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\bfitk -Variance: A Clustered Notion of Variance\ast 
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Abstract. We introduce k-variance, a generalization of variance built on the machinery of random bipartite
matchings. k-variance measures the expected cost of matching two sets of k samples from a distribu-
tion to each other, capturing local rather than global information about a measure as k increases; it
is easily approximated stochastically using sampling and linear programming. In addition to defining
k-variance and proving its basic properties, we provide in-depth analysis of this quantity in several
key cases, including one-dimensional measures, clustered measures, and measures concentrated on
low-dimensional subsets of Rn. We conclude with experiments and open problems motivated by this
new way to summarize distributional shape.
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1. Introduction. A key task in statistics and data science is to describe the shape of a
dataset or distribution in a simple form. The most basic methods for summarizing distri-
butions extract scalar measurements characterizing spread, normality, support, decay, and
other aspects of distributional geometry. Among these measurements, the simplest and most
popular choice is variance, which measures the squared deviation of a random variable from
its mean.

A scalar is unlikely to capture all relevant or interesting information about a distribution,
and indeed variance is not sensitive to skew, asymmetry, and other structural properties. A
typical way to address this issue is to compute higher-order moments, which---if completely
known---can often reconstruct a distribution. While this solution works mathematically, each
(standarized) moment measures the allotment of mass in a distribution relative to its mean,
which is hard to interpret in the multimodal or clustered cases.

In this paper, we introduce a generalization of variance we call k-variance, intended to
address some of the issues above. The basic idea of k-variance is to draw 2k samples from a
distribution and to evaluate the transport cost of matching the first k samples to the second
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k samples. k-variance coincides with variance in the k = 1 case. But, for larger values of k,
samples get matched to closer counterparts in the distribution rather than between different
modes, making k-variance a more localized measure of variance.

Our construction of k-variance seems to indicate that a tightly clustered distribution
about a few means might have high (1-)variance if those means are far apart, but that k-
variance of such a distribution will decay rapidly in k relative to that of a unimodal Gaussian.
Indeed, we will prove that this is the case---but only for measures embedded in dimensions
\gtrapprox 5. In lower dimensions, k-variance exhibits surprising---and somewhat counterintuitive---
behavior, which we can capture in detail for one-dimensional k-variance using the theory of
order statistics.

k-variance can be approximated using a simple randomized algorithm, wherein we draw 2k
points and solve a k\times k transportation problem; unsurprisingly, the accuracy of this easy-to-
implement estimator can be improved by averaging over multiple draws. We provide variance
bounds demonstrating that k-variance requires averaging over fewer such draws as k and/or
the ambient dimension increases.

We conclude with some experiments demonstrating the behavior of k-variance as a measure
of intramode variability as well as a number of open problems motivated by our work.

Contributions. We introduce a generalization of variance for probability measures on Rn

that we call ``k-variance,"" built on constructions from optimal transport. Beyond introducing
k-variance and its basic properties (section 4), we
\bullet give alternative expressions and bounds for k-variance of probability measures on R (sec-
tion 5);

\bullet use results in empirical optimal transport to characterize k-variance of probability measures
concentrated on low-dimensional sets (section 6), higher-dimensional sets (section 7), and
with cluster structure (section 8);

\bullet bound the variance of empirical estimators for k-variance in terms of sample size and di-
mension (section 9); and

\bullet provide numerical experiments to demonstrate behavior of k-variance and confirm our pre-
dicted theory (section 10).

2. Related work. For the most part, we incorporate discussion of related work into the
text below as it arises; our work principally uses results from the theory of optimal transport
(cf. [24, 22, 19]) and---in one dimension---from the theory of order statistics (cf. [10]).

Before commencing our technical discussion, however, we note that our work is built on
recent advances in the theory of random Euclidean bipartite matchings. This theory seeks to
characterize the cost of matching two independently drawn k-samples of a measure to one
another, where the cost of matching two points is proportional to the pth power of Euclidean
distance. See [13, 4, 11, 12, 15] and references therein for relevant mathematical theory, and
see [26, 7] for applications in other disciplines. While these works focus on bounding the
transport cost in specific cases or connecting it to physical applications, here we show how
the matching cost can be understood as a generalization of variance useful for characterizing
the shape of a probability measure.

3. Preliminaries. We begin with mathematical preliminaries to establish notation.D
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3.1. Variance. Our work focuses on generalizing the variance of a random variable X
drawn from a probability measure \mu \in Prob(Rd), which is the expected squared deviation of
that variable from its mean X := E[X]:

(3.1) Var(X) := EX\sim \mu [\| X  - X\| 22].

A simple argument reveals an alternative formula for variance:

(3.2) Var(X) =
1

2
EX,Y\sim \mu [\| X  - Y \| 22].

3.2. Optimal transport. Take \mu , \nu \in Prob(Rd) to be two Radon probability measures.
Then, we can define the (squared) 2-Wasserstein distance between \mu and \nu via

(3.3) \scrW 2
2 (\mu , \nu ) := inf

\pi \in \Pi (\mu ,\nu )
E(X,Y )\sim \pi [\| X  - Y \| 22],

where \Pi (\mu , \nu ) \subseteq Prob(Rd \times Rd) denotes the set of measure couplings whose marginals are \mu 
and \nu , resp. The Wasserstein distance is a basic object of study in analysis, statistics, machine
learning, and related disciplines. Intuitively, \scrW 2(\mu , \nu ) measures the amount of work it takes to
displace \mu onto \nu as distributions of mass over Rd, where the cost of moving a particle of mass
from x \in Rd to y \in Rd is \| x  - y\| 22; see [19] for a comprehensive introduction, applications,
and related discussion.

Of particular importance to our development is the Wasserstein distance between empirical
measures of the same size, which can be written as \mu k = 1

k

\sum k
i=1 \delta xi and \nu k = 1

k

\sum k
j=1 \delta yj for

some \{ xi\} ki=1, \{ yj\} kj=1 \subset Rd. In this case, the transport problem (3.3) becomes a linear

assignment problem with cost Cij := \| xi  - yj\| 22:

(3.4) \scrW 2
2 (\mu k, \nu k) =

\left\{       
minT\in Rk\times k \langle T,C\rangle 

s.t. T1 = 1/k
T\top 

1 = 1/k
T \geq 0,

where 1 denotes the vector of all ones. The constraints of (3.4) form a scaled version of the
Birkhoff polytope (set of doubly stochastic matrices), whose vertices define bijections between
the xi's and the yj 's.

There is a probabilistic link between (3.3) and (3.4). For general \mu , \nu \in Prob(Rd), we can
define an empirical (plug-in) estimator of\scrW 2

2 (\mu , \nu ) by drawing x1, . . . , xk \sim \mu and y1, . . . , yk \sim 
\nu and approximating \scrW 2

2 (\mu , \nu ) \approx \scrW 2
2 (\mu k, \nu k) as in (3.4). As derived in [8, Theorem 2], under

straightforward assumptions this approximation converges with rate k - 2/d for large k when
d > 4.

4. \bfitk -variance. We can introduce optimal transport into the variance formula (3.2) using
the k = 1 case of (3.4) by writing \| x  - y\| 22 = \scrW 2

2 (\delta x, \delta y). That is, an equivalent formula to
(3.2) is the following: Var(X) = EX,Y\sim \mu [\scrW 2

2 (\delta X , \delta Y )]. This observation immediately suggests
a generalization of variance using optimal transport:D
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Definition 4.1 (k-variance). Given a probability measure \mu \in Prob(Rd) and a parameter
k \in N, define k-variance as

(4.1) Vark(\mu ) :=
1

2
\cdot \rho (k, d) \cdot EX1,...,Xk\sim \mu 

Y1,...,Yk\sim \mu 

\Biggl[ 
\scrW 2

2

\Biggl( 
1

k

k\sum 
i=1

\delta Xi ,
1

k

k\sum 
i=1

\delta Yi

\Biggr) \Biggr] 
,

where \rho (k, d) is the ambient scaling rate chosen to account for the rate at which the expectation
approaches zero:

(4.2) \rho (k, d) :=

\left\{   
k if d = 1
k/log k if d = 2

k2/d if d > 2.

We define

(4.3) Var\infty (\mu ) := lim
k\rightarrow \infty 

Vark(\mu )

when such a limit exists. For X \sim \mu , we will identify Vark(X) := Vark(\mu ).

See section 7 for formulas motivating our choice of \rho (k, d).
Several simple properties of Vark(\cdot ) in analogy to variance follow from definitions and

simple properties of \scrW 2.

Proposition 4.2 (basic properties of Vark(\cdot )). We have the following properties for Vark:
(a) Var1(\mu ) = Var(\mu ) for \mu \in Prob(Rd)
(b) Vark(\delta a) = 0 for a \in Rd

(c) Vark(X + a) = Vark(X) for X \sim \mu \in Prob(Rd), a \in Rd

(d) Vark(c \cdot X) = c2 \cdot Vark(X) for X \sim \mu \in Prob(Rd), c \in R
(e) Vark(X + \~X) \geq Vark(X) + Vark( \~X) for independent X \sim \mu \in Prob(Rd), \~X \sim \nu \in 

Prob(Rd)

Proof. Property (a) is argued above. Properties (b), (c), and (d) follow from simple
properties of the cost matrix in (3.4) after substituting (4.1). To prove (e), we resort to the
form (3.4). In this case, we can write

Vark(X + \~X) :=
1

2
\cdot \rho (k, d) \cdot EX1,...,Xk\sim \mu ; \~X1,..., \~Xk\sim \nu 

Y1,...,Yk\sim \mu ; \~Y1,..., \~Yk\sim \mu 

\Biggl[ 
\scrW 2

2

\Biggl( 
1

k

k\sum 
i=1

\delta Xi+ \~Xi
,
1

k

k\sum 
i=1

\delta Yi+\~Yi

\Biggr) \Biggr] 
.

The cost matrix of the linear program (3.4) in this expectation has entries

Cij = \| Xi + \~Xi  - Yi  - \~Yi\| 22 = \| Xi  - Yi\| 22 + \| \~Xi  - \~Yi\| 22 + 2(Xi  - Yi) \cdot ( \~Xi  - \~Yi).

Splitting the minimization in (3.4) into three minimizations corresponding to the terms in our
expression for Cij above shows

Vark(X + \~X) \geq Vark(X) + Vark( \~X) + 2\rho (k, d)E

\Biggl[ 
min
T\in \scrB k

\sum 
ij

[(Xi  - Yi) \cdot ( \~Xi  - \~Yi)]Tij

\Biggr] 
,
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where \scrB k indicates the constraint set in (3.4). By Jensen's inequality,

Vark(X + \~X) \geq Vark(X) + Vark( \~X) + 2\rho (k, d)

\Biggl[ 
min
T\in \scrB k

\sum 
ij

E[(Xi  - Yi) \cdot ( \~Xi  - \~Yi)]Tij

\Biggr] 
= Vark(X) + Vark( \~X) by independence, yielding (e).

In the following sections, we seek to provide intuition for Vark(\cdot ) in various settings. We or-
ganize our discussion around dimensionality, starting with one-dimensional measures, proceed-
ing to measures with low-dimensional structures, and then considering the high-dimensional
case. We conclude our theoretical discussion with another structured class of measures, those
containing clusters of high probability.

5. One-dimensional \bfitk -variance. The k-variance Vark admits a particularly clean formu-
lation for probability measures over the real numbers R. Here, we derive this alternative
interpretation of Vark, show how it can be used to derive bounds and estimates describing the
behavior of one-dimensional k-variance, and give a limiting formula as k \rightarrow \infty .

5.1. Alternative formula. In one dimension, the 2-Wasserstein distance \scrW 2 between em-
pirical measures consisting of the same number of points is given by the L2 distance between
the vectors of data points [24]. That is,

(5.1) \scrW 2

\Biggl( 
1

k

k\sum 
i=1

\delta xi ,
1

k

k\sum 
i=1

\delta yi

\Biggr) 
=

\sqrt{}    k\sum 
i=1

(xi  - yi)2,

where, without loss of generality, x1 \leq x2 \leq \cdot \cdot \cdot \leq xk and y1 \leq y2 \leq \cdot \cdot \cdot \leq yk.
To incorporate this formula into (4.1), takeX(i) to be the ith order statistic ofX1, . . . , Xk \sim 

\mu \in Prob(R), a random variable obtained by sorting \{ Xi\} ki=1 and taking the ith element of
the sorted list; similarly define order statics Y(i) for the samples \{ Yi\} ki=1. Then, for d = 1 we
can write

(5.2) Vark(\mu ) =
1

2
\cdot EX1,...,Xk\sim \mu 

Y1,...,Yk\sim \mu 

\Biggl[ 
k\sum 

i=1

(X(i)  - Y(i))
2

\Biggr] 
=

k\sum 
i=1

Var(X(i))

by linearity of expectation and by applying (5.1) and (3.2). Hence, in one dimension, the
k-variance is exactly the sum of the variances of the order statistics from a random sample of
size k. It also represents the variance of the sum of a ranked-set sample of size k in a perfect
ranking setup (cf. [10, page 263]).

Example 5.1 (uniform distribution). Suppose \mu is the uniform distribution on the unit
interval. Then, X(i) \sim Beta(i, k + 1 - i). Hence,D
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E(X(i)) =
i

k + 1
(5.3)

Var(X(i)) =
i(k + 1 - i)

(k + 1)2(k + 2)
=

pi(1 - pi)

k + 2
(5.4)

E((X(i)  - pi)
4) =

3i(k  - i+ 1)[2(k + 1)2 + i(k  - i+ 1)(k + 5)]

(k + 1)4(k + 2)(k + 3)(k + 4)

=
3pi(1 - pi)[2 + pi(1 - pi)(k + 5)]

(k + 2)(k + 3)(k + 4)
,(5.5)

where pi = i/k+1; we include some of the expressions above to assist in our proof of Proposi-
tion 5.5. Substituting (5.4) into our expression for one-dimensional k-variance,

(5.6) Vark(Unif([0, 1])) =

k\sum 
i=1

Var(X(i)) =
1

(k + 1)2(k + 2)

k\sum 
i=1

i(k + 1 - i) =
k

6(k + 1)
.

This sequence is increasing, and taking a limit as k \rightarrow \infty shows Var\infty (Unif([0, 1])) = 1/6.

Example 5.2 (exponential distribution). Suppose \mu is an exponential distribution with
parameter \lambda . Then, we can sample from the order statistics of \mu by drawing independent
and identically distributed (i.i.d.) exponential variables Zj with rate 1 and computing the
following [21]:

X(i) =
1

\lambda 

i\sum 
j=1

Zj

k  - j + 1
.

Substituting the variance of an exponential random variable,

Var(X(i)) =

i\sum 
j=1

\biggl( 
1

\lambda (k  - j + 1)

\biggr) 2

.

This gives the following expression for k-variance:

Vark(Exp(\lambda )) =
1

\lambda 2

k\sum 
i=1

i\sum 
j=1

1

(k  - j + 1)2
=

Hk

\lambda 2
\approx log(k) + \gamma ,

where Hk is the kth harmonic number and \gamma is the Euler's constant. Taking k \rightarrow \infty shows
Var\infty (Exp(\lambda )) = \infty .

5.2. Properties of \bfitk -variance in 1D. We can immediately derive alternative expres-
sions/bounds for Vark(\cdot ) in 1D by applying properties of order statistics.

Proposition 5.3 (bounding Vark(\cdot ) in 1D). When d = 1, we can write

(5.7) Vark(\mu ) = k\sigma 2  - 
k\sum 

i=1

\bigl( 
X(i)  - X

\bigr) 2 \leq k\sigma 2.
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Moreover, we can bound

(5.8) Vark(\mu ) \geq k\sigma 2  - 2
\sum 
i<j

\sigma (i)\sigma (j) \cdot 
i(k + 1 - j)

j(k + 1 - i)

with equality for uniform distributions. In these expressions, X \sim \mu , \sigma 2 = Var(X), and
\sigma 2
(i) = Var(X(i)) for X1, . . . , Xk \sim \mu .

Proof. We can obtain (5.7) by rearranging a sum:

k\sigma 2 =
k\sum 

i=1

E[(Xi  - X)2] =
k\sum 

i=1

E[(X(i)  - X)2] =
k\sum 

i=1

E[(X(i)  - X(i) +X(i)  - X)2]

= Vark(\mu ) +

k\sum 
i=1

(X(i)  - X)2.(5.9)

Removing the final term provides inequality (5.7).
To derive (5.8), we rely on a bound on the correlation of order statistics stated in [10,

page 74] and references therein. In particular, for i < j they show

(5.10) Corr(X(i), X(j)) \leq 
i(k + 1 - j)

j(k + 1 - i)
,

where Corr(\cdot , \cdot ) denotes the correlation of random variables with equality when the parent
distribution is uniform. We know

\sum 
iX(i) =

\sum 
iXi given the Xi's are i.i.d. variables with

variance \sigma 2; computing the variance of both sides shows

k\sigma 2 = Vark(\mu ) + 2
\sum 
i<j

Cov(X(i), X(j)).

Substituting (5.10), by definition of correlation we have

Vark(\mu ) = k\sigma 2  - 2
\sum 
i<j

Cov(X(i), X(j)) \geq k\sigma 2  - 2
\sum 
i<j

\sigma (i)\sigma (j) \cdot 
i(k + 1 - j)

j(k + 1 - i)

as needed.

Remark 5.4 (approximating Vark). The expression (5.7) suggests the following means of
approximating Vark(\mu ) for large k:

(5.11) Vark(\mu ) \approx k\sigma 2  - 
k\sum 

i=1

(F - 1(pi) - X)2,

where pi = i/k+1 and F - 1 is the quantile function associated to \mu . Intuitively, this expression
indicates that our index of total local variability is approximately a global variability index
minus an index of between-local-group variability.D
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Another standard approach to working with order statistics involves Taylor series expan-
sions about quantiles of the sampled probability measure. Following this strategy yields a
useful approximation to Vark(\cdot ) as well as a limiting formula under certain assumptions about
the distribution function.

Proposition 5.5. Using the notation of Proposition 5.3, suppose that \sigma 2 is finite and that \mu 
has a differentiable distribution function f(x) with CDF F (x). Moreover, suppose (i) f(x) > 0,
and (ii) f \prime (x)/[f(x)]3 is bounded on F - 1((0, 1)). Then, as k \rightarrow \infty we have

(5.12) Vark(\mu ) \approx 
1

k + 2

k\sum 
i=1

pi(1 - pi)

[f(F - 1(pi))]2
,

where pi = i/k+1. As k \rightarrow \infty , under the assumptions above we have

(5.13) Vark(\mu ) \rightarrow 
\int 1

0

u(1 - u)

[f(F - 1(u))]2
du =

\int 
F - 1((0,1))

F (x)(1 - F (x))

f(x)
dx.

The rate of convergence of Vark(\mu ) to the limiting integral Var\infty (\mu ) is of O(1/
\surd 
k).

Proof. Note that X(i)
d
= F - 1(U(i)), where U(i) is the ith order statistic from the standard

uniform parent. We begin with a Taylor expansion for F - 1(U(i)) given in [3]. With pi = i/k+1,

(5.14) F - 1(U(i)) = F - 1(pi) + (U(i)  - pi)(F
 - 1(pi))

\prime +
1

2
(U(i)  - pi)

2(F - 1(Vi))
\prime \prime 

for some random variable Vi \in (pi, U(i)). Differentiating inverse functions shows

(5.15) (F - 1(u))\prime =
1

f(F - 1(u))
and (F - 1(u))\prime \prime =  - f \prime (F - 1(u))

[f(F - 1(u))]3
.

Substituting into (5.14) and taking variance of both sides shows

(5.16)
\sigma 2
(i) = Var(U(i)  - pi)[f(F

 - 1(pi))]
 - 2 +

1

4
Var((U(i)  - pi)

2 \cdot (F - 1(Vi))
\prime \prime )

+
1

2
f(F - 1(pi))

 - 1Cov(U(i)  - pi, (U(i)  - pi)
2(F - 1(Vi))

\prime \prime ),

where Vark(\mu ) =
\sum k

i=1 \sigma 
2
(i).

Applying the identity Var[Y ] \leq E[Y 2], the variance factor in the second term of (5.16) is
bounded above by E((U(i) - pi)

4[(F - 1(Vi))
\prime \prime ]2), which in turn is bounded by M2 \cdot E((U(i) - pi)

4),
where M is an upper bound for (F - 1(u))\prime \prime for u \in (0, 1). From (5.5), we obtain

k\sum 
i=1

E((U(i)  - pi)
4) =

k\sum 
i=1

3pi(1 - pi)[2 + pi(1 - pi)(k + 5)]

(k + 2)(k + 3)(k + 4)

=
6

(k + 3)(k + 4)

k\sum 
i=1

pi(1 - pi)

(k + 2)
+

3(k + 5)

(k + 3)(k + 4)

k\sum 
i=1

p2i (1 - pi)
2

(k + 2)

\approx 6

k2

\int 1

0
u(1 - u) du+

3

k

\int 1

0
u2(1 - u)2 du =

1

k2
+

1

10k
.D
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Here, the ratios of the first and second terms on the right and left side of the approximation
\approx each approach 1 for large k. Thus, we conclude that when summed over i, the second term
in (5.16) contributes an amount of size O(1/k).

The covariance term in (5.16) can be bounded as follows:

Cov(\cdot \cdot \cdot ) \leq [Var(U(i))Var((U(i)  - pi)
2F - 1(Vi))

\prime \prime )]1/2

\leq [Var(U(i))]
1/2[E((U(i)  - pi)

4M2]1/2

= M \cdot 
\biggl[ 
pi(1 - pi)

k + 2
\cdot 
\biggl[ 

6pi(1 - pi)

(k + 2)(k + 3)(k + 4)
+

3(k + 5)p2i (1 - pi)
2

(k + 2)(k + 3)(k + 4)

\biggr] \biggr] 1/2
= M \cdot pi(1 - pi)

k + 2
\cdot 
\biggl[ 

6

(k + 3)(k + 4)
+

3(k + 5)pi(1 - pi)

(k + 3)(k + 4)

\biggr] 1/2
< M \cdot pi(1 - pi)

k + 2
\cdot C\surd 

k + 3

for some constant C (C = 3 suffices). Summing over i,

k\sum 
i=1

1

2
f(F - 1(pi))

 - 1Cov(U(i)  - pi, (U(i)  - pi)
2(F - 1(Vi))

\prime \prime )

\leq MC

2
\surd 
k + 3

1

k + 2

k\sum 
i=1

pi(1 - pi)

f(F - 1(pi))
\approx MC

2
\surd 
k

\int 1

0

u(1 - u)

f(F - 1(u))
du =

MC

2
\surd 
k

\int 
F - 1((0,1))

F (x)(1 - F (x)) dx,

where the equality follows upon using the transformation u = F (x). If the support of F is
bounded, the integral above is always finite. Even when the support is infinite, the integral
is finite whenever the variance or the second moment of F is finite by the comparison test:
Finiteness of the variance implies that as x \rightarrow \infty , x2(1  - F (x)) \rightarrow 0, and as x \rightarrow  - \infty ,
x2F (x) \rightarrow 0. Consequently, the covariance sum is of O(1/

\surd 
k).

Summing the first term in (5.16) over i, using (5.3) we find

k\sum 
i=1

[f(F - 1(pi))]
 - 2Var(U(i)  - pi) =

1

k + 2

k\sum 
i=1

pi(1 - pi)

[f(F - 1(pi))]2
, validating (5.12)

\approx 
\int 1

0

u(1 - u)

[f(F - 1(u))]2
du.

The transformation u = F (x) shows that\int 1

0

u(1 - u)

[f(F - 1(u))]2
du =

\int 
F - 1((0,1))

F (x)(1 - F (x))

f(x)
dx

as desired.

Remark 5.6 (relationship to [6]). In [6], Bobkov and Ledoux provide a comprehensive dis-
cussion of one-dimensional optimal transport from samples in an attempt to understand con-
vergence of empirical approximations to a measure in the Wasserstein metric. Their analysisD

ow
nl

oa
de

d 
03

/0
1/

23
 to

 1
28

.3
0.

9.
38

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2022 Justin Solomon, Kristjan Greenewald, and Haikady Nagaraja

966 J. SOLOMON, K. GREENEWALD, AND H. NAGARAJA

focuses on the ``one-sided"" convergence of an empirical approximation to a true measure, while
k-variance is based on the Wasserstein distance between two different empirical approxima-
tions.

That said, along the way their discussion does make some similar observations to our
discussion above. For instance, their Theorem 4.3 shows the same link to order statistics as
our (5.2). The ``J2 functional"" defined in their (5.3) is the right-hand side of (5.13); in our
notation, their Theorem 5.1 (and, in particular, their Corollary B.6) implies a bound

(5.17) Vark(\mu ) \leq 
k

k + 1
J2(\mu ).

This establishes half of our equality in (5.13). Their results show lim supk\rightarrow \infty Vark(\mu ) \leq J2(\mu ),
while we are able to show under stronger assumptions that limk\rightarrow \infty Vark(\mu ) = J2(\mu ).

Example 5.7 (uniform distribution, continued). Continuing Example 5.1, we can apply (5.13)
to compute

(5.18) Var\infty (Unif([0, 1])) =

\int 1

0

x(1 - x)

1
dx =

1

6
.

As expected, this expression agrees with (5.6) as k \rightarrow \infty .

Example 5.8 (Weibull distribution with shape parameter \alpha ). For this distribution, F (x) =
1  - exp\{  - x\alpha \} and f(x) = \alpha x\alpha  - 1 exp\{  - x\alpha \} for x > 0, with shape parameter \alpha > 0. As
x \rightarrow 0+,

F (x)(1 - F (x))

f(x)
=

1 - exp\{  - x\alpha \} 
\alpha x\alpha  - 1

\approx x\alpha 

\alpha x\alpha  - 1
=

x

\alpha 
,

and consequently the integral (5.13) is always convergent at the lower limit of integration. As
x \rightarrow \infty ,

F (x)(1 - F (x))

f(x)
=

1 - exp\{  - x\alpha \} 
\alpha x\alpha  - 1

\approx 1

\alpha x\alpha  - 1
,

and hence the integral (5.13) is convergent at the upper limit if and only if \alpha > 2.
Now, for \alpha > 2, (5.13) implies

Var\infty (Weib(\alpha )) =

\int \infty 

0

1 - exp\{  - x\alpha \} 
\alpha x\alpha  - 1

dx =
1

\alpha 2

\int \infty 

0
(1 - e - y)y2/\alpha  - 2 dy

=
1

\alpha 2(2/\alpha  - 1)

\int \infty 

0
(1 - e - y) d(y2/\alpha  - 1).

Upon integration by parts we see that\int \infty 

0
(1 - e - y) d(y2/\alpha  - 1) =

\Bigl[ 
(1 - e - y)y2/\alpha  - 1

\Bigr] \infty 
0

 - 
\int \infty 

0
e - yy2/\alpha  - 1 dy.

For \alpha > 2, the first term yields 0 at both upper and lower limits, and the second term equals
\Gamma (2/\alpha ). Thus,

Var\infty (Weib(\alpha )) =

\Biggl\{ 
\Gamma (2/\alpha )
\alpha (\alpha  - 2) when \alpha > 2

\infty when \alpha \leq 2.D
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Example 5.9 (Tukey's symmetric \lambda distribution). This distribution is defined by its quantile
function F - 1(u), given by

(5.19) F - 1(u) =

\biggl\{ 
1
\lambda (u

\lambda  - (1 - u)\lambda ) when \lambda \not = 0
log(u/(1 - u)) when \lambda = 0

for u \in [0, 1] and \lambda \in R. When \lambda = 0, we obtain the standard logistic distribution.
When \lambda \not = 0, the quantile density function (F - 1(u))\prime is given by u\lambda  - 1 + (1 - u)\lambda  - 1, and

(F - 1(u))\prime \prime = (\lambda  - 1)[u\lambda  - 2  - (1 - u)\lambda  - 2]

is bounded if and only if \lambda \geq 2. Hence, we satisfy the sufficient conditions needed for Propo-
sition 5.5. Thus for \lambda \geq 2,

Var\infty (Tukey(\lambda )) =

\int 1

0
u(1 - u)(F - 1(u))\prime du =

\int 1

0
u(1 - u)[u\lambda  - 1 + (1 - u)\lambda  - 1] du

= 2 \cdot Beta(\lambda + 1, 2) =
2

(\lambda + 1)(\lambda + 2)
.(5.20)

The integral on the right is finite whenever \lambda >  - 1, and the expression holds for \lambda = 0. For
\lambda \in ( - 1, 2), we can only say that lim supk\rightarrow \infty Vark(\mu ) is bounded above by the right-hand
side.

6. Low-dimensional measures. Having worked out the case of one-dimensional measures,
we now consider measures that have low-dimensional structure but are embedded in a higher-
dimensional space. Specifically, consider the following definition.

Definition 6.1 (\varepsilon -fattening and \varepsilon -covering number, [23, 25]). For any compact X \subset Rd and
S \subseteq X, the \varepsilon -fattening of S is S\varepsilon := \{ y : D(y, S) \leq \varepsilon \} , where D denotes the Euclidean
distance. The \varepsilon -covering number \scrN \varepsilon (S) of S is the minimum m such that there exist m points
x1, . . . , xm \in Rd with S \subseteq 

\bigcup 
iB\varepsilon (Xi).

We borrow a recent bound on empirical transport, specialized to \scrW 2.

Proposition 6.2 ([25, Proposition 15]). Suppose supp(\mu ) \subseteq S\varepsilon for some \varepsilon > 0, where S
satisfies \scrN \varepsilon \prime (S) \leq (3\varepsilon \prime ) - d\prime for all \varepsilon \prime \leq 1/27 and some d\prime > 4. Then, for all k \leq (3\varepsilon ) - d\prime , we
have E[\scrW 2

2 (\mu , \^\mu k)] \leq C1 \cdot k - 2/d\prime , where C1 = 272(2 + 1/(3d
\prime /2 - 2  - 1)) and \mu k denotes the

k-point empirical measure.

Translating this to our setting using the triangle inequality, we get the following.

Proposition 6.3 (Vark(\cdot ) for low-dimensional distributions). Suppose supp(\mu ) \subseteq S\varepsilon for some
\varepsilon > 0, where S satisfies \scrN \varepsilon \prime (S) \leq (3\varepsilon \prime ) - d\prime for all \varepsilon \prime \leq 1/27 and some d\prime > 4. Then, for all
k \leq (3\varepsilon ) - d\prime , we have Vark(\mu ) \leq C1 \cdot k2/d - 2/d\prime .

Unsurprisingly, the proposition above shows that if we measure the d-dimensional k-
variance of an intrinsically d\prime -dimensional measure, at least when 4 < d\prime < d, we have
Vark(\mu ) \rightarrow 0 as k \rightarrow \infty . As a special case, we see that empirical measures have k-variance
tending to zero for higher-dimensional measures. Interestingly, this is not the case in low
dimensions, as we can see in the following example.D
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Example 6.4 (two-point empirical measures). Take \mu = (\delta  - 0.5e1+\delta 0.5e1 )/2 where e1 =
(1, 0, . . . , 0) \in Rd. In this case, \scrW 2 between two k-samples from \mu counts the imbalance
in the number of  - 0.5 versus 0.5 samples between the two draws. Hence, Vark(\mu ) is the
expected absolute difference | A  - B| of two binomial variables A,B \sim B(k, 1/2), scaled by
\rho (k,d)/2k. From [20, equation (2.9)], for binomially distributed variables X1, X2 \sim B(k, p) we
have

E(| X1  - X2| ) = 2kp(1 - p) \cdot 2F1

\biggl( 
1 - k,

1

2
; 2; 4p(1 - p)

\biggr) 
,

where 2F1 is Gauss' hypergeometric function. Substituting p = 1
2 shows

E(| X1  - X2| )=
k\Gamma (2)

2\Gamma (12)\Gamma (
3
2)

\int 1

0
t - 

1
2 (1 - t)k - 1 dt=

k\Gamma (k + 1
2)

2\Gamma (32)\Gamma (k + 1)
=

\biggl( 
2k

k

\biggr) 
\cdot k

22k
.

Hence,

Vark(\mu ) =
\rho (k, d)

22k+1

\biggl( 
2k

k

\biggr) 
\approx \rho (k, d)

2
\surd 
\pi k

=
1

2
\surd 
\pi 
\cdot 

\left\{   
\surd 
k if d = 1

(log k) - 1 \cdot 
\surd 
k if d = 2

k2/d - 1/2 if d \geq 3

by Stirling's approximation. So, Vark(\mu ) diverges for d \leq 3, converges to 1/2
\surd 
\pi for d = 4, and

converges to 0 for d \geq 5.

While Proposition 6.3 provides an upper bound on the k-variance, a lower bound can also
be obtained that yields the same dependence on intrinsic dimension. Using [25, Theorem 1],
we have the following.

Proposition 6.5. Let the (\varepsilon , \tau ) covering number be \scrN \varepsilon (\mu , \tau ) = inf\{ \scrN \varepsilon (S) : \mu (S) \geq 1  - \tau \} .
Define d\ast = lim\tau \rightarrow 0 lim inf\varepsilon \rightarrow 0

log\scrN \varepsilon (\mu ,\tau )
 - log \varepsilon , called the lower Wasserstein dimension by [25]. Then,

Vark(\mu ) \gtrsim k - 2/t

for any t < d\ast .

This proposition establishes that the rate of change of the k-variance as k varies is directly
related to the intrinsic dimensionality of \mu .

7. Higher-dimensional measures. A surprising result of our experiments detailed in sec-
tion 10 is that one-dimensional k-variance seems to have totally different behavior than k-
variance for measures on Rd for large d. While we cannot provide as complete a story as
section 5 for the one-dimensional case, some results in the theory of random Euclidean match-
ing are directly relevant to our construction and can provide some insight into the behavior
of Vark(\cdot ).

Example 7.1 (unit cube). Suppose \mu = Unif([0, 1]d). Then, for large k we have the follow-
ing formula [15, equation (1.1)]:

(7.1) EX1,...,Xk\sim \mu 
Y1,...,Yk\sim \mu 

\Biggl[ 
\scrW 2

2

\Biggl( 
1

k

k\sum 
i=1

\delta Xi ,
1

k

k\sum 
i=1

\delta Yi

\Biggr) \Biggr] 
\approx 

\left\{   
k - 1 if d = 1

(log k)/k if d = 2

k - 2/d if d \geq 3.D
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These formulas motivate our choice of scaling factors \rho (k, d) in Definition 4.1. [8, Theorem 2]
observes similar rates for d > 4 for general measures with support in the unit ball, but their
upper bound decays more slowly in k than (7.1) for d \leq 4.

Example 7.2 (unit square). [5] predicts a similar (log k)/k rate for measures with positive
density on the unit square [0, 1]2. Specifically for \mu = Unif([0, 1]2), we can obtain the following
limit [1, Theorem 1.1]:

lim
k\rightarrow \infty 

k

log k
EX1,...,Xk\sim \mu 

Y1,...,Yk\sim \mu 

\Biggl[ 
\scrW 2

2

\Biggl( 
1

k

k\sum 
i=1

\delta Xi ,
1

k

k\sum 
i=1

\delta Yi

\Biggr) \Biggr] 
=

1

2\pi 
.

Hence, we have Var\infty ([0, 1]2) = 1/2\pi .

8. Clustered measures. In section 6, we analyzed the behavior of k-variance in the pres-
ence of an approximately low-dimensional structure of dimension d\prime . In this section, we provide
an alternative formulation for approximately zero-dimensional structures (d\prime = 0), i.e., mea-
sures that are concentrated around finite sets of points or cluster centers. In particular, we
analyze approximately clustered measures, where the definition of ``approximate"" is motivated
from a clustering perspective.

We consider the following definitions, again from [25] similar to our discussion in section 6,
which provide two ways of identifying clusterable structure in probability measures.

Definition 8.1 ((m,\sigma 2)-Gaussian mixture). A distribution \mu is an (m,\sigma 2)-Gaussian mixture
if it is a mixture of m Gaussian distributions in Rd, and the trace of the covariance matrix of
each mixture component is bounded above by \sigma 2.

Definition 8.2 (clusterable measure). A distribution \mu is (m,\Delta )-clusterable if supp(\mu ) lies
in the union of m balls of radius at most \Delta .

The following proposition from [25] directly suggests a k-variance bound.

Proposition 8.3 ([25, Propositions 13 and 14]). If \mu is a (m,\sigma 2)-Gaussian mixture and
log 1/\sigma \geq 25/8, then for all k \leq m(32\sigma 2 log 1/\sigma ) - 2,

(8.1) E[\scrW 2
2 (\mu , \^\mu k)] \leq 84

\sqrt{} 
m/k,

where \^\mu k is the empirical measure obtained by drawing k samples. The same rate holds for
(m,\Delta )-clusterable distributions for all k \leq m(2\Delta ) - 4.

The k - 1/2 rate is tight as it corresponds to the parametric rate.
Application of the triangle inequality to Proposition 8.3 immediately yields the following.

Proposition 8.4 (Vark for clustered distributions). Suppose d > 4. For the (m,\sigma 2)-Gaussian
mixture case with k \leq m(32\sigma 2 log 1/\sigma ) - 2,

Vark(\mu ) \leq 
168m1/2

k1/2 - 2/d
.

For the (m,\Delta )-clusterable case with k \leq m(2\Delta ) - 4,

Vark(\mu ) \leq 
168m1/2

k1/2 - 2/d
.D
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Roughly, this proposition shows that as d increases and k satisfies the inequality, clustered
distributions have increasingly small Vark(\cdot ), though the rate of increase slows rapidly once d
gets beyond \sim 10.

9. Variance of empirical \bfitk -variance. We conclude our mathematical discussion by con-
sidering the problem of how to compute k-variance in practice. There exists an extremely
simple empirical estimator directly motivated by the expectation in (4.1): simply draw 2k
samples, solve the linear program (3.4), and use the resulting value. A simple implementation
of this algorithm takes roughly O(k2d + k3) time, accounting for the time taken to compute
the pairwise cost matrix as well as solving the transport linear program (our implementation
uses [14]). Here we bound the variance of this estimator, roughly showing that fewer trials
need to be averaged to compute k in large dimension.

In detail, we consider the empirical estimator built from n trials:

\widehat Vark(\mu ) := \rho (k, d)

2n

n\sum 
j=1

\scrW 2
2 (\^\mu 

j
k, \^\mu 

\prime j
k ),

where \^\mu j
k, \^\mu 

\prime j
k are independent empirical measures formed from k i.i.d. samples as in (4.1).

The following theorem helps characterize the variance of our estimator above.

Theorem 9.1 (empirical variance). Suppose \mu \in Prob(Rd) has support in a set of radius R.
For each j \in \{ 1, . . . , n\} , take \^\mu j

k, \^\mu 
\prime j
k to be independent empirical measures each constructed

from k i.i.d. samples from \mu (Xk,j := (Xj
1 , . . . , X

j
k) for \^\mu k and Y k,j := (Y j

1 , . . . , Y
j
k ) for \^\mu \prime 

k).
Then,

(9.1) P

\Biggl( \bigm| \bigm| \bigm| \widehat Vark(\mu ) - Vark(\mu )
\bigm| \bigm| \bigm| \geq \rho (k, d)R2

\sqrt{} 
log(kn)

kn

\Biggr) 
\leq 2

k2n2
.

Proof. We use McDiarmid's inequality.

Lemma 9.2 (McDiarmid's inequality [17]). Let Xm := (X1, . . . , Xm) be an m-tuple of \scrX -
valued independent random variables. Suppose g : \scrX m \rightarrow R is a map that for any i = 1, . . . ,m
and x1, . . . , xm, x\prime i \in \scrX satisfies

(9.2)
\bigm| \bigm| g(x1, . . . , xm) - g(x1, . . . , xi - 1, x

\prime 
i, xi+1, . . . , xm)

\bigm| \bigm| \leq ci

for some nonnegative \{ ci\} mi=1. Then for any t > 0

P
\Bigl( 
g(X1, . . . , Xm) - Eg(X1, . . . , Xm) \geq t

\Bigr) 
\leq e

 - 2t2\sum m
i=1

c2
i ,(9.3a)

P
\Bigl( \bigm| \bigm| g(X1, . . . , Xm) - Eg(X1 . . . , Xm)

\bigm| \bigm| \geq t
\Bigr) 
\leq 2e

 - 2t2\sum m
i=1

c2
i .(9.3b)

Consider 1
n

\sum n
j=1\scrW 2

2 (\^\mu 
j
k, \^\mu 

\prime j
k ) as a function of the nk independent samples from which it is

computed, each sample being a pair (xji , y
j
i ). Using Kantorovich--Rubinstein duality, we have

the general formula
\scrW 2

2 (P,Q) = sup
(f,g)\in \Phi 

EP [f ] + EQ[g],D
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where \Phi = \{ (f, g) \in L1(P )\times L1(Q) : f(x)+ g(y) \leq \| x - y\| 2\} . In our case, separately for each
j, we can write

\scrW 2
2 (\^\mu 

j
k, \^\mu 

\prime j
k ) = \scrW 2

2

\Biggl( 
1

k

k\sum 
\ell =1

\delta 
xj
\ell 
,
1

k

k\sum 
\ell =1

\delta 
yj\ell 

\Biggr) 
= sup

(f,g)\in \Phi 

1

k

k\sum 
\ell =1

(f(xj\ell ) + g(yj\ell )).

Recall that the (xj\ell , y
j
\ell ) are independent across \ell and j. Consider replacing one of the elements

(xji , y
j
i ) with some (x\prime ji , y

\prime j
i ), forming \=\mu j

k and \=\mu \prime j
k . Since the (xj\ell , y

j
\ell ) are identically distributed,

by symmetry we can set i = 1. We thus bound

\scrW 2
2 (\^\mu 

j
k, \^\mu 

\prime j
k ) - \scrW 2

2 (\=\mu 
j
k, \=\mu 

\prime j
k ) = sup

(f,g)\in \Phi 

1

k

\Biggl( 
(f(xj1) + g(yj1)) +

k\sum 
\ell =2

(f(xj\ell ) + g(yj\ell ))

\Biggr) 

 - sup
(f,g)\in \Phi 

1

k

\Biggl( 
(f(x\prime j1 ) + g(y\prime j1 )) +

k\sum 
\ell =2

(f(xj\ell ) + g(yj\ell ))

\Biggr) 
\leq 2R2

k
,

where we have assumed the space is bounded with radius R and used the definition of \Phi and
[24, Remark 1.13].

Hence by symmetry and scaling by \rho (k,d)
2n as in the expression in the theorem we have\bigm| \bigm| \bigm| \bigm| \rho (k, d)2n

\scrW 2
2 (\^\mu 

j
k, \^\mu 

\prime j
k ) - 

\rho (k, d)

2n
\scrW 2

2 (\=\mu 
j
k, \=\mu 

\prime j
k )

\bigm| \bigm| \bigm| \bigm| \leq \rho (k, d)R2

kn
,

satisfying the condition (9.2) for McDiarmid's inequality for each of the nk random variables
(xji , y

j
i ). Therefore, for any t > 0, by (9.3b) we have

P

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \rho (k, d)2n

n\sum 
j=1

(\scrW 2
2 (\^\mu 

j
k, \^\mu 

\prime j
k ) - E\scrW 2

2 (\^\mu k, \^\mu 
\prime 
k))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \geq t

\right)  \leq 2e
 - 2knt2

R4\rho (k,d)2 .

Setting t = \rho (k, d)R2
\sqrt{} 

log(kn)
kn then yields

P

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \rho (k, d)2n

n\sum 
j=1

\Bigl( 
\scrW 2

2 (\^\mu 
j
k, \^\mu 

\prime j
k ) - E\scrW 2

2 (\^\mu 
j
k, \^\mu 

\prime j
k )

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \geq \rho (k, d)R2

\sqrt{} 
log(kn)

kn

\right)  \leq 2

k2n2
.

Recalling the definition of Vark(\mu ), the theorem results.

Remark 9.3 (interpretation of Theorem 9.1). In words, as dimension d and size k increase,
we need a smaller number n of independent trials n of k-samples to estimate k-variance
accurately. Eventually, even choosing n = 1 suffices.

Remark 9.4 (alternative forms for Theorem 9.1). Theorem 9.1 is written in terms of the
number n of sets of k replicates. We can rewrite it in terms of k and m = kn, i.e., when a
total of m samples are available and one is choosing a k to partition them. We have for d > 2

P

\Biggl( \bigm| \bigm| \bigm| \widehat Vark(\mu ) - Vark(\mu )
\bigm| \bigm| \bigm| \geq \rho (k, d)R2

\sqrt{} 
logm

m

\Biggr) 
\leq 2

m2
.
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Figure 1. Example distributions for the experiments in subsection 10.1. For d = 1 we show the density
functions corresponding to the different colors, and for d = 2 we show samples drawn from the various measures.

This in a sense reverses the trade-off, with finer divisions of the m available samples (smaller
k) reducing the overall variance (only slightly for large d, however).

10. Experiments. In this section, we provide some simple experiments demonstrating
the behavior of Vark(\cdot ) and suggesting how it might be used to understand properties of
distributions and datasets that are not well captured by variance alone.

10.1. Gaussian mixtures. We begin with a synthetic experiment illustrating the behavior
of k-variance in different dimensions and in the presence of multimodality. In our experiments,
we consider mixtures \scrG x := 0.5\scrN ( - x\cdot e1, \sigma Id\times d)+0.5\scrN (x\cdot e1, \sigma Id\times d) of two isotropic Gaussians,
where e1 \in Rd is the first standard basis vector in Rd. We choose \sigma (x) so that Var1(\scrG x) = 1;
note \sigma (x) decreases as | x| increases, leading to bimodal/approximately clustered distributions.
See Figure 1 for examples in dimensions 1 and 2.

Figure 2 shows k-variance of \scrG x as a function of k (horizontal axis) and x (color) in
different ambient dimensions d. We use the empirical estimator of k-variance averaged over
10,000 trials for each point in the plot. We can make a number of observations based on this
experiment:
\bullet For d \geq 3, the k-variance is smaller for clustered distributions (red) than unimodal Gaus-
sians (blue) with identical (1-)variance.

\bullet The d \in \{ 1, 2\} cases exhibit unique, nonmonotonic behavior. For instance, when d = 1,
k-variance is highest for the sharply bimodal distributions (red), then decreases for wide-
and-flat distributions (dark red/green), and then increases again for Gaussians (blue).

\bullet For larger dimension d, the curves look smoother. This is a byproduct of the results in
section 9, which predict that the empirical estimator of Vark(\cdot ) has lower variance in high
dimension given a fixed number of samples.

10.2. Low-dimensional measures. Now, we consider the case explored in section 6, in
which our probability measure is embedded in a low-dimensional slice of the ambient space
Rd. When d is sufficiently large, Proposition 6.3 predicts that the k-variance for such a
measure will decay to zero at a rate determined by the intrinsic dimensionality of the mea-
sure.D
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Figure 2. k-variance experiments with Gaussian mixture models (see subsection 10.1) in increasing dimen-
sion. As predicted, k-variance follows similar patterns in d \geq 3 and is lower for clustered distributions, but
for d \in \{ 1, 2\} the behavior is different. Colors range from bimodal mixtures of low-variance Gaussians (red)
to unimodal Gaussian measures (blue); each curve is labeled with the value of x, the distance of the mixture
component means to the origin.

As an initial experiment, we consider Gaussian measures in dimension d = 1,000 supported
on a d\prime -dimensional hyperplane, where d\prime varies from 1 to d. Here, we create the d\prime -dimensional
measure by creating a Gaussian with covariance

\Sigma d\prime = diag(1/d\prime , . . . , 1/d\prime \underbrace{}  \underbrace{}  
d\prime slots

, 0, . . . , 0\underbrace{}  \underbrace{}  
d - d\prime slots

).

Here, the 1/d\prime entries ensure that the measure has variance 1. Figure 3 plots the k-variance
of the d\prime -dimensional measures on a logarithmic scale; we use the empirical estimator of k-
variance averaged over 1,000 trials.

As predicted by Proposition 6.3, the slopes of the fit lines in Figure 3 cleanly correlated
with intrinsic dimensionality. As d\prime increases, the lines also become smoother, again a byprod-
uct of the variance bounds in section 9. This is a happy coincidence: We are able to distinguish
the slopes of the different lines for large d\prime ---even though they are close in value---because we
can estimate Vark(\cdot ) more accurately in this regime.

Figure 4 shows a similar experiment to Figure 3, but now the data lie on the sphere
Sd\prime  - 1 embedded in Rd; we sample uniformly from Sd\prime  - 1 by normalizing the samples from the
previous experiment to unit length. Once again the trendlines strongly fit the power law we
expect to see, but the slopes are now less negative compared to Figure 3 since the intrinsic
dimensionality has decreased by 1. In particular, d\prime = 1 corresponds to a zero-dimensional
sphere S0, i.e., two points on the real line. Since S0 is thus a discrete dataset, this explains
the approximately  - 1/2 slope in the log-log plot, corresponding to the k - 1/2 decay indicated
in section 8.D
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Figure 3. k-variance of measures supported on low-dimensional hyperplanes in R1000. Each curve corre-
sponds to a different intrinsic dimensionality d\prime marked in the legend; m is the slope of the best-fit curve in the
log-log plot. Note the correlation between m and the intrinsic dimensionality of the measure.
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Figure 4. Similar experiment to Figure 3, now with points in the unit sphere Sd\prime  - 1 embedded in Rd.

10.3. Maximizing \bfitk -variance to recover cluster subspace. In this section, we consider
finding linear projections that maximize k-covariance. While for 1-variance, this problem
reduces to principal component analysis (PCA), for high k, the theoretically expected behavior
is that maximizing k-variance will increasingly prefer the directions of large within-cluster
variation to directions of variation between cluster centers. This type of analysis could be
useful for tasks like domain adaptation, where it is important to find representations such
that the data distribution is invariant to changing environments [2], and fairness, where it is
important to treat clusters like protected groups identically [27].

To optimize the k-variance over the set of low-dimensional projections, we use the sub-
space robust Wasserstein method in [18]; experimental results are shown in Figure 5. The
scatter plots show the first two dimensions of 20-dimensional synthetic datasets consisting of 5
Gaussian clusters with centers sampled from a random (Wishart-distributed) five-dimensional
Gaussian distribution. We consider the following cases:
\bullet homogeneous covariance: Wishart-sampled five-dimensional cluster covariance shared across
clusters, and

\bullet heterogeneous covariance: Each cluster's covariance is sampled independently, and all clus-
ter covariances are restricted to a random seven-dimensional subspace.D
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Figure 5. Maximizing the k-variance of projections of clustered datasets. Two 20-dimensional datasets are
considered (``Homogeneous covariance"" and ``Heterogeneous covariance"") with scatter plots shown of the first
two dimensions. The projected k-variance (k = 500), 1-variance (via PCA), and within-cluster 1-variance (via
PCA on the output of k-means), respectively, are all maximized over the set of five-dimensional projections,
and the first 2 dimensions of the resulting projection shown in a scatter plot. As expected, PCA is drawn to the
larger-variance cluster center distribution, whereas k-variance successfully recovers a projection that maximizes
the within-cluster variation, in this case projecting away the cluster center distribution and leaving a single
cluster. k-means is an alternative approach to achieve the same effect, but it fails due to the eccentricities of
the cluster covariances.

Since the ambient dimension is 20, the cluster center distribution subspace will not be sim-
ilar to---but not fully orthogonal to---the cluster covariance subspace. We compare five-
dimensional projections found by maximizing k-variance (k = 500), 1-variance (via PCA),
and within-cluster 1-variance via PCA on the output of k-means. As expected, PCA is drawn
to the larger-variance cluster center distribution, whereas k-variance successfully recovers a
projection that maximizes the within-cluster variation, in this case projecting away the cluster
center distribution and leaving a single cluster. k-means is an alternative approach to achieve
the same effect but fails due to the eccentricity of the cluster covariances.

This experiment (a) confirms that k-variance is dominated by the within-cluster variation
as predicted and (b) demonstrates as a proof-of-concept the possibility of using the k-variance
as an objective function in machine learning and data analysis. While here we maximized
the k-variance to extract the shapes of the clusters, in alternative instances a useful approachD
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Figure 6. k-variance of each MNIST digit from 0 to 9 in (a) linear and (b) log-log scale. Each digit is
considered as a 282-dimensional vector (d = 784); there are approximately 6, 000 images per digit.

may also be to minimize the k-variance subject to a 1-variance constraint, which could create
a clustered representation for machine learning classifiers; this intuition is confirmed by the
follow-up work [9] showing that small k-variance improves classifier generalization.

10.4. Digits. Figure 6 plots approximate k-variance for the MNIST dataset of hand-
written digits [16], separated by digits. We use the stochastic estimator for k-variance from
section 9, where sampling from the distribution of handwritten digits is simulated by a boot-
strapped strategy of sampling from the dataset with replacement. Our distributions in this
case are over R784, representing 28 \times 28 images. Given the high ambient dimension and
the well-documented observation from past work that the MNIST digits roughly lie on low-
dimensional submanifolds of R784, we expect k-variance to diminish to zero in this experiment.
Hence the relevant measurement is the rate at which this decay occurs.

Beyond varying amounts of variance between different digits (k = 1), our experiments also
reveal that the digit ``1"" has k-variance decaying in k roughly 1.5\times faster than the other digits.
This provides a quantitative indicator of the observation that there are fewer variations in the
way ``1"" is written relative to other digits.

Less importantly, on the far right of the plots we see decay of the k-variance begin to
accelerate. This downward turn occurs roughly at the size of the dataset, because at this
scale the bootstrapped estimator becomes less effective: For extremely large k the dataset
looks like a collection of discrete points rather than a smooth distribution over R784.

11. Conclusion and future work. We can compute k-variance easily using a few lines of
code, revealing potentially interesting structure hidden in a dataset or probability distribution.
Hence, it is a straightforward addition to the data analysis toolkit. While its properties in
four or fewer dimensions are somewhat unexpected, beyond this point k-variance provides an
intuitive means of measuring intracluster variance. Somewhat surprisingly given the ``curse of
dimensionality"" associated to optimal transport [25], we can use fewer data points to estimate
k-variance of high-dimensional measures, as shown in section 9.D
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Beyond its immediate relevance as an analytical tool, k-variance motivates a wide variety
of challenging research problems moving forward:
\bullet Are there nontrivial pairs of measures \mu , \nu \in Prob(Rd) with Vark(\mu ) = Vark(\nu ) for all

k \geq 1? Under what conditions can a measure be reconstructed from its mean and sequence
of k-variance values?

\bullet Beyond the empirical estimator proposed in this paper, are there more efficient or unbiased
stochastic estimators for k-variance?

\bullet Is it possible to generalize k-variance to a notion of ``k-covariance"" for d > 1?
\bullet Are there analogs of k-variance for higher-order moments of a measure?
\bullet How do gradient flows of k-variance behave?
Further exploring k-variance in the context of data analysis and machine learning will be
fruitful as well. For example, we can leverage the connection between the rates of change of k-
variance with increasing k and intrinsic dimension to expose different-dimensioned structures,
which create phase transitions in these curves. Moreover, we can use k-variance as an objective
function to either emphasize or decrease within-cluster variation.
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