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Abstract—This paper considers improving wireless commu-

nication and computation efficiency in federated learning (FL)

via model quantization. In the proposed bitwidth FL scheme,

edge devices train and transmit quantized versions of their local

FL model parameters to a coordinating server, which, in turn,

aggregates them into a quantized global model and synchronizes

the devices. With the goal of jointly determining the set of

participating devices in each training iteration and the bitwidths

employed at the devices, we pose an optimization problem for

minimizing the training loss of quantized FL under a device

sampling budget and delay requirement. Our analytical results

show that the improvement of FL training loss between two

consecutive iterations depends on not only the device selection

and quantization scheme, but also on several parameters inherent

to the model being learned. As a result, we propose, a model-

based reinforcement learning (RL) method to optimize action se-

lection over iterations. Compared to model-free RL, the proposed

approach leverages the derived mathematical characterization of

the FL training process to discover an effective device selection

and quantization scheme without imposing additional device

communication overhead. Numerical evaluations show that the

proposed FL framework can achieve the same classification

performance while reducing the number of training iterations

needed for convergence by 20% compared to model-free RL-

based FL.

Keywords—Bitwidth federated learning, FL training loss opti-

mization, model-based reinforcement learning.

I. INTRODUCTION

Federated learning (FL) is an emerging edge learning tech-
nique that enables a collection of devices to collaboratively
train a shared machine learning model without sharing their
individual datasets [1]. The local training and device-server
communication processes in FL can each have a significant
impact on performance. To minimize the delays incurred
from these processes, recent methods have called for machine
learning quantization at each device [1]. In such schemes,
the training and communication processes operate directly
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Zone, in part by Guangdong Research Projects No. 2017ZT07X152 and No.
2019CX01X104, and in part by the Guangdong Provincial Key Laboratory of
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on quantized versions of the learning models, reducing the
burden on device resources. However, efficient deployment of
quantized FL over wireless networks poses several research
challenges related to the integration of quantization bitwidth
considerations with the resulting FL training performance.

Recent works [2]–[6] studied several important problems
related to the implementation of quantized FL over wireless
networks. These prior works assumed that certain key pa-
rameters of the model being learned – such as smoothness
and gradient diversity constants – are known in advance
of the training process. Under these assumptions, traditional
optimization methods can be used to capture the relationship
between quantization error and FL performance so as to find
the optimal FL training policy. In practice, however, these
model parameters cannot be obtained by the central server
until the FL training process has completed. To address this
challenge, one promising approach is to employ reinforcement
learning (RL) [1] to allow the server to estimate these parame-
ters over time through interaction with the devices during the
training process, allowing discovery of a more effective FL
policy.

Recently, a number of works such as [7]–[9] have employed
model-free RL algorithms to configure system parameters for
FL performance optimization. However, in these schemes, the
coordinating server must collect many observations of different
FL training policies by interacting with the devices over the
environment, resulting in considerable delay for finding the
optimal policy and encumbering FL convergence speed.

The main contribution of this paper is a novel method-
ology for optimizing quantized FL algorithms over wireless
networks which avoids continual interaction with devices
through model-based RL for training parameter estimation.
To our best knowledge, this is the first work that provides a

systematic analysis of the integration of quantization bitwidth

optimization into FL.

In particular, we first propose a novel quantized FL frame-
work in which distributed wireless devices train and transmit
their locally trained FL models to a coordinating server based
on variable bitwidths. The server selects an appropriate set of
devices to execute the FL algorithm with variable quantized
bitwidths in each iteration.

Then, we formulate joint device selection and FL model
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Fig. 1. Illustration of our proposed low bitwidth federated learning methodol-
ogy deployed over multiple devices and one base station in a wireless network.

quantization as an optimization problem whose goal is to
minimize training loss while accounting for communication
and computation heterogeneity across the devices. To solve
this problem, we analytically characterize the expected training
convergence rate of our quantized FL framework. Given linear
estimates of different ML loss properties, we show that the FL
training process can be mathematically described as a Markov
decision process (MDP). To learn the optimal solution of the
formulated MDP, we construct a model-based RL method
that infers the action (i.e., device selection and quantization
scheme) that maximizes the expected reward (i.e., minimize
global model loss) at each training iteration.

Our subsequent numerical evaluations for a real-world ML
task show that our proposed methodology can improve training
convergence speed by 20% compared to a model-free RL-
based approach.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless network that consists of a set M of
M devices connected upstream to a parameter server. These
devices are aiming to collaboratively train a machine learning
model, as shown in Fig. 1. Each device m has Nm training data
samples, and each training data sample n consists of an input
feature vector xm,n 2 RNI⇥1 and (in the case of supervised
learning) a corresponding label vector ym,n 2 RNO⇥1. The
objective of the system is to minimize the global loss function
over all data samples, i.e.,

F (g) = min
g

1

N

MX

m=1

NmX

n=1

f (g,xm,n,ym,n) , (1)

where g 2 RV⇥1 is a vector that captures the global FL model

of dimension V trained across the devices, with N=

MP
m=1

Nm

being the total number of training data samples across all
devices. f (g,xm,n,ym,n) is a loss function (e.g., squared
error) that measures the accuracy of the generated global FL

model g in building a relationship between the input vector
xm,n and the output vector ym,n.
A. Training Process of Low Bitwidth Federated Learning

In FL, the devices and the server iteratively exchange
their model parameters to find the optimal global model g
that minimizes the global loss function in (1). However, due
to limited computing and communication resources, devices
may not be able to train and transmit large sized model
parameters (e.g., as in the case of deep learning). To reduce
the computation and transmission delays, bitwidth federated
learning was proposed in [10]. Compared to the widely studied
case of federated averaging [1], the FL model parameters in
bitwidth FL are quantized. The overall training process of
bitwidth FL is given as follows:

1) The server quantizes the initialized global learning model
and broadcasts it to each device.

2) Each device calculates the training loss using the quan-
tized global learning model and its collected data samples.

3) Based on the calculated training loss, the quantized learn-
ing model in each device is updated.

4) Each device quantizes its updated learning model.
5) The server selects a subset of devices for local FL model

transmission.
6) The server aggregates the collected local FL models into

a global FL model that will be transmit to devices.
Steps 2-6 are repeated until the optimal vector g is found.

In bitwidth FL, each device uses a quantized FL model
to calculate the training loss and gradient vectors during
the training process. Therefore, the quantization scheme in
bitwidth FL will affect the resource requirements of FL model
training and transmission. This is significantly different from
quantization-based FL algorithms [2]–[4], [6] that must re-
cover the quantized FL model during the training process, thus
introducing additional computational complexity and reducing
training efficiency.

Next, we formally explain this training process.
1) Calculation of Training Loss of Each Device: We first

introduce the method for computing each device’s training loss
in step 2. The weights of each device’s local FL model are
quantized into ↵t bits. Here, the full-precision neural network
is transformed into a quantized neural network (QNN). When
↵t=1, each QNN weight has two possible values, namely -1/0
or +1, which is referred to as a binary neural network (BNN)
[11]. Given the input vector hk

m,t and the weight vector ĝk
t of

the neurons in layer k, the output of each layer k at iteration
t is given by

hk+1
m,t =

8
<

:

�
�
hk
m,t � ĝk

t

�
, if ↵t = 1,

�

✓
↵t�1P
i=0

2
i
�
hk
m,t � ĝk

t

�◆
, if ↵t > 1,

(2)

where � (·) is the activation function and � represents the
inner product for vectors with bitwise operations. Given the
outputs of all neuron layers hm,t = [h1

m,t, . . . ,h
K
m,t], the

cross-entropy loss function can be expressed based on the
neurons in an output layer hK

m,t as

f (ĝt,xm,n,ym,n) =� yT
m,nlog

�
hK
m,t

�
+

�
1� yT

m,n

�
log

�
1� hK

m,t

�
,

(3)
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where ĝt = [ĝ1
t , ..., ĝ

k
t , ..., ĝ

K
t ] is the quantized global FL

model.
2) FL Model Update: A backward propagation (BP) algo-

rithm based on stochastic gradient descent is used to update
the parameters of the QNN. The update function is

wm,t+1 = ĝt � �
X

n2Nm,t

@f (g,xm,n,ym,n)

@g
, (4)

where � is the learning rate, Nm,t is the subset of training data
samples (i.e., minibatch) selected from device m’s training
dataset Nm at iteration t, wm,t+1 is the updated local FL
model of device m at iteration t+1, and

@f

@g
=

@fm,t

@ĝt
⇥ @ĝt

@gt
=

@fm,t

@ĝt
⇥Htanh (gt) , (5)

where gt represents the full-precision weights. Htanh (x) =
max (�1,min (1, x)) is used to approximate the derivative
of the quantization function that is not differentiable. From
(4) and (5), we can see that the weights are updated with
full-precision values since the changes of the learning model
update at each step are small.

3) FL Model Quantization at Device: As each local FL
model is updated, the full-precision weights must be com-
pletely quantized into ↵t bits. We adopt the quantization
scheme described in [12]:

ŵk
m,t (↵t) =

8
><

>:

sign
�
wk

m,t

�
, if ↵t = 1,

R((2
↵t�1)wk

m,t)

2↵t�1 , if 1 < ↵t < 32,
wk

m,t, if ↵t = 32,

(6)

where sign (x) =

⇢
+1, if x > 0,
�1, otherwise,

and R (·) is the

rounding function R (x) =

⇢
bxc, if x 6 bxc+dxe

2 ,
dxe, otherwise.

4) FL Model Transmission and Aggregation: Due to limited
wireless bandwidth, the server may need to select a subset of
devices in each iteration that will upload their local FL models
for aggregation into the global model. Given the quantized
local FL model ŵm,t of each device m at each iteration t, the
update of the global FL model at iteration t is given by

gt (ut,↵t) =

MX

m=1

um,tNm,t

MP
m=1

um,tNm,t

ŵm,t (↵t) , (7)

where um,tNm,t

MP
m=1

um,tNm,t

is a scaling update weight of ŵm,t, with

Nm,t being the number of data samples used to train ŵm,t

at device m. gt (ut) is the global FL model at iteration t,
and ut = [u1,t, . . . , uM,t] is the device selection vector, with
um,t = 1 indicating that device m will upload its quantized
local FL model ŵm,t to the server at iteration t, and um,t = 0

otherwise.

5) FL Model Quantization at the server: The server must
in turn quantize each device’s local FL model in low bitwidth
that can be directly used to calculate the training loss at each
device. This is given by

ĝk
t =

8
><

>:

sign
�
gk
t

�
, if ↵t=1,

R((2
↵t�1)gk

t )

2↵t�1 , if 1<↵t<32,
gk
t , if ↵t=32.

(8)

B. Training Delay of Low Bitwidth Federated Learning

We next study the training delay of bitwidth FL. From
the training steps, we can see that the delay consists of four
components: (a) time used to calculate the training loss, (b)
FL model update delay, (c) FL model quantization delay, and
(d) FL model transmission delay. Since the local FL models
are updated with full-precision values, the FL model update
delay does not depend on the number of quantization bits ↵t,
and thus we do not consider it. The other components are:

1) Time Used to Calculate the Training Loss: The time
needed to calculate the training loss depends on the number
of multiplication operations in (2) and (3). From (2), we can
see that the computational complexity of each multiplication
operation is related to the number of bits ↵t used to represent
each element in FL model vector. In particular, given ↵t, the
time needed to calculate the training loss is given by [13]

lCm,t (↵t) = ⇢
↵2
tN

C

Bf
, (9)

where ⇢ is the the time consumption coefficient depending on
the chip of each device and NC is the number of multiplication
operations in the neural network. f and B represent the
frequency of the central processing unit (CPU) and the number
of bits that can be processed by the CPU in one clock cycle.

2) FL Model Quantization Delay: Since the updated local
FL model is in full-precision, each device must quantize its
updated local FL model using (6) to reduce transmission delay.
Given ↵t, the quantization delay can be represented as

lQm,t (↵t) =

⇢
0, if ↵t = 1 or ↵t = 32,
D
Bf , if 1 < ↵t < 32. (10)

where D is the number of neurons in the neural network. In
(10), when ↵t =1 or ↵t =32, the quantization delay will be
0. When ↵t =1, the value of quantized weight ŵm,t can be
directly decided by the sign bit. When ↵t = 32, we do not
need to quantize the weights since each full precision weight
consists of 32 bits, i.e., ŵm,t=wm,t.

3) FL Model Transmission Delay: To generate the global
FL model that is aggregated by each quantized local FL model,
each device must transmit ŵm,t to the server. To this end,
we adopt an orthogonal frequency division multiple access
(OFDMA) transmission scheme for transmitting the quantized
local FL models. In particular, the server can allocate a set U
of U uplink orthogonal resource blocks (RBs) to the devices
for quantized weight transmission. Let W be the bandwidth
of each RB and P be the transmit power of each device. The
uplink channel capacity between device m and the server over
each RB i is

cm,t (um,t) = um,tW log2

✓
1+

Phm,t

�2
N

◆
, (11)
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where um,t 2 {0, 1} is the user association index, hm,t is
the channel gain between device m and the server, and �2

N

represents the variance of additive white Gaussian noise. Based
on (11), the uplink transmission delay between device m and
the server is lTm,t (um,t,↵t) =

D↵t

cm,t(um,t)
, where D↵t is the

data size of the quantized FL parameters ŵm,t.
Since the server has enough computational resources and

sufficient transmit power, we do not consider the delay used
for global FL model quantization and transmission. Thus, the
time that the devices and the server require to jointly complete
the update of their respective local and global FL models at
iteration t is

lt (ut,↵t)= max
m2M

um,t

⇣
lCm,t (↵t)+lQm,t (↵t)+lTm,t (um,t,↵t)

⌘
.

(12)
Here, um,t = 0 implies that device m will not send its
quantized local FL model to the server, and thus not cause
any delay.
C. Optimization Formulation

The goal of our optimization problem is to minimize the FL
training loss while meeting a delay requirement on FL comple-
tion per iteration. This minimization problem involves jointly
optimizing the device selection scheme and the quantization
scheme, which is formulated as:

min
U ,↵

F (g (uT ,↵)) , (13)

s.t. um,t2{0, 1},↵t2{1, 2, 4, 8, 16, 32}, 8m2M, 8t2T ,

(13a)
MX

m=1

um,t 6 U, 8m 2 M, 8t 2 T , (13b)

lt (ut,↵) 6 �, 8m 2 M, 8t 2 T , (13c)
where U = [u1, . . . ,ut, . . . ,uT ] is a device selection ma-

trix over all iterations with ut = [u1,t, . . . , uM,t] being a user
association vector at iteration t, ↵ = [↵1, . . . ,↵t, . . . ,↵T ] is
a quantization precision vector of all devices for all iterations,
and T = {1, ..., T} is the training period. � is the (per
iteration) delay constraint for completing FL training. (13a)
implies that each device can quantize its local FL model and
can only occupy at most one RB for FL model transmission.
(13b) ensures that the server can only select at most U devices
for FL model transmission per iteration. (13c) is a constraint
on the FL training delay per iteration.

The problem in (13) is challenging to solve by conventional
optimization algorithms due to the following reasons. First, the
server needs the dataset information of each device to deter-
mine the optimal device selection and quantization scheme
for minimizing the FL training loss. Second, as the stochastic
gradient decent method is used to generate each local FL
model, the relationship between the training loss and device
selection as well as quantization scheme cannot by captured
by the server via conventional optimization algorithms. This
is because the stochastic gradient decent method enables each
device to randomly select a subset of data samples in its local
dataset for local FL model training, and hence, the server

cannot directly optimize the training loss of each device.
To address these challenges, we propose a model-based RL
algorithm that enables the server to capture the relationship
between the FL training loss and the chosen device selection
and quantization scheme. Based on this relationship, the server
can proactively determine ut and ↵t so as to minimize the FL
training loss.

III. OPTIMIZATION METHODOLOGY

In this section, we propose a model-based RL approach for
optimizing the device selection scheme U and the quantization
scheme ↵ in (13). Compared to traditional model-free RL
approaches that require the server continually interact with
edge devices to learn the device selection and quantization
schemes, model-based RL approaches enable the server to
mathematically model the FL training process, thus finding
the optimal device selection and quantization scheme based
on the learned state transition probability matrix.

We first introduce the components of the proposed model-
based RL method. Here, a linear regression method is used to
learn the dynamic environment model that is presented as a
transition probability matrix in RL approach. Then, we detail
the proposed model-based RL methodology method to find the
optimal U and ↵.
A. Components of Model-Based RL Method

The proposed model-based RL method consists of six
components: a) agent, b) action, c) states, d) state transition
probability, e) reward, and f) policy, which are specified as
follows:

• Agent: The agent that performs the proposed model-
based RL algorithm is the server.

• Action: An action of the server is defined as at =

[ut,↵t] 2 A, and it consists of the device selection
scheme ut and the quantization scheme ↵t of all device
at iteration t with A being the discrete sets of available
actions.

• States: The state is defined as st = F (gt) 2 S , which
measures the performance of global FL model at iteration
t, with F (gt) being the FL training loss and S being the
sets of available states.

• State Transition Probability: The state transition prob-
ability P (st+1|st,at) is the probability of transitioning
from state st to state s0t when taking action at, which is

P (st+1|st,at) = Pr{st+1 = s0t|st,at}. (14)

Here, we note that in model-free RL algorithms, the
server does not know the values of the state transition
probability matrix. However, in our work, we analyze
the convergence of FL convergence and estimate the
FL training parameters in the FL convergence analytical
results so as to calculate the state transition probabilities.
Using the state transition probability matrix can reduce
the interactions between the server and edge devices thus
improving the convergence speed of RL.

• Reward: Based on the current state st and the selected
action at, the reward function of the server is

r (st,at) = �F (g (ut,↵t)) , (15)
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where F (g (ut,↵t)) is the training loss at iteration t.
• Policy: The policy is the probability of the agent choosing

each action at a given state. We use a deep neural network
parameterized by ✓ to map the input state to the output
action. Then, the policy is ⇡✓ (st,at) = P (at|st).

B. Calculation of State Transition Probability

We now detail the process of computing the state transition
probability that is used to reduce the interactions between the
server and edge devices thus improving the convergence speed
of RL. To characterize how an action at = [ut,↵t] affects the
state transition in the considered bitwidth FL algorithm, we
derive the following lemma:

Lemma 1. Given the user selection vector ut and quantization
scheme ↵t, the upper bound of E (F (gt+1))�E (F (gt)) can
be given by [14]
E (F (gt+1))�E (F (gt))

 1

2L

 
�1+

4 (N �A)2 E (k� (↵t)k+ 1) ⇣2
N2

!
⇥ ||rF (gt) ||2

+
E k� (↵t)k+ 1

2L

 
4 (N �A)2 ⇣1

N2
+ L2E k� (↵t)k

!

+ E
⇣
� (↵t)

2
⌘
= K

⇣
L, ⇣1, ⇣2|F (gt)

(i),a(i)
t ,F (gt+1)

(i)
⌘
,

(16)

where A=

MP
m=1

um,tNm,t is the sum of all selected devices’

data samples that are used to train their local models. 1/L,
⇣1, and ⇣2 are FL training parameters. � (↵t)= ĝt (↵t)�gt is
the quantization error of the global FL model that depends on
the quantization scheme ↵ and E k� (↵t)k =M2

�↵t is the
unbiased quantization function defined in (6).

From Lemma 1, we see that the relationship between
E (F (gt+1)) and E (F (gt)) (i.e., st+1 and st) depends on
the selected action at as well as the constants 1/L, ⇣1, and
⇣2. However, we do not know the values of 1/L, ⇣1, and ⇣2
since they are predefined in the approximation of the loss
function. To find the tightest bound in (16), we must find
the values of 1/L, ⇣1, and ⇣2 so as to build the relationship
between st+1 and st and calculate the state transition proba-
bility P (st+1|st,at). To this end, a linear regression method
[15] is used to determine the values of L, ⇣1, and ⇣2 since
the relationship between E (F (gt+1))� E (F (gt)) and these
constants are linear. The regression loss function defined as

J (L, ⇣1, ⇣2) =
1

I

IX

i=1

⇣⇣
E
⇣
F (gt+1)

(i)
⌘
� E

⇣
F (gt)

(i)
⌘⌘

�K
⇣
L, ⇣1, ⇣2|F (gt)

(i) ,a(i)
t , F (gt+1)

(i)
⌘2

,

(17)
where I is the number of real interactions between the server
and the edge devices used to estimate 1/L, ⇣1, and ⇣2.
b(i)=

⇣
F (gt)

(i),a(i)
t ,F (gt+1)

(i)
⌘

consists of the recorded FL
training loss. The selected action observed by the server and
devices will be used to estimate the values of 1/L, ⇣1, and ⇣2.
Given B =

�
b(0),. . .,b(i),. . .,b(I)

 
, L, ⇣1, and ⇣2 are updated

using a standard gradient descent method.

Algorithm 1 Model-based RL for device selection and quan-
tization optimization
Input: The environment state S, the action space A.
Output: The device selection and quantization scheme.
1: Initialize policy ⇡✓ , transition replay buffer B, trajectory replay

buffer ⌧ .
2: for iteration i = 1 : I do

3: Randomly selects a subset of devices to generate the global
FL model that are quantized into ↵t bits.

4: Records F (gt), F (gt+1), ↵t, and device selection scheme
ut in B.

5: end for

6: Estimate 1/L, ⇣1, and ⇣2 to construct P (st+1|st,at) using (17)
based on the real transition in B.

7: for iteration i = 1 : H do

8: Sample initial state from S, then use policy ⇡✓ and learned
P (st+1|st,at) to perform T trajectories and update ⌧ .

9: Sample from ⌧ , and update the current policy evaluation by
solving Equation ✓ = ✓ + ◆r✓L (✓).

10: end for

Given the values of L, ⇣1, and ⇣2, the gap between
E(F (gt+1)) and E(F (gt)) can be determined. Based on the
definition of the state, the state transition probability P (st +
1|st,at) is given by

P (st+1|st, at) =(
1, if st+1 = st +K

⇣
L, ⇣1, ⇣2|F (gt)(i),a

(i)
t , F (gt+1)

(i)
⌘

0, otherwise.
(18)

C. Optimization of Device Selection and Quantization Scheme

With the state transition probability P (st+1|st,at) in hand,
we proceed to optimize ⇡✓ so as to find the optimal device
selection scheme ut and quantization scheme ↵t. Optimizing
⇡✓ for minimizing the FL training loss is done based on the
following likelihood [16]:

L (✓) =
X

(st,at)2⌧

P (s0)
TY

t=1

⇡✓ (st�1,at)

⇥ P (st|st�1,at)

TX

t=1

r (st,at) ,

(19)

where ⌧ = {s0,a0, . . . , sT ,aT } is the trajectory replay buffer.
Given (19), the optimization of policy network ✓ is

max
✓

L (✓). We update ⇡✓ using a standard gradient descent
method. The entire process of training the proposed model-
based RL algorithm is shown in Algorithm 1.

IV. SIMULATION RESULTS

For our simulations, we consider a circular network area
having a radius r = 1500 m with one server at its center
serving M = 12 uniformly distributed devices. The other
parameters used in simulations are listed in Table I. We
consider a handwritten digit identification ML task based on
the MNIST dataset [17]. We compare the proposed algorithm
with an FL algorithm that is optimized by model-free RL.
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TABLE I
SIMULATION PARAMETERS [18]

Parameters Values Parameters Values

W 15 kHz P 0.5 W
�
2
N -174 dB ⇢ 2.8⇥ 106

T 1000 f 3.3 GHz

20 40 60 80 100

 Number of iterations

0

0.2

0.4

0.6

0.8

1

 V
a
lu

e
 o

f 
lo

s
s
 f

u
n
c
ti

o
n

 Model-free RL

 Model-based RL

Fig. 2. Training loss vs. the number of iterations.

In Fig. 2, we show how the FL training loss changes as the
number of iterations varies. We see that the proposed model-
based RL method can improve convergence speed by 21%
compared to a model-free RL-based approach. This is due to
the fact that the proposed method enables the server to estimate
the FL training parameters in the first few iterations so as to
model the FL training process mathematically, speeding up the
convergence.

In Fig. 3, we show how the number of iterations required
to converge in FL varies as the number of devices changes.
This shows that the proposed model-based RL method can
reduce the iterations required to converge by 20% compared
to the proposed model-based RL when the network has 6 RBs
and 15 devices. The 20% gain stems from the fact that the
model-based RL method enables the server to optimize the
FL training process through minimal interaction with each
device, resulting in quickly finding the optimal policy and not
encumbering FL convergence speed.

V. CONCLUSION

In this paper, we developed a novel quantized FL framework
in which distributed wireless devices train and transmit their
locally trained FL models to a coordinating server based on
variable bitwidths. We formulated an optimization problem
that jointly considers the device selection and quantization
scheme to minimize FL training loss while accounting for
communication and computation heterogeneity across the de-
vices. To solve this problem, we analytically derived the
expected training convergence rate of our quantized FL frame-
work. We then showed how the expected improvement of
FL training loss between two adjacent iterations depends on
the device selection scheme, the quantization scheme, and
inherent properties of the model being trained. Based on
estimators for model property evoluation, the improvement
of FL performance at adjacent iterations was modeled as an
MDP. We then proposed a model-based RL method to learn the
relationship between FL performance and the choice of device
selection and quantization scheme so as to converge on the
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Fig. 3. Number of iterations required to converge vs. the number of devices.

policy minimizing FL loss. Numerical evaluation demonstrated
that the proposed method can significantly improve the FL
convergence speed compared to model-free RL-based FL.
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