
1

UAV-assisted Online Machine Learning over
Multi-Tiered Networks: A Hierarchical Nested

Personalized Federated Learning Approach
Su Wang, Student Member, IEEE, Seyyedali Hosseinalipour, Member, IEEE, Maria Gorlatova, Member, IEEE,

Christopher G. Brinton, Senior Member, IEEE, and Mung Chiang, Fellow, IEEE

Abstract—We investigate training machine learning (ML) mod-
els across a set of geo-distributed, resource-constrained clusters
of devices through unmanned aerial vehicles (UAV) swarms. The
presence of time-varying data heterogeneity and computational
resource inadequacy among device clusters motivate four key
parts of our methodology: (i) stratified UAV swarms of leader,
worker, and coordinator UAVs, (ii) hierarchical nested personalized

federated learning (HN-PFL), a distributed ML framework for
personalized model training across the worker-leader-core network
hierarchy, (iii) cooperative UAV resource pooling to address
computational inadequacy of devices by conducting model training
among the UAV swarms, and (iv) model/concept drift to model
time-varying data distributions. In doing so, we consider both
micro (i.e., UAV-level) and macro (i.e., swarm-level) system design.
At the micro-level, we propose network-aware HN-PFL, where we
distributively orchestrate UAVs inside swarms to optimize energy
consumption and ML model performance with performance
guarantees. At the macro-level, we focus on swarm trajectory
and learning duration design, which we formulate as a sequential
decision making problem tackled via deep reinforcement learning.
Our simulations demonstrate the improvements achieved by our
methodology in terms of ML performance, network resource
savings, and swarm trajectory efficiency.

Index Terms—UAVs, personalized federated learning, dis-
tributed model training, network optimization, model drift.

I. INTRODUCTION

Traditionally, machine learning (ML) has been managed cen-
trally [1], [2] with the training performed at one location using
all of the data. However, Internet of Things (IoT) use cases,
e.g., autonomous driving, smart manufacturing, and object
tracking, have highly distributed datasets that are challenging
or sometimes impossible to centralize [3]. This has motivated
the development of distributed ML, in particular federated
learning (FL), techniques [4] to distribute model training across
devices themselves. Though IoT devices are large in number,
in many situations they are computationally limited (e.g., low
cost wireless sensors) [5] leading to situations where data are
highly distributed and cannot be locally processed.

S. Wang, C. Brinton, and M. Chiang are with Purdue University, IN, USA
e-mail: {wang2506,cgb,chiang}@purdue.edu.

S. Hosseinalipour is with University at Buffalo (SUNY), NY, USA email:
alipour@buffalo.edu

M. Gorlatova is with Duke University, Durham, NC, USA e-mail:
maria.gorlatova@duke.edu.

This work was supported in part by the National Science Foundation (NSF)
under grants CNS-2146171 and CNS-1908051, the Office of Naval Research
(ONR) under grants N000142112472 and N000142212305, and by an IBM
Faculty Award.

Core Network

Leader

Worker

Coordinator Task Environment

Recharge Station

Access Point

Swarm 3

Cluster 5

Cluster 6

Cluster 4

Cluster 3

Cluster 2

Cluster 1

Swarm 1 Swarm 2

FIGURE 1: Schematic of UAV-enabled HN-PFL. The network consists
of multiple IoT device clusters, stratified UAV swarms, access points,
and recharging stations. UAV swarm leaders orchestrate intra-swarm
ML training by workers, and the data collection/transfer at workers
and coordinator UAVs. Periodically, leaders travel to access points
for the core network for global model aggregation. As there are more
clusters than swarms, the core network also determines the trajectories
of the UAV swarms indicated by the dashed curved arrows.

Unmanned aerial vehicles (UAVs) have been recently in-
corporated into IoT networks to service applications such as
surveillance, aerial base stations, smart agriculture, and search
and rescue [6]. Existing work [3] have employed commercially-
available UAVs with attached edge computing systems to act
as a computational layer for receiving data from IoT devices
and performing data processing tasks. Current literature is
taking initial steps toward integrating such UAVs into FL [7]–
[10], which will be particularly useful for geo-distributed
IoT settings with sparse cellular connectivity. However, these
works have mostly focused on implementing the classic FL
architecture using UAVs, where either (i) the data is assumed to
already be stored on the UAVs [7]–[9] or (ii) the UAVs simply
replace cellular base stations as the model aggregators [10].
These works further have not accounted for the time-evolving
nature of data distributions in many IoT settings caused by
environmental shifts. To address this, we propose a paradigm,
depicted in Fig. 1, that integrates UAVs and UAV swarms into
the intelligent IoT ecosystem, where swarms must travel among
the device clusters to efficiently collect measurements and
conduct model training across time-varying data distributions.

Specifically, a UAV-assisted distributed ML paradigm must
account for several factors. Online data variations across
geo-distributed devices, as well as heterogeneity across the
UAVs and devices in terms of data distributions and computa-
tion/communication resources, can each have a large impact
on performance. On the infrastructure side, device-UAV-core

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

2

network interfacing and the locations of recharging stations
become important, especially across a large geographic region.
To address these challenges, the methodology we propose
consists of four interrelated parts: (i) a new model for UAV
swarms, called stratified swarms, suitable for distributed ML
data collection and model training; (ii) hierarchical nested
personalized federated learning (HN-PFL) to account for
data heterogeneity in model updates; (iii) cooperative data
processing across the UAVs via resource pooling; and (iv)
model/concept drift tracking, which is tied to the model
performance at devices and UAV movement patterns. We will
develop and solve both UAV-level and swarm-level system
optimizations: (a) HN-PFL model performance is optimized
via efficient orchestration of the UAVs, taking into account the
heterogeneity of the network elements, while (b) the swarm
trajectories are optimized to account for anticipated model drifts
across device clusters that will maximize training performance.

A. Motivations and Applications
The following scenarios will further motivate our system

model for UAV-enabled online ML model training, where the
UAVs perform both data collection and model training.

Community Service Systems via Amazon Sidewalk:
Amazon proposes Sidewalk [11] to integrate community
networks of IoT devices for household appliance diagnostics
(e.g., garage system maintenance, pet finding, smart lighting)
in the absence of consistent wi-fi connectivity by leveraging
device-to-device (D2D) communications. However, efficient
training of ML models on IoT devices and sharing them
among distant neighborhoods faces four non-trivial challenges:
(i) IoT devices may not be idle, plugged into power, or
have direct access to a cellular base station (i.e., the core-
network), preventing them from performing computationally
intensive ML training, (ii) distant neighborhoods may not be
reachable through D2D, (iii) neighborhoods’ collected data
may be time varying, and (iv) the neighborhoods may have
extremely heterogeneous data distributions. We address the
first two limitations by introducing UAV resource pooling
and transferring model training vertically onto UAV swarms
(e.g., the Amazon Prime Air delivery system), the third via
model/concept drift at different neighborhoods, and the fourth
through model personalization.

Distributed Surveillance in Smart Cities: Our proposed
method has natural applications to smart city surveillance
systems. For instance, multiple UAV swarms can be spread
throughout a city, extracting data from sensors and cameras
as well as those devices in rural areas without direct access to
the closed-circuit cellular network to train an ML model [12].
Additionally, these swarms can travel to diverse neighborhoods
(e.g., industrial parks vs. academic campuses) within a city,
allowing for model recalibration in the presence of dynamic
environments and improving the quality of personalized models
through a global meta-learning approach that captures data
commonalities across the city (see Sec. III).

Machine Learning on Wireless Sensor Networks: ML
techniques have been adapted for wireless sensor networks
(WSN) with respect to a wide variety of tasks, e.g., object
targeting and event detection. Our model can be contextualized,

as an example, for integrated-WSN-UAV response systems,
wherein wireless sensors collect data, e.g., water level or
seismic energy, and offload it to UAVs, which then train
ML models [13]. The UAV swarms can travel to distant
and disconnected WSNs, e.g., across a beach/coast, to gather
heterogeneous and time-varying data, e.g., day vs. night tidal
measurements, and train ML models for each WSN cluster,
thus integrating the system together.

B. Related Work
This paper contributes to both literature in distributed ML

over wireless networks and ML for UAV networks. Below, we
provide a summary of related works and highlight the main
contributions of our methodology.

Distributed ML over wireless networks: Recent literature
concerning ML by wireless networks has shifted towards
federated learning [14], and is mostly focused on studying the
convergence and behavior of federated learning over wireless
networks [15]–[20]. Conventional federated learning assumes
training a single ML model for all the engaged devices.
However, upon having extreme data heterogeneity across the
devices, training a single model may result in poor model
performance for a portion of devices. This has motivated a
new trend of research in ML that aims to train user-specific
ML models, called personalized federated learning [21], in
which meta-gradient updates are introduced to enhance the
training efficiency. As compared to this literature, we develop
and investigate a new distributed ML paradigm over wireless
networks called hierarchical nested personalized federated
learning (HN-PFL) inspired by meta-gradient updates, which
is different than hierarchical FL architectures, e.g., [22],
which rely on conventional gradient descent updates for local
model training. Furthermore, we develop a new framework for
network-aware HN-PFL over UAV-assisted wireless networks
that considers model training under heterogeneity of resources
in wireless networks. Our resulting optimization formulation
balances the tradeoffs between ML model performance and
network parameters such as data offloading, training batch
sizes, and CPU cycles, and is also part of our contributions.

ML for UAV-assisted networks: Deep learning techniques
have been utilized to enhance the efficiency of wireless
networks [23]. In UAV-assisted networks, especially when
the UAVs are deployed as aerial base stations, reinforcement
learning (RL) has been utilized to carry out a variety of tasks,
such as trajectory and power control for UAVs [24], and UAV
server quality [25]. A key observation from the aforementioned
existing literature is that UAV-assisted networks are difficult
to model using traditional closed form methodologies and, as
such, benefit from intelligent and autonomous management
via RL. As compared to current literature, we introduce a
new system model for UAV swarms and use a RL method
to manage only the macro-level (i.e., swarm trajectories and
temporal parameters of ML model training) of our methodology.

C. Outline and Summary of Contributions
Our contributions in this work can be summarized as follows:

• We introduce the framework of UAV-enabled online model
training for a set of geo-distributed ground device clusters.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I: Summary of Key Notations for Devices, UAVs, Network Optimization, Machine Learning, and Swarm Trajectory Design

Device Cluster, UAV Swarm, and Network Data Processing/Offloading Optimization and Network Energy Consumption
C Set of all device clusters ⇢i,j(t) Data transfer ratio from device i to UAV j %i,j(t) Data transfer ratio from UAV i to j

R Set of recharging stations gj(t) Adjustable CPU cycle frequency at UAV j ⇣
G

j (k) Time used by UAV j to gather data
A Set of access points ⇣

P

j (k) Time used by UAV j to process data E
Ba

j (s) Starting battery of UAV j at the s-th sequence
U(s) Number of active swarms at s-th sequence M Number of bits per datapoint fM Number of bits used for model parameters
U(s) Set of active swarms at s-th sequence Machine Learning Notation
`u Leader UAV of u-th swarm Fj Meta loss function at UAV j fj ML loss over all data in Dj

Wu Worker UAVs in the u-th swarm bfj ML loss over a datapoint in Dj wj(t) Model parameters at UAV j

bu Non-leader UAVs in u-th swarm ↵j,1(t) Inner mini-batch ratio for UAV j ↵j,2(t) Outer mini-batch ratio for UAV j

cWu Coordinator UAVs in the u-th swarm ↵j,3(t) Hessian mini-batch ratio for UAV j ts Starting time for the s-th sequence
eDi(t) Dataset of i-th device ⌧

L

s Local aggregation period for s-th sequence ⌧
G

s Global aggregation period for s-th sequence
Dj(t) Dataset of j-th UAV k Local aggregation index k

0 Global aggregation index
eDc(t) Union of datasets at cluster c Swarm Trajectory Optimization
B

D

j (t) Max dataset size for UAV j X (s) Swarm positions at s-th sequence Gc(s) Online gradient as a result of model drift
Ts Duration of the s-th sequence Z(s) Network state encoding at s-th sequence H(s) DRL agent action at the end of the s-th sequence
⇤c Model drift of cluster c V (s) Reward of the s-th sequence Q✓ Q-network for trajectory design

We propose stratified UAV swarms, which presume different
roles for the UAVs: (i) a leader that manages UAVs within
the swarm (e.g., adjusting the CPU cycles and mini-batch
sizes), and determines data transfer configurations, (ii)
workers that conduct ML model training through resource
pooling, and (iii) coordinators that enable data relaying
between the devices and the worker UAVs.

• We develop hierarchical nested personalized federated
learning (HN-PFL), which exploits meta-gradient based
learning across disconnected device clusters and yield
personalized local models. Through the nesting of intra-
swarm updates within inter-swarm aggregations, HN-PFL
conducts ML model training across the worker-leader-
core network hierarchy. We analytically characterize the
convergence behavior of HN-PFL, which leads us to new
convergence bounds for distributed ML.

• We integrate network characteristics into ML train-
ing/performance by formulating a joint energy and ML
performance optimization problem, which aims to configure
the data offloading among devices-UAVs and UAVs-UAVs,
adjust the CPU cycles of the UAVs, and obtain the mini-
batch sizes used at the worker UAVs. This formulation is
among the first in literature to consider all these design
variables together. We demonstrate that the problem belongs
to the category of complementary geometric programming
problems which are highly non-convex and NP-Hard. We
then develop a distributed method, with performance guaran-
tee, based on posynomial condensation to solve the problem
for all UAV swarms in parallel.

• We formulate the problem of UAV swarm trajectory design,
alongside of which we also optimize the learning duration
of HN-PFL. In the formulation, we consider online model
training under temporal data distribution variations, which
is quantified via model/concept drift. We demonstrate that
the problem solution is intractable and then cast the problem
as a sequential decision making problem tackled via a deep
reinforcement learning-based method.

II. SYSTEM MODEL

In this section, we introduce the system components, which
include IoT device clusters (Sec. II-A), UAV swarms, recharg-
ing stations, and access points (Sec. II-B). We also provide an
overview of our entire methodology, including the macro- and
micro-level design in Sec. II-C.

A. Device Clusters and Data Distributions
We consider a set of geo-distributed devices collected into

into C clusters, denoted by C = {C1, · · · , CC}, based on
geographic proximity. Hereafter, we will refer to an arbitrary
cluster via c for brevity. At time instance t 2 T , {1, 2, ...}, we
denote eDi(t) as the set of datapoints device i 2 c has collected
at that time. Each x 2 eDi(t) is a data sample containing model
features and (possibly) a target variable.

Motivated by the real-world applications in Sec. I-A, wherein
data distributions are expected to change temporally (e.g., at en-
vironmental sensors), we focus on online/dynamic model train-
ing and deployment, which is different from current literature
that mainly consider static data at the devices (e.g., [15]–[18]).
Our goal is to obtain and periodically update a personalized ML
model for each cluster c to use for real-time inference. However,
due to significant computation/communication constraints the
devices may be unable to train high-dimensional ML models
(e.g., surveillance cameras as described in Sec. I-A). We thus
transpose the ML model training to UAV swarms via data
offloading from the devices. We assume that each device i 2 c

collects data in its buffer eBi of finite size, and that each device
is capable of transmitting data to nearby UAVs to perform
model training. We consider eBi as a double-ended queue (i.e.,
deque) so that, when filled, new data will displace the oldest.1

B. Swarms, Recharging Stations, and Access Points
To conduct efficient ML model training at the UAVs, we

introduce stratified UAV swarms, where UAVs have different
roles for data collection and data processing (Sec. II-B1).
Since the battery-limited UAVs perform energy-intensive ML
model training, we also integrate a recharging methodology
via recharging stations in our model (Sec. II-B2). Also, to
synchronize the ML model training and UAV orchestration,
we consider a set of access points in the network (Sec. II-B3).
In the following, we explain each of these components. A
schematic of our model is depicted in Fig. 1.

1) UAV Swarms and Stratification: We consider a set of
U UAV swarms U = {U1, · · · ,UU}, and assume that U < C.
We denote an arbitrary UAV swarm as u for brevity. We
assume that each UAV swarm u is composed of UAVs with
heterogeneous capabilities, e.g., from micro-drones weighing
under 200grams that have data storage capabilities to medium-
sized fixed/rotatory wing UAVs that have more advanced

1Henceforth, we use calligraphic (e.g., eDi(t)) to denote a set, and
non-calligraphic (e.g., eDi(t)) to denote its cardinality.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

4

Joint Performance and Energy Optimization (Sec. 4)

Network and Temporal
ML characteristics

Theorem 1 and Lemma 3 to
approximate:

Decompose the optimization
over the active swarms

(separability)

Complementary Geometric Programming

Posynomial Condensation:

Geometric Programming

No

Yes

Network Optimized Hierarchical Nested Personalized Federated Learning (Sec. 3)

Each swarm (parallel)

UA
V

Sw
ar

m
 N

et
w

or
k

UA
V

Sw
ar

m
 N

et
w

or
k

Meta-gradient update at workers

Local Aggregation

In parallel
Transfer data from device
cluster and coordinators

times

times

Synchronization

Global
Aggregation

Leaders to AP

Synchronize

times Transfer ML
model to

device cluster

Meta-gradient
update at
workers

Encode State

Determine Reward

Encode ActionEncode Next State

Experience
Replay Deque

No

Yes
Mini-Batch Sampling

Swarm Trajectory and
ML Design (Sec. 5)

Train DQN Target DQN

Random Action

Greedy

Predictions
Synchronize
Periodically

MSE loss

Training Predictions

Minimize Mean-
Squared Error

Convergence
reached?

Sufficient
samples?

Co
re

 N
et

w
or

k

Active Swarm Selection
and Synchronization

FIGURE 2: Our methodology consists of three components - the HN-PFL architecture (Sec. III), the data transfer and processing optimization
(Sec. IV), and the swarm trajectory design (Sec. V). Our three components effectively reduce the problem into two layers: a micro-level wherein
ML model training is optimized and subsequently performed via HN-PFL and a macro-level wherein the optimality of the macro-system (i.e.
the network-wide consideration of all separate device clusters) is achieved. We additionally emphasize that a sole reinforcement learning based
architecture would struggle greatly from the large and dynamic state-space of energy-efficient swarm trajectory design, HN-PFL performance
and energy maximization, coordinator UAV transmissions, online model drifts, and meta-training convergence determination.
computational capabilities [26]. Subsequently, to maximize
the performance of each swarm, we propose a new swarm
stratification model, which compared to current literature on
UAV trajectory design [27] is tailored specifically for ML
training tasks. In our swarm stratification, there are three
types of UAVs: (i) a leader `u of each swarm u, with the
set of leaders across swarms denoted by L = [u2U`u,
(ii) a set of workers Wu in swarm u, with the set across
swarms denoted by W = [u2UWu, and (iii) a set of
coordinators cWu in u, gathered via the set cW = [u2U

cWu. For
convenience, we refer to the workers and coordinators together
as bu = Wu [cWu = u\{`u}. UAVs in bu collect data from
nearby IoT devices, with the workers Wu conducting model
training based on their gathered data, and the coordinators cWu

relaying data to other UAVs in bu and building a data profile
of the device cluster under visit.

UAV swarms transfer updated models to device clusters at
the end of training sequences, and the devices employ these
ML models to carry out inference tasks. At the beginning of
each training sequence, i.e., when swarms arrive at clusters,
each UAV swarm will have been synchronized through the
core network with the same global ML model. When swarm
u arrives at some device cluster c, the leader `u scatters the
UAVs bu throughout predetermined locations in c. The exact
positioning of the UAVs is not the focus of this work and
can be computed a priori at the core network [28]. Since
there are fewer UAV swarms U than device clusters C, we will
present a methodology to determine UAV swarm trajectories
so that all device clusters can be supported in Sec V. Here,
we focus on defining the interactions between a single UAV
swarm and device cluster. All UAVs in bu gather data from
devices i 2 c through a “wake up and sleep” paradigm, where
the UAV notifies nearby IoT devices and prompts them to
upload data. We denote Dj(t) as the dataset UAV j 2 bu, with
buffer size B

D

j (t), obtains at time t. Workers Wu form a pool
of computational resources above the device cluster and use
their gathered data for cooperative ML training, in which they

engage in periodic communication with the leader `u regarding
their training results. On the other hand, coordinators cWu act
as aerial data caches to relay data to other UAVs in bu. This
arrangement allows more energy-efficient data transfer from
IoT devices to worker UAVs via coordinator relaying. We
formalize Dj(t), 8j, through our optimization in Sec. IV-A.

2) Recharging Stations: We consider a set of geo-distributed
recharging stations R in the network. We assume that when
any UAV j 2 u reaches a minimum battery threshold, the
entire swarm u must travel to a recharging station r 2 R.

3) Access Points (AP): We consider a set of gateway APs A,
which can be interpreted for example as cellular base stations.
All APs a 2 A are connected through the core network. The
APs are used by the leader UAVs L to communicate with
the core network, which determines swarm trajectories and
synchronizes ML training among the swarms.

Deployments of this architecture in practice will require
three types of signaling: (i) UAV-UAV communication, i.e.,
among leader, coordinator, and worker UAVs; (ii) device-UAV
communication, i.e., data transfers from devices and requests
from coordinator/worker UAVs; and (iii) UAV-AP interactions,
i.e., for global model aggregations among swarm leaders. We
detail potential approaches to these components in Appendix B.

C. Components of Our Methodology and Roadmap
We break down our methodology for conducting geo-

distributed ML using UAVs into three parts: (i) ML model
training through the worker-leader-core network hierarchy,
(ii) efficient orchestration of the UAVs inside each swarm,
and (iii) energy and performance-driven design of the UAV
swarm trajectories across device clusters. For (i), we develop
hierarchical nested personalized federated learning (HN-PFL)
and subsequently derive its performance through theoretical
bounds in Sec. III. For (ii), we formulate a network-aware ML
performance and swarm-wide energy consumption optimization
problem, and then develop a distributed solver in Sec. IV.
For (iii), we capture the temporal variation of data across

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

5

Hierarchical Nested PFL (HN-PFL)

Swarm Local-Level

Global Level

Leader UAVWorker UAV
Access Point Cycle continues with

FIGURE 3: Behavior of workers, leaders, and APs in HN-PFL. Workers
perform local meta-updates, and leaders aggregate their workers’
model parameters with period ⌧

L

s . The core network synchronizes
leader parameters every ⌧

G

s local aggregations.

the clusters and obtain the sequence of cluster visits for the
UAV swarms (i.e., swarm trajectories) via integrating a deep
reinforcement learning architecture in Sec. V. The interactions
between these three components and an overview of their
functionality is depicted in Fig. 2. From a high-level, the
swarm-wide optimization (blue block) determines HN-PFL’s
meta settings, and the performance of HN-PFL (orange block)
is used to determine subsequent cluster visits (green block).
This process then repeats, cyclically. We explain the details of
each block of Fig. 2 in Sec. III, IV, and V, respectively.

D. Metrics of Interest
The evaluation of our methodology requires several primary

metrics: classification loss at the UAVs (Thm. 1), the mismatch
between the model performance at the UAVs vs. at the device
clusters (Prop. 1), and energy consumption (Sec. IV). We
will further demonstrate that our learning method provides
substantial improvements compared to baselines in terms
of convergence rate (Sec. VI-A), network resource savings
(Sec. VI-B), and trajectory design efficiency (Sec. VI-C).

III. HIERARCHICAL NESTED PERSONALIZED
FEDERATED LEARNING (HN-PFL)

In this section, we develop our UAV-enabled methodology
for personalized federated learning (PFL). We begin with the
rationale (Sec. III-A), and then present the HN-PFL algorithm
(Sec. III-B). Finally, we theoretically analyze the convergence
of our distributed ML method (Sec. III-C).

A. Overview and Rationale
Conventional federated learning (FL) trains a single ML

model suitable for all devices [29]. As devices may exhibit
significant heterogeneity in their data distributions, training
a global model used for all the devices may lead to poor
overall performance. This has motivated personalized federated
learning (PFL) [21], which trains device-specific ML models
by leveraging the commonality across the devices’ data.
Conventional FL and PFL both assume a “star” learning
topology, where workers/devices are connected to and able to
communicate directly with a main server [4].

In our setting, the star topology assumed in FL/PFL applies
poorly as the IoT device clusters are geo-distributed, and UAVs
visiting the clusters may not have direct access to an AP.
On the other hand, UAV-to-UAV communications within a
swarm is comparatively low in resource consumption, which
motivates local model aggregations inside the swarms enabled
by the leader UAV. The leaders can then occasionally visit their
nearest AP for global aggregation of their associated swarm ML

model parameters. By nesting intra-swarm (local) aggregations
within inter-swarm (global) aggregations, we develop a new
methodology to generalize the star topology in conventional
FL/PFL to that of a hierarchical tree, called HN-PFL where the
ML model training is segmented into two layers: (i) swarm-level
between leaders and their constituents, and (ii) global-level
between access points/core-network and swarm leaders. To
the best of our knowledge, HN-PFL is the first hierarchical
personalized federated learning architecture in literature.

B. HN-PFL Algorithm
HN-PFL breaks down the model training problem into two

layers: (i) workers-leaders, in which the worker UAVs carry out
the ML model training and the leader UAVs perform swarm-
wide (local) aggregations; and (ii) leaders-APs, in which the
leader UAVs engage in global aggregations.

Since our problem requires the swarms U to travel between
IoT device clusters, HN-PFL carries out the model learning
through consecutive training sequences. Each training sequence
starts when all active UAV swarms (i.e., non-recharging
swarms) arrive at their designated device clusters, and concludes
when the swarms finish the model training and begin travelling
to their next destination. We denote the start of the s-th training
sequence, s = 1, 2, · · · , by ts 2 T , its scheduled interval as
Ts = {ts, · · · , ts+Ts� 1}, and the active swarms for the s-th
sequence as U(s) ✓ U . Defining the active swarms U(s) with
respect to the training sequence encompasses the cases where
a portion of UAV swarms recharge their batteries and thus are
not engaged in ML model training during Ts.

At each time t 2 Ts, each worker UAV j 2 Wu, u 2 U(s)
conducts a local model update. This consists of computing
its next ML model parameter vector wj(t+ 1) using a meta-
gradient update [30] defined as:

wj(t+ 1) = wj(t)� ⌘2r
eFj(wj(t)), t+ 1 2 Ts, (1)

where ⌘2 > 0 is the meta-update step-size, and r eFj(wj(t)) is
the mini-batch approximation of the meta-gradient rFj(wj(t)).
rFj(wj(t)) is the gradient of the meta-function Fj , defined
as the loss of the gradient descent procedure:

Fj(wj(t)) = fj

�
wj(t)� ⌘1rfj(wj(t))| {z }

(a)

�
, (2)

where ⌘1 > 0 is the step size for gradient descent and fj is
the local loss function over the local dataset Dj(t) at UAV j:

fj(wj(t)) =

P
x2Dj(t)

bf(wj(t);x)

Dj(t)
, (3)

and bf(wj(t);x) is the loss per datum x. This meta-gradient
procedure effectively updates the parameters on the loss of
the update rule, which, when connected to other meta-gradient
results, yields an ML model that captures the structural data
commonality across various data distributions. In particular,
it results in a set of global parameters that can be better
adapted/personalized to local data distributions with an ad-
ditional gradient descent step, denoted by term (a) in (2). We
approximate the gradient rFj by mini-batch methods:

r eFj(wj(t)) = r efj
✓
wj(t)� ⌘1r

efj(wj(t)|Dj,1(t))

����Dj,2(t)

◆

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

6

·

✓
I� ⌘1r

2 efj(wj(t)|Dj,3(t))

◆
, (4)

where efj is the mini-batch loss defined similarly to (3) over a
specific data batch2, r2 is the Hessian operator, and Dj,1(t),
Dj,2(t), Dj,3(t) are three independent mini-batches sampled
with replacement from Dj(t). We denote the mini-batch
sampling ratios as ↵j,1(t), ↵j,2(t), and ↵j,3(t) 2 (0, 1), i.e.,
Dj,i(t) = ↵j,i(t)Dj(t), i = 1, 2, 3, and the total ratio of data
at time t used for processing by worker j 2 Wu, u 2 U(s) is
denoted by ↵j(t) = ↵j,1(t) + ↵j,2(t) + ↵j,3(t).

Remark 1. The computational burden of the Hessian-based
gradient descent in (4) can be alleviated by substituting it with
approximate methods such as first order or hessian free model
agnostic training [21], [30], which have been shown to attain
a similar performance to that of exact Hessian computation.

HN-PFL performs a series of local and global aggregations
during each training sequence Ts. We conduct local aggrega-
tions with period of ⌧Ls (i.e., ⌧Ls local meta-gradient updates
prior to each local aggregation), and global aggregations with
period of ⌧Ls ⌧Gs , defined such that Ts , ⌧

L

sK
L

s ⌘ ⌧
L

s ⌧
G

s K
G

s ,
where K

L

s is the total number of local aggregations, and K
G

s

is the total number of global aggregations conducted in Ts.
Using k for the local aggregation index, tLs(k) = ts + k⌧

L

s is
the time of the k-th local aggregation in Ts. Using k

0 as the
global aggregation index, tGs (k0) = ts + k

0
⌧
L

s ⌧
G

s will denote
the time of the k

0-th global aggregation in Ts.
Within a swarm, workers’ datasets will be controlled through

a device-to-UAV offloading optimization procedure in Sec. III.
Therefore, the swarm averaged ML model should be weighted
towards those worker UAVs with the most processed data, as
they are likely to have better trained ML models. So, at the
k-th local aggregation when t = t

L

s(k), HN-PFL performs a
weighted average at each leader `u, 8u:

wu(t) =

P
j2Wu

wj(t)
Pt

t0=tLs(k�1)+1 ↵j(t0)Dj(t0)
P

j2Wu

Pt
t0=tLs(k�1)+1 ↵j(t0)Dj(t0)

. (5)

Leader `u then broadcasts wu(tLs(k)) to all worker UAVs Wu.
This completes our swarm-wide aggregation, and we define the
swarm-wide/local meta-function Fu for t = t

L

s(k) as follows:

Fu(wu(t)) =

P
j2Wu

Fj(wu(t))
Pt

t0=tLs(k�1)+1
↵j(t

0)Dj(t
0)

P
j2Wu

Pt
t0=tLs(k�1)+1

↵j(t0)Dj(t0)
. (6)

After ⌧Ls swarm-wide aggregations at the active swarms, the
leaders `u, u 2 U(s), travel to their nearest AP, and transmit
their swarm-wide parameters to the core network. At the k

0-
th global aggregation, when t = t

G

s (k
0), the core network

determines the global model parameters as:

w(t) =
1

U(s)

X

u2U(s)

wu(t), (7)

with global meta-function F for t = t
G

s (k
0) as:

F (w(t)) =
1

U(s)

X

u2U(s)

Fu(w(t)). (8)

2The second argument in efj(.|.) denotes the data batch used to compute
the respective function.

Note that (7)&(8) employ an unweighted aggregation across
swarms, as opposed to the weighted aggregation (5)&(6) within
swarms. This is due to the fact that the distributions of
processed data will be non-i.i.d. across swarms. (7)&(8) allow
the determination of a global model that uses the data across
all the active clusters without bias towards any specific cluster
and data distribution. A global model formed via unbiased
meta-function aggregation seeks to capture the structural data
commonalities across different UAV swarms, which allows
both efficient model personalization and adaptability to online
ML environments at device clusters. The access points A

then broadcast w(tGs (k
0)) to the leaders, which return to their

swarms and synchronize worker parameters.
At the final global aggregation of training sequence s, i.e.,

t = ts + Ts � 1, swarms in U(s) personalize the global model
to their respective visiting device cluster data distribution by
performing a single stochastic gradient update (accounting for
term (a) in (2)) followed by a swarm-wide aggregation as
in (5), and then swarm leaders transfer the resulting ML model
to the devices. Next, active swarms from both s and s + 1
initialize the next sequence. For each u 2 U(s) [U(s + 1),
leader `u will receive (i) final global parameters w(ts+Ts�1),
and (ii) trajectory decisions from the APs. Swarms then travel
to their next cluster (for swarms u 2 U(s) \ U(s + 1), this
would be a recharging station). Upon arrival, swarm leaders
lu, u 2 U(s + 1), will begin training sequence s + 1 by
synchronizing workers with the latest global parameters. Our
developed HN-PFL algorithm is summarized in Fig. 3.

We assume that data distributions at the IoT devices are
stationary during training sequences, but vary between training
sequences. Distribution changes at clusters may lead to worse
ML performance (i.e., a weaker ML model) over time, which
incentivizes swarms to re-visit and re-calibrate their ML models.
We model online data distributions at clusters by introducing
heterogeneous model/concept drift, which primarily affects
the UAV trajectories (see Sec. V-A). We next obtain the
convergence bound of HN-PFL, which will be employed in
the optimization formulation in Sec. IV.

C. Convergence Analysis of HN-PFL

In the following, we derive the performance bound of
HN-PFL for non-convex loss functions. To this end, in addition
to the meta functions defined in (6) and (8), we define the
swarm-average loss function fu(w) at t 2 Ts as:

fu(w(t)) =
X

j2Wu

�j(k)

�u(k)
fj(w(t)), (9)

where fj is defined as in (3), k is the most recent local
aggregation index, �j(k) =

Pt
t0=tLs(k�1)+1 ↵j(t0)Dj(t0), and

�u(k) =
P

j2Wu
�j(k). Also, we define the global average

loss function f(w) at time t 2 Ts as:

f(w(t)) =
1

U

X

u2U

fu(w(t)). (10)

While (5),(6),(9) are only realized by HN-PFL at a local
aggregation, t = t

L

s(k), and (7),(8),(10) are only realized at a

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

7

global aggregation, t = t
G

s (k
0
), defining them for each t 2 Ts

will be useful in our theoretical analysis.
Our convergence analysis employs some standard assump-

tions [31] on non-convex loss functions:

Assumption 1 (Loss function characteristics). We make the
following assumptions on fj at worker j 2 Wu, 8u 2 U:
1) fj is bounded below: fj(w) > �1, 8w.
2) The gradient of fj is µ

G

j -Lipschitz and bounded by Bj:
(i) krfj(w) � rfj(w0)k  µ

G

j kw � w0
k, 8w,w0, (ii)

krfj(w)k  Bj .
3) fj is twice continuously differentiable, and the Hessian of

fj is µ
H

j -Lipschitz continuous: kr2
fj(w)�r

2
fj(w0)k 

µ
H

j kw �w0
k, 8w,w0.

4) Bounded local data variability: E[kr bf(x,w) �

rfj(w)k2]  �
G

j and E[kr2 bf(x,w) � r
2
fj(w)k2] 

�
H

j , 8w, x.
5) The variance of the gradient and Hessian of fj(w) are

bounded:
P

j2Wu

�j(k)

�u(k)
krfj(w) � rfu(w)k2  �

G

u ,
P

j2Wu

�j(k)

�u(k)
kr

2
fj(w)�r

2
fu(w)k2  �

H

u , 8w, k.
6) The variance of the gradient and Hessian of fu(w)

are bounded: 1
U

P
u2U

krfu(w) � rf(w)k2  �
G,

1
U

P
u2U

kr
2
fu(w)�r

2
f(w)k2  �

H
, 8w.

We also require an assumption to characterize the loss
function behavior at the device clusters:
Assumption 2 (Device cluster loss function characteristics).
For device cluster c and a model parameter w, let fD

c (w) =P
x2 eDc(t)

f̂(x;w)/ eDc(t), where eDc(t) , [i2c
eDi(t), denote

the local loss at time t. We assume that (i) the gradient of the
loss function is µG

c -Lipschitz continuous, (ii) the Hessian is µH

c -
Lipschitz continuous, (iii) E[krf̂(x,w) �rf

D

c (w)k2]  �
G

c

8x,w, and (iv) E[kr2
f̂(x,w)�r

2
f
D

c (w)k2]  �
H

c 8x,w.

The loss functions of many common ML models (e.g., neural
networks with continuous activation functions [16]) will satisfy
these assumptions. In the following analysis, we let B =
maxj{Bj}, µG = maxj{µG

j }, and µ
H = maxj{µH

j }.
Our main result in this section will be the convergence be-

havior of the global meta-function F in HN-PFL (Theorem 1).
To obtain this, we first derive bounds on the expected error of
the meta-gradient approximations at worker UAVs (Lemma 1),
and on the meta-gradient variability between workers, leaders,
and the core network (Lemma 2).
Lemma 1 (Mini-batch versus full batch meta-gradients).
During each training interval Ts, the expected error of the
mini-batch approximation r eFj(w(t)) of the true meta-gradient
rFj(w(t)) at each worker UAV j 2 Wu, 8u 2 U(s) satisfies:

E[kr eFj(w(t))�rFj(w(t))k2]  �
F

j (t), (11)
where

�
F

j (t) =
3⌘2

1
�
H

j

↵j,3(t)Dj(t)| {z }
(a)


B

2 +
�
G

j

�
↵j,1(t) + (µG

⌘1)
2
↵j,2(t)

�

↵j,1(t)↵j,2(t)Dj(t)

�

| {z }
(b)

+
12�G

j

�
↵j,1(t) + (µG

⌘1)
2
↵j,2(t)

�

↵j,1(t)↵j,2(t)Dj(t)| {z }
(c)

. (12)

Proof. See Appendix C. ⌅

We make a few observations from Lemma 1 regarding the
mini-batch ratios ↵j,1(t), ↵j,2(t), and ↵j,3(t). Intuitively, if
any of these are 0, then the upper bound in (11) should diverge,
which is what we observe in (12). Next, the groups (a), (b),
and (c) in (12) show that each mini-batch ratio has a unique
impact on the bound. In particular, ↵j,3(t) weighs the Hessian
data variability �

H

j in (a), while ↵j,1(t) and ↵j,2(t) scale
the gradient data variability �

G

j in (b) and (c). Due to the
multiplicative effect of the Hessian and gradient in the meta-
gradient computation (see (4)), the effects of the mini-batch
ratios are coupled between (a) and (b), through which ↵j,3(t)
also weights the impact of �G

j . Hence, when we are faced with
a limited budget for data processing in a UAV swarm, the
mini-batch ratios must be allocated carefully, which we will
address through our optimization problem in Sec. IV-A.
Lemma 2 (Intra- and inter-swarm meta-gradient variability).
During each training interval Ts, the intra-swarm meta-
gradient variability at each UAV swarm u 2 U(s) obeys the
following upper bound at local aggregation k:

X

j2Wu

�j(k)

�u(k)

��rFj(w)�rFu(w)
��2  �

F

u, (13)

where �Fu = 3B2
⌘
2
1
�
H

u + 192�Gu . Also, the variability of inter-
swarm meta-gradients is upper bounded as follows:

1

U(s)

X

u2U(s)

��rFu(w)�rF (w)
��2  �

F
, (14)

where �F = 3B2
⌘
2
1
�
H + 192�G.

Proof. See Appendix D. ⌅

Using Lemmas 1 and 2, we can bound the variance of
HN-PFL model parameters across worker UAVs after a given
global aggregation, which is one of our key theoretical results.
For brevity, all proofs are given as sketches, with the key steps
emphasized. The full proofs are provided in the appendices.
Proposition 1 (Parameter variability across UAVs). During
interval Ts, the variance in model parameters across the active
worker UAVs in the network at the k

0-th global aggregation,
i.e., t = t

G

s (k
0), satisfies the following upper bound:

E
����

1
U(s)

P
u2U(s)

P
j2Wu

�j(k
0⌧G

s)

�u(k0⌧G
s)

✓
wj(t)�w(t)

◆����
2�
 ⌥(t), (15)

where ⌥(t) is defined in (16) with µ
F
, 4µG + ⌘1µ

H
B, and

�
F

u(t) =
P

j2Wu

�j(k
0⌧G

s)

�u(k0⌧G
s)
�
F

j (t).

Proof. See Appendix E. ⌅

Considering the two terms in (16), term (a) captures the
impact of the local aggregation frequency ⌧Ls while term (b)
captures the nested impact of the local-global aggregation
frequency ⌧

L

s ⌧
G

s . It can be seen that, to reduce the variance
of ML models wj across workers j 2 Wu 8u 2 U(s), which
is desirable as we will show in Theorem 1, the local or
global aggregation periods ⌧Ls , ⌧Gs need to be reduced, i.e.,
more frequent aggregations. Proposition 1 suggests that the
improvement is exponential. However, global aggregations

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

8

⌥(t) =

✓
16⌘2

2

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

⌧L

sX

y=1

�F

j (t� y) +
24⌘2

2

U(s)

X

u2U(s)

�F

u

◆
1� (8 + 48(⌘2µ

F)2)⌧
L

s

1� (8 + 48(⌘2µ
F)2)

| {z }
(a)

+

✓
16⌘2

2

U(s)

X

u2U(s)

⌧L

s⌧
G

sX

y=1

�F

u(t� y) + 24⌘2
2
�F

◆
1� (8 + 48(⌘2µ

F)2)⌧
L

s⌧
G

s

1� (8 + 48(⌘2µ
F)2)

| {z }
(b)

(16)

consume more network resources than local aggregations in
HN-PFL - they require bidirectional communications between
worker and leader UAVs, and between leaders and APs
during which non-leader UAVs continue to consume energy
by remaining idle in the air. We balance this trade-off by
obtaining the optimal UAV orchestration for a choice of ⌧Ls
and ⌧Gs (Sec. IV), and then jointly optimizing ⌧Ls and ⌧Gs and
UAV trajectories under optimal UAV orchestration (Sec. V).

Additionally, Proposition 1 captures the impact of non-i.i.d.
data distributions on parameter variability. In particular, we
see that ⌥(t) is directly proportional to the intra-swarm meta-
gradient variability �Fu , the inter-swarm variability �F , and the
mini-batch approximation error (the �F

j (t) and �F
u (t) terms).

For the same setting of system control parameters, each of
these will increase with the level of data heterogeneity present
across devices, both within and between clusters.

Finally, we apply Proposition 1 to obtain our main result,
which characterizes the decreasing magnitude of the gradient
of (8), i.e., the global meta-function in HN-PFL, over training
sequences. Since we consider non-convex ML models, the
main metric of interest for learning performance is the norm
squared of the meta-gradient.
Theorem 1. [Global meta-gradient over training sequences]
For training sequence Ts, if ⌘2 <

1
6µF , we have the following

upper bound on the expected cumulative average magnitude
of the global meta-gradient across the active UAV swarms:

1

Ts

ts�1X

t=ts�1

E
h��rF (w(t))

��2
i
 ⌅(s), (17)

where ⌅(s) is given in (18).

Proof. See Appendix F. ⌅

Main takeaways. Theorem 1 yields a general bound on
the average gradient for HN-PFL with time-varying mini-
batch sizes. Smaller values of the bound are desired, as it
indicates closeness to a stationary point. This bound quantifies
how several parameters (some controllable and others a factor
of the environment) affect training performance. Specifically,
the bound in (18) is dependent on the mini-batch ratios and
processed data sizes at the UAVs (embedded in �j , and
�u), the initial performance of the ML model for the s-
th training sequence (embedded in F

U(w(ts�1))), the data
variability (embedded in �F

j , �F

u, and ⌥), the gradient/Hessian
characteristics (embedded in µ

F, �Fu, and �F), the local/global
aggregation periods (through the nested sums), and the inner
and outer step-sizes (⌘1 , ⌘2).

Since HN-PFL conducts ML model training at the UAVs,
the bound in Theorem 1 is based on the meta-functions defined
at the UAVs. However, as the ML model is used by the devices
and UAVs train on a subset of the cluster’s total data, we need

to bound the difference between the ML model performance at
the UAVs and the devices. Henceforth, since the data at UAVs
is assumed to be constant within a local aggregation period k,
we refer to Dj(t) 8j as Dj(k).
Lemma 3 (Meta-gradient mismatch between clusters and
swarms). Let FD

c denote the meta-function defined based on
f
D

c in Assumption 2, C(s) denote the set of actively trained
device clusters for training sequence s, and F

D

(w(t)) =
1

|C(s)|

P
c2C(s) F

D

c (w(t)), t 2 Ts, be the average meta-function
for all actively trained device clusters for sequence s for a given
parameter w(t) at time t. The difference between the meta-
gradient computed at the UAVs vs. those of their respective
device clusters for local aggregation k is bounded by:

E
"����rF (w(t))�rF

D

(w(t))

����
2
#
 b⌅(k), t = ⌧

L

s (k), (19)

where b⌅(k) is given by:

b⌅(k) , 1

U(s)

X

u2U(s)

X

j2Wu

�j(k)

�u(k)

"
3⌘21�

H

C(u,s)

Dj(k)


B

2

+
�
G

C(u,s)(1 + µ
2
⌘
2
1)

Dj(k)

�
+

12�G

C(u,s)(1 + µ
2
⌘
2
1)

Dj(k)

#
,

(20)

where C(u, s) denotes the cluster which UAV swarm u trains
during s and �H

. and �G

. are defined in Assumption 2.
Proof. See Appendix G. ⌅

The bound in Lemma 3 captures the effect of total data at
the worker UAVs on the mismatch between the cluster and
UAV swarm meta-gradients. In particular, as more data from
the devices are transferred to the UAVs (increasing Dj(k)),
the error in (20) due to sampling decreases.

IV. DATA PROCESSING OPTIMIZATION FOR HN-PFL

Given our HN-PFL algorithm and its convergence behavior
in Sec. III-B, we next aim to develop efficient ML model
training for our system. To this end, we need to obtain
the optimal orchestration of UAVs once they engage in
model training (micro-level design) and the swarm trajectories
(macro-level design). We break these down into two main
components: (i) data transfer and processing configurations
at UAVs during the training sequences (the blue block in
Fig. 2) and (ii) learning sequence duration and UAV swarm
trajectory/movement patterns in-between training sequences
(the green block in Fig. 2). These two parts are intertwined,
i.e., the model training performance at clusters affects the UAV
trajectory design, and vice versa.

In this section, we address the first component, by for-
mulating the UAV data processing and transfer optimization
problem, and subsequently develop the second component

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

9

⌅(s) ,
1

⌘2
2 � 6⌘2

2

µF

2

2

64
FU(w(ts�1))� (FU)?

Ts
+

1

Ts

KG

sX

k0=1

⌧G

s k0
X

k=(k0�1)⌧G
s +1

⌧L

sk�1X

t=(k�1)⌧L
s

"✓
3⌘2

2

µF

2
+ ⌘2

◆

⇥
✓

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
�F

j (t) + (µF)2⌥(tGs (k
0))

◆
+ 3⌘2

2
µF

1

U(s)

X

u2U(s)

�F

u

#3

75

(18)

in Sec. V. Our formulation will account for the interplay
between the overall energy cost of the system and the developed
HN-PFL performance metrics from Sec. III via a control
optimization of key network parameters (Sec. IV-A). Then,
we show that the resulting optimization can be characterized as
a complementary geometric program, and develop an iterative
distributed optimization method for solving it (Sec. IV-B).

A. Data Processing/Offloading Configuration

1) Offloading and processing models: At each training
sequence s, each active UAV swarm u 2 U(s) is located above
a device cluster denoted by C(u, s) 2 C. Let A(u, s) 2 A

denote the nearest AP to UAV swarm u, which leader `u
will periodically visit during the model training to conduct
global model aggregation. Also, let F

j denote the energy
consumed per unit time by worker/coordinator UAV j 2 Wu

for flying/hovering, and ̂F

u that of leader UAV `u. We denote
the geographical distance between leader `u and its nearest AP
as d(`u, A), and denote the movement energy consumption of
the leader UAV per unit distance as M

`u
.

Device-UAV and UAV-UAV data transfers are carried out
at the beginning of local aggregation rounds, i.e., when
t = t

L

s(k).The data received by the worker UAVs is used
throughout the local aggregation period. Upon engaging in
data transmission, each device i 2 C(u, s) samples data points
uniformly at random from its local buffer and transmits them
to the UAVs. We let ⇢i,j(k) 2 [0, 1] denote the fraction of
datapoints in the local dataset eDi(k) of the device that is
transmitted to worker/coordinator UAV j 2 bu. Coordinator
UAVs act as data caches that facilitate multi-hop data relaying
between the devices to worker UAVs used for ML model
training. We let %h,j(k) 2 [0, 1] denote the fraction of the local
dataset at the coordinator UAV h 2 cWu that is forwarded to
another UAV j 2 Wu. Each worker UAV j 2 Wu processes
data with CPU frequency gj(k) 2 [gmin

j , g
max

j].
For sequence s, we denote the transmit powers of device i,

UAV j, and leader `u by Pi(s), Pj(s), and P`u(s), respectively.
Through transmissions, either data or model parameters are
transferred. We denote the number of bits used to represent
one data point as fM , and the number of bits used to represent
the one model parameter vector as M .

UAV-to-UAV data transmissions are carried out through air-
to-air (A2A) channels, which are considered to be line-of-sight
(LoS). Device-to-UAV and leader UAV-to-AP transmissions
are performed through ground-to-air (G2A) and air-to-ground
(A2G) channels, respectively, which are a mixture of LoS
and non-line-of-sight (NLoS) links. Denoting d(a, b) as the
geographical distance between two nodes a and b (a, b 2 U[C),
the path-loss model for the LoS link between two nodes a and
b is then given by [32]:

L
A2A
a,b = ⌘

LoS(µTx
d(a, b))↵

PL

, (21)

where ⌘
LoS

> 1 denotes the excessive path loss fac-
tor for the LoS link, ↵PL is the path-loss exponent, and
µ
Tx = 4⇡fTx

/c
light with c

light denoting the speed of light
and f

Tx denoting the carrier frequency. For the G2A/A2G
channel, the probability of having an LoS link between
two nodes a and b is given by [32], [33]: P

LoS
a,b =�

1 +
Tx exp(��Tx[✓ab �

Tx])
��1

, where Tx and �Tx are
constants depending on the carrier frequency and the conditions
of the environment, and ✓a,b is the elevation angle between the
respective nodes defined as: ✓a,b = 180

⇡ ⇥ sin�1
⇣

�ha,b

d(a,b)

⌘
, with

�ha,b denoting the difference in altitude between nodes a and
b. The probability of NLoS link is given by P

NLoS
a,b = 1�P

LoS
a,b .

With this, the path-loss of an A2G/G2A link from node a to
node b can be obtained as:

L
A2G
a,b = (µTx

d(a, b))↵
PL

[P LoS
a,b ⇥ ⌘

LoS +P
NLoS
a,b ⇥ ⌘

NLoS], (22)

where ⌘NLoS > ⌘
LoS denotes the excessive path loss factor for

the NLoS link. Finally, the data-rate between two nodes a and
b is given by:

Ra,b = B̄a,b log2(1 +
Pa/La,b

�2
), a, b 2 U [C, (23)

where B̄a,b denotes the bandwidth, �2 = N0B̄a,b denotes the
noise power with N0 as the noise spectral density, Pa is the
transmit power of node a, and La,b is the path-loss obtained
through either (21) or (22). As the channel conditions may
change over time, we incorporate the training sequence index
into the data rate notation denoted by Ra,b(s) to represent
the data rate between two nodes a and b during the training
sequence s. To focus our optimization formulation on the
interplay between ML convergence and energy consumption,
we simplify the contributions of specific modulation and
signaling schemes by ignoring interference from simultaneous
transmissions to the UAVs as they are stationary and can use
orthogonal frequency bands [34] for communications.

We denote the time used for data gathering at UAV j as
⇣
G

j (k), and the time used for data processing as ⇣Pj (k). We
also define ⇣

Local as the maximum allowable time for data
gathering and local computation before each UAV transmits
its parameters to the leader UAV for aggregation.

2) Joint energy and performance optimization: With the
aforementioned models in hand, we formulate the following op-
timization problem for determining data offloading/processing
configuration at training sequence s:

(P) : min
⇢,%,↵,g

(1� ✓)

✓
✓1⌅(s) + ✓2

KL

sX

k=1

b⌅(k)
◆

| {z }
(a)

+ ✓

KL

sX

k=1

X

u2U(s)

 X

j2cWu

E
Tx,U
j (k) +

X

j2Wu

E
P

j (k) +
X

i2C(u,s)

E
Tx,C
i (k)

�

| {z }
(b)

(24)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

10

s.t.

E
P

j (k) = ⌧
L

s
ajcj

2
(↵j(k))Dj(k)g

2
j (k), j 2 Wu, 8u (25)

E
Tx,C
i (k) =

X

j2bu

⇢i,j(k) eDi(k)fM
Ri,j(s)

Pi(s), i 2 C(u, s), 8u (26)

E
Tx,U
j (k) =

X

h2Wu

%j,h(k)Dj(k)fM
Rj,h(s)

Pj(s), j 2 cWu, 8u (27)

E
Tx,W
j = K

L

sPj(s)M/Rj,`u(s), j 2 Wu, 8u (28)

E
Tx,L
`u

= K
L

sP`u(s) max
j2Wu

n
M/R`u,j(s)

o
, 8u (29)

E
F,U
j = Ts

F

j , j 2 bu, 8bu (30)

E
F,L
`u

= Ts ̂
F

u + 2KG

s
M

u (d(`u, A)), 8u (31)
KL

sX

k=1

E
P

j (k)+E
Tx,W
j +E

F,U
j E

Ba

j (s)� E
Th

j , j 2 Wu, 8u (32)

KL

sX

k=1

E
Tx,U
j (k) + E

F,U
j  E

Ba

j (s)� E
Th

j , j 2 cWu, 8u (33)

E
Tx,L
`u

+ E
F,L
`u

 E
Ba

`u (s)� E
Th

`u , 8u (34)
X

j2bu

⇢i,j(k)  1, i 2 C(u, s), 8u (35)

X

h2Wu

%j,h(k)  1, j 2 cWu, 8u (36)

Dj(k) =
X

i2C(u,s)

⇢i,j(k) eDi(k)

+
X

h2cWu

%h,j(k)Dh(k)  B
D

j (k), j 2 Wu, 8u (37)

Dj(k) =
X

i2C(u,s)

⇢i,j(k) eDi(k)  B
D

j (k), j 2 cWu, 8u (38)

⇣
G

j (k) + ⇣
P

j (k)  ⇣
Local

, j 2 u, 8u (39)

⇣
G

j (k) =
X

i2C(u,s)

⇢i,j(k) eDi(k)fM/Ri,j(s)

+
X

h2cWu

%h,j(k)Dh(k)fM/Rh,j(s), j 2 bu, 8bu (40)

⇣
P

j (k) = ⌧
L

s cj↵j(k)Dj(k)/gj(k), j 2 Wu, 8u (41)
g
min

j  gj(k)  g
max

j , j 2 Wu, 8u (42)
0  ⇢i,j(k)  1, i 2 C(u, s), j 2 bu, 8u (43)

0  %h,j(k)  1, h 2 cWu, j 2 Wu (44)
↵j(k) = ↵j,1(k) + ↵j,2(k) + ↵j,3(k), j 2 Wu, 8u (45)
0 < ↵j,1(k),↵j,2(k),↵j,3(k)  1, j 2 Wu, 8u (46)

Objective and variables. The objective function in (24) cap-
tures the tradeoff between the expected ML model performance
(term (a)) and the energy consumption during the training
sequence (term (b)). Term (a) encompasses both the ML
performance at the active UAV swarms (through ⌅) and the
mismatch to the ML performance at the device cluster (through
b⌅), which we quantified in Theorem 1 and Lemma 3. We
weigh the importance of the two terms in (a) with normalized
positive coefficients ✓1 and ✓2. The coefficient ✓ 2 [0, 1] weighs
the importance of the terms in the objective function. The

variables in the problem are the device-to-UAV data transfer
configurations ⇢ = {⇢i,j}i2C(u,s),j2bu,u2U(s), the UAV-to-UAV
data transfer configurations % = {%h,j}h2cWu,j2Wu,u2U(s), the
mini-batch ratios ↵ = {↵j,1,↵j,2,↵j,3}j2Wu,u2U(s), and the
UAV CPU frequency cycles g = {gj}j2Wu,u2U(s).

For the energy objective terms, EP

j (k) in (25) denotes the
energy consumption used for processing data during each meta-
gradient update at worker UAV j 2 Wu, where aj is the
effective capacitance coefficient of UAV j’s chipset [35], and
cj is the number of CPU cycles to process each datapoint.
In (26), E

Tx,C
i (k) is the energy used for data transmission

(Tx) from device i in cluster C(u, s) to the UAVs. In (27),
we define E

Tx,U
j (k) as the energy used for data transmissions

from coordinator UAV j 2 cWu to other UAVs. In (28), ETx,W
j

denotes the total energy consumed for ML model parameter
transmission from worker UAV j 2 Wu to its associated leader,
which occurs K

L

s times during the training sequence. In (29),
E

Tx,L
`u

captures the energy consumption used for parameter
transmission through broadcasting from leader `u to worker
UAVs j 2 Wu. In (30), EF,U

j represents the total energy used
for flying/hovering by UAV j 2 bu for the s-th training sequence,
which can be obtained using the result of [36] for fixed-wing
UAVs, and the result of [28] for rotatory wing UAVs. Similarly,
in (31), EF,L

`u
captures the energy consumption for flying by

leaders `u, accounting for levitation and round-trips to the
nearest APs at the global aggregation instances.

Constraints. Constraint (32) ensures that the total energy
consumed by each worker UAV j for data processing, parameter
transmission and flying is less than E

Ba

j (s) � E
Th

j , where
E

Ba

j (s) represents the battery energy at j at the start of the
s-th training sequence and E

Th

j encompasses both (i) surplus
idle energy needed for extra hovering time caused by potential
asynchronocity due to the heterogeneity of leader UAV to AP
travel times, and (ii) the minimum energy threshold for j to
reach the nearest recharging station after the conclusion of the
training sequence. Constraint (33) imposed on the coordinator
UAVs is similar to (32), except that coordinator UAVs only
conduct data transmission while flying. Constraint (34) imposed
on the leader UAVs guarantees that there is enough energy
remaining after parameter broadcasting and flying to reach the
nearest recharging station. Constraints (35) and (36) ensure that
the total amount of data offloaded from each device i 2 C(u, s)
and each coordinator UAV h 2 cWu is less than the size
of the available data set. As a result of this offloading, (37)
and (38) capture the total number of datapoints at the UAVs.
Constraint (39) ensures that the accumulated time used for
data gathering ⇣Gj (k) and local data processing ⇣Pj (k) at each
worker UAV j during one local aggregation is lower than
the maximum allowable time for parameter transfer to the
corresponding leader UAV ⇣

Local. These two quantities are in
turn defined in (40) and (41). Finally, constraints (42)-(46)
ensure the feasibility of the optimization variables.

Complementary geometric program. P is a non-convex
problem, since products of the optimization variables are
present in the objective. For instance, in the definition E

P

j (n)
in (25), there are multiplications between all four variable
types: ↵, g, ⇢, and % (the last two are encompassed in term Dj

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

11

according to (37)). In fact, this problem can be categorized as
a complementary geometric program [37], a particular class of
non-convex and NP-hard optimization problems. Based on this
classification, we will develop a distributed, iterative approach
to solve P where iterative approximation of the problem in
the format of a geometric program (GP) is considered.

B. Distributed Algorithm for Data Processing/Offloading
To solve P , we first make two key observations:
Observation 1: Complementary Geometric Programming.

GP is a method for converting a non-convex optimization
problem into convex form when the objective and constraints
are composed of monomials and posynomials. We provide
an overview of this for the interested reader in Appendix H.
Although the objective in P is composed of multiplications
between the variables, it does not follow the format of GP:
the expressions of ⌅ and b⌅ consist of terms that are in the
format of ratio of two posynomials, which are not posynomials
(e.g., �j

�u
, ⌥, and �

F

j , each of which contain arithmetic
relationships of ⇢ and % in the denominators). Rather, P is
a complementary GP, which cannot readily be translated to
convex form [37]. We exploit a method based on posynomial
condensation to approximate the ratios of two posynomials
appearing in the expressions of ⌅ and b⌅ (via approximating �u

and Dj where needed) as the ratio between a posynomial and
a monomial. Since the ratio of a posynomial and a monomial
is a posynomial, we then can convert the approximations into
geometric programs.

Observation 2: Potential of Distributed Implementation.
In P , all of the constraints are separable with respect to the
UAV swarm index u, and the objective function (including the
terms ⌅ and ⌅̂) can be written as a sum of separable functions
with respect to the UAV swarm index. In practice, however,
�
F (defined in Lemma 2) and µ

F (defined in Proposition 1)
cannot be locally and independently computed by UAV swarms
u 2 U(s), as it depends on the maximum over all worker UAVs
in the network. We can approximate �F and µ

F by estimating it
at the core network at the instance of global aggregations, and
subsequently broadcast it to the leader UAVs though the APs.
With the knowledge of �F and µ

F at the swarm leaders, the
problem can then be decomposed among the local aggregation
instances k 2 {1, · · · ,KL

s} and solved distributively by each
swarm u 2 U(s) at its leader.

Developing the solver: First, we must convert the ratio of
posynomials in the objective of P into that of a posynomial
and a monomial. To do so, we iteratively approximate the
posynomial denominators, which are �u and Dj in our case,
using the arithmetic-geometric mean inequality (see Lemma 5
in Appendix H). The resulting approximations for iteration
m+1 are given in (48) and (51), where m is the iteration index.
Here, the solution to the problem at the m-th approximation iter-
ation is denoted x[m] = {%[m],⇢[m],↵[m], g[m]}. �u(k;m),
�j,h,i,n(k;m), and e�i,j,n(k;m), n 2 {1, 2, 3} in (48) and
Dj(k;m), �h,i,j(k;m), and e�i,j(k;m) in (51) are scalar values
obtained by substituting the solution at iteration m (i.e., x[m])
in the corresponding expressions in (47), (49), (50), and (52),
respectively. It can be verified that the approximations in (48)
and (51) are in fact the best local monomial approximations

Algorithm 1: Distributed network-aware optimization
of HN-PFL under partial global knowledge

input : Convergence criterion between two consecutive iterations.
Estimated Lipschitz continuity factors (i.e., µG, µH, and
µF), estimated data variability (i.e., �H and �G), and
estimated data quantities (i.e., Dj(k)) at devices, all of
which are obtained based on historical data observations.

1 // Procedure at the UAV swarms
2 for k0 2 {1, . . . ,KG

s } do
3 // Procedure at the core network
4 for `u 2 L(s) do
5 // Procedure conducted across the UAV swarms in parallel

using their leader
6 for k 2 {(k0 � 1)⌧Gs + 1, · · · , k0⌧Gs } do
7 Initialize the iteration count m = 0.
8 Choose an initial feasible point

x[0] = [⇢[0],%[0],↵[0], g[0]] for eP0 at k.
9 while convergence criterion is not met OR m = 0 do

10 Obtain the scalar values for �u(k,m),
e�j,i,n(k;m), �j,h,i,n(k;m), Dj(k,m), and
�i,j(k;m), e�h,i,j(k;m) by substituting x[m]
in (47), (49), (50), and (52).

11 Use the above scalars to obtain the monomial
approximations given in (48) and (51), and
replace them in ePm.

12 Apply the logarithmic change of variables and take
the log from the constraints of ePm and convert
it to a convex optimization problem (as in (93) in
Appendix H).

13 Solve the resulting convex optimization problem to
obtain x[m+ 1] (e.g., using CVX [38]), and set
m = m+ 1.

14 Choose the obtained point as
x? = x[m] = [⇢?,%?,↵?, g?].

15 The leader broadcasts the solution x? among its constituent
workers/coordinators/devices to start their respective data
transfer procedures, and specifically for workers to tune
their CPU cycles and mini-batch sizes.

to their respective posynomials near the fixed point x[m] in
the sense of the first-order Taylor approximation.

We solve P in a distributed manner at each UAV swarm
through sequentially applying the above approximations to
obtain problem ePm at iteration m. In ePm, each constraint is
an inequality on posynomials, and the objective function is a
sum of posynomials, admitting the GP format:

(ePm) : min
⇢,%,↵,g

(1� ✓)f(a)m + ✓(b) s.t. (25) � (46),

where term f(a)m is obtained from term (a) in problem P

by: (i) decomposing (a) into a sum of separable functions
with respect to UAV swarm indexes; and then (ii) using the
expressions in (48) and (51) for iteration m in (a). Note that
term (b) defined in (24) is indexed by UAV swarm u, and the
constraints of eP are with respect to UAV swarm.

The pseudocode of our resulting sequential approximation
method is given in Algorithm 1. The problem is solved at
the beginning of each global aggregation interval k0 by the
leader UAVs in each active swarm. The following proposition
shows that the algorithm has the most desirable convergence
properties for a non-convex solver:
Proposition 2. Algorithm 1 generates a sequence of improved
feasible solutions for problem ePm that converge to a point x?

satisfying the Karush-Kuhn-Tucker (KKT) conditions of P .

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

12

�u(k) ,
X

j2Wu

✓
↵j,1(k) + ↵j,2(k) + ↵j,3(k)

◆0

@
X

i2C(u,s)

⇢i,j(k) eDi(k) +
X

h2cWu

X

i2C(u,s)

%h,j(k)⇢i,h(k) eDi(k)

1

A (47)

�u(k) � b�u(k) ,
Y

j2Wu

2

64
Y

i2C(u,s)

"✓e�i,j,1(k)
⇥
�u(k;m)

⇤

e�i,j,1(k;m)

◆ e�i,j,1(k;m)

�u(k;m)
✓e�i,j,2(k)

⇥
�u(k;m)

⇤

e�i,j,2(k;m)

◆ e�i,j,2(k;m)

�u(k;m)
✓e�i,j,3(k)

⇥
�u(k;m)

⇤

e�i,j,3(k;m)

◆ e�i,j,3(k;m)

�u(k;m)

#

Y

h2cWu

Y

i2C(u,s)

"✓
�j,h,i,1(k)

⇥
�u(k;m)

⇤

�j,h,i,1(k;m)

◆ �j,h,i,1(k;m)

�u(k;m)
✓
�j,h,i,2(k)

⇥
�u(k;m)

⇤

�j,h,i,2(k;m)

◆ �j,h,i,2(k;m)

�u(k;m)
✓
�j,h,i,3(k)

⇥
�u(k;m)

⇤

�j,h,i,3(k;m)

◆ �j,h,i,3(k;m)

�u(k;m)

#3

75,

(48)

where e�j,i,n(k) , ↵j,n(k)⇢i,j(k) eDi(k), �j,h,i,n(k) , ↵j,n(k)%h,j(k)⇢i,h(k) eDi(k), n 2 {1, 2, 3}. (49)

Dj(k) ,
X

i2C(u,s)

⇢i,j(k) eDi(k) +
X

h2cWu

X

i2C(u,s)

%h,j(k)⇢i,h(k) eDi(k), (50)

Dj(k) � bDj(k) ,
Y

i2C(u,s)

✓e�i,j(k)Dj(k;m)

e�i,j(k;m)

◆ e�i,j(k;m)

Dj(k;m) Y

h2cWu

Y

i2C(u,s)

✓
�h,i,j(k)Dj(k;m)

�h,i,j(k;m)

◆�h,i,j(k;m)

Dj(k;m)
, (51)

where
�i,j(k) , ⇢i,j(k) eDi(k), e�h,i,j(k) , %h,j(k)⇢i,h(k) eDi(k). (52)

Proof. See Appendix I. ⌅

V. SWARM TRAJECTORY AND TEMPORAL DESIGN

Our developed HN-PFL methodology (Sec. I) and ML perfor-
mance and energy optimization (Sec. II) are the fundamental
components of our UAV-assisted ML methodology. In fact, in
cases where the swarms are deployed and stationary above
the clusters (e.g., [8]), these two components are enough to
achieve optimal ML performance and energy efficiency.

Nevertheless, we go further by generalizing our methodology
to a more realistic scenario where there are more clusters than
UAV swarms, which requires UAV swarms to travel among the
clusters. It is this generalization that motivates swarm trajectory
and temporal (e.g., length of ML training sequence) design
components (the green block of Fig. 2). Together our three
components, depicted in Fig. 2 and developed in Sec. III, IV,
and V, complete our methodology.

Upon completion of a training sequence using our HN-PFL
and performance optimization components (Sec. III and IV), the
core network instructs the UAV swarms to travel to their next
device cluster, which will result in an update to both the global
and cluster specific ML models, or to a recharging station.
The core network also instructs the UAV swarms to discard
their gathered data, as the local training and personalization
conducted by each swarm should be specific to the unique
underlying data distribution of its next visited swarm. We
next design the swarm trajectories, sequence duration and
aggregation period to maximize the ML performance.

A. Online Model Training under Model/Concept Drift
Since we consider online model training, where the data

distributions at the devices are time varying, the performance
of the local model changes over time. To capture this effect,
we introduce the notion of model/concept drift.
Definition 1 (Model/Concept Drift). For device cluster c with
local meta-loss function Fc, we denote the online model drift at
time t by ⇤c(t) 2 R+, which captures the maximum variation
of the gradient for any given model parameter across two
consecutive time instances; mathematically:

����rFc

✓
w

����D̃(t)

◆
�rFc

✓
w

����D̃(t� 1)

◆����
2

 ⇤c(t), 8w. (53)

Device clusters with higher values of model drift are likely
to require more frequent recalibration of their local models
(achieved by revisiting with UAV swarms), as their local models
become obsolete faster. In contrast, clusters with smaller model
drift, i.e., small fluctuations in local gradient, may not be
worth revisiting, due to marginal rewards (in terms of model
performance gains) per energy consumed. Also, if clusters
experience large and consistent model/concept drift, then the
learning duration Ts should be smaller as the network will
require swarms to re-calibrate local models more frequently.
Model drift can be estimated every time a UAV swarm returns
to a previously visited cluster by comparing historical meta-
gradient vs. current meta-gradient computed by upon arrival.

Next, we demonstrate how model drift can be utilized
to estimate local model performance given the current data
distribution at a device cluster:
Lemma 4 (Estimating online gradient via model drift). Let tVc
denote a time instance when device cluster c was visited by a
UAV swarm, wc(tVc) denote the corresponding local model, and
rFc(wc(tVc)| eDc(tVc)) denote the local gradient. Consider time
instance t � t

V

c + 1, where during the time interval [tVc + 1, t]
cluster c remains unvisited by UAV swarms. Given the updated
data at device cluster c, i.e., eDc(t), the local meta gradient
at the device cluster for the outdated local model is upper
bounded as:
���rFc

⇣
wc(t

V

c)
�� eDc(t)

⌘���
2
 (t� t

V

c + 1)
���rFc

⇣
wc(t

V

c)
�� eDc(t

V

c)
⌘���

2

| {z }
(a)

+ (t� t
V

c + 1)
tX

t0=tVc+1

⇤c(t
0)

| {z }
(b)

, (54)

where ⇤c(·) is defined in (53). Subsequently, assuming an upper
bound on the model drift at the device cluster ⇤c(t0)  ⇤c,
t
0
2 [tVc + 1, t], we have:

���rFc

⇣
wc(t

V

c)
�� eDc(t)

⌘���
2
 (t � t

V

c +

1)
���rFc

⇣
wc(t

V

c)
�� eDc(t

V

c)
⌘���

2
+ (t� t

V

c + 1)(t� t
V

c)⇤c.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

13

Proof. See Appendix J. ⌅

The bound in (54) demonstrates that the real-time perfor-
mance of the outdated model, measured through the value of
the meta gradient, becomes obsolete linearly with time (term
(a)) and cumulative value of the model drift at the device
cluster (term (b)). We will incorporate this result in the design
of UAV swarm trajectories.

B. Problem Formulation and DRL Characteristics
1) Background: In the following, we first formulate the

problem of UAV swarm trajectory design and learning se-
quence duration. We then cast the problem as a sequential
decision making problem. Subsequently, we develop a deep
reinforcement learning (DRL) methodology by encoding the
real-time characteristics of our network into states for the DRL,
defining a calculation methodology for the actions available for
the DRL, and linking the actions to DRL reward calculations
by embedding the optimization methodology from Section IV.

For training sequence s, let Xu(s) denote the location of
UAV swarm u, ⇤c(s) denote the latest estimation of the model
drift of device cluster c, Eu(s) denote the minimum remaining
battery among the UAVs belong to swarm u, and Gc(s) denote
the latest value of the gradient at device cluster c. Since the
duration of ML model training Ts, 8s, is usually far smaller
than the delay between consecutive visits to the same device
cluster, we assume that the effect of model drift during model
training is negligible, as we do so in Sec. III, and instead
integrate the effects of model drift in our DRL design caused
by delay between consecutive visits of the device cluster. For
device cluster c, if it has been visited during sequence s,
i.e., c 2 C(s), Gc(s) captures its recent gradient: Gc(s) =���rFc

⇣
wc(ts + Ts)

�� eDc(ts + Ts)
⌘���

2
measured at the end of the

training sequence; however, if it is not visited, i.e., c 2 C(s),
then Gc(s) =

���rFc

⇣
wc(t

V

c)
�� eDc(t)

⌘���
2
, which is computed via

the bound in (54). Also, we let EM(s) denote the sum of energy
of movement of the UAV swarms to travel to their current
location in training sequence s from their previous locations
in sequence s� 1, and let O(s) denote the value of the final
objective function of P solved in Section IV encompassing
both the energy used for model training and the gradient of
those devices under model training.

2) Problem Formulation: Given a total of S ML model
training sequences, we propose the following formulation to
determine the optimal trajectory design and temporal ML
characteristics:

(bP) : min
{X (s)}S

s=1

{T (s)}S
s=1

1

S

SX

s=1

2

4c1EM(s) + c2O(s) + c3

X

c2C(s)

Gc(s)

3

5(55)

s.t.
Eu(s) � E

T
, u 2 U(s), s 2 {1, · · · , S} (56)

T (s) 2 T
F
, s 2 {1, · · · , S}, (57)

where X (s) , {X1(s), · · · , XU (s)}, and T (s) ,
�
Ts [⌧

L

s [⌧
G

s

.

The objective function in (55) consists of three parts, the energy
required for swarms to move to their next destination (EM(s)),
the data offloading/processing objective function result (O(s)

derived from P), and the estimated online gradient as a result of
model drift at clusters without UAV training (Gc(s), c 2 C(s)).
Constraint (56) ensures that swarms have sufficient energy E

T,
at all times, to travel to a recharging station before they can
no longer sustain their flight, and constraint (57) guarantees
that the temporal ML characteristics T (s) ,

�
Ts [⌧

L

s [⌧
G

s

,

8s, are always within some feasible set T F. Finally, c1, c2, and
c3 in (55) scale the objective components.

Solving bP faces the following challenges: (i) the effects
of training at a previous device cluster carries over to all
future training sequences, at any device cluster, (ii) bP is
a combinatorial problem, which suffers from the curse of
dimensionality, since at each sequence the core network must
assign the swarms to either device clusters or recharging
stations, and (iii) bP is defined over an unknown environment,
i.e., neither the data distributions at the device clusters nor the
model/concept drift are known apriori. These facts motivate us
to cast the problem as a sequential decision making problem,
which is solved at the core network for each training sequence
by encoding the network aspects as reinforcement learning
objectives. Classical reinforcement learning methods rely on
a pre-built Q-table to determine future actions and associated
network states [39], but, due to the aforementioned challenges
of our problem, in particular the curse of dimensionality,
building a Q-table is infeasible. Motivated by the success
that recurrent neural networks (RNN) exhibited as the deep
Q-network for sequential decision making [40], we adapt an
RNN based DRL featuring LSTM layers.

3) State of the DRL: We encode the locations of the UAV
swarms, the model drift and gradients at device clusters, and
the temporal ML characteristics (i.e., total time, local-global
aggregation periods) as the state of the DRL. Formally, we
define the state at the end of training sequence s, Z(s), as:

Z(s) = U(s) [X (s) [⇤(s) [E(s) [G(s) [T (s), (58)
where U(s) denotes the set of active UAV swarms, X (s) denotes
the locations of all the swarms, ⇤(s) = {⇤1(s), · · · ,⇤C(s)} are
the latest model drift estimates observed at the device clusters,
E(s) = {E1(s), · · · , EU (s)}, G(s) = {G1(s), · · · , GC(s)}, and
T (s) =

�
Ts [⌧

L

s [⌧
G

s

.

4) Action of the DRL: The core network, as the DRL agent,
determines the active UAV swarms U(s + 1), their locations
X (s+1), and the temporal behavior T (s+1) of the next training
sequence. In particular, we define the DRL action, H(s), as:

H(s) = X (s+ 1) [U(s+ 1) [T (s+ 1). (59)
5) Reward of the DRL: The DRL agent aims to maximize

the reward of each action H(s) with respect to the current
state Z(s) via the objective value of bP . Formally, we define
the reward of the agent as:

V (s) = C

0

@c1O(s) + c2

X

c2C(s)

Gc(s) + c3E
M(s)

1

A
�1

| {z }
(a)

�P

X

u2U

{EuET}

| {z }
(b)

, (60)

where (a) captures the (inverse) value of the objective function
of bP for a particular training sequence s, and (b) is a penalty
function with P � 1, capturing the case where UAVs’ battery
level drops below E

T, upon which the indicator {EuET}

takes the value of one for UAV swarm u.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

14

FIGURE 4: ML architecture comparisons for MNIST with fixed ⌧
L

s = 1.
HN-PFL demonstrates faster convergence and better final classification
accuracy than H-FL for various ⌧

G

s .

Main Takeaways. Our reward function in (60) captures
multiple possibly competing objectives: (i) it motivates visiting
device clusters that benefit from network-aware ML model
training, i.e., those that require less energy to achieve a better
model, (ii) it avoids leaving clusters with larger model drifts
(via Gc(s)) unvisited for long periods of time, (iii) it promotes
visiting clusters with high performance gain (via O(s)) as
compared to ML energy consumption, and (iv) it avoids
situations where swarm battery levels would drop below a
threshold (via term (b)).

6) DRL Learning Architecture: We exploit an RNN with
LSTM layers to approximate the optimal action-value function
based on the Bellman equation:

Q
?(Z(s),H(s)) = E


V (s)

+ � max
H(s+1)

Q
? (Z(s+ 1),H(s+ 1))

��Z(s),H(s)
i�
,

(61)

where � is the future reward discount. We use one RNN to
approximate Q

? called the train Q-network Q✓(Z(s),H(s)),
which we train by adjusting its parameters ✓ to reduce
the mean-squared error (MSE). Classical deep Q-network
techniques determine the MSE of the train Q-network with
respect to a target reward y(s) that also depends on the
train Q-network’s model parameters ✓. This self-coupling
produces over-estimation, so we use an additional RNN called
target Q-network bQb✓ with parameters b✓ to produce accurate
loss measurements and periodically synchronize the target
Q-network to the train Q-network. Furthermore, to prevent
correlations in the environment observation sequence from
influencing the parameters ✓ in the train Q-network, we
use experience replay to sample a randomized mini-batch
of M

Q experience tuples, each of which is of the form
(Z(s),H(s), V (s),Z(s+ 1)), to calculate MSE. In particular,
we compute the mean-squared error as:

L(✓) =
1

|MQ|

X

s2MQ

�
Q✓(Z(s),H(s))� y(s)

�2
, (62)

where y(s) = V (s) + �maxH(s+1)
bQb✓(Z(s + 1),H(s + 1)) is

the target reward. Using the MSE, we then perform SGD to
adjust the parameters ✓. Since this procedure requires at least
M

Q previous experience tuples (saved in a deque-style buffer
of size B

Q), and each training sequence s only generates a
single tuple, the RNN training requires at least MQ training
sequences before it begins. In order to generate representative
experience tuples from the environment before the RNN is
properly trained and to ensure that the DRL process is better

FIGURE 5: ML architecture comparisons for CIFAR-10 with fixed
⌧
L

s = 1. HN-PFL demonstrates faster convergence and better final
classification accuracy than H-FL for various ⌧

G

s .

able to find the global maximum (rather than getting stuck in a
local maxima), we utilize an ✏-greedy policy [41], wherein with
probability ✏ the agent will select an action randomly and with
probability (1� ✏) the agent will determine the action based
on the train Q-network Q✓ . As the train Q-network improves
over time, ✏ decreases with limit ✏min

 ✏.
C. System Integration: A Solution for UAV-enabled Online ML
Over Heterogeneous Networks

In the past few sections, we developed our methodology for
network-aware UAV-enabled online model training, which com-
prises HN-PFL from Sec. III, the data processing/offloading
optimization from Sec. IV, and the swarm trajectory and ML
design from Sec. V. The interconnection between the different
components is visualized in Fig. 2, which we provided a high
level discussion on in Sec. II-C. Given our introduced variables
and parameters in Sec. III, IV, and V, we can now further
comment on the interdependence.

Specifically, the HN-PFL methodology (orange block) is
implemented by the UAV swarms, and operates based on the
reception of transfer/processing parameters (i.e., ⇢,%,↵, f)
from the data processing optimization at the swarm leaders
(blue block). The ML training results and UAV battery statuses
are embedded into network states and form the bases of our
swarm trajectory (i.e., X (s)) and temporal training decisions
(i.e., T (s), ⌧Ls , ⌧

G

s) for the training sequences (green block),
which is then shared from the core network to the swarm
leaders. With these core network decisions, the next sequence
of ML training will begin, and the cycles continues.

VI. NUMERICAL EVALUATION AND DISCUSSION

In this section, we conduct numerical evaluations of our
proposed methodology. When literature contains existing
techniques, such as hierarchical federated learning (H-FL) [22],
we compare our methodology against it; otherwise, we develop
heuristic algorithms as baselines. For brevity, we present results
here based on two datasets, MNIST (digits) and CIFAR-
10 (color objects). Results for two other datasets, FMNIST
(grayscale objects) and RADIOML (wireless signals) are
deferred to Appendix A. Descriptions of each dataset and
UAV network parameters can also be found in Appendix A.
The key findings for each dataset are qualitatively consistent.
A. HN-PFL Proof-of-Concept

We start by investigating the HN-PFL procedure from
Sec. III, by comparing its performance (measured via clas-
sification accuracy, loss, and energy consumption) to that

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

15

FIGURE 6: Using the same network for MNIST as Fig. 4, this
experiment fixes ⌧

G

s = 1 to vary ⌧
L

s instead. Our methodology
HN-PFL continues to outperform H-FL consistently.

TABLE II: Energy consumption for MNIST to reach 65% accuracy

Ratio MNIST (kJ) Ratio MNIST (kJ)

⌧Ls ⌧Gs HFL HNPFL Savings ⌧Ls ⌧Gs HFL HNPFL Savings

1 1 4.64 2.32 50.0% 1 1 4.64 2.32 50.0%
1 2 8.13 4.06 50.1% 2 1 9.29 4.64 50.1%
1 4 14.51 8.13 44.0% 4 1 15.10 8.13 46.2%
1 8 19.73 17.99 8.8 % 8 1 18.57 14.51 21.9%

of hierarchical federated learning (H-FL) proposed in [22].
For this simulation, we consider a network composed of 4
UAV swarms with 2-3 workers, where each swarm has data
from only 3 labels (thus, non-iid data distributions) and data
quantity determined randomly from a Gaussian distribution:
N (2500, 250) for MNIST and N (3500, 350) for CIFAR-10.
As a proof-of-concept, we strictly isolate the performance of
the distributed ML methodologies to the UAV layers, i.e., we
assume the data has already been transferred to the worker
UAVs. For a fair comparison between HN-PFL and H-FL, we
ensure that both methodologies train over the same amount
of data for each of their iterations by defining the batch size
for H-FL as ↵HFL and setting each batch ratio for HN-PFL as
↵j,i , b

1
3↵

HFL
c 8i 2 {1, 2, 3}. Finally, we use the following

settings for ML model training: ⌘ = ⌘1 = 10�3 and ⌘2 = 10�2,
where ⌘ is the learning rate for gradient descent in H-FL, and
to avoid lengthy Hessian computations, we use the Hessian
first-order approximation (see Remark 1).

We investigate the impact of local and global aggregations
on the performance and efficiency of the ML training separately.
We first investigate the effects of varying global aggregation
period ⌧

G

s and fix local aggregation period (i.e., ⌧Ls = 1) in
Fig. 4 for MNIST. We repeat this experiment with fixed ⌧Gs = 1
and vary ⌧

L

s in Fig. 6, also for MNIST. The corresponding
CIFAR-10 experiments are in Fig. 5 and 7. Due to the non-iid
and non-convex natures of our problem, the noisy convergence
seen in Figs. 4-7 is expected.

On both MNIST and CIFAR-10, we see that HN-PFL attains
better final model accuracy and classification loss over its
H-FL counterpart. For example, when ⌧Ls = ⌧

G

s = 1, HN-PFL
outperforms H-FL in trained classification accuracy by at least
10% on both MNIST and CIFAR-10. When we increase the
aggregation period, the model performances obtained at any
given local iteration are lower because the total iterations
are fixed and thus longer aggregation periods result in fewer
aggregations within the same timeframe. Fewer aggregations
leads to worse performance as a result. Nonetheless, HN-PFL
is able to maintain its advantage as ⌧Gs or ⌧Ls increases for both

FIGURE 7: Using the same network for CIFAR10 as Fig. 5, this
experiment fixes ⌧

G

s = 1 to vary ⌧
L

s instead. Our methodology
HN-PFL continues to outperform H-FL consistently.

MNIST and CIFAR-10. Furthermore, the ability of HN-PFL to
attain higher accuracy values with fewer training iterations than
H-FL results in less network energy consumption in the form
of flight, processing, and communication energy among UAVs
in order to reach desired accuracy thresholds. We demonstrate
the corresponding energy savings of HN-PFL in Table II for
MNIST and Table III for CIFAR-10 to reach a specific training
accuracy. For each table, we selected model accuracies that are
reachable for all combinations of ⌧Ls and ⌧Gs . We chose 65%
for MNIST and 25% for CIFAR-10. On average, our HN-PFL
method saves 38.7% and 40.6% of the energy used for H-FL
for MNIST and CIFAR-10, respectively.

B. Data Offloading/Processing Optimization
Next, we focus on the optimization (i.e., blue) block from

Fig. 2, which relates to the network control aspect of our
problem. Note that our optimization formulation from Sec. IV
adjusts the performance and energy consumption of HN-PFL
and is separable with respect to each swarm. We investigate
the performance of our optimization solver on a single swarm
composed of two workers and two coordinators training for a
device cluster composed of ten devices in Figs. 8-9, averaging
over 10 experiments. In practice, a network operator can
vary 1 � ✓, which scales the importance of the ML model
performance vs. energy consumption in the objective of P .
In Fig. 8, our optimization responds by adjusting HN-PFL’s
parameters: device-to-UAV data offloading (⇢), coordinator-
to-worker data offloading (%), aggregate data processing (i.e.,
Dj ⇥ ↵j), and worker CPU frequency determination (g). As
the network operator places greater importance on ML model
performance (i.e., increasing 1� ✓), our solver increases data
offloading, i.e., larger average ⇢ in Fig. 8(a), and swarm
leaders also instruct their workers to increase their CPU
frequencies in Fig. 8(c). In this manner, more data is offloaded
and subsequently processed within the same time frame,
which increases the ML model performance. Fig. 8(b) also
demonstrates that the coordinator UAVs never retain data for
themselves as the average % is 0.5, which implies that all the
data is getting offloaded to the 2 workers. This is the case
since the coordinator UAVs are only used for data relaying.
The joint effect of larger average ⇢ and g is more average total
data processed, seen in Fig. 8(d).

Next, in Fig. 9, we verify that our optimization formulation
optimizes the performance of HN-PFL. As no alternative
methodology for our optimization problem exists, we develop

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

16

FIGURE 8: The behavior of the optimization variables: ⇢,%,↵, g depends on the ML learning importance factor 1� ✓ in the optimization
formulation. As 1� ✓ increases, i.e., the importance of ML model performance increases, the network responds by offloading more data on
average, increasing the CPU frequencies of workers, and processing more data on average as a result.

TABLE III: Energy consumption for CIFAR-10 to reach 25% accuracy.

Ratio CIFAR-10 (kJ) Ratio CIFAR-10 (kJ)

⌧Ls ⌧Gs HFL HNPFL Savings ⌧Ls ⌧Gs HFL HNPFL Savings

1 1 3.48 1.74 50.0% 1 1 3.48 1.74 50.0%
1 2 3.48 2.32 33.3% 2 1 3.48 2.32 33.3%
1 4 5.22 2.32 55.6% 4 1 5.22 2.32 55.6%
1 8 8.13 2.90 64.3% 8 1 8.13 2.90 64.3%

two methods, called greedy offloading (G.O.) and maximum
processed (M.P.), and use them as baselines to compare the
effectiveness of our data offloading/processing optimization in
Fig. 9. In G.O., the devices always offload their entire datasets
to the UAVs, and, in M.P., the UAVs overclock their CPU
frequencies (reaching 2.3GHz for all UAVs) and maximize mini-
batch ratios. Both G.O. and M.P. are determined in a fashion
that adheres to the constraints in (25)-(46), and we use our
solver to determine the rest of the optimization variables in each
baseline. We show the percentage savings in objective function
of P of our method over the two baselines in Fig. 9. When the
network operator places greater emphasis on energy efficiency
(i.e., small 1 � ✓), our joint optimization will decrease data
offloading and processing to conserve energy. As a result, our
method achieves over 80% decrease in objective function value
and energy consumption compared to either baseline when
1� ✓ = 0.01. Even when 1� ✓ = 0.9, i.e., the network aims
to process more data in order to improve the ML component
of the objective function, our method retains a roughly 6%
improvement for the objective function and a 25% improvement
for the energy consumption against both baselines.

C. Trajectory Optimization with Model/Concept Drift
Next, we turn to the trajectory optimization component of

Sec. V (green block in Fig. 2). We consider 2 recharging
stations and 8 device clusters separated by distances in
[500, 2000]m, where each device cluster has [8, 10] devices.
At the UAV level, we consider 3 swarms, each of which has
[3, 5] workers and [1, 2] coordinators. We refer to recharging
stations as R:1 and R:2, and clusters as C:1, · · · , C:8. First,
we evaluate the performance of the DRL methodology by
calculating the moving average reward from (60), average
UAV battery levels, and learning objective (sum of the objective
function O(s) and the estimated online gradient Gc(s)) for our
RNN-based DRL method with ✏ = � = 0.7 and three baselines
in Fig. 10. Since existing baselines for our problem do not
exist, we developed three baseline algorithms: (i) sequential
heuristic (S.H.), (ii) greedy minimum distance (G.M.D.), and

FIGURE 9: Our data offloading/processing optimization minimizes the
network objective better than the two baselines, greedy offloading
(G.O.) and maximum processed (M.P.). For comparison, we show the
percentage decrease of energy consumption and objective function
that our optimization achieves when compared to the baselines.

(iii) threshold minimum distance (T.M.D.), and calculated their
rewards using the reward function in (60). We explain these
baseline algorithms in Appendix A. To analyze the impact of
UAV downtime due to recharging, we consider our methodology
under three values of E

T, i.e., battery recharging threshold
(RT): low (16.88 kJ), medium (25.32 kJ), and high (33.76 kJ).
A large RT requires UAV swarms to recharge more frequently,
inducing downtime in place of active model training, while a
small RT permits UAV swarms to participate in more training
sequences per recharge, which should lead to higher reward
and learning objective for the overall network. We present the
behavior of the reward, average battery level, and learning
objective of these three recharging thresholds in Fig. 10. We
quantify their respective recharging downtime by measuring the
average recharging station visits per epoch: 0.125 for RT Low,
0.163 for RT Medium, and 0.228 for RT High, where a higher
value indicates more downtime. We see that less recharging
downtime (i.e., RT Low) indeed leads to the best overall reward
and learning objective among test cases. We additionally note
that our methodology is able to outperform each of the baselines
by at least 7% in reward and 30% in learning objective across
these values of RT. We further evaluate the sensitivity of our
RNN-based DRL method to varying ✏ and � in Appendix A.

As the other goal for our DRL-based trajectory optimization
is adaptability to changing model drifts, we use the same
network as that in Fig. 10 with time-varying model drifts
for each device cluster, and measure the cluster visit rate
per 1k epochs in Fig. 11. Each cluster has a unique affine

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

17

FIGURE 10: Comparison of our method for swarm trajectory and
temporal ML design against several baselines. In the legend, the
first row denotes baseline algorithms and the second row denotes
our method under three separate recharging thresholds (RT Low, RT
Medium, and RT High). For all cases, our method learns optimal
patterns for efficient swarm trajectories and outperforms the baselines.

function to model its model drift growth. Initially, the 8 clusters
have scaled model drifts of [2, 4, 6, 8, 10, 12, 14, 16], but end
at [15, 15, 21, 11, 12, 17, 19, 17]. So, initially, the cluster visit
rate favors C:8 and C:7, which have the highest model drifts.
However, as the epochs increase, the model drift begins skewing
towards C:3, and our methodology responds by increasing its
visit rate from 0.21 to 0.45. Inversely, C:4 has the smallest
final model drift and our method is able to adjust its visit
rate from 0.22 to 0.17, showing our methodology’s ability
to provide more network services and UAV swarms to those
device clusters that need it the most.

VII. CONCLUSION AND FUTURE WORK

We developed a holistic framework for integrating UAV
swarm networks for online distributed machine learning. This
involved a number of unique modelling decisions and analysis.
We proposed a swarm stratification architecture tailored for
our distributed machine learning framework. Our introduced
distributed machine learning architecture, hierarchical nested
personalized federated learning HN-PFL, nests meta-function
based gradient descent into local and global aggregations
through the worker-leader-core network hierarchy, for which
we characterized the performance bound. Finally, we proposed
and developed a holistic framework for network-aware UAV-
enabled model training, consisting of two intertwined parts:
(i) data offloading and processing optimization, for which we
developed a distributed algorithm with performance guarantee,
and (ii) learning duration and trajectory design, for which we
developed a solution based on deep reinforcement learning.

One important direction for future work is the problem of
swarm dimensioning, i.e., optimizing the number and type of
UAVs comprising each swarm. UAVs could be intelligently
exchanged in-between training periods to further optimize the
tradeoff between model performance and energy consumption.

REFERENCES

[1] S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi,
and M. Guizani, “A survey on federated learning: The journey from
centralized to distributed on-site learning and beyond,” IEEE Internet
Things J., vol. 8, no. 7, pp. 5476–5497, 2020.

FIGURE 11: Swarm visit statistics per thousand epochs at various
training stages. Our method learns to favor visiting device clusters
with the largest model drift (MD), even when the model drift is time-
varying. Over time, cluster C:3 has the largest model drift of 21, and
our method increases its visit rate from 0.21 to 0.45. Conversely, the
final model drift at cluster C:4 is only 11, and our method decreases
its visit rate from 0.22 to 0.17.

[2] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342–1397, 2021.

[3] Q.-V. Pham, M. Le, T. Huynh-The, Z. Han, and W.-J. Hwang, “Energy-
efficient federated learning over uav-enabled wireless powered commu-
nications,” IEEE Trans. Veh. Technol., 2022.

[4] S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 41–47, 2020.

[5] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE Trans. Neural Netw. Learn. Syst, 2022.

[6] O. M. Rosabal, O. A. López, D. E. Pérez, M. Shehab, H. Hilleshein, and
H. Alves, “Minimization of the worst-case average energy consumption
in uav-assisted iot networks,” IEEE Internet Things J., 2022.

[7] X. Tu, K. Zhu, N. C. Luong, D. Niyato, Y. Zhang, and J. Li, “Incentive
mechanisms for federated learning: From economic and game theoretic
perspective,” IEEE Trans. Cogn. Commun. Netw., 2022.

[8] T. Zeng, O. Semiari, M. Mozaffari, M. Chen, W. Saad, and M. Bennis,
“Federated learning in the sky: Joint power allocation and scheduling
with UAV swarms,” arXiv:2002.08196, 2020.

[9] H. Zhang and L. Hanzo, “Federated learning assisted multi-UAV
networks,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14 104–14 109,
2020.

[10] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, and L. Xiao, “Privacy-
preserving federated learning for UAV-enabled networks: Learning-
based joint scheduling and resource management,” arXiv preprint
arXiv:2011.14197, 2020.

[11] R. Ciovacco, “Amazon Sidewalk Privacy and Security Whitepaper,” Tech.
Rep., 09 2020.

[12] E. L. Piza, B. C. Welsh, D. P. Farrington, and A. L. Thomas, “Cctv
surveillance for crime prevention: A 40-year systematic review with meta-
analysis,” Criminology & Public Policy, vol. 18, no. 1, pp. 135–159,
2019.

[13] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help from
the sky: Leveraging UAVs for disaster management,” IEEE Pervasive
Comput., vol. 16, no. 1, pp. 24–32, 2017.

[14] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an
intelligent edge: Wireless communication meets machine learning,” IEEE
Commun. Mag., vol. 58, no. 1, pp. 19–25, 2020.

[15] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–3557,
2020.

[16] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp.
1205–1221, 2019.

[17] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-aware optimization of distributed learning for fog computing,”
IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2019–2032, 2021.

[18] S. Hosseinalipour, S. Wang, N. Michelusi, V. Aggarwal, C. G. Brinton,
D. J. Love, and M. Chiang, “Parallel successive learning for dynamic
distributed model training over heterogeneous wireless networks,” 2022.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

18

[19] S. Hosseinalipour, S. S. Azam, C. G. Brinton, N. Michelusi, V. Aggarwal,
D. J. Love, and H. Dai, “Multi-stage hybrid federated learning over
large-scale D2D-enabled fog networks,” IEEE/ACM Transactions on
Networking, 2022.

[20] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp.
2022–2035, 2020.

[21] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning:
A meta-learning approach,” arXiv preprint arXiv:2002.07948, 2020.

[22] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in IEEE Int. Conf. Commun. (ICC).
IEEE, 2020, pp. 1–6.

[23] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key techniques and open issues,”
IEEE Commun. Surveys & Tuts., vol. 21, no. 4, pp. 3072–3108, 2019.

[24] N. Zhao, Z. Liu, and Y. Cheng, “Multi-agent deep reinforcement learning
for trajectory design and power allocation in multi-UAV networks,” IEEE
Access, vol. 8, pp. 139 670–139 679, 2020.

[25] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning-
based resource allocation for UAV networks,” IEEE Trans. Wireless
Commun., vol. 19, no. 2, pp. 729–743, 2020.

[26] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward UAV-based airborne
computing,” IEEE Wireless Commun., vol. 26, no. 6, pp. 172–179, 2019.

[27] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power
control for multi-UAV assisted wireless networks: A machine learning
approach,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7957–7969,
2019.

[28] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Trans. Wireless Commun.,
vol. 18, no. 4, pp. 2329–2345, 2019.

[29] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized
Data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), 2017.

[30] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv:1703.03400, 2017.

[31] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory of
gradient-based model-agnostic meta-learning algorithms,” in Int. Conf.
Artificial Intell. Stat. PMLR, 2020, pp. 1082–1092.

[32] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-
ground path loss for low altitude platforms in urban environments,” in
Proc. of IEEE Global Commun. Conf. (GLOBECOM), pp. 2898–2904,
Austin, TX, USA, Dec. 2014.

[33] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient internet of things communica-
tions,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7574–7589,
2017.

[34] V. Vahidi and E. Saberinia, “Orthogonal frequency division multiplexing
and channel models for payload communications of unmanned aerial
systems,” in Int. Conf. Unmanned Aircraft Syst. (ICUAS), 2016, pp.
1156–1161.

[35] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless networks:
Convergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
pp. 1–12, 2020.

[36] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, June 2017.

[37] M. Chiang, C. W. Tan, D. P. Palomar, D. O’neill, and D. Julian, “Power
control by geometric programming,” IEEE Trans. Wireless Commun.,
vol. 6, no. 7, pp. 2640–2651, 2007.

[38] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Machine Learn. Research, vol. 17,
no. 83, pp. 1–5, 2016.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529–533, 2015.

[40] A. Doshi, S. Yerramalli, L. Ferrari, T. Yoo, and J. G. Andrews, “A deep
reinforcement learning framework for contention-based spectrum sharing,”
IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2526–2540, 2021.

[41] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in
reinforcement learning with deep predictive models,” arXiv preprint
arXiv:1507.00814, 2015.

[42] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, 2017.

[43] T. J. O’shea and N. West, “Radio machine learning dataset generation
with gnu radio,” in Proceedings of the GNU Radio Conference, vol. 1,
no. 1, 2016.

[44] R. Sahay, C. G. Brinton, and D. J. Love, “A deep ensemble-based wireless
receiver architecture for mitigating adversarial attacks in automatic
modulation classification,” IEEE Trans. Cogn. Commun. Netw., vol. 8,
no. 1, pp. 71–85, 2021.

[45] T. L. Paine, C. Paduraru, A. Michi, C. Gulcehre, K. Zolna, A. Novikov,
Z. Wang, and N. de Freitas, “Hyperparameter selection for offline
reinforcement learning,” arXiv preprint arXiv:2007.09055, 2020.

[46] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A
tutorial on uavs for wireless networks: Applications, challenges, and open
problems,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2334–2360,
2019.

[47] M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, and I. Guvenc,
“Detection and classification of uavs using rf fingerprints in the presence
of wi-fi and bluetooth interference,” IEEE Open J. Commun. Soc., vol. 1,
pp. 60–76, 2019.

[48] S. Yang, Y. Luo, W. Miao, C. Ge, W. Sun, and C. Luo, “Rf signal-
based uav detection and mode classification: a joint feature engineering
generator and multi-channel deep neural network approach,” Entropy,
vol. 23, no. 12, p. 1678, 2021.

[49] Z. Sheng, H. D. Tuan, A. A. Nasir, T. Q. Duong, and H. V. Poor, “Secure
uav-enabled communication using han–kobayashi signaling,” IEEE Trans.
Wireless Commun., vol. 19, no. 5, pp. 2905–2919, 2020.

[50] T. V. Nguyen, T. V. Pham, N. T. Dang, and A. T. Pham, “Uav-based fso
systems using sc-qam signaling over fading channels with misalignment,”
in 2020 IEEE 92nd Veh. Technol. Conf. (VTC2020-Fall). IEEE, 2020,
pp. 1–5.

[51] Y. Shen, Y. Qu, C. Dong, F. Zhou, and Q. Wu, “Joint training and
resource allocation optimization for federated learning in uav swarm,”
IEEE Internet Things J., 2022.

[52] B. R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Oper. Res., vol. 26, no. 4, pp.
681–683, 1978.

Su Wang is a PhD student in ECE at Purdue Uni-
versity. He received his BS in Electrical Engineering
from Purdue in 2018.

Seyyedali Hosseinalipour received his Ph.D. in EE
from NCSU in 2020. He has won the 2020 ECE
Doctoral Scholar of the Year Award and 2021 ECE
Distinguished Dissertation Award at NCSU. He was
a postdoctoral researcher at Purdue University from
2020 to 2022. He is currently an assistant professor
of EE at University at Buffalo (SUNY).

Maria Gorlatova is a Nortel Networks Assistant
Professor of ECE at Duke University. She received
her PhD from Columbia University in 2013. She
won the NSF CAREER Award, the ACM/IEEE
IPSN Best Research Artifact Award, and the IEEE
Communications Society Young Author Best Paper
Award.

Christopher G. Brinton is an assistant professor
of ECE at Purdue University. He received his Ph.D.
in EE from Princeton University in 2016. He is the
recipient of the NSF CAREER Award, the ONR
Young Investigator Program Award, the DARPA
Young Faculty Award, and the Intel Rising Star
Faculty Award.

Mung Chiang is the John A. Edwardson Dean
of the College of Engineering and Executive Vice
President at Purdue University. Previously, he was the
Arthur LeGrand Doty Professor of EE at Princeton
University. He received his Ph.D. from Stanford
University in 2003. He won the 2013 Alan T.
Waterman Award, the highest honor to U.S. young
scientists and engineers.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

19

APPENDIX A
SIMULATION SETTINGS AND ADDITIONAL SIMULATIONS

Network Characteristics and Parameters. To calculate data rates among pairs of networked devices/UAVs, i.e., (21), (22), we use
the following set of values [33], [42]: N0 = �174dBm/Hz, ↵PL = 2, ⌘LoS = 3dB, ⌘NLoS = 23dB, f = 2GHz, = 11.95,� = 0.14,
B = 2MHz. We set the transmit power of the devices in the range [23, 25]dBm and the transmit power of UAVs to 20dBm. The
UAVs’ altitude are also selected from [25, 30]m.

To determine the coefficients presented in Assumption 1 (i.e. B, �Hu , �Gu , �H, �G, �G

j , �H

j), we performed ML model training on our
datasets, which yielded empirical estimates of these values. Then to ensure that they are upper bounds for more general test cases,
we increase them by an order of magnitude for our simulations. To summarize, we used B = 500, �Hu = 0.1, �Gu = 0.05, �H = 0.1,
�
G = 0.05, �G

j = 50, and �H

j = 50.

Datasets. We consider the MNIST (http://yann.lecun.com/exdb/mnist/), Fashion-MNIST (FMNIST) (https://github.com/
zalandoresearch/fashion-mnist), CIFAR-10 (http://www.cs.toronto.edu/⇠kriz/cifar.html), and RADIOML2016.10b [43] datasets.
MNIST and FMNIST datasets contain 70K images (60K for training, 10K for testing), where each image belongs to one of 10 labels
of hand-written digits and fashion products, respectively. FMNIST can be considered as a harder classification task as compared to
MNIST due to its more complex images. While MNIST and FMNIST have grayscale images of 28x28 pixels, CIFAR-10 images
are of 32x32 pixels and feature three channels (R,G,B), with the full dataset containing 60K images (50K for training, 10K for
testing). On the other hand, RADIOML2016.10b (RADIOML) consists of waveform data, not images, and is commonly employed
to assess ML algorithms for automatic modulation classification, i.e., classifying the modulation format of a particular signal.
Similarly to existing works on RADIOML (e.g., [44]), we pre-process the data to obtain only the waveforms relevant to the
CPFSK, GFSK, PAM4, and QPSK modulation schemes. Our resulting dataset size for RADIOML is 40K waveforms (32K for
training, 8K for testing). For clarity, we reproduce a few constituent images from the datasets that we use for our simulations in Fig. 12.

Neural Network Architectures. For the MNIST and FMNIST datasets, we use a CNN with two convolutional layers followed
by two linear layers. Both convolutional layers have kernel size 2, with the first layer outputting 16 maps and the second layer
outputting 32 maps. The linear layers are correspondingly adjusted to fit the output dimensions of the second convolutional layer. For
CIFAR-10 and RADIOML, we use a CNN with the same number of layers as MNIST and FMNIST, but with modified dimensions.
Specifically, our CNN for CIFAR-10 uses kernel size 5 for the two convolutional layers, with 20 maps for the first convolutional
layer and 50 maps for the second convolutional layer. Our CNN for RADIOML uses non-uniform kernel sizes of (2,5) and 16
maps for the first layer, and kernel sizes of (1,4) and 32 maps for the second layer. The linear layers of our CNNs for CIFAR-10
and RADIOML are correspondingly adjusted to fit the output dimensions of the second convolutional layer.

Reinforcement Learning Integration and Training. To ensure that our reinforcement learning training is based on the results of
the optimization of HN-PFL, we simulate and then store the results of various configurations of our optimization formulation P .
For each unique configuration (e.g., Ts = 100, ⌧Ls = ⌧

G

s = 2), we save the ML model performance result as the learning reward
O(s), and utilize the energy consumed to complete training to update the minimum UAV battery levels Eu(s) for a swarm. In this
way, when we start training the RNN-based deep reinforcement learning agent, the agent determines the optimal swarm trajectories
and temporal ML characteristics based on the results of HN-PFL and our optimization formulation P .

To train the DRL agent, we use train-target DQNs with an update period of 20 epochs and an experience replay deque of size
20. As the experience replay storage is initially empty, we initialize the training by running 20 random instances to fill the
experience replay deque with the swarm trajectories and temporal decisions for HN-PFL and their associated reward. Thereafter,
we train/update our DQN parameters after every epoch by calculating the mean square error (i.e., the loss) between the train and
target network outputs, and then use gradient descent with learning rate 0.001 to update the train DQN’s parameters. After every 20
epochs of training, we re-synchronize the train and target DQNs’ model parameters.

At this point, our methodology will select subsequent swarm trajectory and temporal decisions for HN-PFL based on an
epsilon-greedy policy, with ✏ = 0.7. An epsilon-greedy policy means that, with probability 1� ✏, the DQN is used to determine
the next swarm trajectory and temporal decisions. As our ✏ is linearly decaying with the number of training epochs, reaching a
minimum of 0.005, our DQN is initially trained by biasing against random results, and, eventually when the DQN is well trained,
our methodology will primarily adjust the DQN based on its own decisions.

Our swarm/UAV flight and communication characteristics used for the reinforcement learning training are the same as those used in
Fig. 4- 14. For the additional reward coefficients found in (60), we use: C = 105, c1 = 0.2, c2 = 0.25, and c3 = 0.005.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

20

FIGURE 12: The datasets used for our simulations. We chose to use a classical digit recognition dataset for ML, MNIST, two object
detection datasets, FMNIST (Fashion-MNIST) and CIFAR-10, an object detection task with RGB images, and a network management dataset
RADIOML2016.10b (RADIOML).

Baseline Comparison Algorithms for Reinforcement Learning Method. In sec. VI, we compare our RNN-based DRL
methodology against three baseline algorithms: (i) sequential heuristic (S.H.), (ii) greedy minimum distance (G.M.D.), and
(iii) threshold minimum distance (T.M.D.). Due to space constraints, we explain them here. S.H. cycles through the clusters
sequentially from C:1 to R:2, in the order presented in the x-axis of Fig. 11. On the other hand, our minimum distance methods
determine the next destination for a swarm based on closest proximity, with G.M.D. always selecting the minimum distance and
T.M.D. choosing between a random option or the minimum distance based on a probability threshold (set at 10% probability
to select the random option). Both minimum distance based methods will reroute swarms to the nearest recharging station when needed.

Additional Simulations. In the following subsection, we will first present additional simulations on Fashion-MNIST (FMNIST)
and RADIOML2016.10b (RADIOML) to verify the superiority of our HN-PFL methodology. Then, we will further demonstrate
the veracity of our RNN-based DRL methodology via additional simulations, which separately vary ✏ and �.

HN-PFL Proof of Concept: We further validate the improvement in accuracy and energy obtained by the HN-PFL methodology on
FMNIST and RADIOML, and provide these simulation results here. Similar to the experiments for MNIST and CIFAR-10, we
consider a network composed of 4 UAV swarms with 2-3 workers, where each swarm has data from only 3 labels (thus, non-iid
data distributions) and data quantity determined randomly from a Gaussian distribution: N(3500, 350) for FMNIST and N(4500,
450) for RADIOML. The comparisons of classification accuracy for FMNIST are presented in Fig. 13 and 14, and the comparison
of energy consumption is presented in Table IV. We see that our HN-PFL attains at least 5% better final classification accuracy
relative to the baseline H-FL for variety of ⌧Gs and ⌧Ls combinations. Table IV also shows that HN-PFL attains more than 35%
energy savings over H-FL for a variety of ⌧Gs and ⌧Ls combinations to reach 45% classification accuracy.

HN-PFL performs similarly well on RADIOML, the results of which are shown in Fig. 15 and 16 and Table V. We note that, on
RADIOML, the training for both HN-PFL and H-FL started from a starter model, which was trained centrally via meta-gradient
descent for 10 iterations. Fig. 15 and 16 show that HN-PFL attains at least 7% improvement over the baseline H-FL for a variety
of ⌧Gs and ⌧

L

s combinations. Furthermore, due to its faster convergence speed, HN-PFL saves over 48% of the energy used by
H-FL to reach 80% classification accuracy.

RNN-based DRL Method: We further consider the sensitivity of our RNN-based DRL method for swarm trajectory and temporal

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

21

FIGURE 13: ML architecture comparisons for FMNIST with fixed
⌧
L

s = 1. HN-PFL demonstrates faster convergence than H-FL for
various ⌧

G

s .

FIGURE 14: Using the same network for FMNIST as Fig. 13, this
experiment fixes ⌧

G

s = 1 to vary ⌧
L

s instead. Our methodology
HN-PFL converges more rapidly than H-FL for all test cases.

TABLE IV: Energy Consumption for FMNIST to Reach 45% Classification Accuracy

Ratio FMNIST (kJ) Ratio FMNIST (kJ)

⌧Ls ⌧Gs HFL HNPFL Savings ⌧Ls ⌧Gs HFL HNPFL Savings

1 1 5.22 2.32 55.6% 1 1 5.22 2.32 55.6%
1 2 6.96 3.48 50.0% 2 1 6.96 4.06 41.7%
1 4 11.03 6.38 42.2% 4 1 11.61 7.55 35.0%
1 8 17.99 11.61 35.5% 8 1 18.57 11.61 37.5%

FIGURE 15: ML architecture comparisons for RADIOML with fixed
⌧
L

s = 1. HN-PFL demonstrates faster convergence than H-FL for
various ⌧

G

s .

FIGURE 16: Using the same network for RADIOML as Fig. 15,
this experiment fixes ⌧

G

s = 1 to vary ⌧
L

s instead. Our methodology
HN-PFL converges more rapidly than H-FL for all test cases.

TABLE V: Energy Consumption for RADIOML to Reach 80% Classification Accuracy

Ratio RADIOML (kJ) Ratio RADIOML (kJ)

⌧Ls ⌧Gs HFL HNPFL Savings ⌧Ls ⌧Gs HFL HNPFL Savings

1 1 5.80 1.74 70.0% 1 1 5.80 1.74 70.0%
1 2 6.96 2.90 58.3% 2 1 7.45 2.90 61.1%
1 4 8.71 3.48 60.0% 4 1 9.29 4.06 56.3%
1 8 14.51 6.96 52.0% 8 1 14.51 7.45 48.7%

ML design to the values of ✏ and � from Sec. V. We first evaluate varying ✏ from among {0.65, 0.7, 0.75} in Fig. 17 with constant
� = 0.7 and then varying � from among {0.65, 0.7, 0.75} in Fig. 18 with constant ✏ = 0.7. Foundational work, e.g., [45] has
previously established that deep reinforcement learning techniques are sensitive to hyperparameters, such as our ✏ and � terms, as
we observe here.

The choice of ✏ influences the randomness with which actions are selected in the DRL method due to exploration, with a larger ✏
denoting more randomness and a smaller ✏ denoting less randomness. Additionally, the nominal value of ✏ gradually decreases
during the training process, so a smaller ✏ means that the DRL method relies on the DRL agent more frequently and earlier on in
the training process for decisions. A larger ✏ correspondingly means that the DRL method relies less on the DRL agent early on in
the training process. For the choices ✏ shown in Fig. 17, we can see that our RNN-based DRL methodology is able to adapt and
outperform the baselines over time.

The choice of � determines the value of future rewards on the current reward computation. A larger � means that the DRL agent
will place greater emphasis on the anticipated future rewards during DRL agent training, while a smaller � results in DRL agent
training that relies more on instantaneous rewards, i.e., the specific rewards as a result of the current action. For the choices �

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

22

shown in Fig. 18, we can see that our RNN-based DRL methodology is able to outperform the baselines for � 2 {0.7, 0.75} and
match the baselines for � = 0.65 by the end of the training process. These results lead us to choose ✏ = 0.7, � = 0.7 for our other
experiments.

FIGURE 17: The impact of ✏ selection on our RNN-based DRL methodology for swarm trajectory and temporal ML design. Our method
outperforms the baselines over time for all three ✏ values.

FIGURE 18: The impact of � selection on our RNN-based DRL methodology for swarm trajectory and temporal ML design. We see that our
method either outperforms (� 2 {0.7, 0.75}) or matches (� = 0.65) the baselines in terms of reward by the end of the training process for
all three values of �.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

23

APPENDIX B
A DISCUSSION ON UAV SIGNALING

UAV signaling, according to the highly cited paper [46], is typically used to coordinate data/information transfers, though it can also
be used to detect/classify the presence of a UAV [47]. The specific design of a signaling layer for UAVs and devices is an important
research problem, with works such as [48] devoted to using RF signaling techniques to optimize UAV classification and [49], [50]
that develop coding or modulation techniques to better determine UAV signaling. Below, we outline the communication sequence of
HN-PFL among devices, UAVs, and access points. For simplicity in the optimization formulation of (P), we ignore interference
from simultaneous transmissions to the UAVs and devices as they are stationary and can use of orthogonal frequency bands for all
communications. We note that existing work, e.g., [51], in UAV networks for machine learning has yet to consider signaling details
in-depth, which motivates a new research study with a comprehensive treatment of this topic.

Communications among different types of UAVs (leader, worker, and coordinator): The communication between the
different types of UAVs happens sequentially. When a UAV swarm arrives above a device cluster, the leader signals to
the worker and coordinator UAVs to travel to fixed positions above the device cluster, and sends coordinator UAVs the
data offloading ratios for their transmissions to worker UAVs. Upon arrival at their given destinations, the coordinator and
worker UAVs signal to the leader UAV that they have arrived, and, once the leader UAV receives this signal from all
coordinator and worker UAVs, the leader UAV signals the commencement of the training sequence and the swarm-wide
aggregation frequency to the worker UAVs. Upon reception, the coordinator UAVs signal to relevant worker UAVs that
they will initiate data transfers, and begin transferring data received from devices to the worker UAVs. At swarm-wide
aggregation stages, the workers signal to their leader that they will begin transmitting ML model parameters, and then
transfer their local ML model parameters to their leader. Once the leader receives all local parameter vectors, it performs a
swarm-wide aggregation, synchronizes the ML model parameters across workers, and then signals initiation of the next training round.

UAV requests for data from devices: Coordinator UAVs are assigned specific devices, based on our optimization formulation in
Sec. IV, from which they collect data. After signaling to the leader UAV of their arrival at their fixed positions, coordinator UAVs
send wake-up signals to their assigned devices to initiate data offloading. Devices then transmit their data to relevant coordinator UAVs.

Leader and access point interactions: At each global aggregation stage, the leader UAVs will travel to their nearest access point,
and signal their arrival. Once the core network (via the APs) has received such a signal from all active leader UAVs, it will prompt
leader UAVs to upload their swarm-wide ML model parameters. Once the core network has received all of these parameters, it
will perform a global aggregation and synchronize the ML model parameters at leader UAVs with the result of the latest global
aggregation. The leader UAVs will return to their respective swarms, upon synchronization completion, to commence the next
training round.

APPENDIX C
SKETCH PROOF OF LEMMA 1

Sketch of Proof: The proof uses similar techniques to those found in Lemma 4.3 in [21]. We use our defined data processing ratios
↵j,1,↵j,2,↵j,3 in place for batch sizes within the data variability component of Assumption 1. ⌅

APPENDIX D
SKETCH PROOF OF LEMMA 2

Sketch of Proof: The proof uses similar techniques to those found in Lemma 4.4 in [21]. The difference is that we use the weighted
aggregation definition for the meta function in (6) before applying Assumption 1 and Jensen’s inequality. ⌅

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

24

APPENDIX E
PROOF OF PROPOSITION 1

Proof. To bound

E
����

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
wj(t)�w(t)

◆����
2�
, (63)

where t = t
G

s (k
0) = ts + k

0
⌧
L

s ⌧
G

s , we introduce wu(t) and omit the ts aspect of t
G

s (k
0), i.e., ignoring the starting time of the

sequence ts in all the derivations since it is just a constant, to obtain:

E
����

1

U(s)

X

u2U(s)

X

j2Wu

�j(k
0
⌧
G

s)

�u(k
0
⌧Gs)

✓
wj(⌧

L

s ⌧
G

s k
0)�wu(⌧

L

s ⌧
G

s k
0) +wu(⌧

L

s ⌧
G

s k
0)�w(⌧Ls ⌧

G

s k
0)

◆����
2�

 2
1

U(s)

X

u2U(s)

X

j2Wu

�j(k
0
⌧
G

s)

�u(k
0
⌧Gs)

E[kwj(⌧
L

s ⌧
G

s k
0)�wu(⌧

L

s ⌧
G

s k
0)k2]

| {z }
(i)

+2
1

U(s)

X

u2U(s)

E[kwu(⌧
L

s ⌧
G

s k
0)�w(⌧Ls ⌧

G

s k
0)k2]

| {z }
(ii)

,
(64)

where the inequality is due to Jensen’s inequality and ka + bk
2
 2(kak2 + kbk

2). We first upper bound (64)(i), omitting the
summations for simplicity:

2E[kwj(⌧
L

s ⌧
G

s k
0)�wu(⌧

L

s ⌧
G

s k
0)k2]

(a)
= 2E

����wj(⌧
L

s ⌧
G

s k
0)�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k
0
⌧Gs)

wĵ(⌧
L

s ⌧
G

s k
0)

����
2�

(b)
= 2E

����wj(⌧
L

s ⌧
G

s k
0
� 1)� ⌘2r

eFj(wj(⌧
L

s ⌧
G

s k
0
� 1))�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k
0
⌧Gs)

✓
wĵ(⌧

L

s ⌧
G

s k
0
� 1)� ⌘2r

eFĵ(wĵ(⌧
L

s ⌧
G

s k
0
� 1))

◆����
2�

(c)
 8E[kwj(⌧

L

s ⌧
G

s k
0
� 1)�wu(⌧

L

s ⌧
G

s k
0
� 1)k2]

| {z }
(i)

+8⌘22E[krFj(wi(⌧
L

s ⌧
G

s k
0
� 1))�r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))k2]

| {z }
(ii)

+ 8⌘22E
����

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)

✓
r eFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))�rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

| {z }
(iii)

+ 8⌘22E
����rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)
rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

| {z }
(iv)

,

(65)
where (a) is the aggregation rule of wu, (b) uses the gradient update from (1), and (c) introduces ⌘2rFj and ⌘2rFu terms and
then applies Cauchy-Schwarz, i.e., (

Pn
i ai)

2
 n(

Pn
i a

2
i). The bounds for (65)(ii) and (65)(iii) follow immediately from Lemma 1,

and we analyze (65)(iv), while recalling the summations from (64) as follows:

8⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)
rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

(66)

(a)
= 8⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(wu(⌧

L

s ⌧
G

s k
0
� 1)) +rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))

�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)

✓
rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1)) +rFĵ(wu(⌧

L

s ⌧
G

s k
0
� 1))�rFĵ(wu(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

(b)
 24⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[krFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))k2]

+ 24⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)

✓
rFĵ(wu(⌧

L

s ⌧
G

s k
0
� 1))�rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

+ 24⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)
rFĵ(wu(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

25

(c)
 24⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[krFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))k2]

+ 24⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)
E
����rFĵ(wu(⌧

L

s ⌧
G

s k
0
� 1))�rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

+ 24⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))�rFu(wu(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

(d)
 24⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
µ
2
FE[kwj(⌧

L

s ⌧
G

s k
0
� 1)�wu(⌧

L

s ⌧
G

s k
0
� 1)k2]

+ 24⌘22
1

U(s)

X

u2U(s)

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)
µ
2
FE[kwu(⌧

L

s ⌧
G

s k
0
� 1)�wĵ(⌧

L

s ⌧
G

s k
0
� 1)k2]

+ 24⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))�rFu(wu(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

(e)
 48µ2

F ⌘
2
2

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[kwj(⌧

L

s ⌧
G

s k
0
� 1)�wu(⌧

L

s ⌧
G

s k
0
� 1)k2] + 24⌘22

1

U(s)

X

u2U(s)

(�uF)
2
,

where (a) introduces rFj(wu) and rFĵ(wu), (b) applies Jensen’s inequality, (c) recalls the aggregation rule of rFu and applies
Jensen’s inequality, (d) uses µF -smoothness (i.e., krFj(w) � rFj(w0)k  µF kw �w0

k 8i 2 [u2U(s)Wu), and (e) leverages
Lemma 2. Combining (65) and (66) yields:

2
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[kwj(⌧

L

s ⌧
G

s k
0)�wu(⌧

L

s ⌧
G

s k
0)k2] (67)

(a)
 8

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[kwj(⌧

L

s ⌧
G

s k
0
� 1)�wu(⌧

L

s ⌧
G

s k
0
� 1)k2]

+ 8⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[krFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))k2]

+ 8⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)

✓
r eFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))�rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

+ 8⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)
rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

(b)
 8

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[kwj(⌧

L

s ⌧
G

s k
0
� 1)�wu(⌧

L

s ⌧
G

s k
0
� 1)k2] + 16⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2

+ 8⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E
����rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�

X

ĵ2Wu

�ĵ(k
0
⌧
G

s)

�u(k0⌧Gs)
rFĵ(wĵ(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

(c)
 (8 + 48⌘22µ

2
F)

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[kwj(⌧

L

s ⌧
G

s k
0
� 1)�wu(⌧

L

s ⌧
G

s k
0
� 1)k2]

+ 16⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + 24⌘22

1

U(s)

X

u2U(s)

(�uF)
2
,

where (a) restates (65) with the previously omitted summations, (b) applies Jensen’s inequality and Lemma 1, and (c) uses the
result in (66). Solving (67) recursively yields:

2
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[kwj(⌧

L

s ⌧
G

s k
0)�wu(⌧

L

s ⌧
G

s k
0)k2] (68)

(a)
 16⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓ ⌧L

s�1X

y=0

(�F

j (⌧
L

s ⌧
G

s k
0
� 1� y))2(8 + 48⌘22µ

2
F)

y

◆
+ 24⌘22

1

U(s)

X

u2U(s)

(�uF)
2 1� (8 + 48⌘22µ

2
F)

⌧L

s

1� (8 + 48⌘22µ
2
F)

(69)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

26

(b)


✓
16⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

⌧L

s�1X

y=0

(�F

j (⌧
L

s ⌧
G

s k
0
� 1� y))2 + 24⌘22

1

U(s)

X

u2U(s)

(�uF)
2

◆
1� (8 + 48⌘22µ

2
F)

⌧L

s

1� (8 + 48⌘22µ
2
F)

, (70)

where (a) is the result of recursion and the finite sum of geometric series, and (b) uses
P

i aibi 
P

i ai
P

i bi 8ai, bi � 0. Next,
we bound (64)(ii) as follows:

2
1

U(s)

X

u2U(s)

E[kwu(⌧
L

s ⌧
G

s k
0)�w(⌧Ls ⌧

G

s k
0)k2]

(a)
= 2

1

U(s)

X

u2U(s)

E
����wu(⌧

L

s ⌧
G

s k
0)�

1

U(s)

X

û2U(s)

wû(⌧
L

s ⌧
G

s k
0)

����
2�

(b)
= 2

1

U(s)

X

u2U(s)

E
����wu(⌧

L

s ⌧
G

s k
0
� 1)� ⌘2r

e
Fu(wu(⌧

L

s ⌧
G

s k
0
� 1))�

1

U(s)

X

û2U(s)

✓
wû(⌧

L

s ⌧
G

s k
0
� 1)� ⌘2r

e
F û(wû(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

(c)
= 2

1

U(s)

X

u2U(s)

E
����wu(⌧

L

s ⌧
G

s k
0
� 1)� ⌘2r

e
Fu(wu(⌧

L

s ⌧
G

s k
0
� 1)) + ⌘2rFu(wu(⌧

L

s ⌧
G

s k
0
� 1))� ⌘2rFu(wu(⌧

L

s ⌧
G

s k
0
� 1))

�
1

U(s)

X

û2U(s)

✓
wû(⌧

L

s ⌧
G

s k
0
� 1)� ⌘2r

e
F û(wû(⌧

L

s ⌧
G

s k
0
� 1)) + ⌘2rF û(wû(⌧

L

s ⌧
G

s k
0
� 1))� ⌘2rF û(wû(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

(d)
 8

1

U(s)

X

u2U(s)

E
����wu(⌧

L

s ⌧
G

s k
0
� 1)�

1

U(s)

X

û2U(s)

wû(⌧
L

s ⌧
G

s k
0
� 1)

����
2�

| {z }
(i)

+ 8⌘22
1

U(s)

X

u2U(s)

E[krFu(wu(⌧
L

s ⌧
G

s k
0
� 1))�r

e
Fu(wu(⌧

L

s ⌧
G

s k
0
� 1))k2]

| {z }
(ii)

+ 8⌘22
1

U(s)

X

u2U(s)

E
����

1

U(s)

X

û2U(s)

✓
r
e
F û(wû(⌧

L

s ⌧
G

s k
0
� 1))�rF û(wû(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

| {z }
(iii)

+ 8⌘22
1

U(s)

X

u2U(s)

E
����

1

U(s)

X

û2U(s)

rF û(wû(⌧
L

s ⌧
G

s k
0
� 1))�rFu(wu(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

| {z }
(iv)

,

(71)
where (a) uses the definition of w from (7), (b) is the global parameter update rule with eFu using an approximation eF of F in (6)
(the same applies for eF), (c) introduces ⌘2rFu(wu) and ⌘2rF û(wû), and (d) follows from Cauchy-Schwarz inequality. Upper
bounds for (71)(ii) and (71)(iii) follow immediately from Lemma 1, and we bound (71)(iv) as follows:

8⌘22
1

U(s)

X

u2U(s)

E
����

1

U(s)

X

û2U(s)

rF û(wû(⌧
L

s ⌧
G

s k
0
� 1))�rFu(wu(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

(a)
= 8⌘22

1

U(s)

X

u2U(s)

E
����

1

U(s)

X

û2U(s)

✓
rF û(wû(⌧

L

s ⌧
G

s k
0
� 1))�rF û(w(⌧Ls ⌧

G

s k
0
� 1)) +rF û(w(⌧Ls ⌧

G

s k
0
� 1))

◆

�rFu(wu(⌧
L

s ⌧
G

s k
0
� 1)) +rFu(w(⌧Ls ⌧

G

s k
0
� 1))�rFu(w(⌧Ls ⌧

G

s k
0
� 1))

����
2�

(b)
 24⌘22

1

U(s)

X

u2U(s)

E
����

1

U(s)

X

û2U(s)

X

j2Wû

�j(k0⌧Gs)

�û(k0⌧Gs)

✓
rFj(wû(⌧

L

s ⌧
G

s k
0
� 1))�rFj(w(⌧Ls ⌧

G

s k
0
� 1))

◆����
2�

+ 24⌘22
1

U(s)

X

u2U(s)

E
����

X

j2Wû

�j(k0⌧Gs)

�û(k0⌧Gs)

✓
rFj(w(⌧Ls ⌧

G

s k
0
� 1))�rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

+ 24⌘22
1

U(s)

X

u2U(s)

E[krF (w(⌧Ls ⌧
G

s k
0
� 1))�rFu(w(⌧Ls ⌧

G

s k
0
� 1))k2]

(c)
 24⌘22

1

U(s)

X

u2U(s)

1

U(s)

X

û2U(s)

X

j2Wû

�j(k0⌧Gs)

�û(k0⌧Gs)
E
����rFj(wû(⌧

L

s ⌧
G

s k
0
� 1))�rFj(w(⌧Ls ⌧

G

s k
0
� 1))

����
2�

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

27

+ 24⌘22
1

U(s)

X

u2U(s)

X

j2Wû

�j(k0⌧Gs)

�û(k0⌧Gs)
E
����rFj(w(⌧Ls ⌧

G

s k
0
� 1))�rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

+ 24⌘22
1

U(s)

X

u2U(s)

E[krF (w(⌧Ls ⌧
G

s k
0
� 1))�rFu(w(⌧Ls ⌧

G

s k
0
� 1))k2]

(d)
 24⌘22µ

2
F

1

U(s)

X

u2U(s)

1

U(s)

X

û2U(s)

X

j2Wû

�j(k0⌧Gs)

�û(k0⌧Gs)
E[kwû(⌧

L

s ⌧
G

s k
0
� 1)�w(⌧Ls ⌧

G

s k
0
� 1)k2]

+ 24⌘22µ
2
F

1

U(s)

X

u2U(s)

X

j2Wû

�j(k0⌧Gs)

�û(k0⌧Gs)
E[kw(⌧Ls ⌧

G

s k
0
� 1)�wu(⌧

L

s ⌧
G

s k
0
� 1)k2]

+ 24⌘22
1

U(s)

X

u2U(s)

E[krF (w(⌧Ls ⌧
G

s k
0
� 1))�rFu(w(⌧Ls ⌧

G

s k
0
� 1))k2]

(e)
 48⌘22µ

2
F

1

U(s)

X

u2U(s)

E[kwû(⌧
L

s ⌧
G

s k
0
� 1)�w(⌧Ls ⌧

G

s k
0
� 1)k2] + 24⌘22�

2
F , (72)

where (a) introduces rF û(w) and rFu(w) terms, (b) uses the Cauchy-Schwarz followed by the swarm-wide meta-gradient
definition from (6), (c) applies Jensen’s inequality to the expectations, (d) recalls the µF -smoothness property of rFj , and (e)
uses the result of Lemma 2. Combining (71) and (72) yields:

2
1

U(s)

X

u2U(s)

E[kwu(⌧
L

s ⌧
G

s k
0)�w(⌧Ls ⌧

G

s k
0)k2]

(a)
 8

1

U(s)

X

u2U(s)

E
����wu(⌧

L

s ⌧
G

s k
0
� 1)�

1

U(s)

X

û2U(s)

wû(⌧
L

s ⌧
G

s k
0
� 1)

����
2�

+ 8⌘22
1

U(s)

X

u2U(s)

E[krFu(wu(⌧
L

s ⌧
G

s k
0
� 1))�r

e
Fu(wu(⌧

L

s ⌧
G

s k
0
� 1))k2]

+ 8⌘22
1

U(s)

X

u2U(s)

E
����

1

U(s)

X

û2U(s)

✓
r
e
F û(wû(⌧

L

s ⌧
G

s k
0
� 1))�rF û(wû(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

+ 48⌘22µ
2
F

1

U(s)

X

u2U(s)

E[kwû(⌧
L

s ⌧
G

s k
0
� 1)�w(⌧Ls ⌧

G

s k
0
� 1)k2] + 24⌘22�

2
F

(b)
 (8 + 48⌘22µ

2
F)

1

U(s)

X

u2U(s)

E
����wu(⌧

L

s ⌧
G

s k
0
� 1)�

1

U(s)

X

û2U(s)

wû(⌧
L

s ⌧
G

s k
0
� 1)

����
2�

+ 24⌘22�
2
F

+ 8⌘22
1

U(s)

X

u2U(s)

E
����

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
rFj(wu(⌧

L

s ⌧
G

s k
0
� 1))�r eFj(wu(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

+ 8⌘22
1

U(s)

X

u2U(s)

E
����

1

U(s)

X

û2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
r eFj(wû(⌧

L

s ⌧
G

s k
0
� 1))�rFj(wû(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

(c)
 (8 + 48⌘22µ

2
F)

1

U(s)

X

u2U(s)

E[kwu(⌧
L

s ⌧
G

s k
0
� 1)�w(⌧Ls ⌧

G

s k
0
� 1)k2] + 24⌘22�

2
F

+ 16⌘22
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�j

F (⌧
L

s ⌧
G

s k
0
� 1))2, (73)

where (a) combines (71) and (72), (b) applies definition of rFu from (6), (c) uses Jensen’s inequality followed by Lemma 1 and
the definition of w from (7). Solving (73) recursively yields:

2
1

U(s)

X

u2U(s)

E[kwu(⌧
L

s ⌧
G

s k
0)�w(⌧Ls ⌧

G

s k
0)k2] (74)

(a)
 16⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓ ⌧L

s⌧
G

s �1X

y=0

(�F

j (⌧
L

s ⌧
G

s k
0
� 1� y))2(8 + 48⌘22µ

2
F)

y

◆
+ 24⌘22�

2
F
1� (8 + 48⌘22µ

2
F)

⌧L

s⌧
G

s

1� (8 + 48⌘22µ
2
F)

(75)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

28

(b)


✓
16⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

⌧L

s⌧
G

s �1X

y=0

(�F

j (⌧
L

s ⌧
G

s k
0
� 1� y))2 + 24⌘22�

2
F

◆
1� (8 + 48⌘22µ

2
F)

⌧L

s⌧
G

s

1� (8 + 48⌘22µ
2
F)

, (76)

where (a) is the result of recursion and the finite sum of geometric series, and (b) uses
P

i aibi 
P

i ai
P

i bi 8ai, bi � 0.
Combining the results of (68) and (74) in (64) yields:

2
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
E[kwj(⌧

L

s ⌧
G

s k
0)�wu(⌧

L

s ⌧
G

s k
0)k2] + E[kwu(⌧

L

s ⌧
G

s k
0)�w(⌧Ls ⌧

G

s k
0)k2]

◆



✓
16⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

⌧L

sX

y=1

(�F

j (⌧
L

s ⌧
G

s k
0
� y))2 + 24⌘22

1

U(s)

X

u2U(s)

(�uF)
2

◆
1� (8 + 48⌘22µ

2
F)

⌧L

s

1� (8 + 48⌘22µ
2
F)

+

✓
16⌘22

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

⌧L

s⌧
G

sX

y=1

(�F

j (⌧
L

s ⌧
G

s k
0
� y))2 + 24⌘22�

2
F

◆
1� (8 + 48⌘22µ

2
F)

⌧L

s⌧
G

s

1� (8 + 48⌘22µ
2
F)

,

(77)

with the summation shifted from y = 0 to y = 1. ⌅

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

29

APPENDIX F
PROOF OF THEOREM 1

Proof. First, from Assumption 1, we see that Fj(t), Fu(t), and F (t) are all µF -smooth where µF = 4µG + ⌘1µ
H
B (result follows

immediately from [21] upon using triangle inequality). In order to bound the first-order stationary point, E[krF (w)k2], we start
with

F (w(⌧Ls ⌧
G

s k
0))

(a)
 F (w(⌧Ls ⌧

G

s k
0
� 1)) +rF (w(⌧Ls ⌧

G

s k
0
� 1))T (w(⌧Ls ⌧

G

s k
0)�w(⌧Ls ⌧

G

s k
0
� 1)) +

µF

2
kw(⌧Ls ⌧

G

s k
0)�w(⌧Ls ⌧

G

s k
0
� 1)k2

(b)
= F (w(⌧Ls ⌧

G

s k
0
� 1))� ⌘2rF (w(⌧Ls ⌧

G

s k
0
� 1))T

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

◆

+
µF

2

����� ⌘2
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

����
2

(c)
= F (w(⌧Ls ⌧

G

s k
0
� 1))� ⌘2rF (w(⌧Ls ⌧

G

s k
0
� 1))T

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

◆

+ ⌘
2
2
µF

2

����
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

����
2

,

(78)
where (a) follows from the µF -smoothness property of F , Fu, and Fj , (b) uses the meta-gradient update procedure from (1) and
the definition of w from (7), and (c) simplifies the algebra. Taking the expectation of both sides of (78) yields:

E[F (w(⌧Ls ⌧
G

s k
0))]� E[F (w(⌧Ls ⌧

G

s k
0
� 1))] 

�⌘2E

rF (w(⌧Ls ⌧

G

s k
0
� 1))T

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

◆�

| {z }
(i)

+ ⌘
2
2
µF

2
E
����

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

| {z }
(ii)

.

(79)

Before we bound (79)(i) and (79)(ii), we first analyze

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

= X + Y +
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
rFj(w(⌧Ls ⌧

G

s k
0
� 1)),

(80)

where:

X ,
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)


r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

�

Y ,
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)


rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(w(⌧Ls ⌧

G

s k
0
� 1))

�
.

(81)

We now bound kXk
2 as follows:

E[kXk
2] = E

����
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

◆����
2�

(a)


1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
E[kr eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))k2]

(b)


1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2,

(82)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

30

using (a) Jensen’s inequality, and (b) Lemma 1. Next, we bound kY k
2 as follows:

E[kY k
2] = E

����
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
rFj(wj(⌧

L

s ⌧
G

s k
0
� 1))�rFj(w(⌧Ls ⌧

G

s k
0
� 1))

◆����
2�

(a)
 µ

2
FE
����

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
wj(⌧

L

s ⌧
G

s k
0
� 1)�w(⌧Ls ⌧

G

s k
0
� 1)

◆����
2�

(b)
 µ

2
F⌥(k0⌧Ls ⌧

G

s),

(83)

where (a) uses µF -Lipschitz gradient property of Fj , and (b) follows from Proposition 1, note that the recursion step which bounds
wj(t)�w(t) in Proposition 1 also bounds wj(t� 1)�w(t� 1). Using these results, we first analyze (79)(i) as follows:

� ⌘2E

rF (w(⌧Ls ⌧

G

s k
0
� 1))T

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

◆�

(a)
= �⌘2E


rF (w(⌧Ls ⌧

G

s k
0
� 1))T

✓
X + Y +

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
rFj(w(⌧Ls ⌧

G

s k
0
� 1))

◆�

(b)
= �⌘2E


rF (w(⌧Ls ⌧

G

s k
0
� 1))T

✓
X + Y +rF (w(⌧Ls ⌧

G

s k
0
� 1))

◆�

(c)
= �⌘2

✓
E[rF (w(⌧Ls ⌧

G

s k
0
� 1))T (X + Y)] + E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2]

◆

(d)


�⌘2

2
E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2] + ⌘2

✓
E[kXk

2] + E[kY k
2]

◆

(e)


�⌘2

2
E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2] + ⌘2

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + µ

2
F⌥(k0, ⌧Ls , ⌧

G

s)

◆
,

(84)

where (a) comes from introducing rFj(wj) and rFj(w) terms, (b) is the definition of rF , (c) follows from linearity of expectation,
(d) is due to

� ⌘2E[rF (w(⌧Ls ⌧
G

s k
0
� 1))T (X + Y)] 

1

2
⌘2E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2] +

1

2
E[kX + Y k

2]


1

2
⌘2E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2] + ⌘2E[kXk

2] + ⌘2E[kY k
2]

(85)

(i.e., (A+B)2 � 0 and Cauchy-Schwarz), and (e) applies the results of (82) and (83). Next, we analyze (79)(ii) as follows:

E
����

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
r eFj(wj(⌧

L

s ⌧
G

s k
0
� 1))

����
2�

(86)

(a)
 E

����X + Y +
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
rFj(w(⌧Ls ⌧

G

s k
0
� 1))

����
2�

(b)
 3E[kXk

2] + 3E[kY k
2] + 3E

����
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
rFj(w(⌧Ls ⌧

G

s k
0
� 1))

����
2�

(c)
 3

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + 3µ2

F⌥(k0⌧Ls ⌧
G

s)

+ 3E
����

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
rFj(w(⌧Ls ⌧

G

s k
0
� 1))

����
2�

(d)
 3

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + 3µ2

F⌥(k0⌧Ls ⌧
G

s)

+ 3E
����

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)

✓
rFj(w(⌧Ls ⌧

G

s k
0
� 1))�rF (w(⌧Ls ⌧

G

s k
0
� 1)) +rF (w(⌧Ls ⌧

G

s k
0
� 1))

◆����
2�

(e)
 3

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + 3µ2

F⌥(k0⌧Ls ⌧
G

s)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

31

+ 6E
����

1

U(s)

X

u2U(s)

✓ X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
rFj(w(⌧Ls ⌧

G

s k
0
� 1))�rFu(w(⌧Ls ⌧

G

s k
0
� 1))

◆����
2�

+ 6E
����rF (w(⌧Ls ⌧

G

s k
0
� 1))

����
2�

(f)
 6E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2] + 3

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + 3µ2

F⌥(k0⌧Ls ⌧
G

s) + 6
1

U(s)

X

u2U(s)

(�uF)
2
,

where, we (a) substitute the result from (80), (b) apply (
Pn

i ai)
2
 n(

P
i a

2
i), (c) combine the results of (82) and (83), (d) introduce

the global gradient rF , (e) recall that rF = 1
U(s)

P
u2U(s) rFu and use (

Pn
i ai)

2
 n(

P
i a

2
i), and (f) apply Jensen’s inequality

and Lemma 2. Combining the results of (84) and (86) in (79) yields:

E[F (w(⌧Ls ⌧
G

s k
0))]� E[F (w(⌧Ls ⌧

G

s k
0
� 1))]

 �
⌘2

2
E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2] + ⌘2

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + µ

2
F⌥(k0⌧Ls ⌧

G

s)

◆

+ ⌘
2
2
µF

2

✓
6E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2] + 3

1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + 3µ2

F⌥(k0⌧Ls ⌧
G

s) + 6
1

U(s)

X

u2U(s)

(�uF)
2

◆
.

(87)
With some algebra, we obtain:

E[F (w(⌧Ls ⌧
G

s k
0))]� E[F (w(⌧Ls ⌧

G

s k
0
� 1))]  (6⌘22

µF

2
�
⌘2

2
)E[krF (w(⌧Ls ⌧

G

s k
0
� 1))k2]

+ (3⌘22
µF

2
+ ⌘2)

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (⌧
L

s ⌧
G

s k
0
� 1))2 + µ

2
F⌥(k0⌧Ls ⌧

G

s)

◆
+ 3⌘22µF

1

U(s)

X

u2U(s)

(�uF)
2
.

(88)

Since our goal from the beginning was to find an upper bound for the first-order stationary point, E[krF (w(t))k2], we now take
the average of (88) over all time t, which yields:

1

⌧Ls ⌧
G
s K

G
s

KG

sX

k0=1

⌧G

s k
0

X

k=(k0�1)⌧G
s +1

⌧L

skX

t=(k�1)⌧L
s+1

E[F (w(t))]� E[F (w(t� 1))] =
1

⌧Ls ⌧
G
s K

G
s

(E[F (w(⌧Ls ⌧
G

s K
G

s))]� E[F (w(0))])


1

⌧Ls ⌧
G
s K

G
s

KG

sX

k0=1

⌧G

s k
0

X

k=(k0�1)⌧G
s +1

⌧L

skX

t=(k�1)⌧L
s+1


(6⌘22

µF

2
�
⌘2

2
)E[krF (w(t� 1))k2]

+ (3⌘22
µF

2
+ ⌘2)

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (t� 1))2 + µ
2
F⌥(k0⌧Ls ⌧

G

s)

◆
+ 3⌘22µF

1

U(s)

X

u2U(s)

(�uF)
2

�
.

(89)

We set ⌘2 <
1

6µF
and obtain:

�
6⌘22

µF

2 �
⌘2

2

⌧Ls ⌧
G
s K

G
s

KG

sX

k0=1

⌧G

s k
0

X

k=⌧G
s (k

0�1)+1

⌧L

skX

t=⌧L
s(k�1)+1

E[krF (w(t� 1))k2] (90)


1

⌧Ls ⌧
G
s K

G
s

✓
E[F (w(0))]� E[F (w(⌧Ls ⌧

G

s K
G

s))] +

KG

sX

k0=1

⌧G

s k
0

X

k=⌧G
s (k

0�1)+1

⌧L

skX

t=⌧L
s(k�1)+1


(3⌘22

µF

2
+ ⌘2)

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (t� 1))2 + µ
2
F⌥(k0, ⌧Ls , ⌧

G

s)

◆
+ 3⌘22µF

1

U(s)

X

u2U(s)

(�uF)
2

�◆
.

Finally, noting that E[F (w(0))] = F (w(0)) and that �E[F (w(⌧Ls ⌧
G

s K
G

s))]  �F
⇤, we have the result:

1

⌧Ls ⌧
G
s K

G
s

KG

sX

k0=1

⌧G

s k
0

X

k=(k0�1)⌧G
s +1

⌧L

skX

t=(k�1)⌧L
s+1

E[krF (w(t� 1))k2] 
1

⌘2

2 � 6⌘22
µF

2

1

⌧Ls ⌧
G
s K

G
s


F (w(0))� F

⇤ +

KG

sX

k0=1

⌧G

s k
0

X

k=(k0�1)⌧G
s +1

⌧L

skX

t=(k�1)⌧L
s+1


(3⌘22

µF

2
+ ⌘2)

✓
1

U(s)

X

u2U(s)

X

j2Wu

�j(k0⌧Gs)

�u(k0⌧Gs)
(�F

j (t� 1))2 + µ
2
F⌥(k0⌧Ls ⌧

G

s)

◆
+ 3⌘22µF

1

U(s)

X

u2U(s)

(�uF)
2

��
.

(91)

⌅

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

32

APPENDIX G
PROOF OF LEMMA 3

Expanding the left hand side of (19) using the definitions of rF and rF
D

, and upper bounding it using the Jensen’s inequality
yields 1

U(s)

P
u2U(s) E

⇥
krFu(w(t))�rF

D

C(u,s)(w(t))k2
⇤
, where we substitute C(u, s) for c as the coupling of active UAV swarm

to actively trained device cluster allows us to apply (6) onto rFu and obtain: 1
U(s)

P
u2U(s)

P
j2Wu

�j(k)

�u(k)
E
⇥
krFj(w(t)) �

rF
D

C(u,s)(w(t))k2
⇤

by applying of Jensen’s inequality. Similar techniques used in Lemma 1 then yield the result.

APPENDIX H
AN OVERVIEW OF GEOMETRIC PROGRAMMING

A prerequisite to geometric programming (GP) is the notion of monomials and posynomials, which we provide below.
Definition 2. A monomial is a function f : Rn

++ ! R: f(y) = dy
a1
1 y

a2
2 · · · y

an
n , with d � 0, y = [y1, · · · , yn], and aj 2 R, 8j,

where Rn
++ denotes the strictly positive quadrant of n-dimensional Euclidean space. Also, a posynomial g is a sum of monomials:

g(y) =
PM

m=1 dmy
↵(1)

m
1 · · · y

↵(n)
m

n .
A standard GP is a non-convex problem formulated as minimizing a posynomial under posynomial inequality constraints and
monomial equality constraints [37]:

min
y

g0(y)

s.t.
gi(y)  1, i = 1, · · · , I,

f`(y) = 1, ` = 1, · · · , L,

(92)

where gi(y) =
PMi

m=1 di,my
a(1)
i,m

1 · · · y
a(n)
i,m

n , 8i, and f`(y) = d`y
a(1)
`

1 · · · y
a(n)
`

n , 8`. Since the log-sum-exp function f(y) =
log
Pn

j=1 e
yj is convex, where log denotes the natural logarithm, with logarithmic change of variables and constants zi = log(yi),

bi,k = log(di,k), b` = log(d`), and applying the log on the objective and constrains of (92), the GP in its standard format can be
transformed to the following convex programming formulation:

min
z

log
M0X

m=1

e
(a>

0,mz+b0,m)

s.t. log
MiX

m=1

e
(a>

i,mz+bi,m)  0, i = 1, · · · , I,

a>

` z + b` = 0, ` = 1, · · · , L,

(93)

where z = [z1, · · · , zn]>, ai,m =
h
a
(1)
i,m, · · · , a

(n)
i,m

i>
, 8i,m, and a` =

h
a
(1)
` , · · · , a

(n)
`

i>
, 8`.

As can be seen, in P , there are multiple terms in the objective function (in the upper bound of convergence of the ML model)
that are in the format of ratio between two posynomials, which are not posynomial. We thus aim to transform a ratio of two
posynomials to a ratio between a posynomial (in the numerator) and a monomial (in the denominator). Given the fact that the ratio
between a posynomial and a monomial is a posynomial, we then aim to transform the problem to the standard GP format. To carry
out this transformation, we exploit arithmetic-geometric mean inequality which lower bounds a posynomial with a monomial.
Lemma 5 (Arithmetic-geometric mean inequality [37]). A posynomial g(x) =

PK
k=1 uk(x), where uk(x) is a monomial, 8k,

can be lower-bounded via a monomial as follows:

g(x) � ĝ(x) ,
KY

k=1

✓
uk(x)

ak(y)

◆ak(y)

, (94)

where ak(y) = uk(y)/g(y), 8k, and y > 0 is a fixed point.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

33

APPENDIX I
PROOF OF PROPOSITION 2

Let us first rewrite problem (P) in its equivalent form as follows:

(P) : min
⇢,%,↵,g,⌦

⌦ (95)

s.t. (96)
(25) � (46), (97)
(1� ✓)(a) + ✓(b)  ⌦, ⌦ � 0, (98)

where ⌦ 2 R+ is an auxiliary variable used to move the objective function into the constraints, and (a), and (b) are those introduced
in (24). The corresponding approximated problem can also be expressed as follows:

(bPm) : min
⇢,%,↵,g,⌦

⌦ s.t. (25) � (46), (1� ✓)f(a)m + ✓(b)  ⌦, ⌦ � 0, (99)

where ✓f(a) follows from the procedure outlined to obtain ePm in the main text, i.e., applying the posynomial condensation technique.
It is easy to verify that the solution of ePm coincides with that of bPm. Thus to prove the proposition, it is enough to prove
that solving bPm generates a sequence of improved feasible solutions for problem ePm that converge to a point x? satisfying the
Karush-Kuhn-Tucker (KKT) conditions of P . Note that bPm can be solved using the procedure Algorithm 1.
Following the justifications in Observation 2 in Sec. IV-B, the constraints of bPm are separable with respect to each individual
UAV swam. Thus, the performance of the distributed algorithm proposed to solve bPm distributedly at each UAV swarm coincides
with that of the centralized one for a fixed set of estimated parameters. Under the approximations described in (48) and (51), the
algorithm in fact solves an inner approximation of problem P [52]. Hence, it is sufficient to prove the following three conditions
for the sequence of generated solutions by the algorithm [52]:

1) The approximations used in problem bPm should tighten the constraints of problem P: Since the constraints (25)-(46) are
common to both Problems (P) and bPm, it is enough to show that (1� ✓)(a) + ✓(b)  (1� ✓)f(a) + ✓(b) for the approximated
constraint, assuming some solution x[m] (x is the solution vector defined in Algorithm 1). Equivalently, it is sufficient to show
that (a)  f(a) for x[m].
To show this, it is sufficient to show (i) ⌅(s)  g⌅(s) , and (ii) b⌅(k) 

gb⌅(k), 8k, where ⌅(s), b⌅(k) are the two terms in
(a) (see (24)) and g⌅(s) and gb⌅(k) are their respective approximations obtained via (48) and (51). Condition (i) holds since
�u(k) �

b�u(k), and condition (ii) also holds since Dj(k) � bDj(k) 8k, as in equations (48) and (51).3

2) Upon convergence, the value of each approximated constraint in problem bPm should coincide with that of the corresponding
original constraint in P: Since the constraints (25)-(46) are common in problems (P) and (eP), we need to show (1�✓)(a)+✓(b) =
(1� ✓)f(a) + ✓(b) for the approximated constraint upon convergence. Note that when the algorithm converges we have

e�j,i,n(k) = e�j,i,n(k;m), �j,h,i,n(k) = �j,h,i,n(k;m), n 2 {1, 2, 3}, (100)

where e�j,i,n(k;m) and �j,h,i,n(k;m) are the approximations used in (48) (see (49) for the definition of e�j,i,n(k) and �j,h,i,n(k)).
Also, upon convergence, we have:

�i,j(k) = �i,j(k;m), e�h,i,j(k) = e�h,i,j(k;m), (101)

where �i,j(k;m), e�h,i,j(k;m) are the approximations used in (51) (see (52) for the definition of �i,j(k), e�h,i,j(k)).
Considering the terms inside (a), we need to show that upon convergence (i) ⌅(s) = g⌅(s), and (ii) b⌅(k) = gb⌅(k). To demonstrate
that (i) holds, it is sufficient to show that �u(k) = b�u(k), and Dj(k) = bDj(k), upon convergence,. In the following, we
demonstrate that �u(k) = b�u(k) upon convergence:

b�u(k)

�����
(100),(101)

=
Y

j2Wu

"
Y

i2C(u,s)

✓e�i,j,1(k;m)
⇥
�u(k;m)

⇤

e�i,j,1(k;m)

◆ e�i,j,1(k;m)

�u(k;m)

⇥

✓e�i,j,2(k;m)
⇥
�u(k;m)

⇤

e�i,j,2(k;m)

◆ e�i,j,2(k;m)

�u(k;m)

⇥

✓e�i,j,3(k;m)
⇥
�u(k;m)

⇤

e�i,j,3(k;m)

◆ e�i,j,3(k;m)

�u(k;m)
�

3Note that we replace �u(k) and Dj(k) with their approximated versions in (48) and (51) only when they appear in the denominator of the terms in (a).
Thus lower bounding these terms result in upper bounding (a) as desired.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

34

⇥

Y

h2cWu

Y

i2C(u,s)

✓
�j,h,i,1(k;m)

⇥
�u(k;m)

⇤

�j,h,i,1(k;m)

◆ �j,h,i,1(k;m)

�u(k;m)

✓
�j,h,i,2(k;m)

⇥
�u(k;m)

⇤

�j,h,i,2(k;m)

◆ �j,h,i,2(k;m)

�u(k;m)

⇥

✓
�j,h,i,3(k;m)

⇥
�u(k;m)

⇤

�j,h,i,3(k;m)

◆ �j,h,i,3(k;m)

�u(k;m)
�#

=
Y

j2Wu

"
Y

i2C(u,s)

✓⇥
�u(k;m)

⇤◆
e�i,j,1(k;m)

�u(k;m)

⇥

✓⇥
�u(k;m)

⇤◆
e�i,j,2(k;m)

�u(k;m)

⇥

✓⇥
�u(k;m)

⇤◆
e�i,j,3(k;m)

�u(k;m)
�

⇥

Y

h2cWu

Y

i2C(u,s)

✓⇥
�u(k;m)

⇤◆
�j,h,i,1(k;m)

�u(k;m)
✓⇥

�u(k;m)
⇤◆

�j,h,i,2(k;m)

�u(k;m)

(102)

⇥

✓⇥
�u(k;m)

⇤◆
�j,h,i,3(k;m)

�u(k;m)
�#

= �u(k)

 P
j2Wu

P
i2C(u,s)

e�i,h,1(k;m)+e�i,h,2(k;m)+e�i,h,3(k;m)

�u(k;m)

!

⇥�u(k)

 P
j2Wu

P
h2cWu

P
i2C(u,s) �j,h,i,1(k;m)+�j,h,i,2(k;m)+�j,h,i,3(k;m)

�u(k;m)

!

= �u(k)

✓
�u(k;m)

�u(k;m)

◆

= �u(k)

�����
(100),(101)

.

Using a similar technique, it can be shown that Dj(k) = bDj(k), upon convergence, and thus (i) holds. The proof for (ii) is
similar, which is omitted for brevity.

3) The KKT conditions of P should be satisfied after the series of approximations converges in problem bPm: Since the constraints (25)-
(46) are common in problems (P) and (eP), for the approximated constraint we should have O(1 � ✓)((a) + ✓(b)) =
O ((1� ✓)(ea) + ✓(b)), upon convergence (O denotes the gradient sign). Note that (a) involves the product between two
ratios of posynomials (as can be seen from (18), one is �j(k)

�u(k)
, where both the numerator and denominator are posynomial

with respect to the optimization variables according to (37), and the other one is �F

j , which can be written as ratio of two
posynomials according to (12)), where we approximate the denominator of each ratio via a monomial in f(a). For compactness,
let us define (a) ,

A1(x)A2(x)
B1(x)B2(x)

, where A1(x) and B1(x) are posynomials corresponding to the numerator and denominator
of �j(k)

�u(k)
(encompassing all the coefficients) and A2(x) and B2(x) are posynomials corresponding to the numerator and

denominator of �F

j (x denotes the set of optimization variables). We provide the proof for the general case. In general, the
posynomials in the denominators can be described as B1(x) =

PK1

k=1 u
(1)
k (x) and B2(x) =

PK2

k=1 u
(2)
k (x), where u

(1)
k -s and

u
(2)
k -s are monomial functions. Accordingly, we can write f(a) as f(a) = A1(x)A2(x)

eB1(x) eB2(x)
, where eB1(x) =

QK1

k=1

✓
u(1)
k (x)

a(1)
k (y)

◆a(1)
k (y)

and

eB2(x) =
QK2

k=1

✓
u(2)
k (x)

a(2)
k (y)

◆a(2)
k (y)

are the monomial approximation of B1(x) and B2(x) obtained according to (94) (equivalent

to the condensations carried out in (48) and (51)). In the following, we show that the desired result holds for partial derivative
with respect to an arbitrary element xi considering x = [x1, · · · , xi, · · · , xn] (note that upon convergence x = y in (94), which
in our problem translates to the equalities in (100),(101)):

@

⇣
A1(x)A2(x)
eB1(x) eB2(x)

⌘

@xi

�����
x=y

=

@A1(x)A2(x)
@xi

eB1(y) eB2(y)�
@ eB1(x) eB2(x)

@xi
A1(y)A2(y)

⇣
eB1(y) eB2(y)

⌘2

�����
x=y

(a)
=

@A1(x)A2(x)
@xi

�����
x=y

B1(y)B2(y)�

@

K1Y

k=1

u
(1)
k (x)

a
(1)
k (y)

!↵
(1)
k (y)

@xi

�����
x=y

B2(y)A1(y)A2(y)

(B1(y)B2(y))
2

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

35

+

�

@

K2Y

k=1

u
(2)
k (x)

a
(2)
k (y)

!a
(2)
k (y)

@xi

�����
x=y

B1(y)A1(y)A2(y)

(B1(y)B2(y))
2

=

@A1(x)A2(x)
@xi

����
x=y

B1(y)B2(y)

(B1(y)B2(y))
2

+

�

K1X

n=1

@u
(1)
n (x)
@xi

����
x=y

u
(1)
n (y)

↵
(1)
n (y)

!↵
(1)
n (y)�1

0

B@
K1Y

k=1,k 6=n

u
(1)
k (y)

↵
(1)
k (y)

!↵
(1)
k (y)

1

CAB2(y)A1(y)A2(y)

(B1(y)B2(y))
2

+

�

K2X

n=1

@u
(2)
n (x)
@xi

�����
x=y

u
(2)
n (y)

a
(2)
n (y)

!a
(2)
n (y)�1

0

B@
K2Y

k=1,k 6=n

u
(2)
k (y)

a
(2)
k (y)

!a
(2)
k (y)

1

CAB1(y)A1(y)A2(y)

(B1(y)B2(y))
2

(b)
=

@A1(y)A2(y)
@xi

�����
x=y

B1(y)B2(y)

(B1(y)B2(y))
2

+

�

K1X

n=1

@u
(1)
n (x)
@xi

�����
x=y

B1(y)
↵
(1)
n (y)�1

✓
B1(y)

PK1
k=1,k 6=n ↵

(1)
k (y)

◆
B2(y)A1(y)A2(y)

(B1(y)B2(y))
2

+

�

K2X

n=1

@u
(2)
n (x)
@xi

�����
x=y

B2(y)
a
(2)
n (y)�1

✓
B2(y)

PK2
k=1,k 6=n a

(2)
k (y)

◆
B1(y)A1(y)A2(y)

(B1(y)B2(y))
2

(c)
=

@A1(y)A2(y)
@xi

����
x=y

B1(y)B2(y)

(B1(y)B2(y))
2

+

�

KX

n=1

@u
(1)
n (x)
@xi

����
x=y

B2(y)A1(y)A2(y)�
KX

n=1

@u
(2)
n (x)
@xi

����
x=y

B1(y)A1(y)A2(y)

(B1(y)B2(y))
2

=

@A1(x)A2(x)
@xi

����
x=y

B1(y)B2(y)�
@B1(x)

@xi

����
x=y

A1(y)A2(y)B2(y)�
@B2(x)

@xi

����
x=y

A1(y)A2(y)B1(y)

(B1(y)B2(y))
2

=
@

⇣
A1(x)A2(x)
B1(x)B2(x)

⌘

@xi

�����
x=y

. (103)

In (a), we used the fact that B1(y) = eB1(y) and B2(y) = eB2(y) (this is the equality of monomial approximation with
the original posynomial upon convergence that we showed in bullet point 2 above). In (b), we used the fact that (see (94))
a
(1)
k (y) = u

(1)
k (y)/B1(y) and a

(2)
k (y) = u

(2)
k (y)/B2(y), 8k. Also, in (c) we use the fact that

PK1

k=1 ↵
(1)
k (y) = 1 andPK2

k=1 a
(2)
k (y) = 1. The proof for the rest of partial derivatives, and thus the gradient, is similar.

Verification of the three aforementioned bullet points results in the conclusion of the proof.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

36

APPENDIX J
PROOF OF LEMMA 4

Given the previous computed gradient for the local model at the device cluster, i.e., rFc(wc(tVc)| eDc(tVc)), the value of the local
gradient given the outdated model wc(tVc) for the recent data distribution eDc(t) at time t can be expressed as follows:
���rFc

⇣
wc(t

V

c)
�� eDc(t)

⌘���
2
=

�����rFc

⇣
wc(t

V

c)
�� eDc(t)

⌘
�rFc

⇣
wc(t

V

c)
�� eDc(t� 1)

⌘
+rFc

⇣
wc(t

V

c)
�� eDc(t� 1)

⌘

�rFc

⇣
wc(t

V

c)
�� eDc(t� 2)

⌘
+rFc

⇣
wc(t

V

c)
�� eDc(t� 2)

⌘
� · · ·

�rFc(wc(t
V

c)
�� eDc(t

V

c)) +rFc(wc(t
V

c)
�� eDc(t

V

c))

�����

2

(a)


 ���rFc

⇣
w(tVc)

�� eDc(t)
⌘
�rFc

⇣
wc(t

V

c)
�� eDc(t� 1)

⌘���+
���rFc

⇣
wc(t

V

c)
�� eDc(t� 1)

⌘

�rFc

⇣
wc(t

V

c)
�� eDc(t� 2)

⌘���+
���rFc

⇣
wc(t

V

c)
�� eDc(t� 2)

⌘
�rFc

⇣
wc(t

V

c)
�� eDc(t� 3)

⌘���+ · · ·+

���rFc(wc(t
V

c)
�� eDc(t

V

c + 1))�rFc(wc(t
V

c)
�� eDc(t

V

c))
���+

���rFc(wc(t
V

c)
�� eDc(t

V

c))
���

!2

(b)
 (t� t

V

c + 1)
���rFc(wc(t

V

c)
�� eDc(t

V

c))
���
2
+ (t� t

V

c + 1)
tX

t0=tVc+1

⇤c(t
0), (104)

where in (a) we used triangle inequality, and (b) is the result of Cauchy–Schwarz inequality (i.e, for any N numbers A1, · · · , AN ,

we have
⇣PN

i=1 Ai

⌘2
 N

PN
i=1(Ai)2).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3216326

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:34:46 UTC from IEEE Xplore. Restrictions apply.

