et al. 2007). The authors found in a follow-up study that SNPs in different OBPs in the 

99a-d complex can have a varied effect on olfactory behaviors (Wang, Lyman et al. 2010). 

Similarly, natural polymorphisms in multiple ORs have been found to have a significant 160 

association with variations in odorant-specific valence (Rollmann, Wang et al. 2010, Richgels 

and Rollmann 2012).  

 SNPs can also affect olfactory behavior via network pathways involved in olfactory 

signal transduction, neurogenesis, and neural connectivity (Figure 2B) (Swarup, Huang et al. 

2013, Arya, Magwire et al. 2015). A recent study provides evidence that genetic variation in the 165 

Or22 locus leads to significant differences in the functional neural response properties of its 

corresponding class of ORN, which in turn correlates with a preference for ethyl hexanoate, an 

odor that strongly stimulates this ORN (Shaw, Johnson et al. 2019, Shaw, Dent et al. 2021). 



 In addition to single-neuron effects, individuality in the genetic code can lead to wiring 

and structural variability in neural circuits (Figure 2B). A recent study looking at a large 170 

population of inbred flies over 9 different behavioral assays showed that individual differences in 

genes related to development (i.e., Hedgehog signaling, Wnt signaling) and neural function (i.e., 

vesicle release) may be involved with behavioral variability (Werkhoven, Bravin et al. 2021). 

This study also implicated genes involved in cellular respiration and protein translation in 

behavioral variability.  175 

Genes underlying many genetic effects are not known; these effects may present 

themselves during careful anatomical studies. In the antennal lobe, electron microscopy studies 

show that the connectivity from ORN to PN are variable. In one study, the authors found that 

there is a high degree of synaptic variability, which leads to the contamination of ORN spike 

count information (Tobin, Wilson et al. 2017). Some variability in this connectivity will be 180 

compensated for. For instance, one hemisphere may have smaller PN dendritic sizes but 

compensate with more synapses to generate similar postsynaptic membrane potential responses 

to pre-synaptic ORN input. In addition to the ORN to PN connections, LNs have also been found 

to exhibit variability in fine-scale connectivity patterns which undergo both developmental and 

experience-dependent plasticity (Chou, Spletter et al. 2010). However, the extent to which this 185 

variability leads to variability in sensory processing and ultimately behavioral variability is 

unclear. 

 Finally, an important mechanism for genetic variability is the plasticity effect of different 

genes that alter olfactory valence (Figure 2B). In the MB, there are many genes shown to be 

important for olfactory memory (Kahsai and Zars 2011). It has been shown that while the tuning 190 

of individual MBON compartments is the same across hemispheres of an individual fly, the 

tuning of these compartments is different across animals. This source of individuality is linked to 

the rutabaga (rut) gene (Hige, Aso et al. 2015). In the MB, both the rut and dunce gene are 

involved in the synthesis and degradation of cAMP, and mutations in these genes have been 

shown to affect signal transduction (Renger, Ueda et al. 2000). 195 

 While these studies show that genetic variability can lead to individuality through 

potential changes in signal transduction and circuit wiring, they will not be the only source of 

this variability. For example, a recent study in the fly visual system showed that left/right wiring 



asymmetry for a set of neurons called the dorsal cluster neurons is caused by stochastic wiring 

during development and not genetic differences. The extent of the wiring asymmetry explains the 200 

ability of individual flies to orient towards a visual object (Linneweber Gerit, Andriatsilavo et al. 

2020).  

Neuromodulation may drive shifts in valence through changing excitatory-inhibitory 
balance 
 A second mechanism for variability is through neuromodulation and internal states such 205 

as hunger which have been shown to drastically alter the behavioral valence of odors (Figure 

2B). In the antennal lobe, such neuromodulators act upon both the LN and uPN to generate 

variability in attraction to odors. In a recent study, it was found that feeding flies a serotonin 

synthesis inhibitor (alpha-methyltryptophan) or expressing a mutant allele of the dopamine 

receptor gene (Dop1R1) resulted in a decrease in the variability of odor preference. Meanwhile, 210 

feeding flies a dopamine precursor (L-DOPA) increased odor preference variability (Honegger, 

Smith et al. 2020).  

 The effect of serotonin on the antennal lobe neurons is likely a result of action of a well-

studied group of seorotonin neurons, that modulate both LN and PN activity, called 

thecontralaterally serotonin-immunoreactive deutocerebral (CSD) neurons (Zhang and Gaudry 215 

2016). These neurons are conserved among multiple insect taxa (Kent, Hoskins et al. 1987, 

Python and Stocker 2002, Dacks, Christensen et al. 2006). Interestingly, it was found that 

thermogenetic activation of the CSD neurons did not change the attraction to or variability in the 

attraction to the odors (Honegger, Smith et al. 2020). However, a recent paper in larvae showed 

that CSD neurons are necessary for hunger-driven changes in olfactory behavior. When satiated, 220 

larvae avoid geranyl acetate; when hungry, CSD neurons cause an increase in attraction to 

geranyl acetate by directly potentiating attraction mediating uPN responses while indirectly 

inhibiting aversion mediating mPN responses (Figure 3A) (Vogt, Zimmerman et al. 2021). The 

circuit motif of hunger promoting activity in attraction mediating neurons and reducing activity 

in aversion mediating neurons appears in both the antennal lobe (Root, Ko et al. 2011, Ko, Root 225 

et al. 2015) and mushroom body (MB) (Tsao, Chen et al. 2018). 

 Since the level of hunger can play a key role in behavioral variability, most laboratory 

studies control hunger though controlling starvation time. In the antennal lobe, the duration of 



starvation leads to a negative exponential change in PN activity (Root, Ko et al. 2011). In the 

same study, it was shown that the mean time spent finding food follows a similar pattern. Such a 230 

mechanism suggests that changes in valence caused by variability in hunger levels should be less 

at large starvation values (Figure 3B). However, studies show that even after long periods (24+ 

hours) of starvation, there is a high degree of valence variability (Figure 1A). In such scenarios, 

variability can still arise from neuromodulation. This is because while the average effect of 

hunger on neural activity across individuals and trials saturates after long starvation periods, 235 

there is still variability in neural activity around the average.  

Variability in sensorimotor transformation is amplified by stochastic and persistent 
behavioral choices 
  Rather than a continuous odor gradient, flies experience odors as pulses – odor plumes – 

resulting from turbulent winds (Crimaldi and Koseff 2001, Celani, Villermaux et al. 2014). Far 240 

from the odor source, the frequency of plume encounters is small. A fly will encounter a pulse of 

odor such as the one shown in Figure 4A (from an actual experiment) and respond with the 

corresponding ORN activity (Figure 4A). The behavioral variability comes from two sources. 

First, odorant history and differences in ORN activity experienced by flies across separate odor 

encounters will lead to changes in the average locomotor kinematics such as speed and curvature 245 

(Figure 4A). 

 Second, and a more dominant form of noise is the stochasticity in behavior itself. Flies 

will update their future locomotion by sampling from a probabilistic distribution which is 

parameterized based on past sensory information (Figure 4A). If flies continuously update their 

speed and curvature on a moment-by-moment basis, then the positional variability due to 250 

sampling noise will be small. However, the variability arising from sampling noise is magnified 

because flies maintain relatively consistent kinematics for long (hundreds of milliseconds to 

seconds, Figure 1B) periods. This can be shown using a simplified agent-based simulation where 

the agent moves at a constant speed and curvature based on samples from a gaussian distribution 

at fixed time intervals (Figure 4B and methods). The resultant spread of the flies in space 255 

increases as the interval between samples increases (Figure 4B). This means that two flies 

starting at the same position in space experiencing similar odor stimulus will have divergent 

positions and paths at the end of an instance of a locomotor state. In a spatially inhomogeneous 



odorant environment, this spatial dispersion in positions will have knock-on effects as the 

sensory experience of different flies diverge leading to greater variability in behavior. 260 

 As the fly moves closer to the odor source, the frequency of odor encounters will 

increase. Effects discussed above will be further exacerbated as frequent odor encounters will 

drive history-dependent ORN firing rate adaptation which creates a potential for greater variety 

in possible responses. Consider a dynamically changing olfactory environment where the mean 

and variance of the stimulus is spatially conserved, if flies adopt a simple strategy of slowing 265 

down when not experiencing an odor plume, the mean in odor experience will increase (Figure 

4C and methods). This increase in mean odor experience will depend on how much the fly 

decreases its speed. The gain in the ORN dose-response curve decreases with an increase in 

stimulus mean and variance (Gorur-Shandilya, Demir et al. 2017). At the population level, the 

sensitivity to odorant concentrations follows a power-law distribution and this response 270 

sensitivity adapts to stimulus intensity (Si, Kanwal et al. 2019). This means that flies can 

experience vastly different sensory input based on both statistics of the odorant environment and 

how the fly chooses to locomote within the environment.  

 In addition to the effect of recent sensory experience in driving behavioral variability, the 

sensorimotor transformations also exhibit adaptations over the course of tens of seconds to 275 

minutes. In a static odor landscape, the timescale of this adaptation coincides with changes in the 

attraction index (Tao, Wechsler et al. 2022). This adaptation likely reflects a longer timescale 

change in the perception of the odor based on the motivation of the fly (Figure 2B). In the MB, 

DANs modulate MBON neurons and induce plasticity of KC to MBON connections to cause 

changes in odor valence (Aso, Hattori et al. 2014). The output of MBONs makes a large number 280 

of connections with the LH, which is thought to drive innate behaviors and different motor 

programs (Dolan, Frechter et al. 2019). This suggests that the longer timescale adaptations in 

locomotion and valence can be driven by the MB. This process, which depends on each flies’ 

experience and internal states may explain the variability in longer timescale odor valence and 

locomotion (Grunwald Kadow 2019).  285 

Conclusions 
 Behavioral variability is a central feature of natural behaviors. Odor-guided locomotion 

performed by Drosophila is a key model system to study principles and sources of behavioral 



variability. Traditionally, variability is commonly attributed to genetic and neuromodulatory 

factors. Indeed, even in isogenous populations, small amounts of genetic variability may cause 290 

variability in phenotype expression. Such a process may allow a population of animals to limit 

the risk of going extinct in an expectedly ever-changing environment. Meanwhile, 

neuromodulation allows animals to flexibly control their behaviors in response to their internal 

needs or wants. But beyond these factors, another less discussed source of variability arises from 

stochasticity of behavioral choices and their persistence. Over multiple rounds of decision, this 295 

source of variability will drive noticeable variability in attraction and spatial position across a 

population of flies. This source of variability might dominate other sources of variability in 

valence and locomotion especially when the genetics and internal states are experimentally 

controlled. 

Materials and methods (Note that this is a review but we have done some analysis) 300 

Data curation 

Standard deviations (SD) reported in Figure 1A were obtained from the relevant articles through the raw 
data when available or through estimation of error bounds using WebPlotDigitizer (Rohatgi 2021). As 
most studies report the standard error of the mean (SEM), the SD was calculated by multiplying the SEM 
by the square root of the reported sample size. For papers with box plots, WebPlotDigitizer was used to 305 
obtain the interquartile range. Below is a table of the relevant figures that error bounds were reported 
from and the method used. 

 Figure number Method 
Suh et al., Nature 2004 Supplement 1 WebPlotDigitizer 
Larsson et al., 2004 Figure 7 WebPlotDigitizer 
Knaden et al., 2012 Figure 1 WebPlotDigitizer 
Semmelhack and Wang, 2009 Figure 2 WebPlotDigitizer 
Badel et al., 2016 Figure 1 WebPlotDigitizer 
Jung, Hueston, Bhandawat 2015 Figure 3 WebPlotDigitizer 
Tao, Ozarkar, Bhandawat 2020 Figure 1 Data 
Honneger et al., 2020 Figure 1 Data 

 

Agent model of sampling noise variability 

The speed was sampled from a normal distribution with a mean of 5 mm/s and an SD of 0.5 mm/s. The 310 
curvature was sampled from a normal distribution with a mean of 60 degrees/s and an SD of 3 degrees/s. 
For each simulation, the duration of a trajectory is fixed and the sampling rate was set to 30 Hz. 1000 
agents were initialized at the origin (x=0 mm, y=0 mm, and an orientation 𝜃=0 degrees). At the start of 
each trajectory, each agent selects from the speed and curvature distribution. The position of each agent 
was then updated as follows:  315 



𝜃(𝑡) = 𝜃(𝑡 − 1) +
𝑘(𝑡 − 1) + 𝑘(𝑡)

2
(1.1) 

𝑥(𝑡) = 𝑥(𝑡 − 1) + 𝑠(𝑡) ∗ cos(𝜃(𝑡)) (1.2) 

𝑦(𝑡) = 𝑦(𝑡 − 1) + 𝑠(𝑡) ∗ sin(𝜃(𝑡)) (1.3) 

Where 𝑘 is the sampled curvature and 𝑠 is the sampled speed. After the agent has moved for the set 
duration, the agent initiates another trajectory by resampling from the speed and curvature distribution. 320 
This process repeats until a time of 5 seconds has passed.  

The spread of agents at the end of the 5 second period can be approximated by a bivariate Gaussian 
distribution. These end positions were fit to a bivariate gaussian density function using MATLAB. The 
spread of this distribution was characterized by the generalized variance: 

𝐺𝑉 = 𝑑𝑒𝑡(Σ) 325 

Where Σ is the covariance matrix. 

Agent model of locomotion induced changes in sensory input  

To simulate a dynamically changing environment with conserved stimulus properties, we first segmented 
the odor space into grids of 10 mm by 10 mm. The temporal pattern of odor stimulus in each grid is 
modeled as a square wave with a 20% duty cycle and variable frequency sampled from a gaussian 330 
distribution centered around 0.5 Hz with a standard deviation of 0.1 Hz.  

5000 agents were initialized at the origin (x=0 mm, y=0 mm, and an orientation 𝜃=0 degrees). Each agent 
is set to move in trajectories lasting 0.5 seconds. At the end of each trajectory, the agent update’ its speed 
based on its latest sensory experience. If the agent is in an odor plume (stimulus=1) at the time of 
trajectory transition, the agent will initiate a trajectory with a speed of 10 mm/s (On stimulus speed) and a 335 
curvature of 60 degrees/s. If the agent is instead not in an odor plume (stimulus=0), then the agent will 
initiate a trajectory with a speed slower than or equal to 10 mm/s (Off stimulus speed) and a curvature of 
60 degrees/s. The direction of curvature is random (50/50 left vs right). The position of each agent is 
updated as described in equations 1.1-1.3. For each agent, we calculated the mean in stimulus over 2 
minutes. Figure 4C2 shows the mean of the stimulus mean over all agents. 340 
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Figure 1. Persistence of locomotor states is an important contributor to variability in olfactory 
behavior. A. Examples of variability in attraction to odors. Most sources of variability is measured as the 
standard deviation (SD) in attraction index with the exception of Knaden 2012 and Jung 2015, where it is 
represented by the interquartile range. B. In a circular arena with a concentric odor zone, fly locomotion 
can be represented as discrete states such as walks and turns (different colors) which last 700 millisec-
ond on average (dotted line). During each state flies move with relatively stable speed and curvature as 
compared to across trajectories (characterized by the SD). This persistence leads to variability in sample 
trajectories. Over many samples, simulations of flies (n=116) show a high a high degree of variability in 
the movement path and time spent in the odor zone (SD=0.12). C. Genetic factors, neuromodulation, and 
the dynamics of olfactory stimulus and sensorimotor sampling all can cause variability in the olfactory-
motor circuit. This will result in variability in the performance of locomotor modules such as turns which 
results in variability in the time averaged attraction to odors. Panel B is adapted from Tao, Ozarkar, 
Bhandawat Plos Computational Biology 2020. 
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Figure 2. Information flow and properties of the Drosophila olfactory circuit. A. Information flow of 
the fly olfactory circuit. First orrder  olfactory receptor neurons (ORNs) detect odors and synapse with 
uniglomerular and multiglomerular projection neurons (uPNs and mPNs respectively) in the glomeruli. 
Local neurons (LNs) provide lateral connections. PNs synpase into the mushroom body MB and lateral 
horn (LH), which act as third order processing centers. Dopaminergic neurons modulate MB activity. 
Mushroom body output neurons (MBONs) and lateral horn output neurons (LHONs) carry information into 
higher order circuits. B. A table of the main function at each layer of the olfactory circuit as well as where 
variability will arise.
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Figure 3. Effect of internal states on behavioral variability. A. Effect of hunger on larvae 
attraction or avoidance to geranyl acetate. When hungry, the CSD neuron potentiate attraction 
mediating uPN responses while LNs inhibite aversion mediating mPN responses through 
glutamertergic mPNs. This leads to a switch from avoidance to attraction through downstream 
connections to the mushroom body calyx (MB CA), mushroom body vertical lobe (MB VL), and 
lateral horn (LH). Figure based on Vogt et al., Science Advances 2021. B. The variability in 
behaviors such as attraction depends on the relationship between the behavior and internal 
states like hunger (represented by starvation time). In this cartoon, two groups of flies that have 
the same variance in starvation times, the flies that are starved more should show less variabil-
ity in valence. However, experiments typically show a higher level of valence variance than that 
predicted by theoretical average relationship curves.
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Figure 4. Variability due to sensorimotor transformations and sampling. A. A schematic of odor 
stimulus and ORN response. The response is characterized by a rising edge (1), peak response (2), 
adaptation (3), falling edge (4), and inhibition (5). The speed bouts of curved walks (readout period) 
conditoned on ORN activity follows a lognormal distribution. The distribution changes based on ORN 
activity. B1. Variability in sensorimotor transformation will result in sampling variability. B2. Toy example 
of two consecutive instances of curved walk with constant speed and curvature sampled from normal 
distributions. B3. Left: Positions from 1,000 simulations starting at position (0,0) facing in the positive x 
position with a trajectory persistence of 0.5 seconds show variability increases with consecutive samples. 
Right: The generalized variance in positions after 5 seconds increase with increasing state persistence. 
C. Effect of locomotor strategy on sensory experience. C1. Left: Sample 10 second trajectory of a fly 
moving through an environment with constant average stimulus intensity, but with variable frequencies at 
each spatial block (bounded by grey). Right: Stimulus experienced by the fly during the period as it 
chooses a lower speed when it experiences no odors. C2. The mean of the mean stimulus experienced 
by simulations of flies as a function of off speed (n=5,000/speed at off). See methods for further details 
about simulations in B and C. 
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