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Abstract
Apattern is called universal in another collection of sets,
when every set in the collection contains some linear
and translated copy of the original pattern. Paul Erdős
proposed a conjecture that no infinite set is universal in
the collection of sets with positive measure. This paper
explores an analogous problem in the topological set-
ting. Instead of setswith positivemeasure,we investigate
the collection of dense 𝐺𝛿 sets and the collection of
generic sets (dense 𝐺𝛿 and complement has Lebesgue
measure zero). We refer to such pattern as topologi-
cally universal and generically universal, respectively. It
is easy to show that any countable set is topologically
universal, while any set containing an interior cannot
be topologically universal. In this paper, we will show
that Cantor sets on ℝ𝑑 are not topologically universal
and Cantor sets with positive Newhouse thickness on
ℝ1 are not generically universal. This gives a positive
partial answer to a question by Svetic concerning the
Erdős similarity problem on Cantor sets. Moreover, we
also obtain a higher dimensional generalization of the
generic universality problem.

MSC 2020
28A80 (primary)

1 INTRODUCTION

A question that frequently arises has the following generic form: Does every ‘large’ (or unstruc-
tured) set possess a ‘copy’ of a ‘small’ (or structured) set? For example, Erdős and Turán
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2 GALLAGHER et al.

conjectured that every 𝑋 ⊂ ℕ of positive density (large, unstructured) contains a copy of the
set {1, 2, … , 𝑛} (small, structured) in the form of an arithmetic progression. The conjecture was
famously proven true by Szemerédi [20, 21]. In a similar vein, Steinhaus proved that the differ-
ence set of a set of positive measure in ℝ (large) contains a scaled copy of the interval (−1, 1)
(small) [18].
The words ‘large’, ‘small’, and ‘copy’ can take on multiple forms, so we begin by defining some

of our terms.

Definition 1.1. Let 𝐸 ⊂ ℝ𝑑 be a set and let  be a collection of subsets in ℝ𝑑.

(1) An affine copy of 𝐸 is a copy of the form 𝑡 + 𝑇(𝐸) where 𝑡 ∈ ℝ𝑑 and 𝑇 is an invertible linear
transformation on ℝ𝑑. A similar copy of 𝐸 is an affine copy such that 𝑇 = 𝜆𝑂where 𝜆 > 0 is
a scalar and 𝑂 is an orthogonal transformation.

(2) We say that 𝐸 is universal in  if for every 𝐾 ∈  , there exists an affine copy of 𝐸, 𝑡 + 𝑇(𝐸),
such that 𝑡 + 𝑇(𝐸) ⊂ 𝐾.

(3) We say that 𝐸 is measure-universal if 𝐸 is universal in  , where  is taken to be the
collection of all Lebesgue measurable set with positive Lebesgue measure.

In one dimension, affine copies and similar copies coincide and they are of the form 𝑡 + 𝜆𝐸

where 𝑡 ∈ ℝ and 𝜆 ≠ 0.Many problems inmathematics can be formulated in terms of universality.
Szemerédi’s theorem then can be stated as: the set {1, 2, … , 𝑛} is universal in the collection of sets
of positive density in ℕ. The Toeplitz square peg problem asserted that every Jordan curve admits
four points on the curve forming a square. Formulated in our notation and interpreting univer-
sality in terms of similarity copy, it means that the unit square corners {(0, 0), (1, 0), (0, 1), (1, 1)}
are universal in the collection of all Jordan curves. The problem was recently solved for smooth
Jordan curves [11].
Our notion of universality was first introduced by Kolountzakis [13], in which the goal was to

study the famous Erdős similarity conjecture.
Conjecture (Erdős): There is no set of infinite cardinality that is measure-universal.
Steinhaus [18] first showed that finite sets are measure-universal. This motivated Paul Erdős to

pose the conjecture back in 1974 and he offered $100 for solving this problem. The conjecture is
still open; for a survey of the problem, one can refer to [19]. Let us summarize some progress here.
With a simple observation, we can see that the conjecture can be resolved in its full generality if
we can show that all positive decreasing sequences whose limit is zero are not measure-universal.
Falconer [7] made a substantial progress by showing that slowly decaying sequences {𝑥𝑛 ∶ 𝑛 ∈ ℕ}
in the sense that

lim inf
𝑛→∞

𝑥𝑛
𝑥𝑛+1

= 1

are not measure-universal. Bourgain [2] demonstrated that the sum-set 𝑆1 + 𝑆2 + 𝑆3 of any three
infinite sets 𝑆1, 𝑆2, 𝑆3 cannot be measure-universal. Kolountzakis [13] demonstrated using prob-
abilistic arguments that certain set with large gaps cannot be measure-universal. Currently it is
still an open question whether or not exponential decaying sequences such as {2−𝑛} are measure-
universal. Cruz, the second-named author, and Pramanik recently constructed a Cantor set 𝐾
such that the set of Erdős points in 𝐾, that is,

{𝑥 ∈ 𝐾 ∶ ∀𝛿 ≠ 0, 𝑥 + 𝛿{2−𝑛} ⊄ 𝐾},
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ON A TOPOLOGICAL ERDŐS SIMILARITY PROBLEM 3

hasHausdorff dimension 1. If one could show that the above set could be of positive Lebesguemea-
sure, the Erdős similarity problem will be solved for {2−𝑛}. Their result also works on sequences
which do not reach super-exponential decay [4].

1.1 Main results

Themain purpose of this paper is to study a topological version of the Erdős similarity problem. If
we regard a set of positive Lebesgue measure as measure-theoretically large, then a dense 𝐺𝛿 set
will be regarded as topologically large. Recall that a𝐺𝛿 set is a set𝐺 that can bewritten as countable
intersection of open sets. If each open set is dense in ℝ𝑑, then the well-known Baire category
theorem shows that 𝐺 is a dense and uncountable set. There is no relation between sets with
positive Lebesgue measure and dense 𝐺𝛿 sets. A fat Cantor set has positive Lebesgue measure,
but is nowhere dense. On the other hand, the set of all Liouville’s numbers is a dense 𝐺𝛿 but with
Lebesgue measure zero (Hausdorff dimension zero indeed).

Definition 1.2.

(1) We say that a set 𝐸 ⊂ ℝ𝑑 is topologically universal if 𝐸 is universal in the collection of all
dense 𝐺𝛿 sets in ℝ𝑑.

(2) We say that a set 𝐸 ⊂ ℝ𝑑 is generically universal if 𝐸 is universal in the collection of all
dense 𝐺𝛿 sets 𝐺 such that𝑚(ℝ𝑑 ⧵ 𝐺) = 0 in ℝ𝑑 (Here𝑚 denotes the Lebesgue measure).

In the first definition, we are interested in what set is universal for topologically large sets. In
the second definition, we notice that𝑚(𝐺) = ∞, so we are interested in what set is universal for
both measure-theoretically and topologically large sets (such sets are sometimes referred to as
generic sets, which is the reason why we choose this definition).
It is a simple observation from the Baire Category theorem that all countable sets are topolog-

ically universal. On the other hand, a set containing an interior point cannot be topologically or
generically universal because there are dense 𝐺𝛿 sets with full Lebesgue measures with empty
interior. As any affine copy of a set with interior must have interior, a dense 𝐺𝛿 set with empty
interior cannot contain any such affine copy. Hence, our focus will be on whether nowhere dense
sets are topologically universal. Let us first make precise the meaning of Cantor set in our setting.

Definition 1.3. 𝐸 is a Cantor set in ℝ𝑑 if it is a totally disconnected, perfect, and compact subset
of ℝ𝑑.

Because of the existence of 𝐺𝛿 sets that have Hausdorff dimension zero, by monotonicity of
Hausdorff measures, all sets of positive Hausdorff dimension cannot be contained inside such
a 𝐺𝛿 set, and hence sets of positive Hausdorff dimension are topologically non-universal. Our
first theorem is to show that by considering arbitrary dimension functions, no Cantor sets are
topologically universal.

Theorem 1.4. For any Cantor set 𝐸 ⊂ ℝ𝑑, there exists a dense 𝐺𝛿 set such that it does not contain
an affine copy of 𝐸. Consequently, there do not exist any topologically universal Cantor sets on ℝ𝑑 .
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4 GALLAGHER et al.

We now turn to study generic universality of Cantor sets. Because 𝑚(ℝ𝑑 ⧵ 𝐺) = 0 for any
generic 𝐺𝛿 set,𝑚(𝐺)must be infinity and thus those arbitrarily small-dimensional dense 𝐺𝛿 sets
no longer exist. Generic universality is also a closer analog to the Erdős similarity conjecture
because we now require the sets of interest having positive Lebesgue measure.
We first focus on Cantor sets inℝ1. In addition to Hausdorff dimension, Newhouse thickness of

a Cantor set (see Section 3 for the precise definition) has been another useful quantity to describe
the size of Cantor sets. In particular, the gap lemma provides a natural sufficient condition for two
thick Cantor sets to intersect. Our main theorem is the following.

Theorem 1.5. There exists a dense 𝐺𝛿 set 𝐺 with𝑚(ℝ ⧵ 𝐺) = 0 such that for all Cantor sets 𝐽 with
positive Newhouse thickness, 𝐺 does not contain an affine copy of 𝐽.
As a consequence, Cantor sets on ℝ1 with positive Newhouse thickness are not generically univer-

sal.

Our theorem also tells us something about the measure non-universality of Cantor sets.
Although the Erdős similarity conjecture can be resolved if we can show that all decreasing
sequence are not universal, it is not even an easy question to show that a Cantor set is measure
non-universal. Indeed, Svetic [19] proposed the following stronger question in this regard. ‘Is it
true that for every uncountably infinite set, 𝐸, of real numbers, there exists 𝑆 ⊂ [0, 1] of full measure
that does not contain an affine copy of 𝐸?’ Notice that if a set is generically non-universal, then it
must be measure non-universal.
Our Theorem 1.5 now answers Svetic’s question in a very strong way. There exists a fixed set,

namely, 𝑆 = 𝐺 ∩ [0, 1]where 𝐺 is defined in Theorem 1.5, of full Lebesgue measure in [0,1] which
does not contain affine copies of any Cantor sets with positive thickness.
Wenow consider higher dimensions. First, one can show that a set containing a path-connected

component cannot be generically universal (see Proposition 5.1). Therefore, ourmain interest will
be focused on totally disconnected Cantor set. There has been recent work on generalizing the gap
lemma into high dimension (see, for example, [8]). However, their results do not seem to adjust
into our situation. Instead, we consider the projection of the Cantor set onto the one-dimensional
coordinate axis. Newhouse thickness for any compact sets can be defined easily (see Section 3).
We have the following definition.

Definition 1.6. Let 𝐸 be a Cantor set on ℝ𝑑. We say that 𝐸 is Newhouse projectively thick if
for all invertible linear transformations 𝑇, the orthogonal projection of 𝑇(𝐸) onto the 𝑥1-axis has
positive Newhouse thickness.

We now have the following theorem.

Theorem 1.7. Let 𝐸 be a Cantor set on ℝ𝑑 that is Newhouse projectively thick. Then 𝐸 is not
generically universal.

This theorem covers many examples of Cantor sets. We will show that every self-similar set
on ℝ𝑑, not lying on a hyperplane, whose linear parts are rotation-free, will be Newhouse projec-
tively thick. We note that there has been intensive research about the dimensional properties of
projections of Cantor sets (for a survey, see, for example, [9]), but the properties of Newhouse
thickness along orthogonal projections that we present here appears to be new. We conjecture
that all self-similar or self-affine sets, not lying on a hyperplane, are Newhouse projectively thick.
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ON A TOPOLOGICAL ERDŐS SIMILARITY PROBLEM 5

1.2 Some discussion and open problems

Let us summarize our results and other known results in the following table.

Measure universal Topologically universal Generically universal
Finite sets Yes Yes Yes
Countably infinite sets Unknown Yes Yes
Cantor sets on ℝ1 Unknown No— Theorem 1.4 No∗ —Theorem 1.5
Cantor sets on ℝ𝑑 , 𝑑 > 1 Unknown No— Theorem 1.4 No∗ —Theorem 1.7
Sets with interior No No No

In the table, No∗ indicates a partial result established in this paper. Theorems 1.5 and 1.7 refer
to Cantor sets with positive Newhouse thickness on ℝ1 and Newhouse projectively thick Cantor
sets on ℝ𝑑 are not generically universal. It provides evidence that Cantor sets are unlikely to be
generically universal. We believe that the following may be true, which draws an analogue of the
Erdős similarity conjecture for generic sets.

Conjecture 1.8. There are no generically universal Cantor sets on ℝ𝑑 .

It is also reasonable that the following conjecture draws a parallel analogy of the Erdős
similarity conjecture in the purely topological non-measure-theoretic setting.

Conjecture 1.9. There are no uncountable topologically universal sets on ℝ𝑑 .

Unfortunately, Theorem 1.4 does not imply the validity of Conjecture 1.9. This is because in
the realm of descriptive set theory, it is known that with the axiom of choice, one can construct
a so-called Bernstein set [12, p. 48], in which neither the set nor its complement contain a perfect
set. That is, the set contains no perfect subset and is uncountable. This means that we cannot use
Theorem 1.4 to conclude that Bernstein sets are topologically non-universal. It is unclear to us
whether Conjecture 1.9 is even decidable within the ZFC (Zermelo-Fraenkel wth Choice) axioms
of set theory. Nonetheless, despite such a pathological example, every uncountable Borel set (or
more generally analytic set) of ℝ𝑑 contains a perfect subset (see [12, p. 85, 88]), so they will not be
topologically universal.
The paper is organized as follows.We prove Theorem 1.4 in Section 2.Wewill define Newhouse

thickness for compact sets of ℝ1 in Section 3. We will prove our theorems on ℝ1 in Section 4 and
then theorems on ℝ𝑑 in Section 5.

2 TOPOLOGICAL NON-UNIVERSALITY OF CANTOR SETS

A function ℎ is called a dimension function/gauge function if ℎ ∶ [0, 1] → [0,∞) is non-
decreasing, continuous and ℎ(0) = 0. The ℎ-Hausdorff measure is the translation-invariant Borel
measure such that

ℎ(𝐸) = lim
𝛿→0

inf

{
∞∑
𝑖=1

ℎ(|𝑈𝑖|) ∶ 𝐸 ⊂ ∞⋃
𝑖=1

𝑈𝑖, |𝑈𝑖| ⩽ 𝛿},
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6 GALLAGHER et al.

where |𝑈| denotes the diameter of 𝑈. If ℎ(𝑥) = 𝑥𝑠, then ℎ is the standard 𝑠-dimensional
Hausdorff measure.

Proposition 2.1. For any dimension function ℎ, there always exist a dense𝐺𝛿 set𝐺 onℝ𝑑 such that
ℎ(𝐺) = 0.

Proof. For any dimension function ℎ, ℎ−1 may not exist since ℎ may not be strictly increasing.
However, we define

𝑊(𝑠) = inf {𝑡 > 0 ∶ ℎ(𝑡) > 𝑠} = sup{𝑡 > 0 ∶ ℎ(𝑡) ⩽ 𝑠}.

Then we have ℎ(𝑊(𝑠)) = 𝑠. Moreover,𝑊 is strictly increasing whence𝑊(𝑠) > 0 for all 𝑠 > 0. Let
us now enumerate the rationals ℚ𝑑 = {𝑟1, 𝑟2, …}. Consider the following dense 𝐺𝛿 set

𝐺 =

∞⋂
𝑘=1

⎛⎜⎜⎝
∞⋃
𝑖=1

(
𝑟𝑖 −

𝑊(2−(𝑖+𝑘))

2
√
𝑑

, 𝑟𝑖 +
𝑊(2−(𝑖+𝑘))

2
√
𝑑

)𝑑⎞⎟⎟⎠.
Then the diameter of the open squares inside the union is𝑊(2−(𝑖+𝑘)), so

ℎ(𝐺) ⩽

∞∑
𝑖=1

ℎ(𝑊(2−(𝑖+𝑘))) =

∞∑
𝑖=1

2−(𝑖+𝑘) = 2−𝑘.

As 𝑘 is arbitrary,ℎ(𝐺) = 0. The proof is complete. □

We need a result from Rogers [16, p.67].

Proposition 2.2. Let Ω be an uncountable complete separable metric space. Then there exists a
compact perfect set 𝐶 and a dimension function ℎ such that

0 < ℎ(𝐶) < ∞.

Consequently, suppose that a compact set 𝐾 in a metric space satisfiesℎ(𝐾) = 0 for all dimension
functions ℎ. Then 𝐾 is a countable set.

We remark that in [16], dimension functions were defined to be right-continuous, but if we
inspect the proof on page 65 in the book carefully, it is clear that we can construct ℎ to be con-
tinuous for the first statement. For the second statement, we note that if 𝐾 is uncountable and
compact, then 𝐾 contains a perfect subset Ω. Applying the first statement, we have a perfect set
𝐶 ⊂ Ω ⊂ 𝐾 withℎ(𝐶) > 0 for some dimension function ℎ which leads to a contradiction.
We should also remark, on the other hand, that there exists a Cantor set 𝐾 on ℝ1 such that for

all dimension functions ℎ, eitherℎ(𝐾) = 0 or∞ [5]. See also [3] for a recent survey. Nonetheless,
in this case, we can still extract a sub-Cantor set of 𝐾 with finite positive Hausdorff measure for
some gauge function ℎ by Proposition 2.2. It means thatℎ(𝐾) = ∞.
Heuristically, to prove Theorem 1.4, we just take a suitable gauge function and a dense 𝐺𝛿 set

according to Proposition 2.1. Then the monotonicity of measure immediately leads to a contradic-
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ON A TOPOLOGICAL ERDŐS SIMILARITY PROBLEM 7

tion.However, for general dimension functions, we do not have a dilation formula for all invertible
linear transformations. Therefore, we need the following lemma.
Recall that for any invertible linear transformation 𝑇, ‖𝑇‖ denotes the operator norm of 𝑇 ∶

ℝ𝑑 → ℝ𝑑 with ℝ𝑑 endowed with the Euclidean norm, that is,

‖𝑇𝑥‖ ⩽ ‖𝑇‖‖𝑥‖
holds for all 𝑥 ∈ ℝ𝑑.

Lemma 2.3. Let 𝐸 ⊂ ℝ𝑑 be a Borel set, ℎ a dimension function, and let 𝑐 > 0. Then the dimension
function ℎ𝑐 = ℎ(𝑐𝑥) satisfies

ℎ𝑐 (𝑇(𝐸)) ⩾ ℎ(𝐸)

for all 𝑇 such that ‖𝑇−1‖ ⩽ 𝑐.
Proof. First, from a direct observation we see that ℎ𝑐(𝑥) = ℎ(𝑐𝑥) is a dimension function. Let 𝑇
such that ‖𝑇−1‖ ⩽ 𝑐. We note that any covering ⋃∞

𝑖=1 𝑉𝑖 of 𝑇(𝐸) implies that
⋃∞
𝑖=1 𝑇

−1(𝑉𝑖) is a
covering of 𝐸, so

ℎ(𝐸) ⩽

∞∑
𝑖=1

ℎ(|𝑇−1𝑉𝑖|).
But from the definition of ‖𝑇−1‖, the diameters satisfy

|𝑇−1𝑉𝑖| ⩽ ‖𝑇−1‖|𝑉𝑖| ⩽ 𝑐|𝑉𝑖|.
Hence,

ℎ(𝐸) ⩽

∞∑
𝑖=1

ℎ(|𝑇−1𝑉𝑖|) ⩽ ∞∑
𝑖=1

ℎ(𝑐|𝑉𝑖|) = ∞∑
𝑖=1

ℎ𝑐(|𝑉𝑖|).
We now take infimum among all covers and obtain our desired conclusion. □

Proof of Theorem 1.4. Let𝐸 be aCantor set onℝ𝑑. By Proposition 2.2,we can find a dimension func-
tion ℎ such thatℎ(𝐸) > 0. For each 𝑛 ∈ ℕ, let us take the dimension function ℎ𝑛 in Lemma 2.3
such thatℎ𝑛 (𝑇(𝐸)) ⩾ ℎ(𝐸) > 0 whenever ‖𝑇−1‖ ⩽ 𝑛.
Now using Proposition 2.1, we can find a dense 𝐺𝛿 set 𝐺𝑛 such thatℎ𝑛 (𝐺𝑛) = 0. By the Baire

Category theorem, 𝐺 =
⋂∞
𝑛=1 𝐺𝑛 is a dense 𝐺𝛿 set. We now claim that this 𝐺 cannot contain any

affine copy of the Cantor set 𝐸. Indeed, suppose that 𝑡 + 𝑇(𝐸) is contained in𝐺. Let 𝑛 ∈ ℕ be such
that ‖𝑇−1‖ ⩽ 𝑛, then 𝑡 + 𝑇(𝐸) ⊂ 𝐺𝑛. By taking ℎ𝑛 Hausdorff measure, we find a contradiction
sinceℎ𝑛 (𝐺𝑛) = 0, but

ℎ𝑛 (𝑡 + 𝑇(𝐸)) = ℎ𝑛 (𝑇(𝐸)) > 0

by Lemma 2.3. □
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8 GALLAGHER et al.

U
u

U ′

U1 U2

C

F IGURE 1 At point 𝑢, we move to the right until we hit another gap of longer length. The interval traveled
is the bridge 𝐶. Note that the Bridge contains gaps of smaller length than 𝑈 such as 𝑈1 and 𝑈2 in the figure.

3 PRELIMINARIES ON NEWHOUSE THICKNESS

The proof of our theorems on generic universality relies on the Newhouse gap lemma. The pur-
pose of this section is to define the thickness and state the gap lemma that is necessary for our
proof. The definition of thickness and the gap lemma we use were first introduced by Newhouse
[14]. Our definition below is taken from the book of Palis and Takens [15]. We first need to define
the gaps and bridges of Cantor sets in order to define Newhouse thickness.

Definition 3.1 (Gap). Let𝐾 be a Cantor set onℝ1. A gap of𝐾 is a connected component ofℝ ⧵ 𝐾.
A bounded gap is a bounded connected component of ℝ ⧵ 𝐾.

We now define the bridge of 𝐶 of Cantor set 𝐾. |𝐼| denotes the length of the interval 𝐼.
Definition 3.2 (Bridge, cf. [15]). Let 𝐾 be a Cantor set onℝ1 and𝑈 = (𝑢′, 𝑢) be a bounded gap of
𝐾 with boundary point 𝑢. The bridge 𝐶 of 𝐾 at 𝑢 is the maximal interval on the right-hand side
of 𝑢 such that:

∙ 𝑢 is a boundary point of 𝐶,
∙ 𝐶 contains no point of a gap 𝑈′ whose length |𝑈′| ⩾ |𝑈|.
We can define analogously the bridge for 𝑢′ by considering the maximal interval on the left-hand
side of 𝑢′ with the same property.

For clarity, Figure 1 shows that there may be smaller bounded gaps contained in 𝐶.
We use this notion to define the Newhouse Thickness. Intuitively the thickness of a Cantor set

can be thought of as the infimum of ratios between the bounded gaps and the bridges.

Definition 3.3 (Newhouse thickness for Cantor sets [15]). TheNewhouse Thickness of 𝐾 at 𝑢
is defined as

𝜏(𝐾, 𝑢) =
|𝐶||𝑈| .

Moreover, let be the set of all boundary points of bounded gaps in the Cantor set, the thickness
of the entire Cantor set is

𝜏(𝐾) = inf
𝑢∈

𝜏(𝐾, 𝑢)
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ON A TOPOLOGICAL ERDŐS SIMILARITY PROBLEM 9

We will consider projections of Cantor sets in higher dimension onto the 𝑥1-axis. Such projec-
tions may not be perfect or may contain intervals, so we need to define the Newhouse thickness
for general compact sets of ℝ1.
We first recall some terminologies in point set topology [17]. Let𝐾 ⊂ ℝ1 be a compact set; 𝑥 ∈ 𝐾

is called a condensation point of𝐾 if every open neighborhood of 𝑥 contains uncountablymany
points of 𝐾. It is known that the set of all condensation points of 𝐾 is a perfect set inside 𝐾. We
call the set of all condensation points of 𝐾 the perfect part of 𝐾.

Definition 3.4 (Newhouse thickness for general compact sets). Let𝐾 be a compact set onℝ1 and
let 𝑃𝐾 be the perfect part of 𝐾. We now define

𝜏(𝐾) =

⎧⎪⎨⎪⎩
0 if 𝑃𝐾 = ∅
∞ if 𝑃𝐾 contains an interval
𝜏(𝑃𝐾) otherwise.

Example 3.5 (Newhouse thickness of the 𝑁-digit expansion Cantor set). Let 𝑁 ⩾ 2 and let 𝑗 ∈
{1, … ,𝑁 − 2}. Define 𝐾 to be the self-similar Cantor set by dividing [0,1] into 𝑁 intervals of equal
length, deleting the interval [ 𝑗

𝑁
,
𝑗+1

𝑁
], and repeating the process. Then it is well known that 𝐾

consists of all real numbers whose 𝑁-adic expansion omit the digit 𝑗:

𝐾 =

{
∞∑
𝑘=1

𝑑𝑘

𝑁𝑘
∶ 𝑑𝑘 ∈ {0, 1, … ,𝑁 − 1} ⧵ {𝑗}

}
.

Now, each gap at the𝑛th iteration is of length𝑁−𝑛. TheNewhouse thickness is equal tomin{𝑗,𝑁 −
𝑗 − 1}.

We notice an important fact that Newhouse thickness is invariant under any invertible affine
transformation, 𝑥 ↦ 𝑡 + 𝜆𝑥 where 𝜆 ≠ 0, on ℝ1. The following lemma is now commonly referred
to as the newhouse gap lemma.

Lemma 3.6. (Newhouse gap lemma) Let 𝐾1, 𝐾2, ⊂ ℝ be Cantor sets with Newhouse thickness 𝜏1
and 𝜏2, respectively, and 𝜏1 ⋅ 𝜏2 ⩾ 1. Suppose that𝐾1 is not contained in one of the gaps of𝐾2 and𝐾2
is not contained in one of the gaps of 𝐾1. Then 𝐾1 ∩ 𝐾2 ≠ ∅.

For additional information about the intersection in the above gap lemma, one can refer to [1].
We are now ready to prove our main results.

4 GENERIC NON-UNIVERSALITY OF CANTOR SETS ON ℝ𝟏

We first prove ourmain theorems onℝ1. The construction of the𝐹𝜎 set in Equation (1) in the proof
below was motivated from [6], in which the authors constructed wavelets on a real line analogue
of Cantor sets. The set in Equation (1) is exactly the set they used.

Proof of Theorem 1.5. We will establish the following claim.
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10 GALLAGHER et al.

Claim: Given an 𝜖0 > 0, there exists a dense 𝐺𝛿 set 𝐺 with 𝑚(ℝ ⧵ 𝐺) = 0 such that for any
Cantor set 𝐽 with Newhouse thickness 𝜏(𝐽) ⩾ 𝜖0, 𝐺 contains no affine copy of 𝐽.
Assuming the claim, we construct a dense 𝐺𝛿 set 𝐺𝑛 of 𝑚(ℝ ⧵ 𝐺𝑛) = 0 with the property that

it does not contain affine copies of Cantor sets with Newhouse thickness at least 1∕𝑛. Then we
consider

𝐺 =

∞⋂
𝑛=1

𝐺𝑛.

Baire category theorem ensures that 𝐺 is a dense 𝐺𝛿 set. This 𝐺 will not contain any affine copy
of any Cantor sets with positive Newhouse thickness. Moreover, by the subadditivity of measure,
it is easy to see that𝑚(ℝ ⧵ 𝐺) = 0. This will complete the proof.
We now justify the claim. Let 𝜖0 > 0 be given. Consider the Cantor sets𝐾 defined by contraction

ratio 1∕𝑁 and digits {0, 1, … ,𝑁 − 1} ⧵ {(𝑁 − 1)∕2} and 𝑁 is odd as in Example 3.5, we know that
𝜏(𝐾) = 𝑁−1

2
. Therefore, we can find a sufficiently large 𝑁 so that 𝜏(𝐾) > 𝜖−1

0
.

Using the Cantor set 𝐾, we now define 𝑋 such that

𝑋 =
⋃
𝑛∈ℤ

⋃
𝓁∈ℤ

𝑁𝑛(𝐾 + 𝓁), (1)

creating an 𝐹𝜎 set. Now consider 𝑋𝑐. Because 𝐾𝑐 is open and dense and so is its translated and
dilated copies,𝐺 = 𝑋𝑐 is a dense𝐺𝛿 and𝑚(ℝ ⧵ 𝐺) = 𝑚(𝑋) = 0 as the Cantor set𝐾 we constructed
is of Lebesgue measure zero. We now show that for any Cantor set 𝐽 with 𝜏(𝐽) ⩾ 𝜖0, 𝐺 = 𝑋𝑐
contains no affine copy of 𝐽.
Suppose that we have some Cantor set 𝐽 with Newhouse thickness 𝜏(𝐽) ⩾ 𝜖0. Without loss of

generality, by rescaling and translation, we can assume that the convex hull of 𝐽 is equal to [0,1].
We now fix any affine copy 𝑡 + 𝜆𝐽 where 𝑡 ∈ ℝ and 𝜆 ≠ 0. There exists a unique 𝑛 such that

|𝜆| ∈ (𝑁𝑛−1,𝑁𝑛]. (2)

Similarly there exists a unique 𝓁 such that

𝑡 ∈ (𝓁𝑁𝑛, (𝓁 + 1)𝑁𝑛]. (3)

Let

𝐾1 = 𝑁
𝑛(𝐾 + 𝓁) and 𝐾2 = 𝑡 + 𝜆𝐽.

The convex hull of 𝐾1, is [𝓁𝑁𝑛, (𝓁 + 1)𝑁𝑛]. So, by our choice of 𝑡, we know that 𝐾2 is not in the
unbounded gap of 𝐾1 and vice versa.
Now we will check the construction of our Cantor sets such that each is not contained in the

bounded gaps of the other. For 𝑖 = 1, 2, we define 𝑂𝑖 to be the largest open bounded gap in 𝐾𝑖 and
𝐼𝑖 be the convex hull of 𝐾𝑖 . For 𝐾1, we have |𝑂1| = 𝑁𝑛−1 and |𝐼1| = 𝑁𝑛. For 𝐾2, we recall that the
convex hull of 𝐽 is [0,1]. Therefore, we have

|𝑂2| = |𝜆| ⋅ |𝑂𝐽| ⩽ |𝜆| and |𝐼2| = |𝜆|,
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ON A TOPOLOGICAL ERDŐS SIMILARITY PROBLEM 11

where 𝑂𝐽 is the largest open-bounded gap interval in 𝐽. Therefore by our construction in (2), the
following two inequalities hold:

|𝑂1| ⩽ |𝐼2| and |𝑂2| ⩽ |𝐼1|.
The inequalities imply that 𝐾1 is not fully contained in the bounded gaps of 𝐾2 and 𝐾2 is not fully
contained in the bounded gaps of 𝐾1.
Since Newhouse thickness is invariant under affine transformation on ℝ1, by our choice of 𝐾

we have that

𝜏(𝐾1)𝜏(𝐾2) = 𝜏(𝐾)𝜏(𝐽) ⩾ 𝜖
−1
0 ⋅ 𝜖0 = 1.

Therefore, the gap lemma in Lemma 3.6 implies that𝐾1 ∩ 𝐾2 is non-empty and hence𝐾2 = 𝑡 + 𝜆𝐽
intersects with one of the unions in𝑋 in (1). It implies that 𝑡 + 𝜆𝐽 cannot be fully contained in the
𝐺𝛿 set 𝐺 = 𝑋𝑐. This establishes the claim, and therefore, we conclude that 𝐽 is not topologically
universal. □

Remark 4.1. Wewould like to remark that Bourgain proved that aMinkowski sum of three infinite
sets cannot be measured universal. We can use this result to deduce that some Cantor sets of zero
Newhouse thickness cannot be measure universal. Let𝑁𝑗 ⩾ 2 be integers and𝑗 ⊂ {0, 1, … ,𝑁𝑗 −
1} be subsets of cardinality at least 2. Define

𝐶 =

{
∞∑
𝑗=1

𝑑𝑗

𝑁1 …𝑁𝑗
∶ 𝑑𝑗 ∈ 𝑗

}
. (4)

Then 𝐶 is not measure universal. Indeed, for 𝑘 = 0, 1, 2, let

𝑆𝑘 =

⎧⎪⎨⎪⎩
∑

𝑗≡𝑘(mod 3)

𝑑𝑗

𝑁1 …𝑁𝑗
∶ 𝑑𝑗 ∈ 𝑗

⎫⎪⎬⎪⎭.
By the result of Bourgain,𝐶 = 𝑆0 + 𝑆1 + 𝑆2 is a sum of three infinite sets and hence is notmeasure
universal. Moreover, if 𝑁𝑗 → ∞, then the Cantor set 𝐶 above has zero Newhouse thickness.
On the other hand, our Theorem 1.5 is independent from Bourgain’s result in the sense that our

construction of the avoiding set is explicit and of full Lebesguemeasure, while the set constructed
by Bourgain was not explicit and the Lebesgue measure is not known. Therefore, we still cannot
determine if all above Cantor sets are generically universal if we merely use Bourgain’s result.

5 GENERIC NON-UNIVERSALITY OF CANTOR SETS ON ℝ𝒅

We now turn to our results in higher dimensions. Our first goal is to show that some obvious
examples cannot be generically universal. They include a set with a path-connected component
and embedding a lower dimensional generically non-universal set into higher dimensions.
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12 GALLAGHER et al.

Proposition 5.1. If𝑋 ⊂ ℝ𝑑 contains a path-connected component, then𝑋 is not generically univer-
sal.

Proof. Let us consider the dense 𝐺𝛿 set that removes all the hyperplanes parallel that correspond
to the coordinate hyperplanes shifted by rationals:

𝐺 =

𝑑⋂
𝑖=1

⋂
𝑟∈ℚ

ℝ𝑑 ⧵
{
(𝑥1, … , 𝑥𝑑) ∈ ℝ

𝑑 ∶ 𝑥𝑖 = 𝑟
}
.

This is clearly a dense𝐺𝛿 set and𝑚(ℝ𝑑 ⧵ 𝐺) = 0 since there are only countablymany hyperplanes
and hyperplanes have 𝑑-dimensional Lebesguemeasure zero. Consider any affine copy of𝑋. Then
this affine copy must contain a path 𝐿. The projection of 𝐿 onto the coordinate axes will be non-
degenerate on some interval for at least one of the axes. Call this the 𝑖th axis. This interval will
contain a rational number 𝑟. Therefore 𝐿 will intersect with the coordinate plane, 𝑥𝑖 = 𝑟. In other
words this dense 𝐺𝛿 cannot contain 𝐿. Thus, 𝑋 cannot be topologically universal. □

The following simple lemma is needed in the following proofs.

Lemma 5.2. Let 𝐺1 and 𝐺2 be two dense 𝐺𝛿 sets in ℝ𝑑1 and ℝ𝑑2 , respectively. Then 𝐺1 × 𝐺2 is a
dense 𝐺𝛿 set in ℝ𝑑1+𝑑2 .

Proof. Suppose that we write 𝐺1 =
⋂∞
𝑛=1 𝑂𝑛 and 𝐺2 =

⋂∞
𝑛=1 𝑂

′
𝑛 where 𝑂𝑛 and 𝑂

′
𝑛 are open dense

sets in ℝ𝑑1 and ℝ𝑑2 , respectively. The lemma follows immediately by observing that

𝐺1 × 𝐺2 =

∞⋂
𝑛=1

∞⋂
𝑚=1

𝑂𝑛 × 𝑂
′
𝑚. □

Proposition 5.3. Let 0 < 𝑘 < 𝑑 be two positive integers. Suppose that 𝐸 ⊂ ℝ𝑘 is generically non-
universal inℝ𝑘 . Then 𝐸 × {0} cannot be generically universal inℝ𝑑 (0 here is the 𝑑 − 𝑘-dimensional
zero vector).

Proof. Let 𝐞𝑖 be the canonical coordinate basis in ℝ𝑑 and let𝑊 = ℝ𝑘 × {0}. By our assumption,
we can find a dense 𝐺𝛿 set 𝐺0 ⊂ ℝ𝑘 such that it does not contain 𝑘-dimensional affine copies of
𝐸. Let 𝐺′

0
be any dense 𝐺𝛿 set in ℝ𝑑−𝑘 with𝑚(ℝ𝑑−𝑘 ⧵ 𝐺′0) = 0. Then 𝐺0 × 𝐺

′
0
is a dense 𝐺𝛿 in ℝ𝑑.

By Fubini’s theorem,𝑚((ℝ𝑘 ⧵ 𝐺0) × ℝ𝑑−𝑘) = 0, so is the other union.We letΠ𝑑,𝑘 be the collection
of all 𝑘-dimensional coordinate planes in ℝ𝑑. There are

(𝑑
𝑘

)
such planes. For each 𝑃 ∈ Π𝑑,𝑘, there

exists a permutation matrix 𝜎𝑃 such that

𝑃 = 𝜎𝑃(𝑊).

We now define

𝐺 =
⋂

𝑃∈Π𝑑,𝑘

𝜎𝑃(𝐺0 × 𝐺
′
0).
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ON A TOPOLOGICAL ERDŐS SIMILARITY PROBLEM 13

Note that

ℝ𝑑 ⧵ (𝐺0 × 𝐺
′
0) =

(
(ℝ𝑘 ⧵ 𝐺0) × ℝ

𝑑−𝑘
)
∪
(
ℝ𝑘 × (ℝ𝑑−𝑘 ⧵ 𝐺′0)

)
.

By Fubini’s theorem, 𝑚((ℝ𝑘 ⧵ 𝐺0) × ℝ𝑑−𝑘) = 0, so is the other set in the above union. As 𝜎𝑃 has
unit determinant, we obtain that𝑚(ℝ𝑑 ⧵ 𝐺) = 0.
To finish the proof, our next step is to show that𝐺 cannot contain any affine copies of𝐸 × {0}. To

see this, we argue by contradiction. Suppose that there exists an invertible linear transformation
𝑇 on ℝ𝑑 such that 𝑡 + 𝑇(𝐸) ⊂ 𝐺. Then the subspace

𝑇(𝑊) = span{𝑇𝐞1, … , 𝑇𝐞𝑘}

is 𝑘-dimensional and {𝑇𝐞1, … , 𝑇𝐞𝑘} forms a basis for 𝑇(𝑊), putting 𝑇 in matrix representation
under the canonical basis. The matrix

𝐴 =

⎛⎜⎜⎜⎝
| ⋯ |
𝑇𝐞1 ⋯ 𝑇𝐞𝑘| ⋯ |

⎞⎟⎟⎟⎠
is of column rank 𝑘. Hence, it has row rank 𝑘 as well. Therefore, there exists 𝑘-linearly indepen-
dent row vectors. Let  = {𝑖1, … , 𝑖𝑘} be the position of the row vectors of 𝐴 for which they are
linearly independent. Let 𝐴 be the square matrix whose rows are exactly the rows of 𝐴 at posi-
tions in . Then 𝐴 is invertible on ℝ𝑘. Moreover, if we consider the 𝑘-dimensional coordinate
plane 𝑃 at those 𝑥𝑖1 , … , 𝑥𝑖𝑘 axes and denote by 𝑃 the orthogonal projection onto 𝑃, then we have

𝑃(𝑡 + 𝑇(𝐸)) = 𝑃(𝑡) + 𝐴(𝐸)

and

𝑃(𝜎𝑃(𝐺0 × 𝐺
′
0)) = 𝐺0.

By the construction of 𝐺, 𝑡 + 𝑇(𝐸) ⊂ 𝜎𝑃(𝐺0 × 𝐺′0), meaning that 𝑃(𝑡) + 𝐴(𝐸) ⊂ 𝐺0. As 𝐴 is
invertible, we find an affine copy of 𝐸 inside 𝐺0, which is a contradiction. This completes the
proof. □

As we know already that the middle-third Cantor set is not generically universal, the above
proposition shows that it cannot be embedded to become generically universal in higher dimen-
sions either. Notice also that such an embedding of a Cantor set will never be Newhouse
projectively thick since the projection will always be a singleton in the orthogonal complement.
We are now ready to prove our main theorem on ℝ𝑑 stated in the introduction.

Proof of Theorem 1.7. Suppose that we have a Newhouse projectively thick Cantor set 𝐽 onℝ𝑑. We
now take 𝐺0 in Theorem 1.5 and construct

𝐺 = 𝐺0 ×⋯×⏟⏟⏟
𝑑-times

𝐺0.
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14 GALLAGHER et al.

Applying Lemma 5.2, 𝐺0 ×⋯ × 𝐺0 is a dense 𝐺𝛿 set in ℝ𝑑 and therefore 𝐺 is also a dense 𝐺𝛿 set.
With Fubini’s theorem, it is not difficult to show that ℝ𝑑 ⧵ 𝐺 has zero Lebesgue measure.
It remains to prove that 𝐺 has no affine copy of 𝐽. Assume to the contrary that 𝐺 contains an

affine copy of 𝐽 and denote it by 𝑡 + 𝑇(𝐽). Then

𝑡 + 𝑇(𝐽) ⊂ 𝐺0 ×⋯×⏟⏟⏟
𝑑-times

𝐺0.

Denote by 𝑃 the orthogonal projection onto the 𝑥1-axis. We have 𝑃[𝑡 + 𝑇(𝐽)] ⊂ 𝐺0. By linearity
we can express the orthogonal projection 𝑃[𝑡 + 𝑇(𝐽)] as 𝑃(𝑡) + 𝑃[𝑇(𝐽)]. We have that 𝐺0 contains
an affine copy of 𝑃[𝑇(𝐽)]. But 𝐽 is Newhouse projectively thick which implies that 𝜏(𝑃[𝑇(𝐽)]) > 0.
We obtain a contradiction since, by Theorem 1.5, 𝐺0 cannot contain any affine copies of 𝑃[𝑇(𝐽)].
This completes the proof. □

To conclude this paper, we consider a class of self-similar sets that are Newhouse projec-
tively thick. Recall that if we are given finitely many contractive similarity maps 𝜙𝑖 ∶ ℝ𝑑 → ℝ𝑑,
𝑖 = 1, … ,𝑁, such that

𝜙𝑖(𝑥) = 𝜌𝑖𝑂𝑖𝑥 + 𝑏𝑖,

where 0 < 𝜌𝑖 < 1, 𝑂𝑖 is an orthogonal transformation and 𝑏𝑖 ∈ ℝ𝑑, Φ = {𝜙𝑖 ∶ 𝑖 = 1, … ,𝑁} forms
an iterated function system (IFS) and there exists a unique non-empty compact set 𝐾 = 𝐾Φ
such that

𝐾 =

𝑁⋃
𝑖=1

𝜙𝑖(𝐾).

We say that the IFS is rotation-free if all 𝑂𝑖 are identity transformations. We also say that a self-
similar set is non-degenerate if it is not contained in any hyperplane of ℝ𝑑.

Example 5.4. All non-degenerate self-similar sets on ℝ𝑑 generated by rotation-free IFS must be
Newhouse projectively thick.

Proof. Let 𝑃 be the orthogonal projection onto the 𝑥1-axis and let 𝑇 be any invertible linear trans-
formation. We note that for a rotation-free IFS, the set 𝑃𝑇(𝐾) is still generated by a self-similar
IFS on ℝ1 with maps

𝜙𝑖(𝑥) = 𝜌𝑖𝑥 + 𝑃𝑇(𝑏𝑖).

Notice that the self-similar set is non-degenerate, meaning that 𝑃𝑇(𝐾) is not a singleton. The self-
similar set 𝑃𝑇(𝐾) is a compact perfect set. In Feng and Wu [10, Lemma 3.5], the authors showed
that all self-similar sets not lying on a hyperplane have a positive thickness 𝜏𝐹𝑊 defined in [10,
Definition 1.1]. On the other hand, it was claimed without proof in the paragraph after Defini-
tion 1.1 in [10] that if 𝑑 = 1, then 𝜏𝐹𝑊(𝐸) > 0 if and only if the Newhouse thickness 𝜏(𝐸) > 0. This
would have implied that 𝜏(𝑃𝑇(𝐾)) > 0.

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12776 by Iow

a State U
niversity Library, W

iley O
nline Library on [28/02/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



ON A TOPOLOGICAL ERDŐS SIMILARITY PROBLEM 15

For the self-containment of this paper, we justify the direction required in this proof in the
following claim.
Claim: If 𝑑 = 1, then 𝜏𝐹𝑊(𝐸) > 0 implies that 𝜏(𝐸) > 0.
To see this claim, [10, Definition 1.1] states that

𝜏𝐹𝑊(𝐸) = sup {𝑐 ⩾ 0 ∶ ∀𝑥 ∈ 𝐸, ∀𝑟 ∈ (0, |𝐸|], ∃ 𝑦 ∈ ℝ s.t. conv(𝐵(𝑥, 𝑟) ∩ 𝐸) ⊃ 𝐵(𝑦, 𝑐𝑟)}.

Here, |𝐸| is the diameter of 𝐸, conv(𝐾)means the convex hull of a set 𝐾, and 𝐵(𝑥, 𝑟) denotes the
Euclidean ball centered at 𝑥 of radius 𝑟. For each fixed 𝑥 ∈ 𝐸 and 𝑟 ∈ (0, |𝐸|], we define

𝜏𝐹𝑊(𝐸, 𝑥, 𝑟) = sup {𝑐 ⩾ 0 ∶ ∃ 𝑦 ∈ ℝ s.t. conv(𝐵(𝑥, 𝑟) ∩ 𝐸) ⊃ 𝐵(𝑦, 𝑐𝑟)}.

Then 𝜏𝐹𝑊(𝐸) = inf
𝑥∈𝐸

inf
𝑟∈(0,|𝐸|] 𝜏𝐹𝑊(𝐸, 𝑥, 𝑟).

Suppose that 𝜏𝐹𝑊(𝐸) > 0. Consider 𝑢 ∈  (using the notation as in Definition 3.3) where 𝑢 is
a boundary point of a bounded gap𝑈. Consider the open interval (𝑢 − |𝑈|, 𝑢 + |𝑈|). Then one of
the endpoints of conv(𝐵(𝑢, |𝑈|) ∩ 𝐸) is 𝑢. Let 𝐶 be the bridge of 𝑢 and without loss of generality
assume that 𝐶 is on the right-hand side of 𝑈.
If 𝑢 + |𝑈| ∈ 𝐶, then |𝐶| ⩾ |𝑈| and 𝜏(𝐸, 𝑢) ⩾ 1. If, however, 𝑢 + |𝑈| ∉ 𝐶, then because of the

definition of the bridge, 𝑢 + |𝑈| is in the first gap whose length is larger than |𝑈|. Hence,
conv(𝐵(𝑢, |𝑈|) ∩ 𝐸) = 𝐶 = 𝐵(𝑧, |𝐶|

2|𝑈| |𝑈|) for some center 𝑧. This means that 𝜏𝐹𝑊(𝐸, 𝑢, |𝑈|) =|𝐶|
2|𝑈| . Then

𝜏(𝐸, 𝑢) =
|𝐶||𝑈| = 2 ⋅ 𝜏𝐹𝑊(𝐸, 𝑢, |𝑈|) ⩾ 2 ⋅ 𝜏𝐹𝑊(𝐸) > 0.

Taking infimum among all 𝑢 ∈  , we show that 𝜏(𝐸) ⩾ min{2𝜏𝐹𝑊(𝐸), 1} > 0. This completes the
proof of the claim.
Coming back to the proof, we now know that all self-similar sets, not a singleton, on ℝ1 must

have a positive Newhouse thickness. So the self-similar set 𝑃𝑇(𝐾) has a positive Newhouse thick-
ness. This shows that all non-degenerate self-similar sets generated by rotation-free IFS must be
Newhouse projectively thick. □
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