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The space of connected graph partitions underlies statistical models used as evidence in court cases and reform
efforts that analyze political districting plans. In response to the demands of redistricting applications, researchers
have developed sampling methods that traverse this space, building on techniques developed for statistical
physics. In this paper, we study connections between redistricting and statistical physics, and in particular with
self-avoiding walks. We exploit knowledge of phase transitions and asymptotic behavior in self-avoiding walks to
analyze two questions of crucial importance for Markov chain Monte Carlo analysis of districting plans. First, we
examine mixing times of a popular Glauber dynamics-based Markov chain and show how the self-avoiding walk
phase transitions interact with mixing time. We examine factors new to the redistricting context that complicate
the picture, notably the population balance requirements, connectivity requirements, and the irregular graphs
used. Second, we analyze the robustness of the qualitative properties of typical districting plans with respect
to score functions and a certain lattice-like graph, called the state-dual graph, that is used as a discretization
of geographic regions in most districting analysis. This helps us better understand the complex relationship
between typical properties of districting plans and the score functions designed by political districting analysts.
We conclude with directions for research at the interface of statistical physics, Markov chains, and political
districting.
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I. INTRODUCTION

Several recent court cases and reform efforts have created
demand for quantitative techniques to analyze political dis-
tricting plans, which are divisions of a state or municipality
into regions that each elect a candidate to office. Reflecting
political practice, districting plans are considered as con-
nected partitions of geographic subunits, e.g., voting precincts
or census blocks. Since, outside of small-scale validation
studies [1], the space of all possible such partitions is too
large for complete enumeration, most analyses rely on random
sampling to generate an ensemble of plans for a given piece of
geography; the properties of this ensemble are used to under-
stand the achievable qualities of potential plans and inevitable
trade-offs between the many objectives for plan design.

An increasingly popular methodology for sampling
districting plans employs Markov chain Monte Carlo
(MCMC) techniques. A representative subset of examples
includes [2–10]; see [11] for broader discussion of meth-
ods in computational redistricting. Although districting plan
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samplers have been applied convincingly in several court
cases [8,9,12,13], these arguments relied on sampling meth-
ods manually tuned to the geographies and legal constraints
of specific states, suggesting the need for further scientific
research into this potentially useful tool.

To enhance understanding of these MCMC methods, in this
paper we draw connections between political districting and
statistical physics. We will see that statistical physics helps
discover and explain the behavior of sampling methods used
in redistricting. In the reverse direction, redistricting motivates
new variants of commonly studied statistical physics models,
including new questions that are especially natural in the
districting context.

One of the popular Markov chains for districting explores
the space of districting plans through a variant of Glauber
dynamics. However, a distinguishing feature between redis-
tricting and traditional spin glass models is that districting
plans are required to be contiguous. That is, the nodes as-
signed to each label must induce connected subgraphs. This
constraint connects the behavior of redistricting methods to
known results about self-avoiding walks, but makes it more
difficult to use intuitions from spin glass models. In particular,
fast mixing properties of cluster-based spin glass models over
portions of the parameter space [14–17] do not appear to hold
generically for the samplers we consider. For instance, [18]
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demonstrates general obstructions to efficient uniform sam-
pling from the space of connected districting plans, along with
explicit families of graphs where the Glauber dynamics-based
Markov chains on districting plans mix slowly. However, the
behavior of these Markov chains on regular lattices has so
far resisted analysis; in this paper, we provide some empirical
evidence regarding the behavior of these chains on lattices.

Moving beyond contiguity, other factors such as popula-
tion balance and irregularity of the underlying graph present
significant departures from physical models. These com-
plications affect mixing times and qualitative properties of
stationary distributions; however, many facts about phase tran-
sitions and lattice dependencies carry over to the redistricting
context.

We also encounter some questions not explicitly studied
in statistical physics, since they have to do with the specific
way that samplers are used in redistricting. In the redistrict-
ing analysis pipeline, a finite graph representing the state
is constructed, called the state-dual graph (see Sec. II), and
the aforementioned MCMC samplers are used to produce
partitions of that graph that correspond to legal districting
plans. We demonstrate, using knowledge of phase transitions
gleaned from statistical physics, that the way that the graph is
constructed can influence the analysis, even as the parameters
of a sampling algorithm are held constant. Such examples
raise important questions about the practical interpretation of
statistics about random redistricting plans.

A theory for resolving the problem of which distributions
over partitions are appropriate for redistricting analysis has
thus far escaped analysis, or even a precise formulation of the
basic questions. We hope that progress on this question can be
made by strengthening connections with statistical physics.

II. BACKGROUND ON REDISTRICTING

In a typical redistricting process, states are partitioned into
small units such as census blocks or voting precincts for data
recording, which are then aggregated into larger districts in
which political representatives are elected. The units can be
represented by the nodes of a graph, where units that share
common boundaries are adjacent, as in Fig. 1. This graph
is called the state-dual graph. Assuming that voting districts
must be contiguous, a districting plan with k districts is mod-
eled by a connected k-partition of the state-dual graph. Each
state has its own rules for determining which partitions are
permissible, although these statutes rarely provide sufficient
detail to provide a formal mathematical description of the
space of politically valid plans. For more details on the prob-
lem setup, see [5], Sec. 3].

For our purposes, two of these constraints are particularly
relevant. The first is population balance, which requires that
the population within each of the k districts be near the state’s
total population divided by k. The second is the notion of
geographic compactness, which refers to the “niceness” of
district boundaries. Compactness is evaluated using a variety
of geographic metrics that are designed to compare the shape
of a given district to some idealized geometric property. One
of the most common is called the Polsby-Popper score [19],
which measures the isoperimetric ratio of perimeter to area
of each district. Other measures compute ratios of areas to

FIG. 1. (a) Kansas with county units [20], along with a connected
2-partition. (b) The corresponding state-dual graph overlayed. Much
more granular subdivisions of a state such as the census units shown
in the bottom row are often used instead of counties.

regularized bounding shapes or measure the length of the
perimeter directly. In this paper we use a family of scores that
measure the compactness of a districting plan as a function of
the number of edges in the state-dual graph going between
different districts. This score is compelling because of its
mathematical convenience and relationship to the statistical
physics literature, and it has also received some attention in
the redistricting literature [5,21].

It was quickly observed [22] that by a clever choice of
districting plan one could engineer aspects of electoral out-
comes, a practice that became known as “gerrymandering.”
Despite the focus on using geographic compactness as key
indicator of district quality, compactness alone is not enough
to prevent gerrymandering, as shown in [23]. In other ef-
forts to counteract gerrymandering, there have been many
proposals to design districting plans algorithmically, a pro-
cess which often involves grappling with computationally
intractable problems [24,25]. The reality of redistricting, how-
ever, is that the power to draw the graph partition is in the
hands of a legislature, dedicated committee, or hired expert—
rather than a piece of software. For this reason, rather than
using an algorithm to draw plans in the first place, some have
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suggested to analyze already drawn plans for compliance with
civil rights law and other redistricting principles.

One approach to this analysis tries to understand a plan in
the context of what alternative plans are possible or typical.
For instance, an assertion that it is impossible to provide a
certain number of majority-minority districts can sometimes
be falsified by a computer search for such plans, as in [26].
However, since the space of districting plans is in general
too large to be completely enumerated it is generally com-
putationally intractable to prove that certain kinds of plans
are impossible. There are exceptions, however: one can refer
to [1] for enumerations of medium size state-dual graphs
and [26] for situations where impossibility arguments based
on nongeographic constraints are possible. Additionally, in
many cases the relevant questions have to do with how un-
usual a plan is along a certain dimension, rather than the
impossibility or possibility of a certain kind of plan.

As such, appeals to notions of a typical plan and statistical
outliers have developed into popular lines of argument. For
instance, an argument that a plan was drawn with the intent to
discriminate might calculate that the proposed plan has more
discriminatory properties than the vast majority of plans from
a randomly generated collection of comparable plans, as was
done in an amicus brief that was presented to the Supreme
Court of the United States in Rucho v. Common Cause [27].
The arguments given in that amicus brief relied on a choice of
distribution over the space of plans and attempted to tailor that
distribution to sample from a diverse ensemble of plans that
are each compliant with the redistricting principles laid out by
the governing body. More generally, a variety of algorithms
have been proposed to sample ensembles of graph partitions
for similar purposes, from genetic algorithms [28,29] to ran-
dom walks [3,8]; recent expert reports in redistricting cases
have used these tools to generate quantitative assessments of
proposed plans [8,9,12,13].

In this paper, we focus on algorithms based on Markov
chain Monte Carlo, due to a connection with the statistical
physics of random spanning trees, self-avoiding walks, and
phase transitions in Gibbs energies. Methods making use
of these tools have already found wide application in court
cases and academic analyses [8,9,13,27]. We will concern
ourselves primarily with questions about the mixing time of
these Markov chains, and the dependence of the properties of
typical plans on phase transitions in the stationary distribu-
tions. For instance, we will find that the phase transitions are
useful for understanding how a redistricting analysis depends
on the discretization of the geographic region into a state-dual
graph, which is an important point for developing “objec-
tive” (in the sense of [30]) standards for restricting analysis.
Phase transitions in a Potts model related to these redistricting
problems are considered from a statistical physics perspective
in [31].

A. Two key questions for MCMC samplers in redistricting

Two critical challenges arise when using statistics of ran-
dom districting plans to analyze political redistricting. First,
when the random plans are produced by a Markov chain, we
would like to estimate the computation time required to pro-
duce a statistically representative sample from the stationary

distribution of that chain. Second, to make the analysis more
transparent and impartial (in the sense of [30]), we would
like to characterize how the statistics used in the analysis are
influenced by features of the sampling algorithm.

This second challenge is especially subtle in the context
of the data analysis pipeline for political redistricting, since
an outlier classification of a districting plan could be affected
by ad hoc seeming features of the discretization of the state
into a state-dual graph, as we explore in Sec. V. Addition-
ally, although explicit score functions can be designed for
use with the Metropolis-Hastings algorithm, such as those
in [7,8,32,33], there is often a significant difference between
the apparent preferences of a score function and the typi-
cal properties of a sample from the corresponding stationary
distribution. Concepts from statistical physics, such as phase
transitions around lattice-dependent constants, are key for un-
derstanding the relationship between designed score functions
and the qualitative properties of typical samples.

In this paper, we will use those physical concepts to build
evidence for conjectures about mixing times and to investigate
the robustness of redistricting analysis with respect to the
state-dual graph. We believe that our investigation provides
strong evidence that insights from statistical physics are valu-
able for developing best practices in redistricting analysis.

III. METROPOLIS-HASTINGS-BASED SAMPLERS

We recall that a general paradigm for Metropolis-Hastings
-based sampling requires that we build a reversible Markov
chain M over the state space � of interest and define an energy
function E :� → R proportional to the desired stationary dis-
tribution. The Metropolis-Hastings algorithm uses the energy
function to modify the proposal of M in the following way:
if the proposal chain suggests moving to a state of lower
energy, the Metropolis-Hastings chain always accepts. On the
other hand, if the proposal chain suggests moving to a state
of higher energy, the Metropolis-Hastings chain only accepts
with probability exp[E (xcurrent ) − E (xproposal )].

In redistricting, a popular approach has been to define an
energy function that incorporates many of the relevant crite-
ria, such as geographic compactness (see Sec. II), population
balance, county preservation, and VRA compliance, among
others [5,7,8,32–34]. Analysis depending on such Markov
chains have appeared in expert reports in federal court cases,
as such as those discussed in [13,27,33]. We explain these
choices in further detail in Sec. III B. As is typical of many
such systems, there is a tug of war between combinatorial
explosion and the energy minimization resulting in phase
transitions in the tuning of these energy functions; these phase
transitions will be a central part of the story we tell in Sec. IV.

In general, one can use the Metropolis-Hastings scheme
over a larger state space, say, �′, than the one, �, that one
is explicitly interested in, and then rejection sample to obtain
samples in �. This approach is useful if enlarging the state
space makes the Markov chain mix more quickly and the
probability that the stationary distribution assigns to � is not
negligible. This approach can be useful for certain features of
redistricting plans, such as population balance. However, in
general those interested in analyzing redistricting plans have
found it convenient to preserve the connectedness requirement
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in the proposal function; thus, we will be focusing on propos-
als that return a connected partition at each step of the chain.

There are two predominant proposal types used in redis-
tricting, one is a Glauber dynamics like proposal based on
node flips and the other is a family of proposals based on using
spanning trees as a certificate of connectedness. We discuss
these in more detail in the next section.

A. Two proposal methods for connected partitions

In this section, we define connected partitions and describe
two types of Markov chains on connected partitions.

Definition III.1 (Connected Partitions). Let G be a graph.
A connected partition of G is a partition of the vertices
such that each block induces a connected subgraph of G. We
let Pk (G) denote the set of connected, ordered k-partitions;
equivalently, Pk (G) is the set of k colorings of G where each
coloring induces a connected subgraph. We call such a color-
ing a connected k-coloring.

The first Markov chain we define is called the flip walk,
which is a variant on Glauber dynamics:

Definition III.2 (Flip Walk). Let G = (V,E ) be a graph.
We define a Markov chain on the state space Pk (G) by defin-
ing a step from a connected coloring P by picking a v ∈ V
uniformly at random, and a c ∈ [k] uniformly at random, and
proposing a move to the coloring P′ with P′(w) = P(w) for
w �= v, and P′(v) = c. If P′ is a connected coloring, this move
is accepted, otherwise it is rejected.

Additional discussion of flip variants can be found in [22,
Sec. 4.2].

Remark III.3. In Sec. IV we describe the connection be-
tween 2-connected partitions of the grid and self-avoiding
walks. The flip walk on connected 2-partitions can thus be
translated over to self-avoiding walks, and results in a chain
that is essentially identical to the BFACF walk [35]. See [18]
for a literature review.

Another MCMC algorithm for redistricting is based on
spanning trees:

Definition III.4 (Recombination). Let G = (V,E ) be a
graph. We define a Markov chain on the state space Pk (G)
by defining a step from a connected coloring P by picking two
adjacent colors at random and drawing a random spanning tree
T for the subgraph of G induced on the union of the nodes
of those two colors. We then randomly select an edge of T
to cut, leaving behind two connected components, which are
randomly assigned one of the two originally selected colors.

The recombination algorithm was introduced to the redis-
tricting literature in [5], which contains a discussion of several
variants of the method depending on the algorithms used in the
randomized parts of the procedure, such as selecting the initial
colors, the spanning tree, or the edge to cut. However, the
idea of using spanning trees as a certificate for connectedness
is much older and pervasive throughout combinatorics and
statistics [36–39]. Recently, this approach has been general-
ized [32] to operate on the extended state space of spanning
forests.

For the most part, our empirical investigation in this paper
will focus on the flip walk. However, we will return to the 2-
partition version of recombination in Sec. V. In the 2-partition

case, recombination simplifies to sampling a partition by re-
moving an edge from a random spanning tree.

B. Gibbs energy

Given one of these proposal mechanisms, the Metropolis-
Hastings algorithm can be used to construct a Markov chain
whose stationary distribution is proportional to a Gibbs en-
ergy:

P (P) = e−β[
∑

i αiσi (P)]

Z
(3.1)

where P is a partition of the given graph, β is the inverse tem-
perature, the σi are functions measuring legislatively relevant
quantities of P with corresponding weights αi, and Z is the
corresponding partition function:

Z =
∑

P∈G
e−β(

∑
i αiσi (P)). (3.2)

Common measurements represented by the σi include
population balance, geographic compactness (see Sec. II),
preservation of county boundaries, and compliance with the
Voting Rights Act of 1965 among others. As the relevant
legislation is rarely written in sufficient detail to specify a
single σ much less an entire distribution, there is a significant
amount of modeling freedom in the construction of such an
energy.

As an example, [8] uses simulated annealing with the fol-
lowing energy function to sample congressional districting
plans in North Carolina:

e−β·(3000 σpop+2.5 σcompact+0.4 σcounty+800 σVRA ), (3.3)

where, in addition to terms measuring the population bal-
ance and compactness, the energy function incorporates an
entropy-based measure of county splits and a term incen-
tivizing districts with black voting age population percentages
at least as large as those permitted by previous legal chal-
lenges [34].

IV. PHASE TRANSITIONS

In this section, we consider a specific score function for
Metropolis-Hastings on the flip walk; namely, for a fixed
λ > 0, we define βλ(P) = λcut(P), where cut(P) is the number
of edges connecting the different connected components of
P. We explain a connection to theory of self-avoiding walks
and how the phase transition behavior for self-avoiding walks
carries over to the case of connected partitions and the flip
walk. Following the self-avoiding walk literature, we will
refer to the term λ in βλ(P) as the fugacity. Later, we will use
our knowledge about phase transitions and other self-avoiding
walk theory to guide an empirical investigation of bottlenecks
in the flip walk chain. To begin, we introduce a toy model
of a state-dual graph that will serve as a running example
throughout.

Definition IV.1 (Gridlandia). Gridlandia, Gn, is an (n +
1) × (n + 1) grid graph where each node has population 1. In
other words, it is a arrangement of n × n squares as in Fig. 3.
We think of population as a function of N-valued weights on
the vertices of a state-dual graph.
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FIG. 2. The relationship between connected partitions and self-
avoiding walks.

Definition IV.2 (Population Balance). We consider
α-balanced connected partitions of Gn, P2,α (Gn), which are
the connected 2-partitions of Gn where the total population
of each district is within 100α% of exactly half the total
population.

Note that increasing α amounts to loosening the population
constraint; if α � α′, then P2,α ⊆ P2,α′ .

Remark IV.3. The definition of population balance used in
Definition IV.1 is just one of many reasonable definitions. The
choice of function measuring the population balance does not
appear to have a significant effect on the empirical behavior.
It is possible that another definition would be analytically
preferable.

We will refer to a a non-self-intersecting path between
any two boundary points of Gn as a chordal self-avoiding
walk. Using bond-cycle duality for plane graphs, we can in-
terpret connected partitions of Gn as simple cycles on the
dual graph. For connected and simply connected partitions,
these are effectively the same thing as chordal self-avoiding
walks in the dual graph minus the node corresponding to the
unbounded face (see Fig. 2); the only minor discrepency being
that each of the four corner faces has two edges connecting it
to the supernode. Given a connected and simply connected
2-partition P, we refer to the boundary self-avoiding walk as
the partition boundary of P.

An important family of distributions on chordal self-
avoiding walks in a plane graph is the following: For any
λ > 0, define the probability measure βλ(ω) ∝ λ|ω|, where |ω|
is the number of edges used in the self-avoiding walk. On the
grid graph, the limiting behavior of these distributions experi-
ence a phase transition at 1/μS [40], where μS = 2.635 . . . is
the connective constant of the grid lattice, which measures the
rate of growth of the number of length n self-avoiding walks
starting at the origin in Z2. This phase transition leads to three
regimes of behavior: λ < 1/μS (subcritical), λ = μS (criti-
cal), and λ > 1/μS (supercritical). Between each regime, the
behavior of a typical self-avoiding walk is very different [40],
although within regimes the behavior has a qualitative unifor-
mity. See Sec. IV D for a discussion the properties of typical
partitions sampled in these three regimes.

Connective constants for triangular and hexagonal lattices,
denoted μT and μH , are defined similarly to μS , and stationary
distributions for self-avoiding walks exhibit identical phase

FIG. 3. From top to bottom, the 4 × 4 versions of Squarelandia,
Trilandia, and Hexlandia in black, displayed with their supernode-
deleted duals in blue.

transitions for λ at 1/μL, where L is the lattice. It is known
that μT = 4.15 . . . and μH =

√
2 + √

2 = 1.85 . . . [41,42]; in
particular, μT < μS < μH , and therefore the phase transitions
occur at different parameter settings on different lattices. To
discuss this precisely, we consider two additional graphs:

Definition IV.4 (Hexlandia). Hexlandia, Hn, is a graph of
n × n hexagonal tiles arranged as in Fig. 3. Each node has
population 1.

Definition IV.5 (Trilandia). Trilandia, Tn, is a graph of n ×
n triangular tiles arranged as in Fig. 3. Each node has popula-
tion 1.

Connected 2-partitions on Hexlandia correspond to self-
avoiding walks on a dual triangular lattice graph, and con-
nected 2-partitions on Trilandia correspond to self-avoiding
walks on a dual hexagonal lattice graph. In particular, 1/μH

is the phase transition for βλ in Trilandia, and 1/μT is the
phase transition for βλ in Hexlandia. In general, the behavior
of Markov chains on connected partitions can depend on
which side of the phase transition one is on, and therefore
the behavior of the same algorithm can vary widely based
on whether the state is discretized into triangles, squares, or
hexagons. We return to the role that topology the state-dual
graph plays in Sec. V, but for the remainder of this section we
focus on Gridlandia.
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Summary of experiments. The remainder of this section
consists of experiments investigating the mixing time and
qualitative properties of the flip walk Markov chain in each
of three fugacity regimes. Specifically:

(1) In Sec. IV D, we explore the mixing time of the
Markov chain by measuring statistics about the slope of the
partition boundary.

(2) In Sec. IV E, we follow up on the apparent success of
the critical regime flip walk chain by testing it against known
statistics of Schramm-Loewner evolution.

(3) In Sec. IV F, we examine the distribution of population
balance in the three fugacity regimes.

Each experiment computes statistics from an MCMC run
through connected partitions on Gridlandia. In Sec. IV A,
Sec. IV B, and Sec. IV C, we summarize precisely how we
measure the length of the Markov chain experiments, the
summary statistics we use and the precise specifications of the
Markov chains, respectively. In Sec. IV G, we conclude with
a conjecture summarizing the experimental data and related
questions.

Implementation. Code for reproducing the experiments in
this paper is available at [43].

A. Experimental details: Measuring run time

We use the Metropolis-Hastings algorithm on a reversible
Markov chain M that can be represented as an undirected,
edge-weighted graph GM . In our case, GM has many self-
loops, and instead of simulating those self-loops during
implementation we can simulate the random number of self-
loops taken before moving to a different state. To add to the
confusion, we do not simulate every self-loop this way, but
only a large fraction of them. In this section we include defini-
tions for compressed steps, steps, and accepted proposals that
are intended to clear up the potential ambiguity that can occur
when reporting on Markov chains that simulate self-loops. We
also specify the computing resources used.

1. Counting the number of steps

Recall that the flip walk on P2(G) picks a node v ∈ V (G)
uniformly at random and a color c ∈ {0, 1} uniformly at ran-
dom, and proposes changing the color of v to c. The flip walk
accepts this proposal if the coloring remains connected and
if the number of colors remains equal to 2. At a partition
P, the only nodes that can change color are those adjacent
to an edge of cut(P); call that set bdnodes(P). This means
that instead of uniformly sampling from vertices v until we
obtain a sample from bdnodes(P), we can sample the number
of times we expect to draw a sample outside of bdnodes(P)
and then uniformly sample from bdnodes(p). This is achieved
by the following observation:

Observation IV.6. Let B ⊆ N be two finite sets. Let
X1,X2, . . . be iid samples from N . Let T be the first time
that Xi ∈ B. Then T is geometrically distributed according
with success probability |B|/|N |, and XT is a uniform sample
from B.

Thus, instead of picking a uniform v ∈ V , one can pick
v uniformly from bdnodes(P) and use a geometric ran-
dom variable with success probability |bdnodes(P)|/|V | to

count the number of self-loops taken because of drawing
v �∈ bdnodes(P).

We let compressed steps refer to the number of times we
draw from bdnodes(P), and steps refer to the total sum of
the aforementioned geometric random variables. Finally, if
we use an additional score function or Metropolis-Hastings
step on top of the flip walk proposal function, we let accepted
proposals refer to the number of proposals accepted by the
Metropolis-Hastings algorithm, and proposals refer to the
number of proposals made.

Remark IV.7. Only certain nodes in bdnodes(P) result in
legal flips, so that in fact even more of the self-loops of the
underlying directed graph could be ignored and wrapped into
a geometric random variable. However, we did not do so in
the implementation.

2. Computation time

Computational time refers to the number of seconds the
the 0.2.12 release of the open-source GerryChain software ran
for. All experiments about mixing times and phase transitions
on Gridlandia ran on a Xeon(R) CPU E5-2683 v4 at 2.10
Ghz. The annealing experiments were run on an Ubuntu 16.04
machine with 64 GB memory and an Intel Xeon Gold 6136
CPU (3.00 GHz) processor.

B. Experimental details: Statistics measured

This subsection will summarize the statistics we use to
empirically analyze the behavior of these Markov chains.

1. Boundary slope

A natural qualitative measurement of the shape of a simply
connected, connected 2-partition of Gridlandia is whether it
is like a vertical, diagonal or horizontal partition. The line
connecting the endpoints of the boundary of a simply con-
nected partition gives us a simple way to turn that intuition
into a quantitative measurement whose long-term behavior
can be visualized and measured. This measurement will give
us insight into bottlenecks, or metastable regions, in the flip
walk.

Definition IV.8 (Boundary line segment). Let P be a con-
nected partition of Gridlandia Gn. Then P induces a connected
2-partition Q of the boundary of Gn, which is a cycle with
4n − 4 nodes. If cut(Q) is nonempty, then it has two edges,
e1 and e2, and the boundary line segment is the line segment
connecting the midpoints of e1 and e2. If Q is the trivial
partition, and cut(Q) = ∅, then we define the boundary line
segment to be ⊥.

We summarize a time series of boundary line segments via
their slopes, which we plot in polar coordinates with the radial
axis denoting time; that is,

Definition IV.9 (Boundary Slope Plot). Let P1, . . . ,Pn be a
sequence in P2(Gn), and let l1, . . . , ln be the corresponding
boundary slopes. For each li �= ⊥, there are two associated
unit vector directions ±vi. We choose signs so that vi is
closer to vi−1 than −vi−1 and draw an interval connecting
(i − 1)vi−1, ivi; in the limit, this amounts to picking a con-
tinuous path of unit vectors that are aligned with the boundary
slope.
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FIG. 4. (Left) The boundary line segment. (Right) An example
boundary slope plot.

Our implementation produces the sequence (P1, . . . ,Pn)
by taking every 10 000 steps (which include self-loops, as
discussed in Sec. IV A); this choice generally captures ev-
ery compressed step. For aesthetics, we interpolate between
points (θ, r) and (θ ′, r′) in polar coordinates with the curved
line (λθ + (1 − λ)θ ′, λr + (1 − λ)r′). The radial direction
measures time, and the stretching that comes with being fur-
ther from the origin is a distortion that has nothing to do with
the underlying path of partitions; only the angle represents
a feature of the corresponding partition. Finally, we draw
circles at regular intervals to give a sense of time segments.
An example boundary line segment and boundary slope plot
is given in Fig. 4.

2. Flips and edge cuts

Here we summarize two closely related statistics that can
be used to see metastable regions in the Markov chain. Unlike
measuring the boundary slope, these store an aggregate mea-
sure of variation, rather than a detailed history. This can make
it harder to see metastability after sufficiently long runs, but
these statistics are especially useful because they generalize
easily to k-partitions. Additionally, patterns that also have to
do with the internal behavior of partition boundaries, such as
those we highlight in Sec. V, are easier to see from these plots
since boundary slope plots only record the relative behavior
of the endpoints of the partition boundary.

Definition IV.10 (Flips). We define a function flips : V →
N by setting flips(v) to be the number of times the dis-
trict containing v changed: flips(v) = |{i ∈ {1, . . . , n − 1} :
fi(v) �= fi+1(v)}|. Usually we will plot lflips := log(flips + 1)
instead.

We plot lflips using a heat map where red means an node
is flipped more often, and blue means it is flipped less often.

Definition IV.11 (Edge Cuts). We define a function c :
E → N by setting c(e) to be the number of times that e
was a cut edge of a partition Pi: c(e) := |{i ∈ {1, . . . , n} : e ∈
cut(Pi )}|.

We visualize cut edges as heat maps on the state-dual
graph; lighter green or yellow edges are those that are cut
more than darker green or purple edges. Edge cuts are a useful
statistic for examining proposals that do not flip individual
vertices, such as the tree-based proposals. See Fig. 20 below
for an example.

C. Experimental details: Proposal and score function

Here we provide further details of a flip walk that is
modified to reject proposals leading to heavily population
unbalanced states, and that is further modified by using the
Metropolis-Hastings algorithm with the score function λcut.

Hard population constraints, rejection sampling population
constraints. We define the population balance score PopBal
of a partition (A,B) of n × n Gridlandia as PopBal(A,B) =
max(|A|/ n

2 , |B|/ n
2 ). We set a threshold α > 0, and define the

flip walk with population constraint α, Flipα to be the flip walk
modified to reject all proposals that would produce a partition
with PopBal(A,B) > 1 + α.

Metropolis-Hastings for λcut compactness constraint. Fix
some λ > 0. We use the Metropolis-Hastings algorithm on
top of Flipα with score function f [(A,B)] = λcut(A,B), where
cut(A,B) = {e ∈ E (G) : e = {v,w}, (v ∈ A ∧ w ∈ B) ∨ (v ∈
B ∧ w ∈ B)}. We denote the resulting Markov chain by
Flipα,λ.

D. Experiment: Metastable regions in the flip walk chain

In this section, we will see that the boundary slope plots
give insights into bottlenecks in Flipα,λ. We break our analysis
down into the three phase transition regimes of the λcut score
function.

1. The subcritical case

Subcritical self-avoiding walks in the grid are known to
converge to geodesics [40]. In the context of connected par-
titions, this means that the score function βλ strongly prefers
minimizing the boundary length of a partition. Unlike the
self-avoiding walk case, however, in redistricting we have to
contend with population balance. It turns out that the behavior
of the subcritical cases depends strongly on whether or not the
two districts are required to have balanced population.

If the population balance is unrestricted, the chain appears
to mix thoroughly in its state space, which consists of par-
titions where one block occupies most of the region and the
other block is a small bubble. As the population constraint is
tightened, the ability of the Markov chain to move around the
state space becomes more tightly constrained. We illustrate
the evolution of 5%, 10% and 50% population balances in
Fig. 5 and Fig. 6: with strong population constraints, the chain
gets stuck around one of the partitions satisfying the popula-
tion constraint with the shortest possible boundary. We note
that the results of these experiments change when λ is closer
to the critical fugacity, and will discuss that case in more detail
after reviewing the critical and supercritical regimes.

In Sec. IV F we revisit the influence of population balance
on subcritical sampling through rejection sampling.

2. The supercritical case

The supercritical case is generally unsuitable for redistrict-
ing, since the boundaries are almost-surely space filling [40];
see Fig. 7 for a typical example. Experiments show that the
flip walk Markov chain also has bottlenecks that are revealed
by the boundary slope statistics; see Fig. 8. On the other hand,
the supercritical case appears to mix in space, in the sense
(see [44]) that the configuration of the partition boundary
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FIG. 5. (left) Boundary slope plot and (right) the end state, from
a subcritical (λ = 1

2μ
= 0.189 . . .) flip walk constrained to popula-

tion balance 10% (bottom) and 50% (top). The top plot was run for
21 000 000 compressed steps, which amounted to 703 328 732 936
proposals, over roughly one month of computing time. The bottom
plot was run for 23 000 000 compressed steps, 712 097 053 677 pro-
posals, over the same period.

FIG. 6. log(flips + 1), after 254 h (equivalently
64 054 464 437 342 proposals) on a 40 × 40 grid graph. Population
bounds 5% . This is stuck in a bottleneck set; it has not reached
the equally probably region around the vertical partition. Either
loosening the population constraint or bringing the fugacity closer to
the critical value can help mixing.

FIG. 7. A typical supercritical sample.

in the interior of Gridlandia seems to be independent of the
partition restricted to the boundary of Gridlandia.

3. The critical fugacity case

Unlike the previous two cases, this setting of the score
function does not cause the chain to get trapped in a
metastable region corresponding to the slope of the boundary.
This fact can be seen in the boundary slope plot (Fig. 9).
Additionally, the chain appears to continue to mix rapidly
even with strong population constraints. Still, whether or not
the flip walk is rapidly mixing at this setting of λ remains
unknown, since there could be more subtle bottlenecks.

To explore that possibility, more intricate tests of mixing
are needed; in the next section we show that samples from
the flip walk at λ = 1/μ produce empirical statistics that agree
with predictions from Schramm-Loewner evolution. This is
further, although still inconclusive, evidence of rapid mixing
of the flip walk on Gridlandia at critical fugacity.

4. When does the phase transition occur?

The phase transition results in [40] are asymptotic, and
for any given grid graph the distinctions between the three

FIG. 8. Boundary slope plots (left) for a super-critical (λ = 1)
run with population constraint 100%. The apparent rapid rotation in
the beginning of the run was due to the boundary end points ending
up near the two corners of one edge. This was run for 11 000 000
compressed steps, or 20 302 926 563 proposals, over the course of
one month of computing time.
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FIG. 9. Boundary slope plots for λ = 1/μ (critical regime), with
population constraints 10%, along with the final state on a 40 × 40
grid graph. Run for 25 000 000 compressed steps, amounting to
354 337 192 915 proposals, over the course of approximately one
month of computing time. The metastable region that was apparent
in the subcritical case is not an obstruction here.

regimes are fuzzy. For instance, in Fig. 10 we take λ at three
values closer to 1/μ than 1/2μ, and see that doing so produces
behavior that is more the critical regime than the subcritical
regime. In particular, the bottlenecks we saw in the subcritical
regime become gradually less pronounced as λ approaches
1/μ. Exactly how the asymptotic phase transitions kick in
seems like a challenging question, and one with implications
for sampling maps for redistricting.

E. Experiment: SLE-based test of mixing at criticality

Although the boundary slope plots suggest bottlenecks in
both the subcritical and supercritical regimes, they do not sug-
gest the same bottlenecks in the critical regime. In this section,
we provide another test for mixing at the critical regime and
show that the Markov chain passes this test.

1. Background on Schramm-Loewner evolution

The theory of Schramm-Loewner evolution (SLE) can be
used to make a prediction about the expectation of a statistic
on the Markov chain of connected 2-partitions in the critical
regime. We thus obtain a test for mixing by empirically cal-
culating this expectation and comparing it to the theoretically
predicted value. Our experiments in this section are indebted

FIG. 10. (Left) Setting λ = 1/μ − 0.3 = 0.35 . . ., population
bound at 50%, and using a 40 × 40 grid graph results in a run that
looks more like the critical case than the subcritical case. (Middle)
The same but λ = 0.32. (Right) The same but λ = 0.29. Each of
these was run for about a week of computing time, which amounted
to the order of 250 000 000 000 proposals each.

to the investigation in [45], which used the same statistic to
verify conjectures about scaling limits of self-avoiding walks.

Schramm-Loewner evolution concerns a family of prob-
ability distributions, SLEκ with κ ∈ [0,∞), on compact
subsets of the upper half plane H. For a precise definition of
Schramm-Loewner evolution, see [46]. Many discrete mod-
els from statistical physics converge to SLEκ for appropriate
values of κ . In particular, SLE8/3 has close, albeit conjectural,
relationships with self-avoiding walks.

SLE8/3 is a probability distribution over simple paths from
0 to ∞ in H. This distribution is invariant under scaling, so if
γ is a sample from SLE8/3, so is αγ , for any α > 0. In partic-
ular, if a, b ∈ ∂D, the scale invariance of SLE8/3 means that
the distribution over simple paths in D from a to b obtained
by conformally mapping D to H and sending a to 0 and b to
∞ is well defined; this distribution over paths in D is called
chordal SLE from a to b.

Let Dn denote the nearest neighbor graph on the intersec-
tion of D = {z ∈ R2 : |z| � 1} with 1

nZ × 1
nZ. We recall the

conjecture discussed in [40,47] that a β1/μ-sample from a self-
avoiding walk from −1 to 1 in Dn, considered as the trace of a
path in the plane, will converge to SLE8/3 in D from −1 to 1
as n → ∞; a similar conjecture holds for other pairs of points
in the boundary. Thus, if a sample from the flip walk closely
approximates a β1/μ-sample from a self-avoiding walk, then a
sample from the flip walk will closely approximate a sample
from SLE8/3.

Explicit formulas for the probabilities that the upper half-
plane SLE8/3 hits certain sets are known [45,48], and we use
those to design tests of mixing. In particular, we use the same
statistics as those used by the investigation in [45], which
relied on the calculation in [48] of the probability that an
SLE8/3 path in the upper half plane H intersects Br (x), the
ball of radius r centered around x ∈ R ⊆ H. We will denote
this probability by φ(r, x). What follows is the description of
an experiment using this to test mixing of the flip walk at
fugacity 1/μ:

(1) We are given a sequence of chordal self-avoiding
walks γ1, . . . , γN as the boundary paths of a sequence of
connected 2-partitions of Dn obtained from a length M run
of the flip walk Markov chain at λ = 1/μ.

(2) For each i, map γi to H via a conformal map from D
to H sending one endpoint of γ to 0 and the other to ∞. Call
the resulting path γ̄i.

(3) Set φ̂(r, x) = 1
N

∑N
i=1 1Br (x)∩γ̄i �=∅.

If the chain is rapidly mixing, and ignoring the signifi-
cant issues of discretization, φ̂(x, r) should approximate with
φ(x, r).

2. SLE experiments

We present two experiments. First, we fix the endpoints at
−1 + 0i and 1 + 0i, meaning that we start with a connected
partition that has a boundary path from −1 to 1, and reject all
proposals of the flip walk that would change the endpoints;
results are displayed in Fig. 11. Since we do not appear to
need many steps to see agreement between the theoretical and
empirical statistics, we take this as evidence that the flip walk
mixes rapidly at the critical fugacity.
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FIG. 11. Taking n = 20 (top) and n = 30 (bottom), with γi ob-
tained after 100 000 steps each with N = 500. Comparing φ̂(r, x)
with φ(r, x) for x = ±1 and r ∈ {i/101:0 � i � 99}. The solid red
line is φ(r, 1) = φ(r,−1), and the other two lines are φ̂(r, 1) and
φ̂(r,−1). The x-axis is r, and the y-axis is the value of the function.
Apparently 100 000 is sufficient for mixing when n = 20, at least for
this statistic, but not when n = 30.

For the second experiment, we drop the fixed-endpoint
requirement. In this case, we do not see strong agreement
between φ(x, r) and φ̂(x, r), as can be seen in Fig. 12. This
may have as much to do with the discretization of the disk
into Dn as the mixing time of the random walk.

F. Experiment: Population balance

The regions of apparent rapid and slow mixing, which
depend on population balance and temperature, suggest that
parallel tempering could be a useful way to sample from these
stationary distributions. Parallel tempering between phase
transitions probably would not work well, given that the
corresponding distributions have negligible overlap in their
support. On the other hand, if one fixes λ to be subcritical
or critical and varies the population threshold α, then there
appears to be considerable overlap between the distributions;
this is demonstrated in Fig. 13. Such overlap could be ex-

FIG. 12. With variable endpoints on a 30×30 (top) and 40×40
(bottom), with N = 501 independent runs starting from the horizon-
tal partition for 1 000 000 steps each. Notation as in Fig. 11.

ploited by MCMC approaches using parallel tempering, as
in [7].

G. Discussion

1. Mixing times

Summarizing the data in Sec. IV D and Sec. IV E, where
we saw evidence about the interaction of the mixing time of
flip walk with population constraints and fugacity regimes,
we make the following conjectures. We recall that in the
theoretical computer science literature, “rapid” mixing means
polynomial mixing time in the parameter, and “torpid” gen-
erally means super-polynomial or exponential time in the
parameter. Here the parameter is n, the size of the grid graph.

Conjecture IV.12. Let G = (Gn)n�0 denote the family of
n × n grid graphs. Then there are functions εi : N → (0, 1),
ε1 < ε2 and limn→∞ ε2(n) = 0 so that the following holds. For
λ > 1/μ + ε2(n) the flip walk on G is torpidly mixing, regard-
less of population constraints. For λ < 1/μ − ε2(n), if there
is any constant percentage population balance constraint, then
the flip walk on G is torpidly mixing, but with no population
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FIG. 13. The population balance histogram after running with
balance constraints for steps starting from a vertical partition of a
40×40 grid graph. Here the x-axis represents the balancedness of a
block, measured in terms of |A|/h where |A| is the size of a block,
and h is exactly half the total population. The y-axis counts the
number of times a partition containing a block with that balance
was encountered during the run. After normalization, this provides
an approximation of the marginal distribution of population balance
of the stationary distribution. Since we start with a perfectly balanced
partition, we do not include the first 1 000 000 partitions in the
histogram, and these figures were obtained after a month of compu-
tation. Left is subcritical (λ = 1/2μ), middle is critical (λ = 1/μ), right
is supercritical (λ = 1). The balance constraints for the subcritical
and supercritical runs are 50%, which explains the sharp cutoffs,
and the balance constraint for the supercritical run is 100%. For the
subcritical run, most of the mass is on partitions which are nearly
as unbalanced as allowed by the constraints; experiments evaluating
softer thresholds on population balance or using simulated tempering
could provide additional insight in future work.

constraints it is rapidly mixing. For |λ − 1/μ| < ε1(n), the flip
walk is rapidly mixing, regardless of of population constraints.

Although in [18] we calculated worst case lower bounds on
the mixing time of the flip walk, the graphs that provided the
examples were unlike the graphs used in redistricting analysis.
On the other hand, the grid graph seems to capture some of the
difficulties involved in sampling connected partitions of the
state-dual graphs used in political districting. Thus resolving
the above conjecture would bring us closer to understanding
the reliability of flip-based Markov chains in redistricting.
As previously mentioned, the flip walk appeared in statistical
physics as the BFACF chain [35], but known lower bounds
on mixing time [49] use techniques that we were not able to
modify for this conjecture. In the remainder of this section
we examine the applicability of annealing through different
fugacities, the impact of fixing endpoints, present a schematic
capturing some of the above conjecture and of the effects of
annealing, and close by mentioning k-partitions briefly.

2. Annealing

A common technique for escaping bottlenecks in MCMC
is to use simulated annealing, where the inverse temperature
parameter is varied to promote efficient movement throughout
the state space. Although this technique has been used in
court cases [8,9], the rigidity introduced by the contiguity and
population balance terms for the redistricting problem mean
that there are additional tradeoffs that must be evaluated in
practice.

A key issue in many of the examples in Fig. 14 is that
while there is a significant amount of movement within the
center of the grid, there is little change in the partition of
the boundary component, which indicates that this simulated
annealing strategy does not help us move out of the metastable
region corresponding to the vertical partition. More explicitly,

FIG. 14. Samples from distributions with energy function
e−(γ pop dev+δboundary length) with δ = 1 as γ varies from 0.11 to 0.81 (top
two rows, read left to right) and γ = 1 as δ varies from 0.11 to 0.81
(bottom two rows, read left to right). The images in each experiment
are snapshots of a single run of the Markov chain.

whether the induced partition of the boundary of the grid (a
cycle graph) is vertical or horizontal decomposes the config-
uration space into two equal-sized pieces, and Fig. 14 shows
that annealing does not essentially change the partition of that
cycle graph—in fact, throughout the annealing process the
boundary slope remains roughly vertical. A similar observa-
tion was made on real world data in [5]. Additionally, one
source of computational inefficiency of these chains operating
in the super-critical regime is that the space filling boundaries
make it more likely that any individual proposal will be re-
jected since changing the assignment of a node is likely to
disconnect the partition.

3. Fixing endpoints

As with the population balance constraint, there appears
to be an appreciable difference between the mixing of con-
nected partitions with fixed partition boundary endpoints, and
where the partition boundary endpoints are allowed to move.
Our empirical evidence does not exclude the possibility that
the bottlenecks revealed by the boundary slope plots are the
only bottlenecks in the super-critical and subcritical case; that
would means that sampling from the stationary distribution
could be possible by picking endpoints according to a parti-
tion function, and then running the flip walk on self-avoiding
walks with fixed endpoints. Of course, such a strategy would
become more difficult for k-partitions, where there is a com-
binatorial explosion in the different ways the endpoints of the
boundary segments can be arranged.

4. Space of graph configurations

We give a schematic of the space of configurations in
Fig. 15. As in our discussion of annealing, walks that at-
tempt to travel vertically in our schematic by increasing or
decreasing the fugacity do not appear to generate diverse col-
lections of plans, since the boundary slopes remain essentially
fixed. Traveling horizontally is also constrained outside of the
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FIG. 15. A schematic showing the local geometry of connected
graph partitions. The y-axis represents “compactness” (boundary
length) as a measure of niceness of the partition.

critical region, as we saw earlier. In general, it appears that
moving to other qualitatively distinct “compact” partitions re-
quires traversing those with poorer compactness scores, such
as those that are typical for the critical fugacity. On the other
hand, allowing the compactness score to become too loose
incurs a penalty in the form of the rigidity that comes from
interlocking tendrils of supercritical fugacity states. Without
population balance constraint, conditions are known for when
these configurations spaces are connected [50].

5. k-partitions

Most political districting plans involve more than two dis-
tricts, and it is natural to ask which of our observations extend
to the k-partition setting. An issue that arises when dealing
with k-partitions instead of 2-partitions is that compactness
scores defined for individual districts have to be aggregated
into compactness scores for an entire plan [5,8,13]. There are
various ways to perform this aggregation, and to the best of
our knowledge phase transitions in choices of the aggregation
have not been studied.

V. THE ROLE OF THE STATE-DUAL GRAPH

The experiments in Sec. IV give an indication of the impor-
tant role that the underlying graph plays in the way any given
algorithm samples from the set of districting plans, thought of
as partitions of the underlying geographic region. In this sec-
tion, we highlight some subtle features of this dependence by
showing that the behavior of a fixed sampling algorithm can
be controlled by subdividing faces of the underlying state-dual
graph. We connect this to phase transitions in the self-avoiding
walk model and discuss some implications for redistricting
analysis.

FIG. 16. The graph G′.

A. Concentration of boundary location

In this section we work with variations on the Gridlandia
graph, wherein we allow certain faces to be subdivided into
triangles as in Fig 16.

Definition V.1 (Subdivided Gridlandia). Given Gridlandia
Gn, and a set F ⊆ Faces(Gn), where Faces denotes the set of
bounded faces of Gn, define GF

n by adding edges diagonally
from the lower left to upper right corner of each face in F .
See Fig. 17.

Remark V.2. Gn is the dual graph of a map, that is, a
partition of the unit square into regions wherein each region
becomes a node, and two nodes are adjacent if the regions
share a one-dimensional boundary. In particular, Gn is the dual
graph of the map of the unit square obtained by subdividing
it into regular squares, and GF

n is the dual graph obtained by
modifying the partition of the square as in Fig. 18.

FIG. 17. The shaded squares is the chosen set F , which are
subdivided to form the graph on the top.

064130-12



EMPIRICAL SAMPLING OF CONNECTED GRAPH … PHYSICAL REVIEW E 104, 064130 (2021)

FIG. 18. Minor modifications of the partition of a state into geo-
graphic units can change the lattice structure of the state-dual graph.

Our aim here is to describe how carefully choosing F
can cause the boundary of “random partition” to concentrate
around a horizontal line dividing Gridlandia in half. We recall
from Sec. IV that the phase transition for connected partitions
on the triangular lattice occurs at a lower fugacity than that
of the square lattice. Thus, if parameters are set so the flip
walk chain is subcritical on the triangular part, but critical on
the square part, the chain will push partition boundaries off
of the triangular portion. If the triangular portion surrounds
the boundary of a particular partition P, it is therefore intu-
itive that that a stationary sample will be likely to thread its
boundary along that of P.

This intuition is born out in the experiments we performed.
Suppose we start with Gridlandia Gn, but we triangulate
the faces away from the horizontal partition boundary, as in
Fig. 16. We will call the resulting graph G′

n. We run the flip
walk at fugacity λ where 1/μT < λ < 1/μS , and find a pref-
erence for partitions near to the horizontal partition. The result
of this experiment can be seen in Fig. 20, where we can see
that the boundary is indeed more likely to run vertically. This
is a different feature from the subcritical metastable regions
discussed in Sec. IV D, since a vertical partition of G′

n will
quickly rotate into being horizontal; see Fig. 19.

The typical behavior of partitions of G′
n behaves similarly

for the various popular sampling algorithms that partition
by using components of random spanning forests [5,32] (see
Sec. III A). One such algorithm samples a uniform spanning
tree and deletes a random edge such that the two components
of the resulting forest are roughly balanced in size. When we
sample connected partitions in this way and display the edge
cut frequencies on the right side of Fig. 20, there is a clear
bias toward the horizontal partition. These biases can have
significant effects on the number of seats won in a “typical
map,” representing a challenge for ensemble based methods
for curtailing extreme gerrymanders. Nearly identical effects
are seen for producing a random spanning tree by drawing
random edge weights and calculating the minimum spanning

FIG. 19. Even if we start with the vertical partition, we rotate into
the horizontal partition and then remain there. 1 000 000 steps; log
flips on the left and edge cuts heat map on the right.

FIG. 20. (Left) Log flips plot of running the flip walk with λ =
1/μsquare on G′ for 10 000 000 steps. (Right) Edge cut heat map of
splitting 1000 uniform spanning trees. In both cases a preference for
the horizontal divide is apparent.

tree. See [18] for further discussion, including an explicit
example of the influence on the number of seats won.

Remark V.3. We explain a potential intuition for these ex-
amples. First, since we are partitioning the vertices of these
graphs, we can represent the boundary by a simple cycle in
the plane dual. A dual path passing through the triangulated
part is in general twice as long as a corresponding boundary
was before, since for every square face it passed through it
now passes through two triangular faces. Even though expo-
nentially many potential boundary paths are added after this
triangulation, the compactness constraint is such that each
is downweighted exponentially. The balancing act between
having many paths and each path having negligible probabil-
ity determines which orientation of boundary paths are more
likely. While the phase transitions give a conceptual, although
speculative, explanation of how this tug of war works out for
the βλ distribution on the flip walk, it remains a challenge to
explain the why G′ influences the uniform spanning tree based
distribution in the way that it does.

Remark V.4. It is plausible that one could engineer a com-
pactness score that depends on the metric length of the bound-
ary, to avoid dependency on the discretization. However,
defining such a compactness score raises several other impor-
tant issues such as the fractal nature of coastlines, dependen-
cies on map projections, and others [51,52]. Investigating the
relationship between state-dual graph topology and compact-
ness represents an important challenge for redistricting.

B. Implications for redistricting

We discuss the implications of the above experiments for
redistricting analysis.

Interpretation of the distribution. Recall that redistricting
is modeled by producing a state-dual graph out of small units.
Common choices for these units include census geographies
like blocks and tracts as well as voting precincts, whose
boundaries are frequently determined locally. In Fig. 21 we
show the edge cut frequencies of spanning tree partitions for
various choices of units. While the differences are not as
extreme as the synthetic examples in Fig. 20, they highlight
the need for careful consideration of the underlying graph as
a part of experimental design. There are many points in the
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FIG. 21. Heat map of boundary edge frequency for the states of
New Hampshire and Kansas as computed over four different levels
of resolution derived from census data. For each state, we draw
10 000 districting plans, with a 2% population deviation tolerance
and compute how often each edge in the dual graph is cut in a
partition.

analysis pipelines where choices about the state-dual graph
are made, such as handling state-dual graph adjacencies over
mountain ranges or lakes and prorating data between differ-
ent geographic units. Thus, to rigorously compare plans to a
typical plan it is important to understand to what extent the
properties of typical plans depends on choices made earlier in
the analysis, and to make such choices in a transparent and
impartial way [30].

Tuning score functions. Investigating a local notion of
the connective constant could lead to insights about a score
function for which the flip walk mixes rapidly on a broad
class of graphs. Following the definition of the connective
constant in [53], given a graph G and x ∈ V (G), we de-
fine μG,n(x) := n

√
Sn(G, x), where Sn(G, x) is the number of

simple paths in G starting at x of length n. Then, for any
self-avoiding walk γ in G, defining fn(γ ) := ∏

x∈γ
1

μG,n(x) and
taking n sufficiently large would give one possible analog
to the β1/μ(γ ) = (1/μ)|γ | distribution, for which we gave
evidence of rapid mixing in Sec. IV D 3 and Sec. IV E. A
challenge for computing with this is that estimating Sn(G, x)
is not straightforward for large n and is already challenging
for highly structured graphs like G = Z2 [54].

Metamandering. One could hypothetically exploit phase
transitions and lattice-dependent properties to cause a sam-
pling algorithm to have its sampling distribution concentrate
around some preferred options, by an appropriate modifica-
tion or subdivision of a state-dual graph. For instance, if an
analyst prefers vertical partitions of a square state, for in-
stance because of the arrangement of voters, and had some
freedom over the state-dual graph, they could use the subdi-
vided state-dual graph to make a “typical” partition vertical.
Whereas gerrymandering refers to the practice of drawing
district boundaries to create desirable outcomes, we refer to
practices that modify the input to a sampling algorithm to
shift the seats histogram as metamandering. Unlike gerryman-
dering, metamandering is more of academic interest than a
practical concern, since scenarios allowing metamandering re-
quire far-fetched and sophisticated conspiracies. Nevertheless,
it raises a point of scrutiny in the analysis of districting plans
by Markov chains.

Implications for the
√

ε-test approach to redistricting anal-
ysis. The influence of the state-dual graph on the output
of sampling algorithms also matters for the interpretation

of methods like [3,13,55]. Their work provides a hypothe-
sis test, called the

√
ε-test, for whether a plan was drawn

from a distribution near to the stationary distribution of a
Markov chain on districting plans. Crucially, and unlike out-
lier analysis-based methods, the

√
ε-test does not rely on

guarantees about convergence of the Markov chain. However,
since our work shows that tunings of the score function and
discretizations of the state can influence the stationary distri-
bution in subtle ways, the results of the

√
ε-test should also

be examined with respect to the influence of discretization
and parameter tuning. We will briefly summarize this test,
then relate our experiments to it. The

√
ε-test takes as input

a reversible and ergodic Markov chain M on a finite state
space �, an initial point X0 ∈ � and a label function ω : � →
R, and is based on to what extent ω(X0) is an “outlier” in
Values = (ω(X0), ω(X1), . . . ω(Xn)), where Xi a sample path
of M started at X0. The notion of outlier used here involves
the index of ω(X0) after sorting Values; specifically, the test
bounds the probability of ω(X0) having index in the sorted list
below �ε(n + 1)�, under the null hypothesis that X0 is sampled
from the stationary distribution of M. For applications to
redistricting, the label ω can be some measurement of how
much a plan favors one party. One intuition for this test is dis-
cussed in [13,55]: at least for small enough values of n a plan
being rejected by this test can be interpreted as evidence that
it is “carefully crafted,” as nearby plans have generally less
extreme values of ω. It should be emphasized that the notion
of nearby here refers to the typical plans arrived at after evolv-
ing the Markov chain, which is not necessarily an intuitive
notion of locality. Indeed, as we explain next, our examples
from Sec. IV D provide challenges for this intuition when n
is sufficiently large. See question 8 in the conclusion below
for additional discussion. We will use Figs. 19 and 20, which
we introduced as examples where the stationary distribution
of a given Markov chain algorithm is strongly influenced by
the discretization, to show how the output of the

√
ε test can

be influenced by the discretization. First, arrange the voters on
the nodes in a grid graph discretization of [0, 1]2 so that the
horizontal and vertical partitions are starkly different under
ω; see Fig. 22 for an example. If we let G be the graph
constructed in Fig. 19 and G′ its 90◦ rotation, then using G or
G′ as the underlying graph to evaluate the horizontal partition
under the

√
ε-test can result in very different outcomes. This is

because, as Fig. 19 and Fig. 20 (left) show, when using the flip
walk and the tuning as the in those example, the partitions of
G will be horizontal with very high probability, and partitions
of G′ will be vertical with high probability, regardless of the
starting position.

Limitations. Algorithmic feasibility and compactness are
but two of the many considerations taken into account when
choosing a distribution for analyzing districting plans. While
the mixing time of the critical fugacity chain appears promis-
ing, we do not explicitly recommend its use in redistricting
analysis.

In this paper, we examined a single family of score func-
tions on districting plans, using a specific notion of population
balance and a notion of compactness largely driven by connec-
tions to statistical physics and SLE. However, in redistricting,
score functions are constructed out of a variety of different
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FIG. 22. Take ω to be the number of seats won by party 1.
Arrange the voters so that every voter with x-coordinate � 0.6 is
party 1 (yellow), and every other voter is party 2 (purple). In this
setup, every roughly vertical partition gives one block to each party,
and every roughly horizontal partition gives both blocks to party 1.
The horizontal and vertical partitions are represented by dashed lines.

political compactness measurements, notions of population
balance, and other considerations, such as adherence to voting
rights laws. These other scores come with their own compli-
cations. For instance, the Polsby-Popper compactness score
is famously susceptible to the coastline paradox [52], while
other common compactness scores interact with map projec-
tions used in practice to calculate them in ways that can flip
the preference ordering [51]. We view our study not as a com-
prehensive evaluation of potential distributions over partitions
for use in redistricting analysis, but rather as an illustration
of subtle challenges that arise when using these methods in
practice—many of which are well known in related statistical
physics applications.

VI. CONCLUSION

As methods from statistical physics continue to be incorpo-
rated into political redistricting analysis, domain knowledge
of statistical physics becomes increasingly relevant to de-
veloping best practices. To support collaboration, we outline
some challenging open questions at the interplay of redistrict-
ing and statistical physics.

Statistical physics motivates many questions in redistrict-
ing analysis, including the following:

(1) Are there phase transitions in the Gibbs energy scores
mentioned in Sec. III B? For instance, what about when other
compactness scores are used? Does phase transition in other
compactness scores, if it exists, interact with the effects of
map projections studied in [51]

(2) Besides the βλ distributions, are there other analyti-
cally approachable distributions on the space of connected
partitions of the grid graph?

(3) Are certain natural distributions over connected par-
titions of the grid graph, such as max entropy distributions,
efficiently sampleable?

(4) We know from statistical physics that there are certain
features of models that are independent of the lattice being
used. Although it would be surprising, perhaps there are sim-
ilarly universal properties of outlier analysis?

(5) Can we construct distributions over districting plans
with fewer phase transitions or dependencies on discretiza-
tion?

(6) How does the interaction between phase transitions,
connective constants, and population balance influence mix-
ing time of algorithms used to sample districting plans?

(7) In physics, Glauber dynamics-style chains are used
with simulated tempering. Some redistricting studies, such
as [7], use this method. Can tempering weights on the popu-
lation balance criterion, for instance, be chosen so as to make
the bottlenecks we identified in the flip walk on the grid graph
disappear? We note that in general the problem of uniformly
sampling balanced connected partitions is NP-hard [18], but
there are no known theoretical results forbidding uniform
sampling from connected partitions of grid graphs.

(8) Recall that n denotes the number of steps used for the√
ε-test. Given that results show that large n can change the

output of the
√

ε-test, what is a principled way to pick n in
practice? For a given choice of n and some real-world data,
is it possible to beat the test by finding a gerrymandered map
surrounded, in the sense of the evolution of the Markov chain,
by gerrymandered maps?

Redistricting also motivates statistical physics style ques-
tions, such as:

(1) What is the influence of population balance on phase
transitions in subcritical connected partitions of the grid?

(2) Is it possible to efficiently sample from self-avoiding
walks in the n × n grid graph according to the βλ distribution?

(3) When the endpoints are held fixed, does the flip walk
mix rapidly at critical fugacity?

(4) What is the correct way to generalize the connective
constant to irregular lattice-like graphs?

(5) How much of the population balance distribution in the
critical fugacity case of Fig. 13 can calculated asymptotically
via Schramm-Loewner evolution? See [56] for some discus-
sion.

(6) Is a typical connected partition of the grid approxi-
mately balanced? See [57] for some discussion.

(7) Is there a scaling limit of the distribution of con-
nected k-partitions of the n × n grid graph, with score function
βλ(P) = λcut(P) and λ = 1/μ, where μ is the connective con-
stant of the grid? What about just the 2-partition case, with
or without population balance? If so, can discretizations of
it be sampled directly, as is the case with Schramm-Loewner
evolution [58]
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