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Abstract
We consider a distributionally robust formulation of stochastic optimization problems
arising in statistical learning, where robustness is with respect to ambiguity in the
underlying data distribution. Our formulation builds on risk-averse optimization tech-
niques and the theory of coherent risk measures. It uses mean–semideviation risk for
quantifying uncertainty, allowing us to compute solutions that are robust against per-
turbations in the population data distribution. We consider a broad class of generalized
differentiable loss functions that can be non-convex and non-smooth, involving upward
and downward cusps, and we develop an efficient stochastic subgradient method for
distributionally robust problems with such functions. We prove that it converges to a
point satisfying the optimality conditions. To our knowledge, this is the first method
with rigorous convergence guarantees in the context of generalized differentiable non-
convex and non-smooth distributionally robust stochastic optimization. Our method
allows for the control of the desired level of robustness with little extra computational
cost compared to population risk minimization with stochastic gradient methods. We
also illustrate the performance of our algorithm on real datasets arising in convex and
non-convex supervised learning problems.
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rusz@rutgers.edu

Landi Zhu
lz401@scarletmail.rutgers.edu

1 Rutgers University, Piscataway, NJ 08550, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02063-6&domain=pdf
http://orcid.org/0000-0002-0575-2450


Journal of Optimization Theory and Applications (2022) 194:1014–1041 1015

Keywords Robust learning · Risk measures · Stochastic subgradient method ·
Non-smooth optimization · Composition optimization

Mathematics Subject Classification 90C15 · 90C48

1 Introduction

Statistical learning theory deals with the problem ofmaking predictions and construct-
ing models from a set of data. A typical statistical learning problem can be formulated
as a stochastic optimization problem:

min
x∈X

ED∼P [�(x, D)] , (1)

where � : Rn × Rd → R is the loss function of the predictor x on the random
data D with an unknown distribution with probability law P, and X ⊂ R

n is the
feasible set (see, e.g., [60]). We consider loss functions that can be non-convex or
non-differentiable (non-smooth). This framework includes a large class of problems
in supervised learning including deep learning, linear and nonlinear regression and
classification tasks [53].

A central problem in statistics is to make decisions that generalize well (i.e., work
well on unseen data) as well as decisions that are robust to perturbations in the under-
lying data distribution [8]. Indeed, the statistical properties of the input data may be
subject to some variations and distributional distortions, and a major goal is to build
models that are not too sensitive to small changes in the input data distribution. This
motivates the following distributionally robust version of problem (1):

min
x∈X

max
Q∈M (P)

ED∼Q [�(x, D)] , (2)

where M (P) is a weakly closed convex set of probability measures that model per-
turbations to the law P, and the predictor x is chosen to accommodate worst-case
perturbations. References [3, 35, 51] provide thorough discussion of the relevance
of robustness in statistical learning. Problem (2) is related to quantifying risk of the
random data distribution [20, 58]; its computational tractability depends on the under-
lying loss function and the uncertainty set M (P) [14, 17]. Existing approaches to
the modeling of M (P) include conditional value at risk [58], f -divergence-based
sets [14], Wasserstein balls around P [21, 55], and other statistical distance-based
approaches (see, e.g., [21]). When �(·, D) is non-convex and non-differentiable, these
formulations lead to non-convex min–max problems. To our knowledge, none of the
existing algorithms admit provable convergence guarantees to a stationary point of
(2) in this general case. Sinha et al. [55] consider the case when M (P) is defined as
the ρ-neighborhood of the probability law P under the Wasserstein metric, where ρ is
the desired level of robustness. The authors formulate a Lagrangian relaxation of this
problem for a fixed penalty parameter γ ≥ 0 and show that when the loss is smooth and
the penalty parameter is large enough (or by duality if the desired level of robustness
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ρ is small enough), the stochastic gradient descent (SGD) method achieves the same
rate of convergence as the standard smooth non-convex optimization. The authors also
provide a data-dependent upper bound for the worst-case population objective (2) for
any robustness level ρ. Soma and Yoshida [56] proposed a conditional value-at risk
(CVaR) formulation for robustness and show that for convex and smooth losses their
algorithm based on SGD has O(1/

√
n)-convergence to the optimal CVaR, where n

is the number of samples. For non-convex and smooth loss functions, they also show
a generalization bound on the CVaR. However, none of these guarantees apply if the
loss is non-smooth.

For some structured regression and classification problems of practical interest,
distributionally robust formulations that result in finite-dimensional convex programs
are known [17, 30, 37, 52] to be solvable in polynomial time; see also the reference
[45] which contains a detailed list of tractable reformulations of distributionally robust
constraints for several risk measures. For convex losses, conic interior point solvers or
gradient descent with backtracking Armijo line-searches can also be used for solving a
sample-based approximation of (2), whenM (P) is defined via the f -divergences [14].
However, these approaches can be prohibitively expensive when the dimension or the
number of samples are large. For smooth and convex losses, Namkoong and Duchi
[41] showed that a sample-based approximation of (2) with f -divergences results in a
min–max problem, which can then be solved with a bandit mirror descent algorithm
with number of iterations comparable to that of the SGD for solving the sample-based
approximation of problem (1). However, similar convergence guarantees for non-
convex or non-smooth losses were not given. We also note that there are data-driven
distributionally robust stochastic optimization formulations (see, e.g., [17, 20, 21]),
which replace the population measure P with an empirical measure P

N constructed
from samples of input data. A disadvantage is that the resulting setM (PN ) becomes
random.

We propose a new formulation of (2) based on the mean–semideviation measure of
risk [43, 44]. We propose a specialized stochastic subgradient method for solving the
resulting problem, which we call the single-time-scale (STS) method. Our method has
local convergence guarantees for a large class of possibly non-convex and non-smooth
loss functions.

Modeling the uncertainty set M (P) with mean semi-deviation risk Consider the
random loss Z(x) = �(x, D) defined on a sample space Ω equipped with a sigma
algebra F . We assume E[Z(x)] to be finite, i.e., Z(x) ∈ Z = L1(Ω,F , P). Instead
of problem (1), we propose to consider the risk minimization problem

min
x∈X

ρ
[
�(x, D)

]
. (3)

with a coherent measure of risk ρ[·]; see [2, 18, 54] and the references therein. Coher-
ence means that ρ : Z → R satisfies the axioms of convexity (ρ[αZ + (1 − α)V ] ≤
αρ[Z ] + (1 − α)ρ[V ], ∀α ∈ [0, 1]), monotonicity (ρ[Z ] ≤ ρ[V ] if Z ≤ V a.s.),
translation equivariance (ρ[Z + c] = ρ[Z ] + c, ∀c ∈ R), and positive homogeneity
(ρ[γ Z ] = γρ[Z ], ∀γ ≥ 0).

Coherent measures of risk have the dual representation [48],
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ρ[Z ] = max
μ∈A

∫

Ω

Z(ω)μ(ω) P(dω) = max
Q: dQ

dP ∈A

∫

Ω

Z(ω) Q(dω) = max
Q: dQ

dP ∈A
EQ[Z ],

where A is a convex and closed set. Thus, problem (3) takes on the min–max form

min
x∈X

max
Q∈M (P)

EQ[�(x, D)] (4)

with the uncertainty set

M (P) = {
Q : dQ

dP
∈ A}

. (5)

In this way, by using a coherent measure of risk, we achieve an implicit robust for-
mulation. The set A depends on the measure of risk used, but it is essential that all
probability measures in the uncertainty set (5) are absolutely continuous with respect
to the original measure P, thus excluding perturbations that are structurally impossible
in the problem.

The usefulness of the formulation (3) is predicated on our ability to solve it in
an efficient way and on the quality of the solutions obtained. We propose to use the
first-order mean–semideviation risk measure [43, 44]:

ρ[Z ] = E[Z ] + κ E
[
max

(
0, Z − E[Z ])]

, κ ∈ [0, 1]. (6)

The measure (6) has the set A defined as follows:

A = {
μ = 1 + ξ − E[ξ ] : ξ ∈ L∞(Ω,F , P), ‖ξ‖∞ ≤ κ, ξ ≥ 0

}
,

(see, e.g., [48]). The level of robustness is controlled by the parameter κ: For κ = 0,
the uncertainty set (5) contains only the original probability measure P, while for
κ > 0 the measures Q ∈ M (P) are distortions of P. The range of relative distortions
allowed, dQ

dP − 1, depends on κ.
Problem (3) with the mean–semideviation risk measure (6) can be cast in the

following form of a composition optimization problem:

min
x∈X

f (x, h(x)), (7)

with the functions

f (x, u) = E
[
�(x, D) + κ max

(
0, �(x, D) − u

)]
, (8)

h(x) = E[�(x, D)]. (9)

The main difficulty is that neither values nor (sub)gradients of f (·), h(·) and of their
composition are available. Instead, we postulate access to their random estimates.
Such estimates, however, may be biased, because estimating a (sub)gradient of the
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composition F(x) = f (x, h(x)) involves estimating h(x). Although problem (7) can
be further rewritten in the standard format of composition optimization,

min
x∈X

f (h̄(x)), (10)

with h̄(x) = (x, h(x)), the more specific formulation (7) allows us to derive a more
efficient specialized method, because x is observed.

The research on composition optimization problems of form (10) started from
penalty functions for stochastic constraints and composite regressionmodels in [15,Ch.
V.4].An established approachwas to use two-level stochastic recursive algorithmswith
two stepsize sequences in different time scales: a slower one for updating the main
decision variable x , and a faster one for filtering the value of the inner function h.
References [28, 61–63] provide a detailed account of these techniques and existing
results.

A central limit theorem for stochastic versions of problem (10) has been estab-
lished in [10]. Large deviation bounds for the empirical optimal value were derived
in [16]. A new single time-scale method for problem (10) with continuously differen-
tiable functions has been recently proposed in [23]. It has the complexity of O(1/ε2)
to obtain an ε-solution of the problem, the same as methods for one-level uncon-
strained stochastic optimization. However, the construction of the method and its
analysis depend on the Lipschitz constants of the gradients of the functions involved.
Our problem (7), unfortunately, involves a non-smooth function max(·, ·) and may
also involve a non-smooth (non-differentiable) loss function �(·, ·). Indeed, many
key problems in machine learning involve non-convex and non-smooth loss func-
tions. A prominent example is deep learning with ReLU activation functions (see
e.g. [24]). There are many other statistical learning problems where the objective can
be non-smooth and non-differentiable such as non-convex generalized linear mod-
els and non-convex regression and risk minimization (see, e.g., [1, 19, 26, 59]).
The organic non-differentiability and non-convexity are additional challenges for the
solution method.

Contributions We propose to model the perturbation to input data distribution by
mean–semi-deviation risk, according to (5). Our formulation leads to the distribution-
ally robust learning problem (4), which has the advantage that it results in a convex
optimization problemwhen the loss � is convex, in contrast to some alternative formu-
lations, which result in min–max optimization problems (see, e.g., [41, 58]). When the
loss is non-convex and non-smooth, we can still find a stationary point to (4), by our
novel single time-scale parameter-free stochastic subgradient method, for a general
class of loss functions that can be non-convex and non-differentiable. To our knowl-
edge, our method is the first method with probability one convergence guarantees for
solving a distributionally robust formulation of a population minimization problem,
where the loss can be non-convex or non-differentiable.

We also note that the computational cost of stochastic first-order optimization
algorithms is typically measured in terms of the number of stochastic gradient or
subgradient evaluations they require (see, e.g., [6,Section 6], [22, 27]). Standard SGD
methods (which go back to Robbins and Monro’s pioneering work [46]) applied to
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the non-robust optimization problem (1) can operate with one stochastic subgradient
evaluation under similar assumptions to ours; however, they are not applicable to the
robust formulation (2) directly. In contrast, our method can converge to a stationary
point of the robust formulation (2) with probability one requiring on average no more
than 1+κ stochastic subgradient evaluations at every iteration, whereκ ∈ [0, 1] is the
desired level of robustness. Therefore, comparing the numbers of stochastic gradient
evaluations, the average computational cost of each iteration of our method is at most
1+ κ times larger than that of the standard SGD method, requiring little extra cost to
compute robust solutions.

2 The Single Time-Scale (STS) Method with Subgradient Averaging

We present the method for problems of form (4), in which the loss function �(x, D) is
differentiable in a generalized sense [42] with respect to x and integrable with respect
to D. This broad class of functions is contained in the set of locally Lipschitz functions
and contains all semismooth locally Lipschitz loss functions that can be non-convex
and non-differentiable [39]. We note that this class includes many of the losses arising
in statistical learning problems, including population and empirical risk minimization
with possibly non-convex and non-smooth regularizers [1, 19, 26, 59, 60], weakly
convex and continuous losses [9, 34] as well as deep learning with ReLU activations
[24]. In Appendix A, we provide the precise definition and recall the most important
properties of the class of functions that are differentiable in a generalized sense.

Recall that theClarke subdifferential ∂x�(x, D) is an inclusion-minimal generalized
derivative of �(·, D) [42]. In what follows, however, we use the symbol ∂̂ f to denote
the generalized subdifferential of a function f (·) in the sense of Definition A.1 that
we provide in Appendix A. We make the following assumptions.

(A1) The set X ⊂ Rn is convex and compact;
(A2) For almost every (a.e.) ω ∈ �, the function �(·, D(ω)) is differentiable in

a generalized sense with the generalized differential ∂̂�(x, D(ω)), x ∈ Rn .
Moreover, for every compact set K ∈ Rn an integrable function L K : Ω →
R exists, satisfying supx∈K supg∈∂̂�(x,D(ω))

‖g‖ ≤ L K (ω).

Under (A2), function (9) is also differentiable in a generalized sense. Although its
generalized derivative is not readily available, we can draw D̃ from the distribution of
D and use an element of ∂̂�(x, D̃) as a stochastic subgradient (a random vector whose
expected value is a subgradient). Furthermore, function (8) is also differentiable in a
generalized sense with respect to (x, u). Its stochastic subgradient can be obtained as
follows. First, we observe �(x, D̃) and choose

r ∈
⎧
⎨

⎩

{0} if �(x, D̃) < u,

[0, 1] if �(x, D̃) = u,

{1} if �(x, D̃) > u.
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Then, the vector

[
g̃x

g̃u

]
, where g̃x ∈ (1 + rκ)∂̂�(x, D̃), g̃u = −rκ, is a stochastic

subgradient of the function f (x, u), which is defined by (8). These formulas follow
from calculus rules for generalized subdifferentials of compositions and expected
values (Theorems A.1 and A.2 in Appendix A). We can also use different samples for
calculating stochastic subgradients of (8) and (9).

The STS method generates three random sequences: approximate solutions {xk},
path-averaged stochastic subgradients {zk}, and inner function estimates {uk}, all
defined on a certain probability space (�,F , P). We letFk to be the σ -algebra gener-
ated by {x0, . . . , xk, z0, . . . , zk, u0, . . . , uk}. Starting from the initialization x0 ∈ X ,
z0 ∈ Rn , u0 ∈ R, the method uses parameters a > 0, b > 0 and c > 0 to generate
xk, zk, uk for k > 0. At each iteration k = 0, 1, 2, . . . , we compute

yk = argmin
y∈X

{
〈zk, y − xk〉 + c

2
‖y − xk‖2

}
,

1 and, with an Fk-measurable stepsize τk ∈ (
0,min(1, 1/a)

]
, we set

xk+1 = xk + τk(yk − xk). (11)

Then, we obtain statistical estimates:

• g̃k+1 =
[

g̃k+1
x

g̃k+1
u

]
of an element gk+1 =

[
gk+1

x
gk+1

u

]
∈ ∂̂ f (xk+1, uk),

• h̃k+1 of h(xk+1), and
• J̃ k+1 of an element J k+1 ∈ ∂̂h(xk+1) with the convention that J k+1 is a row
vector,

and we update the running averages as

zk+1 = zk + aτk

(
g̃k+1

x + [
J̃ k+1]�

g̃k+1
u − zk

)
, (12)

uk+1 = uk + τk J̃ k+1(yk − xk) + bτk
(
h̃k+1 − uk)

. (13)

We assume the following conditions on the stepsizes and the stochastic estimates:

(A3) τk ∈ (
0,min(1, 1/a)

]
for all k, limk→∞ τk = 0,

∑∞
k=0 τk = ∞,

∑∞
k=0 E[τ 2k ] <

∞;
(A4) For all k,
(i) g̃k+1 = gk+1 + ek+1

g + δk+1
g , with

gk+1 ∈ ∂̂ f (xk+1, uk), E
{
ek+1

g

∣∣Fk
} = 0, E

{‖ek+1
g ‖2|Fk

} ≤ σ 2
g ,

limk→∞ δk+1
g = 0,

(ii) h̃k+1 = h(xk+1) + ek+1
h + δk+1

h , with
E

{
ek+1

h

∣∣Fk
} = 0, E

{[ek+1
h ]2|Fk

} ≤ σ 2
h , limk→∞ δk+1

h = 0,

1 From the update rule of yk , it follows that the variable yk is the projection of xk −zk/c onto the constraint
set X , where 1/c can be interpreted as the stepsize. This projection step ensures that the iterates yk lie in
the constraint set X .
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(iii) J̃ k+1 = J k+1 + Ek+1 + �k+1, with
J k+1 ∈ ∂̂h(xk+1), E

{
Ek+1

∣∣Fk
} = 0, E

{‖Ek+1‖2|Fk
} ≤ σ 2

E ,
limk→∞ �k+1 = 0, and E

[
(Ek+1)�ek+1

gu

∣∣Fk
] = 0 where (ek+1

gx , ek+1
gu ) are

the components of ek+1
g that correspond to x and u.

These assumptions are pretty standard in the study of stochastic gradient and
stochastic approximation methods [32]. As discussed before, the stochastic esti-
mates satisfying these conditions can be obtained by drawing at each iteration two
independent samples: Dk+1

1 and Dk+1
2 , from the data. Then, we can take

g̃k+1
x ∈

{
∂̂�(xk+1, Dk+1

1 ) if �(xk+1, Dk+1
1 ) < uk,

(1 + κ)∂̂�(xk+1, Dk+1
1 ) if �(xk+1, Dk+1

1 ) ≥ uk,

g̃k+1
u =

{
0 if �(xk+1, Dk+1

1 ) < uk,

−κ if �(xk+1, Dk+1
1 ) ≥ uk,

h̃k+1 = �(xk+1, Dk+1
1 ),

J̃ k+1 ∈ ∂̂�(xk+1, Dk+1
2 ).

(14)

We also note that we can reduce the number of samples per iteration by randomization.
Let β be an independent Bernoulli random variable with P[β = 1] = κ and P[β =
0] = 1 − κ. After rewriting formula (8) as

f (x, u) = (1 − κ)E
[
�(x, D)

] + κE
[
�(x, D) + max

(
0, �(x, D) − u

)]
,

we can interpret it as an expected value with respect to β. Therefore, its stochastic
subgradient can be generated as follows.At each iteration, we sampleβ, independently
of other samples in the method. Then, we set

g̃k+1
x ∈

{
∂̂�(xk+1, Dk+1

1 ) if β = 0 or �(xk+1, Dk+1
1 ) < uk,

2∂̂�(xk+1, Dk+1
1 ) if β = 1 and �(xk+1, Dk+1

1 ) ≥ uk,

g̃k+1
u =

{
0 if β = 0 or �(xk+1, Dk+1

1 ) < uk,

−1 if β = 1 and �(xk+1, Dk+1
1 ) ≥ uk,

h̃k+1 = �(xk+1, Dk+1
1 ),

J̃ k+1 ∈
{

∂̂�(xk+1, Dk+1
1 ) if β = 0 or �(xk+1, Dk+1

1 ) < uk,

∂̂�(xk+1, Dk+1
2 ) if β = 1 and �(xk+1, Dk+1

1 ) ≥ uk .

(15)

Since g̃k+1
u = 0 when β = 0, assumption (A4)(iii) can be satisfied with J̃ k+1 ∈

∂̂�(xk+1, Dk+1
1 ). The need for the second sample from the data, Dk+1

2 , may occur
only if β = 1, that is, with probability κ. Therefore, on average at most 1 + κ

samples are needed per iteration.
Our method refines and specializes the approach to multi-level stochastic optimiza-

tion recently developed in [50]. We extend this approach to a new case in which the
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upper level function, f (x, u), is not continuously differentiable with respect to u, and
thus, the conditions of [50] are not satisfied. We establish the convergence in the new
case as well, as detailed in the following section.

3 Convergence Analysis

To recall optimality conditions for problem (4) and analyze our method, we need to
introduce relevant multifunctions. Consider the composition function

F(x) = f (x, h(x)), x ∈ Rn .

For a point x ∈ Rn , we define the set:

∂̂ F(x) = conv
{
s ∈ Rn : s = gx + J�gu, g ∈ ∂̂ f (x, h(x)), J ∈ ∂̂h(x)

}
. (16)

By [40,Thm. 1.6] (Theorem A.1 in Appendix A), the set ∂̂ F(x) is a generalized
subdifferential of F(·) at x . We call a point x∗ ∈ X stationary for problem (4), if

0 ∈ ∂̂ F(x∗) + NX (x∗), (17)

where NX (x) is the normal cone to X at x . The set of stationary points is denoted
by X∗.

We start by considering the gap function η : X × Rn → (−∞, 0],

η(x, z) = min
y∈X

{
〈z, y − x〉 + c

2
‖y − x‖2

}
, (18)

which admits the unique minimizer

ȳ(x, z) = argmin
y∈X

{
〈z, y − x〉 + c

2
‖y − x‖2

}
. (19)

Since ȳ(x, z) is a projection of x − z/c on X ,

〈z, ȳ(x, z) − x〉 + c‖ȳ(x, z) − x‖2 ≤ 0, (20)

for every x ∈ X and z ∈ R
n . Moreover, a point x∗ ∈ X∗ if and only if z∗ ∈ ∂̂ F(x∗)

exists such that η(x∗, z∗) = 0; see [47,Prop. 1].2 Consider the multifunction Γ :
Rn × Rn × R ⇒ Rn × R:

2 This statement follows from the following argument: If x∗ ∈ X∗, then by definition (17), there exists
z∗ ∈ ∂̂ F(x∗) such that −z∗ ∈ NX (x∗), which is equivalent to 〈z∗, y − x∗〉 ≥ 0 for every y ∈ X . This,
together with the definition (18) of the gap function, implies that η(x∗, z∗) ≥ 0, which yields η(x∗, z∗) = 0,
due to (20). The other direction can be proved in a similarway. If z∗ ∈ ∂̂ F(x∗) exists such thatη(x∗, z∗) = 0,
then by definition (18), 〈z∗, y − x∗〉 ≥ 0 for every y ∈ X ; otherwise, one gets a contradiction. The latter
statement is equivalent to −z∗ ∈ NX (x∗), and consequently, we obtain x∗ ∈ X .
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Γ (x, z, u) ={
(R, v) : ∃g ∈ ∂̂ f (x, u), ∃J1, J2 ∈ ∂̂h(x),

v = J1
(
ȳ(x, z) − x

) + b(h(x) − u), R = a
(
gx + J�

2 gu − z
)}

.
(21)

where ȳ(x, z) is definedby (19).Here, (gx , gu) are the components of g that correspond
to x and u. With this notation, we can write the updates (11)–(13) as follows:

xk+1 = xk + τk(ȳ(xk+1, zk) − xk+1) + τkα
k+1
x ,

[
zk+1

uk+1

]
∈

[
zk

uk

]
+ τkΓ (xk+1, zk, uk) + τk

[
θk+1

R
θk+1
v

]
+ τk

[
αk+1

R
αk+1

v

]
,

(22)

where

θk+1
R = a(ek+1

gx + [Ek+1]T gk+1
u + [J k+1 + Ek+1]T ek+1

gu ),

θk+1
v = Ek+1(ȳ(xk, zk) − xk) + bek+1

h ,

αk+1
x = ȳ(xk, zk) − ȳ(xk+1, zk) + xk+1 − xk,

αk+1
R = a(δk+1

gx + [�k+1]T gk+1
u + [�k+1]T ek+1

gu + [J k+1 + Ek+1 + �k+1]T δk+1
gu ),

αk+1
v = �k+1(ȳ(xk, zk) − xk) + bδk+1

h + J k+1αk+1
x .

In this way, we formulate our algorithm as a perturbed differential inclusion model
analyzed in [36], where the deterministic part on the right-hand side depends on the
perturbed point (xk+1, zk, uk); observe that ‖xk+1 − xk‖ → 0, due to (A1) and (A3).

Furthermore, for θk+1 =
[
θk+1

R
θk+1
v

]
and αk+1 =

⎡

⎣
αk+1

x
αk+1

R
αk+1

v

⎤

⎦ we have

E
[
θk+1

∣∣Fk
] = 0, E

[‖θk+1‖2 ∣∣Fk
] ≤ Cθ , k = 0, 1, . . . , (23)

with some constant Cθ , and

lim
k→∞ αk+1 = 0. a.s.. (24)

The verification of relations (22)–(24) is straightforward from the description of the
algorithm and assumptions (A3)–(A4).

Two technical results are needed for further analysis.

Lemma 3.1 The multifunction Γ is upper-semicontinuous and compact and convex-
valued.

Proof By assumption (A2), for a.e.ω ∈ �, the loss function �(x, D(ω)) is generalized
differentiable, and therefore, the function f (x, u) is also generalized differentiable
where ∂̂x f (x, u), ∂̂u f (x, u) and ∂̂h(x) are all convex and compact-valued and upper-
semicontinuous [42]. Therefore, Γ is upper-semicontinuous and compact-valued. It
remains to verify the convexity.
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Consider the function I (x, u; D) = �(x, D) + κ · max(0, �(x, D) − u). We can
calculate its generalized subdifferential with respect to (x, u):

∂̂ I (x, u; D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(1 + κ)∂̂�(x, D)

−κ

]
, if u < �(x, D),

{[
(1 + κr)∂̂�(x, D)

−κr

]
: r ∈ [0, 1]

}
, if u = �(x, D),

[
∂̂�(x, D)

0

]
, if u > �(x, D).

Due to Assumption (A2), for every compact set K ∈ Rn an integrable func-
tion MK : Ω → R exists, satisfying supx∈K supg∈∂̂ I (x,u;D(ω))

‖g‖ ≤ MK (ω).
By the interchangeability of the generalized subdifferential and integral operators
(Theorem A.2 in Appendix A), we obtain:

∂̂ f (x, u) = E
[
∂̂ I (x, u; D)

]

Therefore,

∂̂ f (x, u) =
{ [

p1(1 + κ)l1 + p2(1 + κr)l2 + p3l3
−κ(p1 + p2r)

]
:

r ∈ [0, 1], l1 ∈ E
[
∂̂�(x, D)

∣∣ u < �(x, D)
]
,

l2 ∈ E
[
∂̂�(x, D)

∣
∣ u = �(x, D)

]
, l3 ∈ E

[
∂̂�(x, D)

∣
∣ u > �(x, D)

]}
, (25)

where p1 = P{u < �(x, D)}, p2 = P{u = �(x, D)}, p3 = P{u > �(x, D)}.
For a certain fixed input (x, z, u) to Γ , the quantities p1, p2, p3 can be treated
as scalar constants, the conditional subdifferentials E

[
∂̂�(x, D)

∣
∣ u < �(x, D)

]
,

E
[
∂̂�(x, D)

∣∣ u = �(x, D)
]
and E

[
∂̂�(x, D)

∣∣ u > �(x, D)
]
can be treated as fixed

sets.
Now, in order to prove Γ (x, z, u) is convex-valued, we notice by (21) that any

point in Γ (x, z, u) is a pair (R, v) generated by a triple (g, J1, J2) from ∂̂ f (x, u) ×
∂̂h(x) × ∂̂h(x). We can (arbitrarily) choose two points in Γ (x, z, u): A = (Ra, va)

and B = (Rb, vb) and denote the triple generating the point A by (ga, J1a, J2a), the
triple generating the point B by (gb, J1b, J2b).

By (21), for an arbitrary s ∈ [0, 1], the convex combination (Rs, vs) =
s A + (1 − s)B of A and B can be expressed as:

Rs = a(sgax + (1 − s)gbx + s J T
2agau + (1 − s)J T

2bgbu − z),

vs = (s J1a + (1 − s)J1b)(ȳ(x, z) − x) + b(h(x) − u).
(26)

where (gax , gau) are the components of ga , and (gbx , gbu) are the components of gb.
If we can always find a triple (gc, J1c, J2c) ∈ ∂̂ f (x, u)× ∂̂h(x)× ∂̂h(x) that generates
this convex combination, thenΓ (x, z, u) is convex-valued. That is what we show next.
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From (25), we first deduce a simple relationship between gx and gu :

gx = p1l1 + p2l2 + p3l3 + κ p1(l1 − l2) − l2gu .

Therefore, choosing an element g from ∂̂ f (x, u) is equivalent to choosing gu

from ∂̂u f (x, u) and then choosing three conditional subgradients l1, l2, l3 from
E

[
∂̂�(x, D)

∣∣ u < �(x, D)
]
, E

[
∂̂�(x, D)

∣∣ u = �(x, D)
]
and E

[
∂̂�(x, D)

∣∣ u >

�(x, D)
]
.

Substitution into (26) yields:

Rs = a(s(p1l1a + p2l2a + p3l3a + κ p1(l1a − l2a) − l2agau)

+ (1 − s)(p1l1b + p2l2b + p3l3b + κ p1(l1b − l2b) − l2bgbu)

+ s J T
2agau + (1 − s)J T

2bgbu − z),

vs = (s J1a + (1 − s)J1b)(ȳ(x, z) − x) + b(h(x) − u),

where l1a, l2a, l3a are the conditional subgradients corresponding to the point A, and
l1b, l2b, l3b are the conditional subgradients corresponding to the point B.

Notice that in the special case when p2 = 0, the set ∂̂ f (x, u) becomes a singleton,
which is a convex set. Since the subdifferential ∂̂h(x) of the generalized differentiable
function h(x) = E[�(x, D)] is a convex set and�(x, z, u) is generated by the elements
of the set ∂̂ f (x, u) × ∂̂h(x) × ∂̂h(x), we can directly conclude that �(x, z, u) is a
convex set as well. In this case, there is nothing left to prove. Therefore, in the rest of
the proof, we assume p2 �= 0. Noticing that ∂̂u f (x, u) and ∂̂h(x) are convex sets, we
consider the convex combinations

l1c := sl1a + (1 − s)l1b,

l2c := s(p2 − κ p1 − gau)

p2 − κ p1 − sgau − (1 − s)gbu
l2a + (1 − s)(p2 − κ p1 − gbu)

p2 − κ p1 − sgau − (1 − s)gbu
l2b,

l3c := sl3a + (1 − s)l3b,

gcu := sgau + (1 − s)gbu,

J1c := s J1a + (1 − s)J1b,

J2c := sgau

sgau + (1 − s)gbu
J2a + (1 − s)gbu

sgau + (1 − s)gbu
J2b;

3 with the convention that when gau = gbu = 0, we have gcu := 0 and J2c := J2a .
The corresponding point C = (Rc, vc) (generated by the triple (gcu, J1c, J2c)) will
be:

Rc = a((1 + κ)p1(sl1a + (1 − s)l1b) + s(p2 − κ p1 − gau)l2a

+(1 − s)(p2 − κ p1 − gbu)l2b

+p3(sl3a + (1 − s)l3b) + s J T
2agau + (1 − s)J T

2bgbu − z),

3 Notice that in the definition of �2c , we have necessarily p2−κ p1−gau > 0 as p2 > 0 and−κ p1−gau ≥
0 by (25). Similarly, p2 −κ p1 − gbu > 0. Therefore, the denominator p2 −κ p1 − sgau − (1− s)gbu > 0.
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vc = (s J1a + (1 − s)J1b)(ȳ(x, z) − x) + b(h(x) − u),

which is identical to the convex combination (Rs, vs). Therefore, any convex combi-
nation of two arbitrary points in Γ (x, z, u) remains in the set, and thus, Γ (x, z, u) is
convex-valued. ��
Lemma 3.2 Function (8) admits the chain rule (42) on every absolutely continuous
path (x(t), u(t)), t ≥ 0, such that x(·) is continuously differentiable.

Proof Suppose x(·) is continuously differentiable and u(·) is absolutely continuous.
Due to Assumption (A2) and Theorem A.3, for every D the function L D(t) =
�(x(t), D) admits the chain rule. As it is absolutely continuous and the function
max(0, ·) is convex, the function t �→ max(0, L D(t) − u(t)) admits the chain rule as
well. By virtue of (A2), the expected value (8) admits the chain rule as claimed. ��
Lemma 3.3 The sequences {zk} and {uk} are bounded with probability 1.

The proof is routine. For convenience of the reader, we provide it in Appendix B.
We analyze the method by the differential inclusion technique, by refining and

specializing the approach adopted in [50]. Although ourmodel does not fit the assump-
tions of [50], our result on the convexity of the multifunction Γ (·) allows for proving
convergence in this case as well.

We need an additional technical assumption.

(A5) The set F(X∗) does not contain an interval of nonzero length.

Theorem 3.1 If the assumptions (A1)–(A5) are satisfied, then with probability 1 every
accumulation point x̂ of the sequence {xk} is stationary, limk→∞(uk − h(xk)) = 0,
and the sequence {F(xk)} is convergent.

Proof We consider a specific trajectory of the method and divide the proof into three
standard steps.

Step 1: The Limiting Dynamical System. We denote, by pk = (xk, zk, uk),
k = 0, 1, 2, . . . , a realization of the sequence generated by the algorithm. We intro-
duce the accumulated stepsizes tk = ∑k−1

j=0 τ j , k = 0, 1, 2 . . . , and we construct the
interpolated trajectory

P0(t) = pk + t − tk
τk

(pk+1 − pk), tk ≤ t ≤ tk+1, k = 0, 1, 2, . . . .

For an increasing sequence of positive numbers {sk} diverging to infinity, we define
shifted trajectories Pk(t) = P0(t + sk).

Relations (22), (23), and (24) fit the model of an algorithm analyzed in [36]. Our
assumption (A3) is identical to the condition assumed there. Assumption (A1) and
Lemma 3.3 guarantee the boundedness of the sequence {pk} and the functions Pk(·).
Lemma 3.1 verifies the upper-semicontinuity of the multifunction �(·), and the con-
vexity and the compactness of its values. All conditions of [36,Thm. 3.2] are thus
satisfied. Therefore, by the statement (i) of that theorem, for any infinite set K of
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positive integers, there exist an infinite subset K1 ⊂ K and an absolutely continuous
function P : [0,+∞) → X × Rn × R such that for any T > 0

lim
k→∞
k∈K1

sup
t∈[0,T ]

∥
∥Pk(t) − P(t)

∥
∥ = 0,

and P(·) = (
X(·), Z(·), U (·)) is a solution of the system of differential equations and

inclusions corresponding to (11) and (22):

•
x (t) = ȳ

(
x(t), z(t)

) − x(t), (27)
( •

z (t),
•

u (t)
) ∈ Γ (x(t), z(t), u(t)). (28)

where ȳ is as in (19). Moreover, [36,Thm. 3.2 (ii)] guarantees that for any t ≥ 0, the
triple

(
X(t), Z(t), U (t)

)
is an accumulation point of the sequence {(xk, zk, uk)}.

In order to analyze the equilibrium points of the system (27)–(28), we first study
the dynamics of the functions H(t) = h(X(t)) and F(t) = f (X(t), U (t)). It follows
from (27) that the path X(·) is continuously differentiable. By virtue of assumption
(A2) and [49,Thm. 1] (Theorem A.3), for any J (t) ∈ ∂̂h(X(t)),

•
H(t) = J (t)

•
X(t). (29)

Again, Assumption (A2) andTheoremA.3 imply that for anyG(t) ∈ ∂̂ f (X(t), U (t)),

•
F(t) = Gx (t)

� •
X(t) + Gu(t)

•
U (t). (30)

To understand the dynamics of U (·), from (28) and (22) we deduce that

•
U (t) = Ĵ1(t)

•
X(t) + b[H(t) − U (t)], (31)

with some Ĵ1(t) ∈ ∂̂h(X(t)). Therefore, using J (·) = Ĵ1(·) in (29), we obtain
•

U (t) = •
H(t) + b[H(t) − U (t)]. (32)

Consequently, the solution of (30)–(31) has the form:

•
F(t) = Ĝ1(t)

� •
X(t) + bGu(t)[H(t) − U (t)]. (33)

with Ĝ1(t) = Gx (t)+ Ĵ1(t)�Gu(t). These observations will help us study the stability
of the system.

Step 2: Descent Along a Path. We use the Lyapunov function

W (x, z, u) = a f (x, u) − η(x, z) + γ
∥∥h(x) − u

∥∥, (34)

with the coefficient γ > 0 to be specified later.
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Directly from (33), we obtain

f (X(T ), U (T )) − f (X(0), U (0))=
∫ T

0
Ĝ1(t)

� •
X(t) dt+b

∫ T

0
Gu(t)

[
H(t)−U (t)

]
dt .

(35)

We now estimate the change of η(X(·), Z(·)) from 0 to T . Since ȳ(x, z) is unique,
the function η(·, ·) is continuously differentiable. Therefore, the chain formula holds
for it as well:

η(X(T ), Z(T )) − η(X(0), Z(0))

=
∫ T

0

〈∇xη(X(t), Z(t)),
•

X(t)
〉
dt +

∫ T

0

〈∇zη(X(t), Z(t)),
•

Z(t)
〉
dt .

From (28), we obtain

•
Z(t) = a

(
Ĝ2(t) − Z(t)

)
,

with Ĝ2(t) = Gx (t) + Ĵ2(t)�Gu(t) and Ĵ2(t) ∈ ∂̂h(X(t)). The function η(x, z)
defined in (18), as the optimal value of an optimization problem, can be differentiated
with respect to the parameters (x, z) at the unique optimal solution ȳ(x, z) directly
[4,Thm. 4.13]. Substituting∇xη(x, z) = −z+c(x− ȳ(x, z)),∇zη(x, z) = ȳ(x, z)−x ,
and using the inequality (20) twice, we obtain

η(X(T ), Z(T )) − η(X(0), Z(0))

=
∫ T

0

〈 − Z(t) + c(X(t) − ȳ(X(t), Z(t))) , ȳ(X(t), Z(t)) − X(t)
〉
dt

+ a
∫ T

0

〈
ȳ(X(t), Z(t)) − X(t) , Ĝ2(t) − Z(t)

〉
dt

≥ a
∫ T

0

〈
ȳ(X(t), Z(t)) − X(t) , Ĝ2(t) − Z(t)

〉
dt

≥ a
∫ T

0
Ĝ2(t)

�(
ȳ(X(t), Z(t)) − X(t)

)
dt + ac

∫ T

0

∥
∥ȳ(X(t), Z(t)) − X(t)

∥
∥2 dt .

With a view at (27), we conclude that

η(X(T ), Z(T )) − η(X(0), Z(0))≥ a
∫ T

0
Ĝ�

2 (t)
•

X(t) dt+ac
∫ T

0

∥∥ •
X(t)

∥∥2 dt . (36)

We now estimate the increment of
∣
∣H(·) − U (·)∣∣ from 0 to T . As | · | is convex

and H(·) and U (·) are absolutely continuous, the chain rule applies as well: for any
λ(t) ∈ ∂|H(t) − U (t)|, we have
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∣∣H(T ) − U (T )
∣∣ − ∣∣H(0) − U (0)

∣∣ =
∫ T

0
λ(t)

( •
H(t) − •

U (t)
)
dt .

By (32),
•

H(t)− •
U (t) = b

[
U (t)−H(t)

]
for almost all t . As λ(t) = sign

(
H(t)−U (t)

)
,

we obtain

∣
∣H(T ) − U (T )

∣
∣ − ∣

∣H(0) − U (0)
∣
∣ = −b

∫ T

0

∣
∣H(t) − U (t)

∣
∣ dt . (37)

We can now combine (35), (36), and (37) to estimate the change of the function
(34):

W
(
X(T ), Z(T ), U (T )

) − W
(
X(0), Z(0), U (0)

)

≤ a
∫ T

0
Gu(t)( Ĵ1(t) − Ĵ2(t))

•
X(t) dt + ab

∫ T

0
Gu(t)

[
H(t) − U (t)

]
dt

− ac
∫ T

0

∥∥ •
X(t)

∥∥2 dt − bγ

∫ T

0

∣∣H(t) − U (t)
∣∣ dt .

It follows from (25) that
∣∣Gu(t)

∣∣ ≤ 1. Furthermore, Ĵ1(t)
•

X(t) = Ĵ2(t)
•

X(t) = •
H(t),

by virtue of (29). The last estimate entails:

W
(
X(T ), Z(T ), U (T )

) − W
(
X(0), Z(0), U (0)

)

≤ −ac
∫ T

0

∥∥ •
X(t)

∥∥2 dt − b(γ − a)

∫ T

0

∣∣H(t) − U (t)
∣∣ dt . (38)

By choosing γ > a, we ensure that W (·) has the descent property to be used in our
stability analysis at Step 3.

Step 3: Analysis of the Limit Points. Define the set

S = {
(x, z, u) ∈ X∗ × Rn × R : η(x, z) = 0, u = h(x)

}
.

Our analysis uses similar ideas to [13, 36], with modifications due to the complex
form of our Lyapunov function W (·). As the sequence {pk} is bounded, the quantity

L = lim inf
k→∞ W (pk) (39)

is finite. Suppose p̄ = (x̄, z̄, ū) is the limit of a convergent subsequence {pnk } such
that L = limk→∞ W (pnk ). If η(x̄, z̄) < 0, then ȳ(x̄, z̄) �= x̄ and thus every solu-
tion (X(t), Z(t), U (t)) of the system (27)–(28), starting from p(0) = (x̄, z̄, ū) has

‖ •
X(0)‖ > 0. If ū �= h(x̄), then |H(0) − U (0)| > 0. In any case, it follows from

(38) that δ > 0 exists, such that
•

W (P(0)) ≤ −2δ. Therefore, τ > 0 exists, such that
W (P(τ )) ≤ L − δτ . As W (P(τ )) is also an accumulation point of the sequence {pk}
(by [36,Thm. 3.2], already used in Step 1), we obtain a contradiction with (39).
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Therefore, we must have η(x̄, z̄) = 0 and ū = h(x̄). Suppose x̄ /∈ X∗. Then

dist
(
0, ∂̂ F(x̄) + NX (x̄)

)
> 0. (40)

Suppose the system (27)–(28) starts from (x̄, z̄, ū) and X(t) = x̄ for all t ≥ 0.
From (28) and (21), in view of the equations ȳ(x̄, z̄) = x̄ and ū = h(x̄), we obtain
U (t) = h(x̄) for all t ≥ 0. The inclusion (28), in view of (16), simplifies

•
z (t) ∈ a

(
∂̂ F(x̄) − z(t)

)
.

For the convex Lyapunov function V (z) = dist
(
z, ∂̂ F(x̄)

)
, we apply the classical

chain formula [5] on the path Z(·):

V ((Z(T )) − V (Z(0)) =
∫ T

0

〈
∂V (Z(t)),

•
Z(t)

〉
dt .

For Z(t) /∈ ∂̂ F(x̄), we have

∂V (Z(t)) = Z(t) − Proj
∂̂ F(x̄)

(Z(t))

‖Z(t) − Proj
∂̂ F(x̄)

(Z(t))‖

and
•

Z(t) = a(d(t) − Z(t)) with some d(t) ∈ G(x̄). Therefore,

〈
∂V (Z(t)),

•
Z(t)

〉 ≤ −a‖Z(t) − ProjG(x̄)(Z(t))‖ = −aV (Z(t)).

It follows that

V ((Z(T )) − V (Z(0)) ≤ −a
∫ T

0
V (Z(t)) dt,

and thus

lim
t→∞ dist

(
Z(t), ∂̂ F(x̄)

) = 0. (41)

It follows from (40)–(41) that T > 0 exists, such that −Z(T ) /∈ NX (x̄), which

yields
•

X(T ) �= 0. Consequently, the path X(t) starting from x̄ cannot be constant (our
supposition made right after (40) cannot be true). But if is not constant, then again

T > 0 exists, such that
•

X(T ) �= 0. By [36,Thm. 3.2], already used in Step 1, the
triple (X(T ), Z(T ), U (T )) would have to be an accumulation point of the sequence

{(xk, zk, uk)}. We have already excluded the case of
•

X(T ) �= 0 at the beginning

of Step 3, because then
•

W (T ) < 0 and (39) are violated. We conclude that the
accumulation point (x̄, z̄, ū), corresponding to L , is in S.

The convergence of the entire sequence
{
W (xk, zk, uk)

}
to L then follows in the

same way as [36,Thm. 3.5, Steps 3-4]. The proof can be reproduced verbatim here.
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Our Assumption (A5) corresponds to the condition (ii) of that result and is required
at this step of the analysis only. It is the same as [13,Ass. C].

Since every accumulation point (x̄, z̄, ū) of the sequence {(xk, zk, uk)} is in S, then
η(xk, zk) → 0 and h(xk) − uk → 0. Then, the convergence of { f (xk, uk)} follows
from the convergence of

{
W (xk, zk, uk)

}
.With h(xk)−uk → 0, the sequence {F(xk)}

is convergent as well. ��

4 Numerical Experiments

In this section, we report results of numerical experiments that illustrate the perfor-
mance of our single time-scale (STS)method for deep learning and logistic regression.
For both applications, we consider perturbations in the training data set, which leads
to a distributional shift in the population measure P, whereas we do not perturb the
test data. We run the STS algorithm on the contaminated training data and investigate
the robustness of the solution found by STS by considering different samples from the
test data and the corresponding distribution of the test loss.

Both versions of the method, with stochastic subgradients calculated by (14) or
(15), were tested, and both converged to the same solutions of the risk-averse models.
Both required similar numbers of iterations as the SGDmethod for the expected value
model.

Our numerical results were obtained using Python (Version 3.7) on an Alienware
Aurora R8 desktop with a 3.60 GHz CPU (i7-2677M) and 16GB memory.

4.1 Deep Learning

We consider a fully-connected network on two benchmark datasets: MNIST [33] and
CIFAR10 [29], where themodel has the depth (the number of layers) of 3 and thewidth
(the number of neurons per hidden layer) of 100. TheMNIST dataset consists of black
and white images of handwritten digits, with a 28×28 format. It is split into a training
dataset of 60,000 examples and a test dataset of 10,000 examples. TheCIFAR10dataset
consists of color images of various objects, with a 3 × 32 × 32 format. It is split into
a training part of 50,000 examples and a test part of 10,000 examples. The model
for the MNIST dataset has 99,710 parameters in total: 78,500 parameters for the first
layer, 10,100 parameters for the second layer, 10,100 parameters for the third layer and
1010 parameters for the output layer. The model for the CIFAR10 dataset has 328,510
parameters in total: 307,300 parameters for the first layer, 10,100 parameters for the
second layer, 10,100 parameters for the third layer and 1010 parameters for the output
layer. For both MNIST and CIFAR10 datasets, the task is to classify the images with
an integer label valued from 0 to 9, and we use the cross-entropy loss during training
(see reference here). The resulting loss function �(x, D) is a composition of the fully-
connected network and the cross-entropy loss. We distort the distributions of MNIST
and CIFAR10 training datasets by deleting all the data points with the y value equal
to 0 (such points account for approximately 10% of the whole dataset). Based on the
contaminated data, we train our model with different robustness levels κ for 4000
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iterations. To test the robustness of the model found by STS, we sample 100 points
from the test dataset and compute the corresponding loss and repeat this procedure
200 times for both datasets to generate a histogram of the test loss. We then report the
corresponding cumulative distribution function (CDF) of the test loss in Figs. 1 and
2 for different values of κ, compared with results from a model trained by SGD.4

If the training data are not contaminated at all, we have observed in our experiments
that STS generates a similar or slightly worse solution than SGD. This is expected as
STS optimizes a penalized (robust) loss (4), which is different than the empirical loss.
The numerical details are omitted for the sake of brevity. On the other hand, when the
data suffer from distributional distortion, we see a clear advantage of the STS method
over the SGD method.

4.2 Logistic Regression

Weconsider binary logistic regression on theAdult dataset [12]where the loss function
has the form �(x, D) = [

log(1 + exp(−b aT x))
]
where D = (a, b) is the input data.

The problem is to predict whether the annual income of a personwill be above $50,000
or not, based on n = 123 predictor variables. The dataset has 32,561 training examples
and 16,281 test examples.We follow a similarmethodology as before, wherewe distort
the training data by deleting 80% of the data points with the corresponding income
below $50,000. We trained our model with STS and another state-of-the-art method
Bandit mirror descent (BMD) developed in [41], allowing both methods to execute
the same numbers of iterations, which corresponds to 80,000 iterations of the STS
method. We then compare the cdf of the loss of the trained models based on 3000
samples from the test data. Test data are sampled from the original (uncontaminated)
data. The results are reported in Fig. 3 for different values of the robustness level κ.
We see that STS results in smaller errors and conclude that our method has desirable
robustness properties with respect to perturbations in the input distribution.

4.3 Remarks on the Assumptions

In the numerical examples, we replace the population quantities with their empirical

counterparts. The subgradient noise arises as the subgradients J̃ k+1, g̃k+1 =
[

g̃k+1
x

g̃k+1
u

]

and the estimate h̃k+1 of the empirical risk are obtained from randomly sampled subset
of data points in mini-batches (instead of considering all the data points to estimate
the actual subgradients), by formulas (14) or (15).

For logistic regression, similar to [38], we take the feasible set X to be a (closed)
Euclidean ball with a radius R chosen large enough to contain theminimum.Clearly, X
is convex and compact in this case and Assumption (A1) holds. Since the loss �(x, D)

is a continuous function of both arguments, x and D, the input data are normalized and
bounded, and the iterates stay in the compact set X (where the loss � and its subgradients

4 There are also adversarial learning methods [25, 31, 35, 64] where the aim is to be resistant to norm-
bounded perturbations of the input before we have access to it; however, we do not compare with these
methods as our formulation (4) focuses on a distributional distortion.
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Fig. 1 The CDFs of the loss of the SGD solution and the STS solution on the test data. Test data is the
original (uncontaminated) MNIST data, whereas the models are trained with the contaminated data

with respect to x are bounded), Assumption (A2) holds. Furthermore, we observe from
(14) that the sequences J̃ k+1, g̃k+1 and h̃k+1 stay uniformly bounded over k; therefore,
their variance (conditioned on the natural filtration Fk) is bounded. Moreover, J̃ k+1,
g̃k+1 and h̃k+1 are unbiased estimates. This is a direct consequence of the fact that
Dk+1
1 and Dk+1

2 are i.i.d. samples from the empirical data distribution. If we take
the expectation of these estimates, as the generalized subdifferentials are bounded, we
can interchange the subdifferential and the expectation operators (TheoremA.2). From
these observations, we conclude that Assumption (A4) is satisfied. In our experiments,
we take τk = c1/(1 + c2k) where c1, c2 are positive constants; we choose c1 small
enough so that Assumption (A3) holds. We conclude that all the assumptions (A1)–
(A4) hold in our experiments for the logistic regression. The Sard-like assumption
(A5) is purely technical; it is hard to imagine a practical problem that violates it.

By a similar reasoning, assumptions (A1)–(A4) hold in the setting of our deep
learning experiments as well. The only difference is that in deep learning we chose
the feasible set X differently: X = {x : ‖x‖∞ ≤ B} for B = 10. This amounts to
requiring that the weights of the hidden units are all bounded. Such constraints are
employed frequently in practice for regularization purposes [57]. In practice, with zero
initialization and over multiple sample paths of our algorithm, we have never observed
the constraint set being violated.
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Fig. 2 The CDFs of the loss of the SGD solution and the STS solution on the test data. Test data is the
original (uncontaminated) CIFAR10 data, whereas the models are trained with the contaminated data

5 Contributions

We considered a distributionally robust formulation of stochastic optimization prob-
lems arising in statistical learning, where robustness is with respect to ambiguity in
the underlying data distribution. We focused on a broad class of generalized differ-
entiable loss functions that can be non-convex and non-smooth, such as those arising
in deep learning with ReLU activations. We developed an efficient single-time-scale
stochastic subgradient method and showed rigorously that under some assumptions
it converges to a point satisfying the optimality conditions with probability one. Our
method allows learning predictive models from data while being robust with respect to
uncertainty in the underlying data distribution and requires little extra computational
effort compared to population risk minimization with stochastic gradient methods.We
also provided numerical experiments that illustrates the efficiency of our method on
logistic regression and deep learning problems.
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Fig. 3 The CDFs of the loss of the BMD solution and the STS solution on the test data. The test data are
the original (uncontaminated) Adult data, whereas the models are trained with the contaminated data

Appendix A: Generalized Differentiability of Functions

Norkin [42] introduced the following class of functions.

Definition A.1 A function f : Rn → R is differentiable in a generalized sense at a
point x ∈ Rn , if an open setU ⊂ Rn containing x , and a non-empty, convex, compact
valued, and upper semicontinuous multifunction ∂̂ f : U ⇒ Rn exist, such that for all
y ∈ U and all g ∈ ∂̂ f (y) the following equation is true:

f (y) = f (x) + 〈g(y), y − x〉 + o(x, y, g),

with

lim
y→x

sup
g∈G(y)

o(x, y, g)

‖y − x‖ = 0.

The set ∂̂ f (y) is the generalized subdifferential of f at y. If a function is differentiable
in a generalized sense at every x ∈ Rn with the same generalized subdifferential
mapping ∂̂ f : Rn ⇒ Rn , we call it differentiable in a generalized sense.

A function f : Rn → Rm is differentiable in a generalized sense, if each of its
component functions, fi : Rn → R, i = 1, . . . , m, has this property.
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The class of such functions is contained in the set of locally Lipschitz functions
and contains all subdifferentially regular functions [7], Whitney stratifiable Lipschitz
functions [11], semismooth functions [39], and their compositions. The Clarke subdif-
ferential ∂ f (x) is an inclusion-minimal generalized subdifferential, but the generalized
sub-differential mapping ∂̂ f (·) is not uniquely defined in Definition A.1. However, if
f : Rn → R is differentiable in a generalized sense, then for almost all x ∈ Rn we
have ∂̂ f (x) = {∇ f (x)}.

Compositions of generalized differentiable functions are crucial in our analysis.

Theorem A.1 [40,Thm. 1.6] If h : Rm → R and fi : Rn → R, i = 1, . . . , m, are dif-
ferentiable in a generalized sense, then the composition ψ(x) = h

(
f1(x), . . . , fm(x)

)

is differentiable in a generalized sense, and at any point x ∈ Rn we can define the
generalized subdifferential of ψ as follows:

∂̂ψ(x) = conv
{
g ∈ Rn : g = [

g1 · · · gm
]

g0,

with g0 ∈ ∂̂h
(

f1(x), . . . , fm(x)
)

and g j ∈ ∂̂ f j (x), j = 1, . . . , m
}
.

Even if we take ∂̂h(·) = ∂h(·) and ∂̂ f j (·) = ∂ f j (·), j = 1, . . . , m, we may obtain
∂̂ψ(·) �= ∂ψ(·), but ∂̂ψ defined above satisfies Definition A.1.

For stochastic optimization, essential is the closure of the class functions differen-
tiable in a generalized sense with respect to expectation.

Theorem A.2 [40,Thm. 23.1] Suppose (Ω,F , P) is a probability space and a func-
tion f : Rn × Ω → R is differentiable in a generalized sense with respect to x for
all ω ∈ Ω and integrable with respect to ω for all x ∈ Rn. Let ∂̂ f : Rn × Ω ⇒ Rn

be a multifunction, which is measurable with respect to ω for all x ∈ Rn, and
which is a generalized subdifferential mapping of f (·, ω) for all ω ∈ Ω . If for
every compact set K ⊂ Rn an integrable function L K : Ω → R exists, such that
supx∈K supg∈∂̂ f (x,ω)

‖g‖ ≤ L K (ω), ω ∈ Ω , then the function

F(x) =
∫

Ω

f (x, ω) P(dω), x ∈ Rn,

is differentiable in a generalized sense, and the multifunction

∂̂ F(x) =
∫

Ω

∂̂ f (x, ω) P(dω), x ∈ Rn,

is its generalized subdifferential mapping.

Akey step in the analysis of stochastic recursive algorithmsby the differential inclusion
method is the chain rule on a path (see [9] and the references therein). For an absolutely
continuous function p : [0,∞) → Rn , we denote by

•
p(·) its weak derivative: a

measurable function such that

p(t) = p(0) +
∫ t

0

•
p(s) ds, ∀ t ≥ 0.
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Theorem A.3 [49,Thm. 1] If a function f : Rn → Rm and a path p : [0,∞) → Rn

are differentiable in a generalized sense, then

f (p(T )) − f (p(0)) =
∫ T

0
g(p(t))

•
p(t) dt, (42)

for all selections g(·) ∈ ∂̂ f (·), and all T > 0.

Appendix B: Proof of Lemma 3.3

Proof Formula (13) and assumptions (A4)(ii) and (iii) yield:

uk+1 = uk + τk
[
J k+1(

ȳ(xk, zk) − xk) + b
(
h(xk+1) − uk)] + τkθ

k+1
u + τkε

k+1
u ,

(43)

with the errors

θk+1
u = Ek+1(

ȳ(xk, zk) − xk) + bek+1
h ,

εk+1
u = �k+1(

ȳ(xk, zk) − xk) + bδk+1
h .

Due to assumption (A4), for some constant Cθ
u ,

E
[
θk+1

u

∣∣Fk
] = 0, E

[‖θk+1
u ‖2 ∣∣Fk

] ≤ Cθ
u , k = 0, 1, . . . (44)

and

lim
k→∞ εk+1

u = 0 a.s..

To verify the boundedness of {uk}, we define the quantities

ũk = uk +
∞∑

j=k

τ jθ
j+1

u .

Owing to (A3) and (44), by virtue of the martingale convergence theorem, the series
in the formula above is convergent a.s., and thus, ũk − uk → 0 a.s., when k → ∞.
We can now use (43) to establish the following recursive relation:

ũk+1 = (1 − bτk)ũ
k + bτk

[1
b

J k+1(
ȳ(xk, zk) − xk) + h(xk+1) + 1

b
εk+1

u + (ũk − uk)
]
.

By (A1), the sequences {J k} and {h(xk)} are bounded. Since ũk −uk → 0 and εk
u → 0

a.s., the elements in the brackets in the formula above constitute an almost surely
bounded sequence. Consequently, the sequence {ũk} of their convex combinations
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is almost surely bounded as well. The same is true for the sequence {uk}, because
ũk − uk → 0 a.s.

The boundedness of {zk} can be established in a similar way. We rewrite (12) as

zk+1 = zk + aτk

(
gk+1

x + [
J k+1]�

gk+1
u − zk

)
+ aτkθ

k+1
z + aτkε

k+1
z , (45)

with the errors

θk+1
z = ek+1

gx + [
J k+1]�

ek+1
gu + [

E k+1]�
gk+1

u + [
E k+1]�

ek+1
gu ,

εk+1
z = δk+1

gx + [
J̃ k+1]�

δk+1
gu + [

� k+1]�
g̃k+1

u .

Due to assumption (A4) (note the statistical independence of E k+1 and ek+1
gu ), for

some constant Cθ
z ,

E
[
θk+1

z

∣∣Fk
] = 0, E

[‖θk+1
z ‖2 ∣∣Fk

] ≤ Cθ
z , k = 0, 1, . . .

and

lim
k→∞ εk+1

z = 0 a.s..

The remaining proof is the same as that for {uk}, with relation (45) replacing (43). ��
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