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the collection of sets with positive measure. This paper
explores an analogous problem in the topological set-

the collection of dense G5 sets and the collection of
generic sets (dense G5 and complement has Lebesgue
measure zero). We refer to such pattern as topologi-
cally universal and generically universal, respectively. It
is easy to show that any countable set is topologically
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universal, while any set containing an interior cannot
be topologically universal. In this paper, we will show
that Cantor sets on R? are not topologically universal

Rojiav:

and Cantor sets with positive Newhouse thickness on
R! are not generically universal. This gives a positive
partial answer to a question by Svetic concerning the

Erd6s similarity problem on Cantor sets. Moreover, we
also obtain a higher dimensional generalization of the
generic universality problem.
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1 | INTRODUCTION

A question that frequently arises has the following generic form: Does every ‘large’ (or unstruc-
tured) set possess a ‘copy’ of a ‘small’ (or structured) set? For example, Erdés and Turan

© 2023 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

Bull. London Math. Soc. 2023;1-16. wileyonlinelibrary.com/journal/blms | 1

25URDY U0 2ANEAI) A[qEaLIdd A1 A POIDAOS AIE SO[OIIE VO 195 JO Sa[NI 10] AIBIQIT AUIUQ) AS[1AN U0


mailto:cklai@sfsu.edu
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12776&domain=pdf&date_stamp=2023-01-03

2 | GALLAGHER ET AL.

conjectured that every X C N of positive density (large, unstructured) contains a copy of the
set {1,2,...,n} (small, structured) in the form of an arithmetic progression. The conjecture was
famously proven true by Szemerédi [20, 21]. In a similar vein, Steinhaus proved that the differ-
ence set of a set of positive measure in R (large) contains a scaled copy of the interval (-1, 1)
(small) [18].

The words ‘large’, ‘small’, and ‘copy’ can take on multiple forms, so we begin by defining some
of our terms.

Definition 1.1. Let E C RY be a set and let X be a collection of subsets in R,

(1) An affine copy of E is a copy of the form ¢ + T(E) where t € R% and T is an invertible linear
transformation on R, A similar copy of E is an affine copy such that T = 10 where 1 > 0 is
a scalar and O is an orthogonal transformation.

(2) We say that E is universal in X if for every K € X, there exists an affine copy of E, t + T(E),
such that ¢t + T(E) C K.

(3) We say that E is measure-universal if E is universal in X, where X is taken to be the
collection of all Lebesgue measurable set with positive Lebesgue measure.

In one dimension, affine copies and similar copies coincide and they are of the form ¢ + 1E
wheret € Rand A # 0. Many problems in mathematics can be formulated in terms of universality.
Szemerédi’s theorem then can be stated as: the set {1, 2, ..., n} is universal in the collection of sets
of positive density in N. The Toeplitz square peg problem asserted that every Jordan curve admits
four points on the curve forming a square. Formulated in our notation and interpreting univer-
sality in terms of similarity copy, it means that the unit square corners {(0, 0), (1, 0), (0, 1), (1, 1)}
are universal in the collection of all Jordan curves. The problem was recently solved for smooth
Jordan curves [11].

Our notion of universality was first introduced by Kolountzakis [13], in which the goal was to
study the famous Erdés similarity conjecture.

Conjecture (Erdés): There is no set of infinite cardinality that is measure-universal.

Steinhaus [18] first showed that finite sets are measure-universal. This motivated Paul Erdés to
pose the conjecture back in 1974 and he offered $100 for solving this problem. The conjecture is
still open; for a survey of the problem, one can refer to [19]. Let us summarize some progress here.
With a simple observation, we can see that the conjecture can be resolved in its full generality if
we can show that all positive decreasing sequences whose limit is zero are not measure-universal.
Falconer [7] made a substantial progress by showing that slowly decaying sequences {x,, : n € N}
in the sense that

.. X
liminf — =1

are not measure-universal. Bourgain [2] demonstrated that the sum-set S; + S, + S; of any three
infinite sets S;, S, S; cannot be measure-universal. Kolountzakis [13] demonstrated using prob-
abilistic arguments that certain set with large gaps cannot be measure-universal. Currently it is
still an open question whether or not exponential decaying sequences such as {27} are measure-
universal. Cruz, the second-named author, and Pramanik recently constructed a Cantor set K
such that the set of Erdds points in K, that is,

{xeK:V8+0, x+6{27"} ¢ K},
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ON A TOPOLOGICAL ERDOS SIMILARITY PROBLEM | 3

has Hausdorff dimension 1. If one could show that the above set could be of positive Lebesgue mea-
sure, the Erdés similarity problem will be solved for {27"}. Their result also works on sequences
which do not reach super-exponential decay [4].

1.1 | Main results

The main purpose of this paper is to study a topological version of the Erdds similarity problem. If
we regard a set of positive Lebesgue measure as measure-theoretically large, then a dense G4 set
will be regarded as topologically large. Recall thata G5 setis a set G that can be written as countable
intersection of open sets. If each open set is dense in R¢, then the well-known Baire category
theorem shows that G is a dense and uncountable set. There is no relation between sets with
positive Lebesgue measure and dense G4 sets. A fat Cantor set has positive Lebesgue measure,
but is nowhere dense. On the other hand, the set of all Liouville’s numbers is a dense G5 but with
Lebesgue measure zero (Hausdorff dimension zero indeed).

Definition 1.2.

(1) We say that a set E C R? is topologically universal if E is universal in the collection of all
dense G sets in R,

(2) We say that a set E C R? is generically universal if E is universal in the collection of all
dense G sets G such that m(R% \ G) = 0 in R? (Here m denotes the Lebesgue measure).

In the first definition, we are interested in what set is universal for topologically large sets. In
the second definition, we notice that m(G) = oo, so we are interested in what set is universal for
both measure-theoretically and topologically large sets (such sets are sometimes referred to as
generic sets, which is the reason why we choose this definition).

It is a simple observation from the Baire Category theorem that all countable sets are topolog-
ically universal. On the other hand, a set containing an interior point cannot be topologically or
generically universal because there are dense G5 sets with full Lebesgue measures with empty
interior. As any affine copy of a set with interior must have interior, a dense G4 set with empty
interior cannot contain any such affine copy. Hence, our focus will be on whether nowhere dense
sets are topologically universal. Let us first make precise the meaning of Cantor set in our setting.

Definition 1.3. E is a Cantor set in R¢ if it is a totally disconnected, perfect, and compact subset
of R,

Because of the existence of G4 sets that have Hausdorff dimension zero, by monotonicity of
Hausdorff measures, all sets of positive Hausdorff dimension cannot be contained inside such
a Gy set, and hence sets of positive Hausdorff dimension are topologically non-universal. Our
first theorem is to show that by considering arbitrary dimension functions, no Cantor sets are
topologically universal.

Theorem 1.4. For any Cantor set E C RY, there exists a dense G5 set such that it does not contain
an affine copy of E. Consequently, there do not exist any topologically universal Cantor sets on R
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4 | GALLAGHER ET AL.

We now turn to study generic universality of Cantor sets. Because m(R¢ \ G) = 0 for any
generic G set, m(G) must be infinity and thus those arbitrarily small-dimensional dense G5 sets
no longer exist. Generic universality is also a closer analog to the Erdés similarity conjecture
because we now require the sets of interest having positive Lebesgue measure.

We first focus on Cantor sets in R!. In addition to Hausdorff dimension, Newhouse thickness of
a Cantor set (see Section 3 for the precise definition) has been another useful quantity to describe
the size of Cantor sets. In particular, the gap lemma provides a natural sufficient condition for two
thick Cantor sets to intersect. Our main theorem is the following.

Theorem 1.5. There exists a dense Gz set G with m(R \ G) = 0 such that for all Cantor sets J with
positive Newhouse thickness, G does not contain an affine copy of J.

As a consequence, Cantor sets on R! with positive Newhouse thickness are not generically univer-
sal.

Our theorem also tells us something about the measure non-universality of Cantor sets.
Although the Erdds similarity conjecture can be resolved if we can show that all decreasing
sequence are not universal, it is not even an easy question to show that a Cantor set is measure
non-universal. Indeed, Svetic [19] proposed the following stronger question in this regard. ‘Is it
true that for every uncountably infinite set, E, of real numbers, there exists S C [0, 1] of full measure
that does not contain an affine copy of E?’ Notice that if a set is generically non-universal, then it
must be measure non-universal.

Our Theorem 1.5 now answers Svetic’s question in a very strong way. There exists a fixed set,
namely, S = G N [0, 1] where G is defined in Theorem 1.5, of full Lebesgue measure in [0,1] which
does not contain affine copies of any Cantor sets with positive thickness.

We now consider higher dimensions. First, one can show that a set containing a path-connected
component cannot be generically universal (see Proposition 5.1). Therefore, our main interest will
be focused on totally disconnected Cantor set. There has been recent work on generalizing the gap
lemma into high dimension (see, for example, [8]). However, their results do not seem to adjust
into our situation. Instead, we consider the projection of the Cantor set onto the one-dimensional
coordinate axis. Newhouse thickness for any compact sets can be defined easily (see Section 3).
We have the following definition.

Definition 1.6. Let E be a Cantor set on R?. We say that E is Newhouse projectively thick if
for all invertible linear transformations T', the orthogonal projection of T(E) onto the x;-axis has
positive Newhouse thickness.

We now have the following theorem.

Theorem 1.7. Let E be a Cantor set on R that is Newhouse projectively thick. Then E is not
generically universal.

This theorem covers many examples of Cantor sets. We will show that every self-similar set
on RY, not lying on a hyperplane, whose linear parts are rotation-free, will be Newhouse projec-
tively thick. We note that there has been intensive research about the dimensional properties of
projections of Cantor sets (for a survey, see, for example, [9]), but the properties of Newhouse
thickness along orthogonal projections that we present here appears to be new. We conjecture
that all self-similar or self-affine sets, not lying on a hyperplane, are Newhouse projectively thick.
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ON A TOPOLOGICAL ERDOS SIMILARITY PROBLEM 5

1.2 | Some discussion and open problems

Let us summarize our results and other known results in the following table.

Measure universal Topologically universal Generically universal
Finite sets Yes Yes Yes
Countably infinite sets Unknown Yes Yes
Cantor sets on R! Unknown No — Theorem 1.4 No* — Theorem 1.5
Cantor sets on R4, d > 1 Unknown No — Theorem 1.4 No* — Theorem 1.7
Sets with interior No No No

In the table, No* indicates a partial result established in this paper. Theorems 1.5 and 1.7 refer
to Cantor sets with positive Newhouse thickness on R! and Newhouse projectively thick Cantor
sets on R? are not generically universal. It provides evidence that Cantor sets are unlikely to be
generically universal. We believe that the following may be true, which draws an analogue of the
Erdés similarity conjecture for generic sets.

Conjecture 1.8. There are no generically universal Cantor sets on RY.

It is also reasonable that the following conjecture draws a parallel analogy of the Erdds
similarity conjecture in the purely topological non-measure-theoretic setting.

Conjecture 1.9. There are no uncountable topologically universal sets on R,

Unfortunately, Theorem 1.4 does not imply the validity of Conjecture 1.9. This is because in
the realm of descriptive set theory, it is known that with the axiom of choice, one can construct
a so-called Bernstein set [12, p. 48], in which neither the set nor its complement contain a perfect
set. That is, the set contains no perfect subset and is uncountable. This means that we cannot use
Theorem 1.4 to conclude that Bernstein sets are topologically non-universal. It is unclear to us
whether Conjecture 1.9 is even decidable within the ZFC (Zermelo-Fraenkel wth Choice) axioms
of set theory. Nonetheless, despite such a pathological example, every uncountable Borel set (or
more generally analytic set) of R¢ contains a perfect subset (see [12, p. 85, 88]), so they will not be
topologically universal.

The paper is organized as follows. We prove Theorem 1.4 in Section 2. We will define Newhouse
thickness for compact sets of R! in Section 3. We will prove our theorems on R! in Section 4 and
then theorems on R? in Section 5.

2 | TOPOLOGICAL NON-UNIVERSALITY OF CANTOR SETS

A function h is called a dimension function/gauge function if 4 : [0,1] — [0, o) is non-
decreasing, continuous and 4(0) = 0. The h-Hausdorff measure is the translation-invariant Borel
measure such that

(9

HM(E) = lim in {Zhuuin Ec|JU. Ul < 5},

i=1 i=1

d 0 ‘0T1T6971

dny wouy

:sdY) SUOMIPUO)) puE SWwId T A 995 “[£207/20/8) U0 ATeIqrT SUIUQ AOTiA “ATeIqrT AUISIOAU IS AT AQ 92L71SWIA/Z] 1 1°01/10p/WOoK[IA"

Rojiav:

25URDY U0 2ANEAI) A[qEaLIdd A1 A POIDAOS AIE SO[OIIE VO 195 JO Sa[NI 10] AIBIQIT AUIUQ) AS[1AN U0



6 | GALLAGHER ET AL.

where |U| denotes the diameter of U. If h(x) = x%, then M" is the standard s-dimensional
Hausdorff measure.

Proposition 2.1. For any dimension function h, there always exist a dense G5 set G on R® such that
HMG) =0.

Proof. For any dimension function h, h~! may not exist since & may not be strictly increasing.
However, we define

W(s) =inf{t > 0 : h(t) > s} = sup{t > 0 : h(t) < s}.

Then we have h(W(s)) = s. Moreover, W is strictly increasing whence W(s) > 0 for all s > 0. Let
us now enumerate the rationals Q¢ = {r,, 75, ...}. Consider the following dense G set

d
© [ e W2+ W(z—(i+k))>
G = v — 1+ .
Y < 2vd 2vd

Then the diameter of the open squares inside the union is W(2-(+0)), so

Hh(G) < Z h(W(z—(Hk))) — 2 2—(i+k) — 2—k'
i=1

i=1
As k is arbitrary, H"(G) = 0. The proof is complete. O
We need a result from Rogers [16, p.67].

Proposition 2.2. Let Q be an uncountable complete separable metric space. Then there exists a
compact perfect set C and a dimension function h such that

0 < H"(C) < .

Consequently, suppose that a compact set K in a metric space satisfies H"(K) = 0 for all dimension
functions h. Then K is a countable set.

We remark that in [16], dimension functions were defined to be right-continuous, but if we
inspect the proof on page 65 in the book carefully, it is clear that we can construct & to be con-
tinuous for the first statement. For the second statement, we note that if K is uncountable and
compact, then K contains a perfect subset Q. Applying the first statement, we have a perfect set
C c Q c K with H"(C) > 0 for some dimension function h which leads to a contradiction.

We should also remark, on the other hand, that there exists a Cantor set K on R! such that for
all dimension functions h, either H"(K) = 0 or oo [5]. See also [3] for a recent survey. Nonetheless,
in this case, we can still extract a sub-Cantor set of K with finite positive Hausdorff measure for
some gauge function h by Proposition 2.2. It means that H"(K) = co.

Heuristically, to prove Theorem 1.4, we just take a suitable gauge function and a dense G5 set
according to Proposition 2.1. Then the monotonicity of measure immediately leads to a contradic-
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ON A TOPOLOGICAL ERDOS SIMILARITY PROBLEM | 7

tion. However, for general dimension functions, we do not have a dilation formula for all invertible
linear transformations. Therefore, we need the following lemma.
Recall that for any invertible linear transformation T, ||T|| denotes the operator norm of T :
R?Y - R? with R? endowed with the Euclidean norm, that is,
ITx|l < [Tl
holds for all x € RY.

Lemma 2.3. Let E C RY be a Borel set, h a dimension function, and let ¢ > 0. Then the dimension
function h, = h(cx) satisfies

H"(T(E)) > H"(E)
forall T such that |[T7'|| < c.
Proof. First, from a direct observation we see that h.(x) = h(cx) is a dimension function. Let T

such that ||T~!|| < c. We note that any covering | J;2, V; of T(E) implies that [ J>, T~!(V)) is a
covering of E, so

HM(E) < YL h(IT™Vy)).
i=1

But from the definition of ||T~!||, the diameters satisfy

TV < ITHNV ] < eVl

Hence,
HYE) < Y RATTVD < D h(elVih = Y h (VD).
i=1 i=1 i=1
We now take infimum among all covers and obtain our desired conclusion. O

Proofof Theorem 1.4. Let E be a Cantor set on R%. By Proposition 2.2, we can find a dimension func-
tion & such that H"(E) > 0. For each n € N, let us take the dimension function h, in Lemma 2.3
such that H"(T(E)) > H"(E) > 0 whenever | T~|| < n.

Now using Proposition 2.1, we can find a dense G set G,, such that H"«(G,) = 0. By the Baire
Category theorem, G = [, G, is a dense G set. We now claim that this G cannot contain any
affine copy of the Cantor set E. Indeed, suppose that ¢t + T(E) is contained in G. Let n € N be such
that ||T~!|| < n, then t + T(E) C G,,. By taking H"» Hausdorff measure, we find a contradiction
since H"(G,) = 0, but

H"(t + T(E)) = H"(T(E)) > 0

by Lemma 2.3. O
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8 GALLAGHER ET AL.

) —
Uy Us

FIGURE 1 Atpointu, we move to the right until we hit another gap of longer length. The interval traveled
is the bridge C. Note that the Bridge contains gaps of smaller length than U such as U, and U, in the figure.

3 | PRELIMINARIES ON NEWHOUSE THICKNESS

The proof of our theorems on generic universality relies on the Newhouse gap lemma. The pur-
pose of this section is to define the thickness and state the gap lemma that is necessary for our
proof. The definition of thickness and the gap lemma we use were first introduced by Newhouse
[14]. Our definition below is taken from the book of Palis and Takens [15]. We first need to define
the gaps and bridges of Cantor sets in order to define Newhouse thickness.

Definition 3.1 (Gap). Let K be a Cantor set on R!. A gap of K is a connected component of R \ K.
A bounded gap is a bounded connected component of R \ K.

We now define the bridge of C of Cantor set K. |I| denotes the length of the interval I.

Definition 3.2 (Bridge, cf. [15]). Let K be a Cantor set on R! and U = (u/, u) be a bounded gap of
K with boundary point u. The bridge C of K at u is the maximal interval on the right-hand side
of u such that:

* u is a boundary point of C,

* C contains no point of a gap U’ whose length |U’| > |U]|.

We can define analogously the bridge for u’ by considering the maximal interval on the left-hand
side of u’ with the same property.

For clarity, Figure 1 shows that there may be smaller bounded gaps contained in C.
We use this notion to define the Newhouse Thickness. Intuitively the thickness of a Cantor set
can be thought of as the infimum of ratios between the bounded gaps and the bridges.

Definition 3.3 (Newhouse thickness for Cantor sets [15]). The Newhouse Thickness of K at u

is defined as

C
(K, u) = H

Moreover, let U be the set of all boundary points of bounded gaps in the Cantor set, the thickness
of the entire Cantor set is

7(K) = ulglf/ (K, u)
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ON A TOPOLOGICAL ERDOS SIMILARITY PROBLEM | 9

‘We will consider projections of Cantor sets in higher dimension onto the x;-axis. Such projec-
tions may not be perfect or may contain intervals, so we need to define the Newhouse thickness
for general compact sets of R.

We first recall some terminologies in point set topology [17]. Let K C R! be a compact set; x € K
is called a condensation point of X if every open neighborhood of x contains uncountably many
points of K. It is known that the set of all condensation points of K is a perfect set inside K. We
call the set of all condensation points of K the perfect part of K.

Definition 3.4 (Newhouse thickness for general compact sets). Let K be a compact set on R! and
let Py be the perfect part of K. We now define

0 ifPy =0
T(K) =4 if Py contains an interval

7(Pr) otherwise.

Example 3.5 (Newhouse thickness of the N-digit expansion Cantor set). Let N > 2 and let j €
{1,...,N — 2}. Define K to be the self-similar Cantor set by dividing [0,1] into N intervals of equal
length, deleting the interval [#, %], and repeating the process. Then it is well known that K

consists of all real numbers whose N-adic expansion omit the digit j:

K= {,;% : dke{O,l,...,N—l}\{j}}.

Now, each gap at the nth iteration is of length N~". The Newhouse thickness is equal to min{j, N —
J—1}

We notice an important fact that Newhouse thickness is invariant under any invertible affine
transformation, x — t + 1x where 1 # 0, on R!. The following lemma is now commonly referred
to as the newhouse gap lemma.

Lemma 3.6. (Newhouse gap lemma) Let K,,K,, C R be Cantor sets with Newhouse thickness T,
and 7,, respectively, and 7, - T, > 1. Suppose that K, is not contained in one of the gaps of K, and K,
is not contained in one of the gaps of K,. Then K; N K, # 0.

For additional information about the intersection in the above gap lemma, one can refer to [1].
We are now ready to prove our main results.
4 | GENERIC NON-UNIVERSALITY OF CANTOR SETS ON R!
We first prove our main theorems on R*. The construction of the F, set in Equation (1) in the proof
below was motivated from [6], in which the authors constructed wavelets on a real line analogue

of Cantor sets. The set in Equation (1) is exactly the set they used.

Proof of Theorem 1.5. We will establish the following claim.
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10 | GALLAGHER ET AL.

Claim: Given an ¢, > 0, there exists a dense G5 set G with m(R \ G) = 0 such that for any
Cantor set J with Newhouse thickness t(J) > ¢,, G contains no affine copy of J.

Assuming the claim, we construct a dense G5 set G,, of m(R \ G,) = 0 with the property that
it does not contain affine copies of Cantor sets with Newhouse thickness at least 1/n. Then we
consider

o]
G=()Gn
n=1

Baire category theorem ensures that G is a dense G set. This G will not contain any affine copy
of any Cantor sets with positive Newhouse thickness. Moreover, by the subadditivity of measure,
it is easy to see that m(R \ G) = 0. This will complete the proof.

We now justify the claim. Let ¢, > 0 be given. Consider the Cantor sets K defined by contraction
ratio 1/N and digits {0,1,...,N — 1} \ {(N — 1)/2} and N is odd as in Example 3.5, we know that
7(K) = % Therefore, we can find a sufficiently large N so that 7(K) > ¢ L

Using the Cantor set K, we now define X such that

x=J UnN&+o), 1)

nezZrez

creating an F,_ set. Now consider X°¢. Because K° is open and dense and so is its translated and
dilated copies, G = X¢isadense Gs and m(R \ G) = m(X) = 0 as the Cantor set K we constructed
is of Lebesgue measure zero. We now show that for any Cantor set J with 7(J) > ¢,, G = X¢
contains no affine copy of J.

Suppose that we have some Cantor set J with Newhouse thickness 7(J) > ¢,. Without loss of
generality, by rescaling and translation, we can assume that the convex hull of J is equal to [0,1].
We now fix any affine copy ¢ + AJ where t € R and A4 # 0. There exists a unique » such that

1] € (N""1,N"]. 2
Similarly there exists a unique # such that
t e (@N", (¢ +1N"]. 3)
Let
K, =N'K+¢)andK, =t + AJ.
The convex hull of K, is [/N", (£ + 1)N"]. So, by our choice of ¢, we know that K, is not in the
unbounded gap of K; and vice versa.
Now we will check the construction of our Cantor sets such that each is not contained in the
bounded gaps of the other. For i = 1, 2, we define O; to be the largest open bounded gap in K; and
I, be the convex hull of K;. For K;, we have |0;| = N"~! and |I,| = N". For K,, we recall that the

convex hull of J is [0,1]. Therefore, we have

|0, = |4] - 10;| < |A] and L] = |4],
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ON A TOPOLOGICAL ERDOS SIMILARITY PROBLEM | 11

where O is the largest open-bounded gap interval in J. Therefore by our construction in (2), the
following two inequalities hold:

|O1| < |I;] and |O,| < |I4].

The inequalities imply that K is not fully contained in the bounded gaps of K, and K, is not fully
contained in the bounded gaps of K.

Since Newhouse thickness is invariant under affine transformation on R!, by our choice of K
we have that

t(K)t(Ky) = t(K)r() 2 €' - ¢y = 1.

Therefore, the gap lemma in Lemma 3.6 implies that K; N K, isnon-empty and hence K, =t + AJ
intersects with one of the unions in X in (1). It implies that ¢t + AJ cannot be fully contained in the
Gs set G = X°. This establishes the claim, and therefore, we conclude that J is not topologically
universal. O

Remark 4.1. We would like to remark that Bourgain proved that a Minkowski sum of three infinite
sets cannot be measured universal. We can use this result to deduce that some Cantor sets of zero
Newhouse thickness cannot be measure universal. Let N = 2 be integers and D i C {0,1,..,N i~
1} be subsets of cardinality at least 2. Define

00 d.
J .
Jj=

Then C is not measure universal. Indeed, for k = 0,1, 2, let

_ Z J .
. 1 e Jj
j=k(mod 3)

By the result of Bourgain, C = S + S; + S, is a sum of three infinite sets and hence is not measure
universal. Moreover, if N j— oo, then the Cantor set C above has zero Newhouse thickness.

On the other hand, our Theorem 1.5 is independent from Bourgain’s result in the sense that our
construction of the avoiding set is explicit and of full Lebesgue measure, while the set constructed
by Bourgain was not explicit and the Lebesgue measure is not known. Therefore, we still cannot
determine if all above Cantor sets are generically universal if we merely use Bourgain’s result.

5 | GENERIC NON-UNIVERSALITY OF CANTOR SETS ON R¢

We now turn to our results in higher dimensions. Our first goal is to show that some obvious
examples cannot be generically universal. They include a set with a path-connected component
and embedding a lower dimensional generically non-universal set into higher dimensions.
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12 | GALLAGHER ET AL.

Proposition 5.1. IfX C RY contains a path-connected component, then X is not generically univer-
sal.

Proof. Let us consider the dense G4 set that removes all the hyperplanes parallel that correspond
to the coordinate hyperplanes shifted by rationals:

d
G = ﬂ ﬂRd\{(xl,...,xd)ele Dx; =l

i=1reQ

This is clearly a dense G set and m(R¢ \ G) = 0 since there are only countably many hyperplanes
and hyperplanes have d-dimensional Lebesgue measure zero. Consider any affine copy of X. Then
this affine copy must contain a path L. The projection of L onto the coordinate axes will be non-
degenerate on some interval for at least one of the axes. Call this the ith axis. This interval will
contain a rational number r. Therefore L will intersect with the coordinate plane, x; = r. In other
words this dense G5 cannot contain L. Thus, X cannot be topologically universal. O

The following simple lemma is needed in the following proofs.

Lemma 5.2. Let G, and G, be two dense Gy sets in R% and R%, respectively. Then G; X G, is a
dense Gy set in R%1+%,

Proof. Suppose that we write G, = (., 0, and G, = (., O/, where O,, and O/, are open dense
sets in R% and R%, respectively. The lemma follows immediately by observing that

(s8] (s8]
G xGy=[[) 0nx0,.
n=1m=1 D

Proposition 5.3. Let 0 < k < d be two positive integers. Suppose that E C R¥ is generically non-
universal in R¥. Then E x {0} cannot be generically universal in R? (0 here is the d — k-dimensional
zero vector).

Proof. Let e; be the canonical coordinate basis in R¢ and let W = R* x {0}. By our assumption,
we can find a dense G4 set G, C R such that it does not contain k-dimensional affine copies of
E. Let G/ be any dense G set in R4~ with m(R4~* \ G/) = 0. Then G, X G/ is a dense G5 in R%.
By Fubini’s theorem, m((R* \ Gy) X R4=¥) = 0, so is the other union. We let I, be the collection
of all k-dimensional coordinate planes in R%. There are (Z) such planes. For each P € T1;;, there
exists a permutation matrix op such that

‘We now define

G= () 0p(GyxGy.
PEy ),
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ON A TOPOLOGICAL ERDOS SIMILARITY PROBLEM 13

Note that
RY\ (Gy x G)) = (R \ Gp) x R¥™F) U (RF x R\ G))).

By Fubini’s theorem, m((R* \ G,) x R47) = 0, so is the other set in the above union. As o has
unit determinant, we obtain that m(R? \ G) = 0.

To finish the proof, our next step is to show that G cannot contain any affine copies of E x {0}. To
see this, we argue by contradiction. Suppose that there exists an invertible linear transformation
T on RY such that t + T(E) C G. Then the subspace

T(W) = span{Te,, ..., Te;}

is k-dimensional and {Te;, ..., Te;} forms a basis for T(W), putting T in matrix representation
under the canonical basis. The matrix

A=|Te, - Te,

is of column rank k. Hence, it has row rank k as well. Therefore, there exists k-linearly indepen-
dent row vectors. Let T = {i;, ..., i} } be the position of the row vectors of A for which they are
linearly independent. Let A; be the square matrix whose rows are exactly the rows of A at posi-
tions in Z. Then A; is invertible on R¥. Moreover, if we consider the k-dimensional coordinate
plane P at those x; , ..., x;, axes and denote by P; the orthogonal projection onto P, then we have

Py (t + T(E)) = P;(t) + A; (E)
and
P1(op(Gy X G(,))) = Gy.

By the construction of G, t + T(E) C 0p(G, X G(’)), meaning that P(t) + A;(E) C G,. As Ay is
invertible, we find an affine copy of E inside G,, which is a contradiction. This completes the
proof. Ul

As we know already that the middle-third Cantor set is not generically universal, the above
proposition shows that it cannot be embedded to become generically universal in higher dimen-
sions either. Notice also that such an embedding of a Cantor set will never be Newhouse
projectively thick since the projection will always be a singleton in the orthogonal complement.
We are now ready to prove our main theorem on R stated in the introduction.

Proof of Theorem 1.7. Suppose that we have a Newhouse projectively thick Cantor set J on R%. We
now take G in Theorem 1.5 and construct

G = GO XX Go.
——r
d-times
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14 | GALLAGHER ET AL.

Applying Lemma 5.2, G, X -~ X G, is a dense Gy set in R? and therefore G is also a dense Gj set.
With Fubini’s theorem, it is not difficult to show that R¢ \ G has zero Lebesgue measure.

It remains to prove that G has no affine copy of J. Assume to the contrary that G contains an
affine copy of J and denote it by ¢t + T'(J). Then

t+TWJ) C Gy XX G.
N——r

d-times

Denote by P the orthogonal projection onto the x;-axis. We have P[t + T(J)] C G,,. By linearity
we can express the orthogonal projection P[t + T'(J)] as P(t) + P[T(J)]. We have that G, contains
an affine copy of P[T(J)]. ButJ is Newhouse projectively thick which implies that 7(P[T(J)]) > 0.
We obtain a contradiction since, by Theorem 1.5, G, cannot contain any affine copies of P[T(J)].
This completes the proof. ]

To conclude this paper, we consider a class of self-similar sets that are Newhouse projec-
tively thick. Recall that if we are given finitely many contractive similarity maps ¢; : R? — R,
i=1,..,N,such that

¢i(x) = p;0;x + by,

where 0 < p; < 1, O; is an orthogonal transformation and b; € R%, ® = {¢; : i = 1,..., N} forms
an iterated function system (IFS) and there exists a unique non-empty compact set K = K4
such that

N
K =],

i=1

We say that the IFS is rotation-free if all O, are identity transformations. We also say that a self-
similar set is non-degenerate if it is not contained in any hyperplane of R9.

Example 5.4. All non-degenerate self-similar sets on R¢ generated by rotation-free IFS must be
Newhouse projectively thick.

Proof. Let P be the orthogonal projection onto the x;-axis and let T be any invertible linear trans-
formation. We note that for a rotation-free IFS, the set PT(K) is still generated by a self-similar
IFS on R! with maps

$i(x) = p;x + PT(b;).

Notice that the self-similar set is non-degenerate, meaning that PT(K) is not a singleton. The self-
similar set PT(K) is a compact perfect set. In Feng and Wu [10, Lemma 3.5], the authors showed
that all self-similar sets not lying on a hyperplane have a positive thickness 7y, defined in [10,
Definition 1.1]. On the other hand, it was claimed without proof in the paragraph after Defini-
tion 1.1in [10] thatif d = 1, then 7y, (E) > 0 if and only if the Newhouse thickness 7(E) > 0. This
would have implied that 7(PT(K)) > 0.
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ON A TOPOLOGICAL ERDOS SIMILARITY PROBLEM | 15

For the self-containment of this paper, we justify the direction required in this proof in the
following claim.

Claim: If d = 1, then 7y, (E) > 0 implies that 7(E) > 0.

To see this claim, [10, Definition 1.1] states that

Tpw(E) =supf{c >0 : Vx € E,Vr € (0,|E|],3y € Rs.t. conv(B(x,r) N E) D B(y, cr)}.

Here, |E| is the diameter of E, conv(K) means the convex hull of a set K, and B(x, r) denotes the
Euclidean ball centered at x of radius r. For each fixed x € E and r € (0, |E|], we define

Tpw(E, x,r) =sup{c >0 : 3y € Rs.t. conv(B(x,r) N E) D B(y, cr)}.

Th E)=inf inf E,x,r).
en Tpy (E) )lcfelEreg)l,lE”TFW( x,r)

Suppose that 75y, (E) > 0. Consider u € U (using the notation as in Definition 3.3) where u is
a boundary point of a bounded gap U. Consider the open interval (u — |U|, u + |U|). Then one of
the endpoints of conv(B(u, |U|) N E) is u. Let C be the bridge of u and without loss of generality
assume that C is on the right-hand side of U.

Ifu+|U| € C, then |C| > |U| and 7(E,u) > 1. If, however, u + |U| ¢ C, then because of the
definition of the bridge, u + |U] is in the first gap whose length is larger than |U|. Hence,

conv(B(u, |U|)NE) = C = B(z, —2||CU|| |U|) for some center z. This means that Ty (E,u, |U|) =
ICl
2|Ul.Then
E = _|C| =2 E >2 E
7(E,u) = o]~ ~Tpw(E, u, |U|) 2 2 - tpy (E) > 0.

Taking infimum among all u € U, we show that 7(E) > min{27y,(E), 1} > 0. This completes the
proof of the claim.

Coming back to the proof, we now know that all self-similar sets, not a singleton, on R! must
have a positive Newhouse thickness. So the self-similar set PT(K) has a positive Newhouse thick-
ness. This shows that all non-degenerate self-similar sets generated by rotation-free IFS must be
Newhouse projectively thick. O
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