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Abstract—1In this paper, we study a new latency optimiza-
tion problem for blockchain-based federated learning (BFL) in
multi-server edge computing. In this system model, distributed
mobile devices (MDs) communicate with a set of edge servers
(ESs) to handle both machine learning (ML) model training and
block mining simultaneously. To assist the ML model training
for resource-constrained MDs, we develop an offloading strategy
that enables MDs to transmit their data to one of the associated
ESs. We then propose a new decentralized ML model aggregation
solution at the edge layer based on a consensus mechanism to
build a global ML model via peer-to-peer (P2P)-based blockchain
communications. Blockchain builds trust among MDs and ESs to
facilitate reliable ML model sharing and cooperative consensus
formation, and enables rapid elimination of manipulated models
caused by poisoning attacks. We formulate latency-aware BFL as
an optimization aiming to minimize the system latency via joint
consideration of the data offloading decisions, MDs’ transmit
power, channel bandwidth allocation for MDs’ data offloading,
MDs’ computational allocation, and hash power allocation. Given
the mixed action space of discrete offloading and continuous allo-
cation variables, we propose a novel deep reinforcement learning
scheme with a parameterized advantage actor critic algorithm.
We theoretically characterize the convergence properties of BFL
in terms of the aggregation delay, mini-batch size, and number of
P2P communication rounds. Our numerical evaluation demon-
strates the superiority of our proposed scheme over baselines
in terms of model training efficiency, convergence rate, system
latency, and robustness against model poisoning attacks.

Index Terms—Federated learning, blockchain, edge comput-
ing, actor-critic learning, network optimization.

I. INTRODUCTION
N RECENT years, the demand for deploying machine
learning (ML) in wireless networks and Internet of Things
(IoT) applications has increased dramatically. However, due
to growing concerns associated with data privacy, it is infea-
sible to transmit all collected data from IoT edge devices
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to a central location (e.g., a datacenter) for model training.
Federated learning (FL) has emerged as a popular approach
for distributed ML which allows for model training without
requiring data sharing [1], [2]. Under FL, devices operate as
workers to train local ML models using their own datasets,
and exchange their model updates with an aggregator, e.g.,
an edge server (ES), over multiple communication rounds to
converge on a global model. While FL distributes the data
processing step across devices, the model aggregation step
is still often carried out at a single location, which imposes
security issues including single-point-of-failure and server
malfunction. Additionally, this poses scalability restrictions for
ML training processes, especially as the number of IoT devices
involved and their geographic reach continue to expand [3].
Therefore, it is desirable to develop a more decentralized
FL architecture for realizing scalable model training while
preserving security in next-generation intelligent networks.

In this context, blockchain is a promising technology for
enabling reliable decentralized FL via its peer-to-peer (P2P)
networking topology empowered by an immutable, transparent
and tamper-proof data ledger [4]. The use of blockchain in
FL can mitigate the single-point-of-failure issue, and builds
trust between devices and multiple servers for secure ML
model training [5]. Given these benefits, blockchain-based
federated learning (BFL) has been recently investigated in
different domains, such as vehicular communications [6] and
mobile crowdsensing [7]. To implement BFL systems, devices
need to interface with decentralized servers in settings where
communication and computation resources are limited, which
will impact the ML model training quality. Moreover, each
device exhibits interest in participating in block mining to
further gain blockchain rewards, e.g., cryptocurrency tokens,
which in turn enhances the reliability and security for FL. This
leads to the concept of mobile mining which has been adopted
in practical BFL environments [8], [9]. The concurrence of
both ML model training and block mining introduces new
challenges to network service latency and resource man-
agement, motivating a holistic optimization architecture for
efficient BFL in wireless networks.

A. Related Works

We summarize related works in latency optimization and
resource allocation for standard FL and decentralized BFL.

1) Standard FL: Latency optimization has recently received
significant attention in FL research. The work in [10] proposed
a joint device scheduling and bandwidth allocation framework
for wireless FL to improve the convergence rate of ML model
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training. Another study in [11] investigated semi-asynchronous
FL, focusing on the convergence analysis of model training
under edge heterogeneity and non-independent and identi-
cally distributed (non-IID) data distributions across the edge
devices. An asynchronous FL scheme was considered in [12]
for unmanned aerial vehicles (UAVs)-assisted networks to
minimize the model exchange latency and ML training loss
via deep reinforcement learning (DRL). To mitigate straggler
effects caused by resource-limited clients, the authors in [13]
presented a partial offloading-assisted FL scheme using game
theory. A partial offloading-based FL solution was also pro-
posed in [14] for edge computing, focusing on the delay analy-
sis of the data offloading and model update. Similarly, a convex
optimization approach was applied in [15] to minimize the
energy consumption of model updating and sharing.

2) Decentralized and Blockchain-Based FL: Several recent
works have considered techniques for decentralizing FL aggre-
gation schemes. The authors in [16] introduced a decentralized
FL scheme based on model segmentation with a gossip pro-
tocol for client sampling in each model aggregation round.
In [17], a decentralized FL solution was proposed using the
device-to-device (D2D) concept in serverless edge networks,
with a graph-coloring based scheduling policy to characterize
the data communications between two devices. Our recent
works in [18], [19] developed D2D-based semi-decentralized
and hybrid FL frameworks, where we jointly modeled com-
munication efficiency and statistical heterogeneity of data and
obtained new convergence bounds for distributed ML.

Recently, the integration of blockchain into FL has been
investigated. The study in [20] analyzed end-to-end latency
for ML model training, update transmission and block mining
in a BFL system. [21] analyzed the communication latency
and consensus delays for BFL-based vehicular networks,
deriving an optimal block arrival rate for vehicles based on
system dynamics. The authors in [22] focused on develop-
ing a bandwidth allocation and device scheduling solution
for digital twin-enabled BFL. Moreover, the work in [23]
proposed a BFL-based privacy-preserving UAV network to
optimize the energy consumption of UAVs, vehicular device
service coverage and a composite service hit ratio. In recent
work [24], a dynamic resource allocation framework for BFL
was proposed with a focus on maximizing the training data
size with respect to energy usage constraints.

B. Motivations and Key Contributions

Despite such research efforts, several limitations still exist
in current BFL works, which are highlighted below:

e Most current standard FL [10], [11], [14] and decen-
tralized FL frameworks [18] still rely on a single ES
to coordinate model aggregations. In these architectures,
single-point-of-failure bottlenecks may disrupt the entire
FL system if the server is attacked. Only the work
in [22] has considered a multi-server edge computing
model for BFL, but its model aggregation still follows
traditional FL.

o End-to-end latency optimization, i.e., for both model
training and block mining, remains understudied in cur-
rent BFL systems [20], [21], [22]. Existing works mostly
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aim to characterize, rather than optimize, BFL latency.
Moreover, the benefits of blockchain to support robust
BFL training against model attacks have not been yet
investigated.

o The potential benefits of edge computing have not been
well exploited in existing BFL schemes. Most works [12],
[15], [24] have not considered practical resource con-
straints of mobile IoT devices and the potential for ESs to
mitigate resulting straggler effects. Only [13], [14] have
considered such a scenario, with the focus instead on
partial offloading for traditional FL.

o None of the existing works have analyzed the conver-
gence properties of BFL in a multi-server system. A com-
prehensive theoretical analysis will provide insights
into BFL operations, leading to potential optimization
techniques.

Motivated by the aforementioned limitations, we propose a
novel consensus-based BFL model for efficient and robust ML
model training via blockchain. Specifically, we develop a new
cooperative offloading-assisted model learning and resource
trading-assisted block mining framework for FL. We then
propose a partial model aggregation solution for facilitating
global model aggregations at the edge layer using blockchain-
enabled P2P communications. Blockchain is important for
our methodology in two key ways: (i) it builds trust among
MDs and ESs to facilitate reliable ML model sharing and
cooperative consensus formation for our federated learning
approach; and (ii) it allows for rapid elimination of manip-
ulated models from compromised ESs caused by poisoning
attacks, thereby enhancing the robustness of global model
training. The system latency is subsequently formulated by
considering both model learning latency and block mining
latency, which is then optimized by a parameterized actor-
critic algorithm. The comparison of our paper with related
works in terms of several key design features is summarized in
Table I. In summary, the unique contributions of this paper are:

1) We propose a multi-server-assisted BFL architecture,
where geo-distributed mobile devices (MDs) communi-
cate with a set of ESs for ML model training and block
mining simultaneously. To mitigate straggler effects
caused by resource-constrained MDs, an offloading strat-
egy is proposed that enables MD data transmission to
an ES for ML model training. Moreover, we develop
a resource trading strategy to alleviate block mining
latency from resource-limited MDs.

2) We provide a holistic convergence analysis of BFL.
In doing so, we consider a new partial model aggregation
solution for facilitating global model aggregations at
the edge layer via P2P-based blockchain communica-
tions. Our resulting bound reveals the impact of the
aggregation delay, mini-batch size, and number of P2P
communication rounds on the convergence rate.

3) We formulate a new system latency minimization prob-
lem, taking into account both offloading-assisted ML
model training latency, model consensus latency and
block mining latency. This optimization couples data
offloading decisions, MD transmit powers, and the allo-
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TABLE I

COMPARISON OF METHODOLOGY DESIGN FEATURES BETWEEN OUR
PAPER AND RELATED WORKS IN LATENCY OPTIMIZATION AND
RESOURCE ALLOCATION FOR FL

Our

Features
work

[10]) [13] [18]f [22]) [25]f [26]| [27]
[19] [28]
FL design in multi-edge v v v
servers
Data
FL
P2P consensus-based v
model aggregation
Blockchain-based FL de- v
sign
DRL-based resource allo- v v
cation

Parameterized A2C design
FL latency optimization

offloading-assisted v v v

NN NN N

v v

cation of channel bandwidth, MD computation, and
hash power resources to minimize latency with a model
quality constraint.

4) To solve the resulting optimization over a mixed discrete
and continuous solution space, we propose a novel
DRL method based on a parameterized advantage actor
critic (A2C) algorithm. We provide a holistic design of
the actor, including offloading and allocation policies
empowered by trust region policy optimization (TRPO),
along with a critic for the state-value training.

5) We conduct numerical experiments for both our
consensus-based BFL and parameterized A2C schemes.
The results reveal that our BFL scheme outperforms
existing FL approaches in terms of model loss and
accuracy convergence in both IID and non-IID data
settings. Our proposed parameterized A2C scheme also
helps lower the system latency by up to 38% com-
pared with state-of-the-art DRL schemes. Moreover,
our blockchain-empowered BFL scheme shows high
robustness against model poisoning attacks.

C. Paper Organization

The remainder of this paper is organized as follows.
Section II presents the BFL architecture and its different
components, and analyze the BFL model training conver-
gence. In Section III, we formulate the corresponding sys-
tem latency minimization problem. To solve the formulated
problem, we propose a DRL method based on a parameter-
ized advantage actor critic (A2C) algorithm in Section IV.
We present experiments comparing latency and accuracy
obtained by our methodology against several baselines in
Section V. Finally, Section VI concludes the paper. The key
acronyms and notations used in this paper are summarized in
Table II and Table III, respectively.

Due to space limitations, note that certain math details
have been deferred to our online technical report [29].

II. SYSTEM MODEL

In this section, we describe our BFL system and detail the
BFL task model, and then analyze its convergence properties.

A. Overall System Architecture

Our proposed BFL architecture is illustrated in Fig. 1. Each
ES is located at a base station (BS) to provide computation
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TABLE II
LIST OF KEY ACRONYMS
Acronym | Definition Acronym | Definition
FL Federated learning ML Machine learning
BFL Blockchain-based MD Mobile device
federated learning
ES Edge server P2P Peer-to-peer
UAV Unmanned aerial vehicle 1ID Independent and identi-
cally distributed
DRL Deep reinforcement learn- | A2C Advantage actor critic
ing
TRPO Trust region policy opti- | SGD Stochastic ~ gradient de-
mization scent
DNN Deep neural network DDPG Deep deterministic policy
gradient
MSPBE Mean Squared Projected | KL Kullback-Leibler
Bellman Error
TABLE III
LiST OF KEY NOTATIONS
Notation Definition Notation Definition
M Number of ESs N Number of MDs
K Number of sub-channels D, MD’s Data size
fﬁ MD’s CPU workload fm ES’s CPU workload
Pn MDs’ transmit power bn.g MD’s bandwidth
9 MD’s model size v, MD’s hash rate
h Hash amount of a block b, ES’s bandwidth
j ES’s transmit power g Wireless channel
Tn,m,g MD’s offloading decision | k Global aggregation round
w ML model parameter Xom ES’s gradient
T;fr;,gk) MD’s offloading latency Tf;fe’(m ES’s execution latency
Tlfc’(k) MD’s local data process- T;’?}Eﬁ) MD’s model uploading la-
ing latency tency
T;;fdate'(k) ES’s model updating la- | 7™ ) | Total learning latency
tency
7" ()| Total model consensus la- TTTi"e’(k) Total mining latency
tency
Edge Server (ESs) v dge training M " Compute the global |
('(”//[71”(’ accumulated /B E‘EE 0 e i model and 111/1157 block i
caccunmul 7 4 = wh = w1
»wulwm YV Fn . & T — -~ Do TEED
from Wy, and local 1™ Perform consensus AN 8./ " L e S
model w, RS A among ESs over
Mo VEniobuildfinal -
pap ‘\3,:,3111«”/ v F,,, |
commumcauon/B \ Share block to
Data \_ MDs for mining
offloading N
Blockchain \
(] \
Mobile Device SGD local \
(MDs) training / Blockchain l
wy & W, & ws P- & wy &
55= Ss= s§=3M;mng
&5 = & = S == S ==, g =
D,y Dataset D, Dy Dy Dy

Fig. 1. Our proposed BFL architecture in multi-server edge computing.
services for multiple MDs concurrently. We consider N MDs
gathered in the set N, N = ||, which are connected to
M ESs collected in the set M, M = | M|, in a multi-server
edge computing network. The goal of the system is to train
an ML model, with training proceeding through a series of
global aggregation rounds collected via set K. In each round
k € K, each MD n possesses a dataset fo ), which may vary
from one round to the next, with size Dﬁ,,k) = |D£Lk )|. Each
dataset Dg,,k) contains multiple data samples, each consisting
of an input feature vector and (e.g., supervised learning) a
label. The MDs employ these datasets for local training in
round k, formalized in Section II-B. The total dataset is given
by the set D*) = U, A DY with size DW =5 DI,
The interactions between MDs, ESs, and blockchain com-
ponents of our BFL system are summarized as follows:
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Fig. 2. A block architecture in our blockchain for global model sharing,
where a global model w(¥) is embedded into the transaction of a block.

The transaction is also used to transfer the local gradient VF%’U“) of MDs
and edge gradient Xﬁ,ll) of ESs in the model uploading and model consensus
processes, respectively.

e MDs participate in ML model training in a federated
manner to serve their intelligence applications (e.g.,
object detection). Moreover, they work as blockchain
nodes to mine blocks containing global models in each
communication round to support BFL. model sharing.

o ESs assist in MD model training by providing computa-
tion resources through the offloading process. They also
coordinate the model aggregation process to build the
global model that is shared with MDs via blockchain.

e Blockchain allows MDs to securely transmit their com-
puted local model to ESs via blockchain. It also facil-
itates the model consensus process between ESs with
a traceable data ledger. Moreover, blockchain enables
secure global model sharing from ESs to MDs. After the
model aggregation process completes, the global model
is added to the blockchain, where mining is executed
for secure model sharing. Specifically, an ES will be
randomly sampled to function as a leader node and build
an unverified block which contains the global model.
This block is then shared with other ESs and MDs for
mining. Subsequently, each MD downloads the verified
block from the blockchain to extract the global model
which is used for the next training round. As illustrated
in Fig. 2, each block includes (i) a header, with a hash and
cryptographic nonce, and (ii) the data part. To construct a
block, an ES generates a transaction using its aggregated
model and hashes it, resulting in an output of a fixed
length. The block is then shared with the MDs for model
training.

We let G, G = |G|, denote the set of available sub-channels
for communication at a BS. We assume that uplink commu-
nications between MDs and ESs follow an OFDMA-based
protocol, where each MD is assigned to a sub-channel g € G
to offload its data in each time slot, and thus each ES can
serve at most G MDs in every offloading period. We define
the data offloading policy, which incorporates the uplink sub-
channel scheduling, through a binary variable a:ﬁ,k m,gs (N €
N,m € M,g € G), where xmng = 1 indicates that data
Dﬁlk) from MD n is offloaded to ES m via sub-channel g
in round k, and a:ﬁ,k Z,L,g = 0 otherwise. Each dataset can
be either trained locally at the MD or offloaded to the ES
under a feasible offloading policy X*) = {-(L'S’L]?Zn,,g|$g?2n,7g €
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{0,1},Yn € N,m € M, g € G}. In each training round, the
BFL operation consists of four key steps, as depicted in Fig. 1:

1) Data Offloading and Processing: Depending on its avail-
able resource, each MD can choose to offload its data
to one of the nearby ESs for edge learning, or learn the
model locally via local data processing. We assume that
the model learning process begins once the offloading
phase is completed [14]. This assumption is realistic in
practical scenarios, where each MD needs to obtain an
offloading policy on whether it should offload the data
to an ES or not, before it allows the associated ES to
train its data. For both training cases, MDs and ESs
conduct stochastic gradient descent (SGD) iterations and
synchronize their model parameters through block min-
ing. After model training, a MD uploads its ML model
parameters to its nearby ES via blockchain. Considering
an ES, if it receives data from MDs, it allocates its
resources to conduct ML model training.

2) Partial Model Aggregation and Consensus Update: Each
ES combines its computed ML model with models
received from its associated MDs to perform a partial
model aggregation. Then, ESs will join a consensus
update process in which they conduct multiple rounds of
blockchain-enabled peer-to-peer (P2P) communications
to exchange their models. After the consensus update,
an ES will be randomly sampled to work as a leader and
build an unverified block that contains the aggregated
model for mining.

3) Block Mining: The leader ES broadcasts the block via
the blockchain to the connected ESs and MDs for
mining. In this work, we are mostly interested in the
mining latency from the users’ perspective, and thus we
analyze the mining process at the MDs. Given resource
constraints at the MDs, we develop a resource trading
strategy where MDs can purchase hash power from the
edge/cloud service provider (ESP) (e.g., Amazon cloud
services) to run the mining task [30].

4) Block Generation: After receipt of the unverified block,
the MD that is the first to successfully verify the block
will append it to the blockchain and receive a reward.
Then, each MD downloads the verified block via its
blockchain account [30] that contains the global model,
and uses this for local model synchronization to begin
the next round of model training.

B. Federated Learning Model

Let f(w,4) € R denote the loss function of the ML model
(e.g., neural network) associated with data point ¢, where
w € RY is the parameter vector (e.g., weights on neurons).
In this work, we consider a scenario of full ML training at
MDs, i.e., each MD either keeps its entire data locally or
offloads it completely to an ES. When the MD keeps its data
local, it offloads the entire trained ML model to the ES. We
measure the online loss function of each MD n at each global
aggregation round k as

F{) (w) = —— > flw,i), (1)
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and subsequently define the online global loss as

D(M > D¢ ), D =" D (2)

neN neN

F(’C (w)

In our BFL system, each ES processes datasets offloaded
from a portion of MDs, and also receives the computed ML
models uploaded from another portion of nearby MDs which
had chosen local processing. We denote Nﬁfr’(k) and NEC’(M
as the sets of MDs engaged in data ofﬁoading and model
uploadmg w1th ES m respectively (NS Afee k) A7
and m ﬂ Mgc = ()). Letting D7(n) =U N (k)ng )

denote ES m’s dataset received from MDs, with size DL’?,
the loss at ES m is given as

FF) () = —— > fw,d). 3)

We now formalize the ML model training procedure at
ESs and MDs. Each model training round k starts with the
broadcast of a global model, w™®), from one of the ESs. During
round k, each ES m performs egﬁ) iterations of SGD over
its local/offloaded dataset, which may vary from one ES to
another, where the evolution of its local model parameters is
given by

(kL (k),e—=1 _ " j{: (k),e—1
w, - wm B(k) vf(wm ad)a (4)
™ aeB)

where 1, > 0 is the step-size and e € {1, - ey )} 1s the
index of local iteration with w¥)° = w(") In (4), B
denotes the set of data points sampled at the e-th iteration from
the local dataset of the respective MD to perform mini-batch
SGD. We assume that the mini-batch size Bgff) = |B§,]f)’e|, Ve,
is fixed during each local model training round & for each ES

m. The local model training at each MD n is also similar to
(4) where each MD n performs eSL) iterations of SGD with
local updates as

w(k),e _ wsbk),efl

B 3 VhawPed) 6

" el

After model training, each ES m computes its cumulative
gradient:

k),efn)
VFTCU (w(k) — wﬁ,ﬁ m )/nk 6)
Similarly, each MD n also obtains its gradient:
k),ell)
VF,CL’(’“) = (w(k) —w&’” )/nk 7

Subsequently, the MDs offload their cumulative gradients
to their associated ES via blockchain. Each ES m € M
subsequently acquires its aggregated gradient, which is a
scaled sum (with respect to the number of SGD iterations and
the number of data points) of its cumulative gradient and that
of its associated MDs, as

A(k) _ DY C,(k) Dy C.(k).
VE > ® * @ Fon
Nloc (k) D(k)e ( )
(8)
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The ESs then engage in P2P communications for cooper-
ative consensus formation among their aggregated gradients.
For this purpose, we assume that they exploit linear distributed
consensus iterations [31], where during training round k, each
ES m € M conducts ¢¥) € N consensus rounds of P2P
communications with its neighboring ESs. During each round

1=0,---,¢" —1 of P2P communications, the evolution of
the local gradient of ES m € M can be expressed as:
X%H) = /\Sn l) + Z /\m m’xm” )
m’€o(m)

(0)

where X, = VF?,;(’C) is ES m’s initial local aggregated

(o)

gradient, and X, denotes the local gradient after the
consensus process concludes. In (9), o(m) C /\/l denotes the
set of ESs in the neighborhood of ES m, and )\m )m/ € [0,1],
m/ € {m} U p(m) are the consensus weights employed at m.

L _ (6% -
Let VF VY = xpy, denote the final local gradient at ES
m after the P2P communication process for training round &
concludes, which can be expressed as

VELE = 3" FL® el

meM

(10)

(a)
where term (a) is the perfect average of the local aggregated
gradients and cgf ) denotes the error of consensus caused by
finite P2P rounds. The selected ES at aggregation round k,
denoted by mj, € M, then adds a boosting coefficient to its
local gradient VF' L’(k) , forming the vector

n en)VFL (k)

=2 X ms o AD
meM EN(k)
and updates the global model parameter as follows:
wht) = p®) —p TFY (12)

w1 is then broadcast across the ESs and MDs via block
mining to begin the next round of local model training. The
training procedure of our BFL scheme is summarized in Algo-
rithm 1. At the beginning of each global communication round,
each MD makes a training decision: edge model training
at the ESs or local model training, which is an output of
Algorithm 2 (line 5) that will be developed in Section IV.
In the case of edge model training, the MD offloads its data
to its associated ES (line 7); otherwise, the MD trains its data
locally (lines 9-14). After receiving all models from local
MDs, each ES performs edge model training (lines 17-21).
Once the local training and edge training processes are com-
pleted, ESs collaborate to perform P2P-based consensus on
aggregated gradients to update the global model (lines 23-35).
Finally, the mining is executed, where an ES leader adds the
global model parameter to an unverified block and broadcasts
it to other ESs and MDs. In particular, each MD performs
resource trading to purchase hash power from the ESP to run
the Proof-of-Work-based mining. The confirmed block is then
appended into the blockchain for global model sharing, where
each MD downloads the block for the next round of training
(lines 36-40).
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C. Convergence Analysis of ML Model Training

We now study the convergence of our BFL scheme. We first
make a few assumptions and define some quantities of interest.
To obtain convergence guarantees for the distributed consensus
process, we make the following assumptions on the consensus
weights in (9):

Assumption 1 (Conditions on Consensus Weights [31],
[32]): The consensus matrix A¥) = [)\n]j,m’]M,WL’EM(M sat-
isfies the following properties: (i) )\gj)m, =0 if ESs m and
m’ are not connected, (ii) A¥1 = 1, (iii) AR = AR)LT and
(iv) p (A(k) — M’/{(T,c)‘ < \®) < 1, where 1 represents the
1s’s vector and p(A) defines A s spectral radius.

If /\Sff?m = 1—d|o(m)| and /\m w =d,m#Em, 0<d<
1/M [31], the conditions in Assumptlon 1 hold. These weights
can be distributedly obtained at the ESs given a predefined d.

Definition 1 (Gradient Divergence): The divergence of local
aggregated gradients across the ESs at global aggregation
round k, denoted by =%), is defined as follows:

(14)

HVFQ;(’“) Van,(k)H <=® Ym.m' € M.

Assumption 2 (Smoothness of the Loss Functions [33],
[34]): For each MD n that conducts local model training
during aggregation round k, the local loss function Fy(Lk) is
(B-smooth:

IVES (w) = VEP (w')]| < fllw —w'|, Ve, w'. (15)

Also, for each ES m that conducts model training, the loss
function Fy(nk) is assumed to be (3-smooth, which verifies that
the global loss function F\¥) achieves (3-smoothness.

Let y € N'U M denote the index of an arbitrary MD/ES.
Also, let N,S{“) = NLZ‘:""” U {m} denote a set containing the
devices which conduct local model training and offload their
cumulative gradients to ES m as well as ES m itself. We
measure the heterogeneity of data across the MDs/ESs via the
following assumption [34]:

Assumption 3 (Bounded Dissimilarity of Local Loss Func-
tions): The finite constants 1 > 1, (2 > 0 exist for which the
following inequality defined on the gradient of the local loss

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

in (2) and (3) holds for any set of coefficients {a, > 0} where
Zme./\/l Eye./\f,(f) ay = 1:

S alVER (w))?
meM yeN,(,{‘)
2
§<1H >y ayVF;@(w)H Yo, VE. (1)
mEM ye i)

As can be seen, (; = 1 and (; = 0 in (17) correspond to a
scenario in which the data across the MDs/ESs is completely
homogeneous, and (; and (, increase as the heterogeneity
across the datasets increases. We next quantify the hetero-
geneity of data inside each local dataset:

Definition 2 (Local Data Variability): The local data vari-
ability at each MD/ES y is denoted by ©, > 0, which Yw, k
satisfies

c D).
(18)

IVfy(w,d) = Vfy(w,d)|| < Oylld—d'|, vd,d

We further define © = max,enum{©y}.

Additionally, we let (og(/k))2 denote the variance across the
feature vectors of dataset D@(,k) at ES/MD y which conducts
local model training. We further quantify the dynamics of local
datasets via their impact on the ML performance [26]:

Definition 3 (Model/Concept Drift): For each MD/ES vy,
we calculate the model/concept drift between two FL rounds
k—1 and k, Aék) € R, which characterizes the local loss’s
variation induced by data arrival/departure at the MDs and
data collection at the ESs, as follows:

D(k—l)
D(k=1)

Dy Lk
Dty () =

We next present one of our main results, the general
convergence behavior of BFL:

Theorem 1 (Conver, §'ence Characteristics): Let N’ (k),
N® = | Unerm NP\ denote the set of all MDs and
ESs engaged in model training during the k-th local model

training round. Also, let eﬁ?x = maxyeN(k){eék)}, egeg =

FFD (w) < AP vw. (19

1 K-1
E [ VE® w®))P]

k=0
8 emax

< “VTave (F<U>(w<0>) _ F(k)*) L Ve N A®K)
aegﬂ‘,‘g\/? ae;“v'g\/_ Z

(@)

80ﬁ2 2 K1 B@(}k) (Uék))Q ) 805202 K—1
- © eF) ) (k) _
Sy e (1o ) e e Ee ) (-

(b

(e)

2
K—1 omax K1 k k k
+ 1 24M()\(k’))2<ﬂ(k> (:(k))2+ M Z Z D?(/ : <1 _ Bl(/ )> (Ul(/ ))2 92
B Va7 i k k) Y-
K k=0 KVK eg\‘,'g k=0 meM yEJ\f,(f) D(k) eg(/k) Dg(/ ) BZ(I )

(d)

(e)
13)
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Algorithm 1 Proposed BFL Algorithm

1: Input: Global communication rounds /C, local training round
en,Vn € N, edge training round e,,, Vm € M, number of MDs
N, number of ESs M

2: Initialization: Initialize global model w®

3: for each global communication round k£ € KC do

4:  for each MD n € N do

5 Determine each training decision %y, m,¢ via Algorithm 2

6: if p,m,g =1 then

7

8

Offload dataset Dﬁf” to ES m

else
9: Perform local model training on local dataset Dﬁf”
10: for each local training epoch e € e,, do
11: Update local parameters 'w( ) via 5)
12: end for
13: Compute the cumulative gradient via (7)
14: Add the gradient to a transaction based on the blockchain

framework defined in Fig. 2 to transfer to an ES
15: end if

16: end for

17:  for each ES m € M do

18: for each edge training epoch e € e,, do
19: Update local parameters w( ) via “4)
20: end for

21: Compute its cumulative gradient via (6)

22:  end for

23:  Each ES m € M computes an aggregated gradient: VFy (8)

using VFC %) and VFC ) Via ®)

24 Setx\Y) = VER®

25:  for each P2P consensus round [ € ¢) do

26: for each ES m € M do

27: for each neighboring ES m' € o(m) of ES m do

28: Transmit the gradient X, via a transaction based on the
blockchain framework defined in Fig. 2 to ES m

29: end for

30: ES m downloads the block of all transactions to obtaln
neighboring ESs’ gradients and computes its gradient x 1)
via (9)
31: end for
32:  end for
- , Ly _ (o®)
33:  Obtain the final local gradient at ES m: VF,,'" = xm

34;  Add a boosting coefficient to VF5* to form Wﬁfz via (11)
35:  Update the global model parameter w*+1) via 12
36: Add the global model parameter to an unverified block B by

the ES leader and broadcast it to other ESs and MDs for mining

37 Each MD trades hash resource \Ilszk) from the ESP to mine the
block

38: The fastest MD propagates the verified block to ESs and other
MDs for confirmation

39:  Add the block to the blockchain for global model sharing

40: Each MD downloads the block to obtain the global model for
next round of training

41: end for

42: Output: Final global model w®)

k ~(k k
D oyeN® ey IN®W, and &5y D oyeN® Dyl /D"
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s k) _ (k)
positive constants. Further; let AF) =D N EyEN(k) Ay
In conducting K global aggregation rounds, if the step size
satisfies m, = \/"—(k) where « is chosen such that ny, <
Keag

mm{ 1 ING)
k k
(@G+1) (e (ef—1)) " 28, en DY el

convergence characteristics of the global loss function under
BFL follow the bound in (13), shown at the bottom of the
previous page.

Proof: See Appendix A in the technical report [29]. O

The bound in (13) reveals the impact of different
device/network configurations on the ML model performance.
In particular, the impact of model drift is captured in term
(a). Also, the divergence of the global model caused by bias
of the local models due to the heterogeneity of data across
the MDs/ESs is captured via term (¢) which encapsulates (s.
Larger daatset heterogeneity captured via {; imposes a stricter
condition on the step size 7, described in the statement of
the theorem as well. Terms (b) and (e) in (13) capture the
impact of local data heterogeneity ({©,}) and mini-batch sizes
({Bg(lk)}) on the performance of the model. Finally, term (d)
captures the impact of imperfect local aggregations caused
by finite P2P rounds (¢(*)) and divergence of gradients (%),
where the consensus matrix’s spectral radius across the ESs
(AR} < 1) defined in Assumption 1 determines the rate under
which the consensus error decays to zero with respect to the
number of P2P rounds ¢(*).

We derive Theorem 1 to obtain conditions for the online
global gradient under BFL converges:

Corollary 1 (Convergence Under Proper Choice of
Mini-Batch Size and P2P Communication Rounds): Besides
conditions in Theorem 1, we assume that (i) the model/concept
drift is small enough such that A¥) < % Vk, for some posi-

tive constant (, (ii) the choice of mini-batch size B(k) at each

(k) <k>
MDV/ES vy ensures a unified bound (1 — B*(’M) (o, @2 <1,
D?J

}, then the

B(")
Vk, where 9 is a finite positive constant, and (iii) e,%a)x < €max
Vk for some positive constant emayx. If the number of P2P com-

munications among the ESs at each global aggregation round

k, ie., d)(k), satisfies ga(’“) > % {1og)\<k> (mﬂ

for some positive constant &, where \*) is defined in Assump-
tion 1, the gradient of the global loss under BFL satisfies the
upper bound in (16), shown at the bottom of the page, which
implies - ZkK:_Ol E[|[VE® (w®))]?] = \/?) and thus
limg oo e Yip B [[VE® (w®)]2] —

Proof: See Appendix B in the technical report [29]. O

III. SYSTEM LATENCY MODEL

In this section, we analyze the latencies of the model

Assume that egl,'g < 652 < eg*vagx and é Ag‘;g < égl\fé < training and block mining processes in detail, and present our
eng> Vk, where egl,'g, € Cavg and €35 are four finite latency optimization problem.
K-1 max
1 E[IVF® @®))?] < SVeRg (FO@®) - P + 8T /eag
=0 aem'g\/_ aem'g\/?
805202 805202 24 165>
+ Kﬂmm (emax — 1)U + Kﬂmm €2 (émax) (€max — 1) + _5 — =y (16)
Cavg Cavg \/E VK /enin
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A. Latency of Model Training in BFL

In our BFL system, an MD can offload its data to the ES
for edge learning or choose to train the ML model locally
in each global aggregation & € K. In the case of offloading
(x%’fzn,g = 1), the latency for model training consists of data
communication latency and execution latency at the ES. The
data communication latency of MD n when offloading its data

D;k) to ES m is given by

(k)

Dy,
ff, (k k
T = "2l G T EN, (20)
9€g n,m

where R%’f?n is the transmission rate (in  bits/s)
from MD n to ES m, which is given by R%’f?n =

e Thgbity logy (14 P M
geg tn,m,g%n.g g2 02+Ej€ N,"f( 51:)” gpﬁk)hf;)n,g) 5
under interference } . \J\/'ﬁff( gk,)n P §k)h§k,)n g) caused

by a group of MDs (N \ N°f) that are associated
with other ESs on sub-channel ¢. Here, bgf_()] is the
bandwidth (in HZ) allocated to channel ¢ wunder the
policy B® = {p")j0 < o) < W,¥n e N,g € G,k € K},
where W is the maximum system bandwidth constraint.
Further, p( ) is transmission power (in Watts) of MD n in the
offloading subject to the power constraint P,, under a policy
PH = P < pP < P, n e N, Vm € M}, and
hﬁ,k 2n7g is the gain of wireless channel between the MD m and
ES n on sub-channel g. Accordingly, the energy consumption
for data ofﬂoadlng at aggregatlon round k£ at MD n is given
off (k (k) off, (k)
as En m E geg n m,gpn Trn mo .

After the ofﬂoadlng process, ES m receives a combined
dataset DT(,If) (as defined in Section II-B) with size DT(,],C,) =
|D,(ff)| from MDs engaged in data offloading. Then, the ES
allocates its computational resource to perform the SGD-based
model training. The data processing latency at ES m is thus
given by

DY) o)
T k) — Z glkzmgan#,m eM, (2D

geg

where C,, represents how many CPU cycles is required to
calculate the gradient per data point at ES m, and gﬁ,’f) €
(0, 1] is the mini-batch size ratio, from which the size of SGD
mini-batches can be written as Bgf) = gg,]j)Dgf). Moreover,
egff) is the number of SGD iterations, and f,, is the fixed
computational capability of ES m (in CPU cycles/s).

On the other hand, each MD n can also choose to locally
process its data, implying a:ﬁ, 2n ¢ = 0,Vm, g. We denote fé (k)
as the computational capability of MD n (in CPU cycles/s)
allocated to train the data given maximum capacity F),, which

is represented via a policy: F*) = {fz’(k)|0 f;’(k) <
F,.,¥n € N'}. The latency of model training over en ) SGD
iterations at MD n is given by
Cp DR ol el
TyILoc,(k) = 1-— Z xsz?zn,g - 0k (22)

2.(F) J
geg f”
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where g( ) € (0,1] is the SGD mini-batch ratio, and C, is the
number of CPU cycles required to compute the gradient per
data point at MD n. Also, the local energy consumption of MD
n is given by El?c’(k) = (1 - deg x%kzn g) lﬁl(f[ (k))QC
where r is the energy coefficient depending on the chip
architecture. After completing the local model training, MD n
then transmits the computed model VI ﬁ’(k) to its associated
ES via blockchain. The latency of this model uploading can
be given as

TUP,

E xnmg

geg

(k) NVneN,meM,

n,m

(23)

where 1 is the gradient/model size (in bits) that is the same
across the MDs. Based on above formulations, the total latency

of model training of the BFL system at each global aggregation
k is

Tlearn,(k) _ Z Z Tzf;;l(k) + Z Ts;(e,(k)

neN memM meM
+ )T ® L NN TR vk € K.
neN neN memM

(24)

After the model training process, the ESs in the edge layer
perform the P2P-based consensus on the computed model.
An ES performs the model updating where the neighbours
exchange their aggregated gradients defined in (8) via P2P
communications. The latency of parameter updating at ES m
in each P2P communication round / is determined by
9

max ——zs—r,

update, (k) _
Tm (Z) m'e= (m) ng]f)m’(l)

(25)

where R;:?m,(l) is the transmission rate from ES m' to
ES m via wired communications. Thus the updating latency
of each ES m over ¢ consensus rounds is Ty, (k)
S¢ TP ®)(]) Finally, the latency of the model consen-
sus is determmed by the slowest ES as below:

@
Z Tylilpdate’(k) (l)‘| )

=1
(26)

Tcons,( ) — max Tcons (k) — max
meM meM

B. Latency of Block Mining in BFL

After model consensus among ESs, an ES will be selected
to work as a leader that builds an unverified block B and
broadcasts it to all connected ESs and participating MDs for
universal block mining. This selection can be based on the
ESs’ reputation in the previous aggregation round from the
P2P collaboration process, where the reputation evaluation
methodology can be used to quantify each ES’s contribution
to block generation [35]. Inspired by our previous work [36],
we adopt mining latency as the reputation metric: an ES which
generates the fastest block in the previous mining round will
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have the highest reputation and is selected as the leader for
mining coordination in the current mining round.

After leader selection, the mining process is executed.
Similar to existing works [8], [9], we focus on mobile mining
analysis, where the mining latency at MDs is considered, and
thus the mining analysis at ESs is ignored. We adopt the
popular Proof-of-Work mining mechanism [6], [7] for our
BFL, where MDs compete to mine the block. The adoption of
other mining mechanisms in BFL will be considered in future
works. Conceptually, the mining latency at each MD n mainly
consists of block generation latency and block propagation
latency [24]. Due to resource constraints, we allow MDs to
implement resource trading to buy hash power from the ESP
to assist their mining. Accordingly, MDs compete with each
other to gain the maximum hash power allocation from the
ESP’s hash resource pool, aiming to increase the probability
of becoming the mining winner for gaining rewards. In every
global aggregation round k, each MD n spe01ﬁes its mining
demand to trade hash resource, denoted as \Iln (Hash/sec)
subject to the constraint of the total hash power of the BFL
system W, under a policy k) = {\Ilglk)|0 < \Ilglk) <
Unax, V. € N}, Let h(¥) denote the hash amount (in hash)
required to mine the block B (which also represents the size)
in aggregation round k, the block generation latency at MD
n can be specified as Tﬁe"’(k) = ‘Z((,,:)) Thus, the energy
consumption for block generation at MD n can be given as
E%en’(k) = Enh(k), where =,, is the power efficiency of the
mining rig of MD n (J/hash).

After generating a block, MD n will propagate it to
ESs and other MDs for confirmation. The latency of this
block propagation process can be determined as Tﬁmp’(k) =
E(B|LMFN=1)(K) where ¢ is a parameter to quantify the effi-
ciency of block verification. Further, B|LM+N~1| represents
the average delay of the repeated verification on the block B
of all entities except MD n [36]. Therefore, the mining latency
at an MD can be given as mine, (k) _ peen,(k)_ pprop, (k)

However, in the block mining process, there is the pos-
sibility that a MU n generates the block and propagates
it slower than other miners which will discard this block
from blockchain. This issue is called forking and such a
block is called an orphaned one. The forking probability can
be determined as Py = 1 — e~t®(sn)  where © is set to
v = 1/600(sec) [30]. Moreover, s, represents how many
transactions are included in the block mined by MD n, and
@(sy,) is a function of block size. Therefore, the mining latency
at MD n can be rewritten as

T:ine,(k) (27)

= ¢(TEem ) 4 TP () g e K,
where ( is the number of forking occurrences in each global
training round. Therefore, the total mining latency of BFL
system can be given as 7™ =3 Tire )

C. Formulation of System Latency Problem

Our objective is to optimize the total latency of the BFL
system from the user perspective as the sum of model training
latency, model consensus latency and block mining latency at

3381

a certain aggregation round k:

K-—1
minimize i (Tlearn,(k) + Tcons,(k) + Tmine,(k))
X,P.B.F v K —
(28a)
st. alf) €{0,1},Vne N,me M, g€g, (28b)
szﬁ,’%g<1nejv (28¢)
meM geg
0<p® < P, ¥neN,, (28d)
0<b) <W,¥neN,geg, (28e)
0< fo®) < F, YneN, (28f)
0< U™ < H VneN,, (28g2)
0< Elsarn,(k) _’_Esen,(lc) < Eyr?ax,(k)’vn 6/\[7“
(28h)
1 K—1
E [V F®) (w®))? (28i)
k=0
learn, (k k ff,(k
where B (%) = > geg x; ) oEn, Ry

(1 — deg xmn g) El?c’(k) is the energy consumption

for model training. Here, constraints (28b) and (28c) imply
that each dataset can be either trained locally or offloaded
to at most one ES via a sub-channel. (28d) ensures the
transmit power constraint of each MD. Constraint (28e)
guarantees that each MD n is allocated a feasible bandwidth
resource for data offloading. The MD also allocates a positive
computational resource to train its ML model with respect
to the maximum CPU capability F),, as indicated in (28f).
Constraint (28g) guarantees that the hash power allocated
to each MD is limited by the total system hash resource.
Further, constraint (28h) implies that the energy consumption
of MD n for model training and blockchain mining is limited
by its battery energy level. Finally, the global loss function
should be less than a desirable value € to ensure the required
training quality, as indicated in constraint (281).

The optimization problem in (28) is non-convex with respect
to the mixed discrete offloading and continuous allocation
variables. Due to the time-varying nature of system states,
such as channel condition and computational availability, it is
challenging to directly solve the formulated problem via
conventional optimization approaches such as Lyapunov opti-
mization [24]. Therefore, we will propose to use a learning-
based approach, where a new DRL algorithm is developed to
well capture the dynamics of system and integrate them into
the solution design.

IV. DRL DESIGN WITH PARAMETERIZED A2C FOR BFL

Different from the existing DRL algorithms which consider
either purely discrete [22], [27], [37] or purely continuous
actions [12], [28], [38], we here study a more practical DRL
setting with a hybrid discrete-continuous action for improving
the training performance. Even though such a hybrid action
setting has been previously mentioned in a few related
works such as [39], a holistic investigation on the sampling
of discrete and continuous actions has not been given.
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Fig. 3.

Therefore, we propose a parameterized advantage actor critic
(A2C) algorithm to optimize the system latency, as illustrated
in Fig. 3. We consider a hybrid discrete and continuous
action space, where the resource allocation variables in (28)
are continuous, while the offloading decision variables are
discrete. The actor is designed to train both offloading
and resource allocation policies, which we demonstrate in
Section IV-C. The critic is then designed to evaluate the
efficiency of the actor policy training, which we present
in Section IV-D. We also include the advantage function
in the critic design as it has been shown to reduce the
variance in actor policy training compared with conventional
actor-critic approaches [28], [40]. Finally, we develop a
training procedure to optimize the long-term system utility
of our developed A2C algorithm (Section IV-E), which
corresponds to minimizing the long-term BFL system latency.

A. DRL Formulation

We consider a single-agent DRL problem setting [12],
[28], where a virtual centralized agent interacts with the
BFL environment induced by the interaction between MDs
and ESs during model training and block mining. Our DRL
scheme aims to optimize the total system latency in (28a)
consisting of model training latency, consensus latency and
block mining latency. To handle the formulated optimization
problem, we build a centralized agent which defines its reward
based on the total utility, and restricts its action space based on
the resource allocation and learning constraints in (28). With
a comprehensive view of the model training and block mining
processes, the agent can obtain the system state and employ it
to take efficient actions via well-trained data offloading and
resource allocation policies that are observed to minimize
the system latency. We consider a parameterized Markov
Decision process characterized by M =< S, A,r >. Here,
S = {s1,...,sn} and A = {a;...,ay} are the finite
sets of state and parameterized action, respectively. Further,
r(s,a) : S x A — [-R,, R,), (R, € Rsg) denotes the
bounded system reward. We also denote P(s’|s,a) as the
probability of transition executed by action a of the agent
from s to s'.

In our BFL latency optimization problem, the offloading
decisions for ML model training at MDs are closely associated
with resource allocation variables. For instance, to offload

The proposed parameterized A2C architecture for our BFL environment.

the data to an ES, an MD needs to tune its transmit power
and determine channel availability; or to execute data locally,
it should determine its computational utilization. We consider
a parameterized action space: a finite set of discrete offloading
actiona € A, = {a1,az,...,a,} defined via a discrete-action
policy 7%(a|s) and each a,, has a set of continuous parameters
{c € A.} defined via an action-parameter policy 7°(c|s, ).
Thus, the joint action is given by conditional probability
(a,¢) ~ mola,cls) = 7§ (a|s)m§_(c|s,a), where 0 is the
parameter of the overall action policy, and 6; and 6. are
parameters of discrete action policy and parameter policy,
respectively, with § = [04,6.]. To simplify the notation,
mg(a, c|s) is expressed by mp(a, s) in the rest of the paper.
At each time step t, the agent at state s; takes an action
a; to transition to the next state s;y; and observe a reward
rey1 — 7(St, at, S¢e11). As a result, the training data for DRL
is produced in a form of frajectory where each data point on
the trajectory can be represented by tuple {s¢, as,r¢, S¢41}-
Given a policy , the long-term discounted system reward is
characterized by the state-value function V™ (s) : A — R
and the action-value function Q™ (s,a) : S x A — R, which
are V™ (s) = E™ [>°° viri1]s: = s] and Q™ (s,a) =
E™ [3°0° o veres1|se = s,a¢ = a], where v, € [0, 1] is the dis-
count value and IE™[.] represents expectation of the executed
reward function under policy 7. By using the Bellman optimal-
ity equation, the Q-value associated with a state-action pair can
also be expressed by Q7 (s¢, at) = E™ [rigq + V™ (S¢41)].
In this paper, we focus on the A2C model that can be
characterized by the advantage function A™ (s, a)

AT (St, at) = Qﬂ-g (St, at) — Ve (St)
rep1 + YV (sp41) — V™ (s¢),Vs € S,a € A.
29

It is worth noting that the proposed A2C algorithm training
is performed in a certain FL aggregation round k to allow
the agent to obtain an optimal latency-aware offloading and
allocation strategy for MDs. Based on the well trained A2C
model, we then deploy it into the BFL environment to guide
the FL training across aggregation rounds. Therefore, the index
k is dropped for the simplicity of notations in our DRL
formulation. In the following, we define state, action and
reward for our DRL algorithm.
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1) State: In our BFL environment, the system state
consists of five components: data state Sgata(t), channel
state Schannel(t), bandwidth state Spand(t), computation state
Secomp(t), and hash power state Shash(t). Therefore, the system
state is defined as:

S(t) = {Sdata (t); Schannel (t), Sband (t), Scomp (t), Shash (t)}
(30)

Here, Syata(t) is defined as Sqata(t) = { Dy (t) }nenr. Further,
Schannel(t) = {Gn,q(t) }nen geg indicates whether the sub-
channel g is used by MD n at time slot t. If yes, gy 4(f) =
1, otherwise ¢n4(t) = 0. The bandwidth state Shand(t)
can be given Spand(t) = {bn,¢(t)}tnen,geg under the total
radio system bandwidth W. The computation state Scomp (%)
contains the information of current computational resource
Scomp(t) = {f£(t)}nenr- Lastly, the hash power state Shash ()
presents the current hash power W,, of all MDs: Shash(t) =
{Wa(t), Wa(t), ..., Un(t)}.

2) Action: Our BFL system features a parameterized action
space with offloading or local execution, as elaborated below:

o Offloading (transmit power, channel bandwidth allo-
cation, hash power allocation). When MD n chooses
the offloading mode .,y = 1, it must determine
relevant parameters, i.e., transmit power p,, and channel
bandwidth b, , that are needed for offloading. Also,
MDs perform mining regardless of their learning sta-
tus, and thus we also involve a hash power alloca-
tion parameter W,. Therefore, the joint action on each
MD can be expressed by an = {Znm,g,Pnsbn,g, ¥n}
and the complete system action in this mode is
a(t) = Tpmg(t),pn(t), by g(t), ¥ (t),Vn € Nym €
M,ge G.

o Local Execution (computational allocation, hash power
allocation): When MD n chooses the local execution
mode g = 0, it must specify its necessary para-
meters to execute the model training, e.g., f. More-
over, similar to the offloading mode, the parameter
of hash power allocation is also involved to support
the block mining task executed after the model learn-
ing. Therefore, the joint action on each MD is a, =
{Tpm.g f£, ¥, } and the complete action for the BFL
system in this local execution mode is given by a(t) =
Trm,g (), FE(), Un(t),Yn € Nym e M, g €G.

3) System Reward Function: The reward in our BFL system
comes from the joint model learning and block mining,
by maximizing the system returns in the long run. How-
ever, in the optimization problem (28), our objective is to
minimize the system latency in a certain aggregation round,
which requires a negative multiplication before being used
as the reward, i.e., we define the reward as r(s;,a;) =
— (T 4 T°ns 4 TMine) | For better presentation, we trans-
form the latency minimization problem into a system utility
optimization problem by using a simple exponential equation:

(1_ (Tlearn+Tcons+Tmine)>
U= |e . -1, 31
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where 7 denotes an upper bound of the system latency. (31)
implies that the lower system latency results in a higher
system utility. Therefore, instead of minimizing the latency,
we are keen on maximining the system utility which better
characterizes the efficiency of our algorithm. Accordingly,
we transform (28) to the following optimization problem:

maximize U (32a)
X,P,B,F,¥
s.t.  28b— 28i. (32b)

Thus, we re-define the system reward as a result of executing
the action with given states as r(s¢, a:) = U(t).

B. Policy Gradient Update for A2C

We first analyze the policy gradient update necessary for the
design of actor and critic components that will be elaborated
later. In the BFL environment, the agent tries to search among
the set of parameterized offloading policies to obtain the
optimal policy 7} (a, s) that can return the maximum reward,
i.e., system utility. However, in practice the search space may
be very large and the agent may not be able to find the optimal
policy. Thus, we restrict the policy set by a vector § € R* for
some integer z > 0 and perform the optimization over the
group of the parameterized policies mg(a, s). To facilitate our
analysis, the following assumptions are introduced.

Assumption 4: The policy mg and P(s'|s,a) guarantee
an irreducible and aperiodic Markov chain described by
PTo(s'|s), V0. Therefore, there exists a stationary distribution
defined as d™ (s) on policy 0.

Assumption 4 is a common assumption for actor-critic
algorithms [28], [40]. Accordingly, we define J(mg) = r(mg),
where r is the system reward defined in Section IV-A.3, as the
performance function with respect to the policy parameterized
by 6. Accordingly, the objective function with linear Q-value
function approximation is given by

J(mg) =Y _d™(s)Q™ (s, a).

seS

(33)

Next, similar to [40], we make an assumption on the policy
mo(a, s).
Assumption 5: The following assumptions are made on the
policy function:
e Positive policy function: mp(als) > 0,Y6 € R?
o Bounded policy gradient:

[|Vlogmg(als)||les < Gr,¥0,Vs,Ya,Gr >0
o (-Lipschitz policy gradient:

||V10g7'r91 — VlOg’]T92||2 S £||91 — 92||2,V91,V92

Here, the regularity conditions in Assumption 5 can be
satisfied by using the Gibbs softmax distribution network, e.g.,
in deep neutral networks, for action selection in the actor.
Under this assumption, the policy gradient my can be updated
as VJ(mg) = Egvgmo(),amme(.|s) (@™ (5,a)V 1og ma(als)].
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C. Actor Design

In our A2C-based DRL algorithm, the actor aims to update
the parameter 6 over time-step iterations to find the optimal
policy 7 that characterizes the best trajectory for our system
utility optimization problem. In other words, the actor is
expected to make optimal model learning and block mining
decisions in a fashion that the long-term reward (i.e., system
utility) is maximized. In doing so, the actor needs to use the
gradient V.J(mg) to optimize its policy

max J(7mg) = Eggmo ) [mo(als)A™ (s, a)], (34)

OeRd
Traditionally, the policy is optimized via a vanilla policy
gradient algorithm by direct policy search over the entire
exploration space which is known to be inefficient. Instead,
we use trust region policy optimization (TRPO) to improve
policy optimization by maximizing a surrogate objective over
a trust-region [41]. Accordingly, (34) can be re-written

monew (@] $)
mo(als)
Eg [KL (mo(.[s)[monen(.[5))] < €xr, (35)

max J(mg) = Er,

subject to

A (s,a) |,

for some e > 0. In (35), IE; represents the state visitation
distribution induced by 7y, and 6 and "¢ are the vectors of
policy parameters before and after each update, respectively.
By enforcing a Kullback-Leibler (KL)-divergence constraint
KL, the probability distributions of the policy before and
after the update will be kept closely in the parameter space
to avoid divergence in the gradient update. Considering our
parameterized action space including the offloading actions
and their parameters, the optimization objective function can
e (a]8)TGnen (cls,0)
AT (s,a)|.

To solve (35), we construct a closed form solution for
computing the KL-divergence between the distributions of
the discrete offloading action policy and the action-parameter
policy for our BFL problem as follows:

be expressed as |E
p o wgd(a|s)7rgc(c\s,a)

E, [KL (mp(a, c|s)||mpre (a c]5))]
= By [KL (w(als)]|75, (al))
+KL (e (cls. )|, (cls, ) )|
= B, [KL (g (als)] |74, (al5))
BB, [KL (wggew(qs, a)|[m5. (cls, a))} .
(36)

By using the analytical form of the discrete offloading action
policy wg,.ew( als) via its trajectory probability, we can further
new (g
reduce the variance of the KL-divergence in the last term
of (36) as
E, [KL (mo(a, c|s)|[mgrev (a, c|s))]
~ E, [KL (Wg?lew(a|s)||7rgd(a|s )}
B, [(<108(Rf 1)) ) KL (7o (cls, )5, (cls, )]
(37)
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Based on the above approximation steps, the optimization of
the original policy in (34) is transformed into a conjugate gra-
dient form which allows for estimating the expectations of the
policy objective in (35) with policy improvement guarantees.
In this regard, the update direction can be approximated by
v~ H 'VyJ(my), where H~! is the Hessian-vector product
of sampled KL-divergence. Finally, the actor parameter is
updated via backtracking line search [42] subject to the KL
constraint as follows:

2€K1,
011 29/4-}/(1 —V,
" ! NvT iy

(38)

where y¢ € (0,1) is the backtracking step-size parameter
which controls the line search for guaranteeing the conjugate
gradient improvement given the KL divergence constraint. It is
desirable to set up a fairly large step size y{ to initialize the
line search space on the policy, and gradually shrink y¢ until
a Armijo-Goldstein condition [42] is satisfied where a critical
(optimal) point is obtained.

D. Critic Design

The role of the critic is to estimate the state-value function
V7 (s) to guide the update of the actor by approximating its
state-value function. Specifically, a feature function ¢ : S —
R™ is created as a full-ranked matrix with I dimensions to
create i-dimensional features (¢ < I) for any state s € S, i.e.,
d(s) = (d(s),..-, (bi(s))T. Given a state s, the state-value
function is thus approximated by a linear function V,,(s) ~
wd(s)T, where w € R™ is a parameter vector used to update
the state-value function. By function approximation, the critic
provides an inexact temporal difference (TD) solution to the
value function V™ (s) under policy 7g. This naturally results
in the minimization of TD error as a loss function, i.e., the
Mean Squared Projected Bellman Error (MSPBE) defined by

Bp(w) = 511V, — ABgVL P, (39)
where A = ¢ (M) pH is the projector with H €
R!SI%ISI being a diagonal matrix whose elements are within
the stationary state distribution d™ generated according to the
policy mg when the entire state space is irreducible. Also,
By denotes the Bellman operator implied by BpV(s) «—
r(s,a) + vPy(s,s’,a)V (s), where V(s) is the state value,
r(s,a) is reward with discount v € (0,1), and Py(s,s’,a) is
the transition probability as defined in IV-A. During the value
function evaluation process, the critic aims to minimize the
loss function in (39) to obtain a fixed point of the projected
Bellman operator by gradient TD learning, where the Lipschitz
continuity property of the MSPBE loss function in (39) is
significant to guarantee a successful policy-parameter update.
Note that the loss function in is quadratic and thus convex
with respect to 6.

Lemma 1: Given the feature vector &(s) =
(d*(s),-- -, cbi(s))—r, the Eg(w)’s gradient is (-Lipschitz with
0= (1+~)?max; ||¢?||3, where i € T.

Proof: See Appendix C in the technical report [29]. O
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Algorithm 2 Training Procedure of Our A2C Algorithm

1: Input: Time budget 7', discount factor +, BFL environment env

2: Output: Optimal parameterized action policy 7y and maximum
reward R

3: Initialization: Initialize offloading policy parameters 64, parame-
terized allocation policy parameter 0., critic parameter w, actor’s
learning rate 'y®, critic’s learning rate 'y, discount parameter vy,
initial reward R =0

4: for each episode do
5:  Set up initial state sg
6: for timestept =1,2,...,7 do
7: Perform action sampling using 7¢(.|s) and 7¢(.|s)
8: for each MD n € N do
9: Sample the discrete offloading action with policy =, ~
wdo, (1s)
10: Sample continuous allocation parameters for the selected
offloading action x,,
. (Prsbn,g, Un) ~ 76 (]S, 2n), if Tnmg=1
" (f7€7\1}n) Nﬂgc(.|57.’L‘n)7 if Tn,m,g =0
11: end for
12: Execute the parameterized action at —
(Tn,m,g,tsCn,t), ¥Yn € N in the BFL environment
13: Obtain reward r; and next state Siyi1: (7¢, Se+1)
env.step(az)
14: Calculate the accumulated reward Riq1 «— 7¢ + 7y * Ry

15: Compute the advantage function A™ (s, a) using (29) based
on 7, and V7 (s)

16: Estimate the policy gradient for the actor: VJ(mg) =
Eswd"e (.),a~mg(.]s) [Aﬂ’e (57 a’)vﬂ' IOg o (G’|S)]

17: Optimize the actor policy via TRPO in (35) with computed
advantage value and update its parameter with KL constraint

in (38): Orp1 = 0; +vi ) 2K

18: Calculate the MSPBE loss for critic via (39)

19: Optimize V,, for the critic and update its policy in (40) via
TD error o¢: wit1 = we + YEA™ (s¢,a1). Vi Vi (st)

20:  end for

21: end for

Based on the stochastic gradient descent on Fg(w) with
respect to parameter w, the critic update can be achieved by

wit1 = wr +YiA™ (s¢,a) Vi Vi (1), (40)

where y¢ € (0,1) is a step-size parameter.

E. Training Procedure of Parametrized A2C Algorithm in
BFL

The training procedure of our A2C algorithm is summarized
in Algorithm 2. To prepare for the training, we build a BFL
environment where multiple MDs participate in the FL training
and block mining with a set of ESs connected via wireless
links. The objective function in the system utility optimization
problem built in (32) is selected as a system DRL reward that
is obtained via iterative training with parameterized actions
and system states for an optimal offloading policy 7 to
maximize the reward R in the long run with a initial system
state (line 5). We build an actor that consists of a deep neural
network (DNN) for offloading decision sampling and another
DNN for parameter sampling. At each timestep, we randomly
sample a set of discrete offloading actions for all MDs via
a DNN-empowered policy 7%(.|s). Then we also sample a
set of continuous allocation parameters based on the sampled
offloading decision using another policy 7§ (.|s, x,,) as defined
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TABLE IV

SIMULATION PARAMETERS
Parameter Value
Number of ESs M 5
Number of MDs N [20-100]
Number of sub-channels at each ES K 5
Data size D, [0.5-2] MB
CPU workload of MDs and ESs [0.7-1.1] Geyles
MDs’ transmit power p., [10-30] dBm
MD’s computational capability fﬁ [0,2-2] GHz
ES’s computational capability f, 5 GHz
Background noise variance -100 dBm
Maximum system bandwidth W 20 MHz
MD’s model size ¥ 5 KB
MD’s energy coefficient x 5%10727

MD’s hash rate ¥,
MD’s mining power efficiency =,,

[100-1000] GHash/s
5% 1078 J/hash

Hash amount of a block 7 50 GHash
Block broadcasting rate & 0.005

Number of forking occurrences ¢ 3

MD’s maximum latency 7, 3 sec

Noise power spectral density Ng -174 dBm/Hz
ES’s bandwidth b,/ 5 MHz

ES’s transmit power p, ./ [100-120] dBm

in IV-A (lines 7-11). With the result of the action sampling
step, we generate a complete set of parameterized actions for
all MDs which is ready to be executed in the BFL environment
(line 12). This allows us to obtain the reward, i.e., system
utility, to calculate the long-term return and the agent moves
to the next state needed for the following step of training
(lines 13-14). Then, the actor and critic updates their policy
(lines 15-19): (i) the actor computes the policy gradient via its
advantage function and TRPO to optimize its policy, and (ii)
the critic computes the MSPBE loss function and updates its
gradient via TD error learning.

V. SIMULATIONS AND PERFORMANCE EVALUATION
A. Parameter Settings

We conduct numerical experiments to verify our method
under various parameter settings. Inspired by related
works [12], [14], [15], [24], [30], [36], we set up all necessary
parameters for our BFL environment as listed in Table IV.

We consider a BFL system with 3 ESs and 10 MDs which
aim to collaboratively train two popular image datasets:
SVHN! (including 73,257 training instances and testing
26,032 instances) and Fashion-MNIST? (including 60,000
training instances and testing 10,000 instances), where each
dataset contains 10 labels/classes. For the SVHN dataset,
we deploy a convolutional neural network (CNN) with two
2-D convolutional layers followed by two hidden layers (the
first with 256 units and the second with 72 units) with ReLU
activation. The CNN architecture used for the Fashion-MNIST
dataset is similar, with the first hidden layer with 320 units
and the second hidden layer with 50 units. We investigate the
FL performance under both IID and non-IID data settings.
In IID data setting, each MD possesses datapoints from
all the 10 labels, while in non-IID data setting, each MD
contains data samples from three of 10 labels for the SVHN
dataset and two of 10 labels for the Fashion-MNIST dataset.
We employ the Adam optimizer with mini-batch size of
25 and 10 SGD iterations.

In our A2C algorithm, the actor has two DNNs, one for
the discrete offloading policy with two hidden neural layers
{64 and 32 in sizes} and one for the continuous allocation

Uhttp:/fufldl.stanford.edu/housenumbers/
Zhttps://github.com/zalandoresearch/fashion-mnist
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Fig. 4. Comparison of different FL approaches on SVHN dataset.

parameter policy with two layers {128 and 64 in sizes}. For
the output layers, we used Softmax to generate offloading
decisions for MDs and adopted Tanh to produce allocation
parameters given the discrete offloading policy. The KL diver-
gence constraint exr, is set to 0.01 for the TRPO-based actor
policy optimizer [41]. The critic was also built by a DNN that
contains two hidden layers of sizes {200, 100} to train the
state-value function of our A2C scheme with the Adam opti-
mizer. To implement our parameterized A2C algorithm, we set
up a virtual agent that is allowed to interact with a pre-defined
BFL environment to learn the parameterized offloading policy
for all MDs and observe the return, i.e., system utility, after
each iteration. We trained the agent over 10000 episodes with
100 timesteps per each episode. All numerical results are
averaged over 10 independent simulation runs.

B. Evaluation of FL Performance

We evaluate the classification accuracy and loss perfor-
mance of our proposed BFL scheme (with 5 consensus rounds)
and compare it with two related schemes. The first one is
a traditional FL scheme [1], where ESs work independently
and each only aggregates the models of its associated MDs
and then broadcasts the resulting model across devices. The
second one is a traditional BFL without P2P consensus [4],
in which each ES runs an averaging algorithm by collaborating
with its MDs to build its aggregated model, and then a
random ES is selected as a leader that builds a global model
based on its local aggregated model without conducting P2P
consensus. Fig. 4 illustrates the performance when training
the SVHN dataset, showing the considerable improvements in
terms of higher accuracy and lower loss compared with the
counterparts. Although the performance degrades when the
dataset becomes non-IID, our consensus-based BFL scheme
still outperforms other algorithms. The BFL scheme with-
out consensus achieves a better training performance than
the traditional FL scheme since its randomized leader ES
selection avoid local model bias across the clients. Moreover,
the performance gap between our scheme and the others
becomes larger in the non-IID case which demonstrates the
benefit of consensus-based model aggregation over existing
approaches. The advantages of our scheme are also verified on
the Fashion-MNIST dataset in both IID and non-IID settings,
as indicated in Fig. 5. For example, in the IID setting, our
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Fig. 6. Comparison of BFL performance with different consensus rounds on
Fashion-MNIST dataset.
consensus-based BFL scheme improves the accuracy rate by
8% and 14% in comparison with the traditional BFL scheme
without consensus and the traditional FL scheme, respectively.
Fig. 6 investigates the impact of P2P consensus rounds (i.e.,
5, 10, and 15 rounds) on the learning performance. We can see
that the increase of consensus rounds significantly improves
the performance. Under the non-IID setting, the role of con-
sensus on the model training becomes more significant with
a larger performance gap, for example, between 5 rounds and
15 rounds, which shows the efficiency of our consensus-based
BFL design for federated model training.

C. Evaluation of DRL Training Performance

We first investigate the training system reward (i.e., sys-
tem utility as defined in (32)) performance by changing the
learning rates at both actor and critic, which is important to
determine a reliable parameter set for our later simulations,
as shown in Fig. 7. If the learning rate is too small, the
policy training probably requires long time to achieve an
optimal solution. However, if we set a large learning rate, the
training may become unstable and possibly diverge. In A2C
algorithms, since the actor updates slower than the critic with a
timestep, we set up the actor with a learning rate smaller than
the critic’s learning rate. We first evaluate the impacts of the
actor learning rate, i.e., the backtracking step-size parameter
v¢ which controls the policy update in the trust region in
each iteration of TRPO under the KL divergence constraint.
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Fig. 7. Evaluation of the training performance.

Fig. 7(a) reveals that the learning rate of 0.003 exhibits the
highest system reward with the fastest convergence, compared
to the case of y{ = 0.001 which shows the slowest con-
vergence rate. However, when the learning rate is relatively
high (y¢ = 0.005), the learning process becomes unstable
and diverges. Similar to the actor part, we also set up a
learning procedure by considering various critic learning rates.
As indicated in Fig. 7(b), the learning rate y§ = 0.02 has the
most stable training performance with a quick convergence,
compared to other learning settings. Thus, we will use learning
rates y¢ = 0.003 and y§ = 0.02 for the following simulations.

Next, we compare the reward performance obtained by
our proposed parameterized A2C algorithm against two base-
line schemes: A2C with relaxed action space [36] and A2C
with approximated action space [37]. For the first baseline
scheme, we first relax the discrete offloading vector into
a continuous set by defining a relaxed space as A, =
{f(z1,), f(z2),..., f(xn)}, where f(.) is a probability soft-
max function, and then re-normalize them to approximate
discrete offloading vectors for execution. Compared with our
proposed parameterized scheme, this method significantly
increases the sampling complexity on the joint action space.
For the second baseline scheme, we discretize each of contin-
uous allocation vectors into a discrete subset. For example, the
transmit power variable of MD n is discretized into Z levels as

1
maw | 1Z1—2
P, = |:07pmzn7pmzn (m) P apmam:|’ where Pn =

Pmin

0 implies the local execution mode. This discretization process
creates a large number of quantization levels for convenient
action sampling but also results in quantization noise.

From Fig. 8(a), our proposed scheme can achieve the
best reward performance compared with baseline approaches,
thanks to a flexible parameterized action sampling solution
where both discrete offloading decisions and allocation vari-
ables are directly trained without relaxation or approximation.
Meanwhile, the A2C scheme with relaxed action space suffers
a reward decrease with high training variance since the offload-
ing action selection must be converted into a continuous space
of allocation vectors, leading to an extremely high complexity
in the action sampling and thus making the training inefficient.
Moreover, its complex action sampling requires longer time
to reach convergence, i.e., after 4000 episodes compared to
2500 episodes in our proposed scheme. The lowest reward
gain is observed at the approximated scheme, where the
approximation of action space introduces the quantization
error which degrades the policy training.

We then compare our scheme with state-of-the-art DRL
approaches: (i) A2C [12], as in our method but only using the
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Fig. 9. Comparison of system latency between different schemes .

vanilla gradient update at the actor without policy optimization
improvement; (ii) deep deterministic policy gradient (DDPG),
using actor-critic with deterministic policy training over the
continuous action space [36]; (iii) standard actor-critic [28],
i.e., without using advantage function in the policy estimation;
and (iv) deep Q-network [22], which uses action sampling
approximation. From Fig. 8(b), we find that our proposed para-
meterized A2C method is better than baselines in terms of sys-
tem reward and convergence rate and stability. This is due to
the efficient action sampling and improved policy optimization
based on trust region enforcement which helps avoiding possi-
ble gradient divergence. Thus, a faster and more reliable policy
search is achieved toward an optimal solution. The DDPG
scheme has a lower reward convergence speed due to the relax-
ation of the discrete offloading action space. This increases
action sampling complexity and thus makes the policy training
less efficient compared with our parameterized A2C.

D. Evaluation of System Latency Performance

In this subsection, we evaluate the system latency per-
formance under networking scenarios. Based on the system
reward (utility) computed via the above training process,
it is straightforward to calculate the system latency via their
mathematical relation as mentioned in (31) and (32).

We investigate the latency performance when varying the
numbers of MDs from 20 to 100 in Fig. 9(a). The system
latency obtained by our proposed parameterized A2C scheme
is the lowest across the considered methods. As expected, the
latency of each method increases with the number of MDs,
due to a higher offloading and mining latency caused by a
higher competition on bandwidth and hash allocation among
MDs, our proposed scheme still achieves the best latency
performance when the number of MDs increases. For instance,
with 100 MDs, the system latency of our scheme is 11%, 13%,
25% and 38% lower than that of the DDPG, A2C, actor-critic,
and deep Q-network schemes, respectively.

We then investigate the impact of P2P rounds on the system
latency, as indicated in Fig. 9(b). We change the number of
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Fig. 10. Comparison of system latency with different resource allocation settings.

P2P rounds from 0 to 20, where O implies the traditional BFL
scheme without consensus. Although the use of consensus
procedure at the edge layer enhances the model training
performance, it potentially increases the system latency due
to the additional delay of P2P model aggregation among
ESs. However, with our advanced DRL design, the proposed
parameterized A2C scheme achieves the minimal latency
compared with other baselines. The increase of P2P rounds
requires more time for model aggregation, leading to a higher
system latency, but our approach still has the best performance.

We also investigate the latency performance under different
resource allocation scenarios in Fig. 10 in a BFL environment
with 5 ESs and 30 MDs. We first vary the maximum transmit
power P, at each MD n between 10 and 30 dBm and then
measure the latency of offloading and mining. As shown in
Fig. 10(a), the latency of all schemes decreases with respect
to the increasing amount of allocated transmit power. This is
because a larger transmit power improves the data transmission
rate that helps reduce the data offloading latency. Notably,
compared with other schemes, our method achieves the most
significant and stable latency decrease due to our efficient
and robust parameterized policy training to obtain the better
offloading trajectory.

Moreover, we investigate the latency trends of different
algorithms when the maximum system bandwidth W varies
from 20 to 30 MHz in Fig. 10(b). Similar to the power
allocation scenario, more bandwidth would help mitigate the
offloading latency. In our simulation setting, the impact of
bandwidth on the system latency is significant before the
threshold of 25 MHz, where our scheme shows the best latency
savings. Compared with DDPG, A2C and actor-critic schemes,
our parameterized A2C scheme can reduce the latency by 7%,
8% and 17%, respectively, and achieves a 60% lower latency
compared with the deep Q-network baseline.

Finally, we compare the latency performance with respect
to the changes of mining hash power capability Wp,.y.
By increasing the hash budget, each MD has a higher
chance to obtain sufficient hash power to run the block
mining. As can be seen in Fig. 10(c), our proposed scheme
outperforms other baselines in terms of system latency in
each hash allocation setting. The simulation results thus
demonstrate the efficiency of our proposed A2C algorithm
design in the system latency minimization.

E. Attack Evaluation

1) Attack Model and Security Analysis With Blockchain:
A major concern in conventional FL. with a single centralized

aggregation server is that the server may become compromised
via model poisoning attacks launched by adversaries. Model
poisoning attacks mainly consist of untargeted model poison-
ing attacks and targeted model poisoning attacks [43]. The
former category aims to degrade the accuracy of the global
model training, whereas the latter aims to control the model
deviation towards their target. Here, we focus on untargeted
model poisoning attacks on our BFL system.

We assume that at a certain global FL round &, an ES can
be compromised by a model poisoning attack following two
steps. First, the attacker injects certain random noise v(¥) to the
aggregated global model w®) obtained via 12 to manipulate
the global model update w*) «— w®*) + v(¥) Here we adopt
Gaussian noise, i.e., v¥) = —wq(®), where w is a scaling
factor which characterizes the magnitude of the compromised
model, and ¢(*) is a random vector sampled from the Gaussian
distribution A(0, I). Next, the attacked ES broadcasts the
compromised global model to local MDs.

In our BFL system, blockchain replaces the centralized
authority in FL with a decentralized tamper-proof data ledger
to monitor the model consensus process as well as mitigate
single-point-of-failure. By deploying a blockchain over the
edge layer, any model update event over consensus rounds
at a certain ES is automatically traced by other ESs. If a
poisoning attack takes place at an ES, other ESs can detect
this behavior via transaction logs. Here, we adopt the attack
detection score metric [44], which characterizes the abnormal
gradient deviation caused by the poisoning attacker at a certain
FL round, to detect the occurrence of a model attack at a

certain ES. ) ) o
2) Attack Simulation: We investigate the training perfor-

mance of different FL. methods under model poisoning attacks
on the two considered datasets. We consider an attack scenario
where an adversary compromises an ES and deploys model
poisoning attacks by injecting random noise at the global
rounds of 20 and 60 during the model consensus process
among ESs. Our proposed consensus-based BFL scheme with
blockchain is compared with other three baselines: consensus-
based FL without blockchain, BFL without consensus, and
traditional FL. For the consensus-based schemes, we consider
that there are 5 consensus rounds and the attacker poisons
the model at round 3. For the BFL scheme without consen-
sus, the attacker poisons one of the ESs during the global
model aggregation process. For the traditional FL scheme, the
attacker poisons the centralized aggregator.

As illustrated in Fig. 11 for the SVHN dataset, the accu-
racy performance of all schemes is dropped when the attack
occurs (i.e., at aggregation rounds 20 and 60). However, our
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Fig. 11.  Comparison of different FL approaches under model poisoning
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Fig. 12.  Comparison of different FL. approaches under model poisoning
attacks (Fashion-MNIST dataset).

consensus-based BFL scheme achieves the best accuracy rate
and highest robustness against the poisoning attack in both
IID and non-IID data distribution settings. For instance, from
Fig. 11(a), we see that the accuracy of our scheme at the onset
of an attack only drops by 3.7%, as opposed to 7.6%, 16.9%,
and 32.1% in the consensus-based FL without blockchain,
BFL without consensus, and traditional FL. schemes, respec-
tively. The traceable data ledger of blockchain records all the
global updating behaviors of ESs across consensus rounds,
which allows blockchain to rapidly detect the poisoning
attack. Since all ESs are connected on the shared ledger,
the blockchain disregards this ES from the consensus process
to protect model training. The consensus-based FL scheme
without blockchain has the second highest performance. The
poisoned model is involved in the consensus process, which
degrades the overall model aggregation, though the impact is
dampened since the poisoned model is only one participating
in the consensus process. The other two non-consensus-based
methods show lower accuracy and less robustness against the
attack. The BFL scheme without consensus shows lower train-
ing robustness since the attack at one of the ESs significantly
affects the global model aggregation at that particular server
and its associated MDs. In the traditional FL. scheme with
a centralized server, the model training is degraded after the
attack since the attacker directly poisons the only model aggre-
gator. We repeat these experiments on the Fashion-MNIST
dataset in Fig. 12 which indicates qualitatively similar results.

VI. CONCLUSION

This paper studied a decentralized BFL system in
multi-server edge computing with a holistic design of both
offloading-assisted ML model training and mobile block min-
ing schemes. A model aggregation solution has been developed
via P2P-based consensus among ESs to build a global model
that is shared with MDs via Blockchain for reliable model
learning empowered by block mining. We aimed to minimize
the system latency by a parameterized A2C algorithm with a
careful design of actor and critic. A comprehensive analysis
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of the convergence properties of our proposed BFL model
was given. Numerical simulations verified the superior per-
formance of our proposed consensus-based BFL scheme over
state-of-the-art schemes in terms of higher accuracy and lower
loss. The proposed parameterized A2C algorithm exhibited the
faster convergence rate and lower system latency, compared
with the existing DRL schemes. Our blockchain-empowered
BFL scheme also achieved high robustness against model
poisoning attacks.
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