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Abstract—We consider linear coding for Gaussian two-way
channels (GTWCs), in which each user generates the transmit
symbols by linearly encoding both its message and the past
received symbols (i.e., the feedback information) from the
other user. In Gaussian one-way channels (GOWCs), Butman
has proposed a well-developed model for linear encoding that
encapsulates feedback information into transmit signals. However,
such a model for GTWCs has not been well studied since the
coupling of the encoding processes at the users in GTWCs renders
the encoding design non-trivial and challenging. In this paper, we
aim to fill this gap in the literature by extending the existing signal
models in GOWCs to GTWCs. With our developed signal model
for GTWCs, we formulate an optimization problem to jointly
design the encoding/decoding schemes for both the users, aiming
to minimize the weighted sum of their transmit powers under
signal-to-noise ratio constraints. First, we derive an optimal form
of the linear decoding schemes under any arbitrary encoding
schemes employed at the users. Further, we provide new insights
on the encoding design for GTWCs. In particular, we show that it
is optimal that one of the users (i) does not transmit the feedback
information to the other user at the last channel use, and (ii)
transmits its message only over the last channel use. With these
solution behaviors, we further simplify the problem and solve it
via an iterative two-way optimization scheme. We numerically
demonstrate that our proposed scheme for GTWCs achieves a
better performance in terms of the transmit power compared to
the existing counterparts, such as the non-feedback scheme and
one-way optimization scheme.

I. INTRODUCTION

The two-way channel was first studied by Shannon [1],
where two users exchange their messages with each other
through their separate channels. In this paper, we consider
Gaussian two-way channels (GTWCs), where Gaussian noise
is added independently to each way of the channels between
the users. Han in [2] showed that incorporating feedback
information (i.e., the previously received symbols) into transmit
symbols for encoding does not increase the capacity of GTWCs.
Nevertheless, it has been shown that feedback can improve the
communication reliability of Gaussian channels [3]–[9].

For Gaussian one-way channels (GOWCs), the seminal work
done by Schalkwijk and Kailath (S-K) in [3] introduced a
simple linear encoding that can achieve doubly exponential
decay in the probability of error upon having noiseless feedback
information. In [4], Chance and Love proposed a linear
encoding scheme for GOWCs with noisy feedback, which is
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further analyzed and revealed to be the optimal linear encoding
scheme by [5]. In [6], Kim. et al. exploited deep learning
for a non-linear coding in GOWCs and showed performance
improvements in the error probability.

For GTWCs, several recent works have revealed the ad-
vantages of feedback in terms of improving communication
reliability. In [7], Palacio-Baus and Devroye showed that
feedback can improve the error exponent as compared to
the non-feedback case. In [10], Vasal suggested a dynamic
programming (DP)-based methodology for encoding in GTWCs.
Although the effectiveness of the DP approach in GTWCs has
not been verified, the author’s previous work [8] revealed that
the DP approach is effective in GOWCs with noisy feedback.

To the best of our knowledge, a general system model
for linear encoding in GTWCs has not been well studied,
unlike the well-developed counterpart for GOWCs proposed
by Butman [9]. Furthermore, designing the linear encoding
schemes for GTWCs is a non-trivial process since the coupling

of the encoding processes at the users should be encapsulated
in the system model. In this paper, we aim to bridge the gaps
between the two pieces of literature on GOWCs and GTWCs.
To this end, we propose a general system model for linear
coding in GTWCs by extending the existing formulations in
GOWC literature [4], [5], [9] to GTWCs.

Furthermore, using our developed signal model for GTWCs,
we define the signal-to-noise ratio (SNR) at the users, and
then derive an optimal form of the linear decoding schemes
by maximizing the SNRs under arbitrary encoding schemes
employed at the users. We then formulate the weighted sum
transmit power minimization problem to satisfy arbitrary SNR
thresholds, aiming to jointly optimize the encoding/decoding
schemes of the users. To mitigate the coupling effect caused
by encoding processes at the users, we assume that one of the
users (i.e., User 2) feeds back only recently received signal.
Under this assumption, we theoretically characterize the optimal
solution for a part of the encoding schemes. In particular, we
first prove that it is optimal for one of the users (i.e., User 2) not
to utilize the last channel use for feeding back the previously
received signals to the other user (i.e., User 1). Second, based
on our conjecture, we claim that it is optimal for User 2 to
transmit the message only over the last channel use. From
our theoretical insights on the encoding and decoding design,
we further simplify the optimization problem and propose an
iterative two-way optimization scheme to solve it. Through
numerical experiments, we reveal that our proposed two-way

20
22

 5
8t

h 
An

nu
al

 A
lle

rt
on

 C
on

fe
re

nc
e 

on
 C

om
m

un
ica

tio
n,

 C
on

tr
ol

, a
nd

 C
om

pu
tin

g 
(A

lle
rt

on
) |

 9
79

-8
-3

50
3-

99
98

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
OI

: 1
0.

11
09

/A
LL

ER
TO

N4
99

37
.2

02
2.

99
29

41
6

Authorized licensed use limited to: Purdue University. Downloaded on March 01,2023 at 19:53:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: System model for Gaussian two-way channels.

optimization scheme outperforms the open loop (i.e., non-
feedback) and the one-way optimization schemes.

II. SYSTEM MODEL IN GAUSSIAN TWO-WAY CHANNELS

We consider a two-way channel between two users, User 1
and User 2, as shown in Fig. 1. We assume that User 1 and 2
perform linear encoding and decoding of blocklength N . Let
k 2 {1, · · · , N} denote the index of channel use, and x1[k]
and x2[k] represent the transmit signals at User 1 and User 2,
respectively, at time k. We consider additive white Gaussian
noise (AWGN) channels between the users. Subsequently, the
received signal at User 2, y2[k], and User 1, y1[k], at time k
are given by

y2[k] = x1[k] + n1[k], (1)
y1[k] = x2[k] + n2[k], (2)

respectively, where n1[k] ⇠ N (0,�2
1) and n2[k] ⇠ N (0,�2

2)
are Gaussian noises. Considering signal exchange over the
blocklength of N , we represent the received signals at User 2
and User 1 in vector form as y2 = [y2[1], ..., y2[N ]]> 2 RN⇥1

and y1 = [y1[1], ..., y1[N ]]> 2 RN⇥1, respectively, given by

y2 = x1 + n1, (3)
y1 = x2 + n2, (4)

where xi = [xi[1], ..., xi[N ]]> and ni = [ni[1], ..., ni[N ]]>,
i 2 {1, 2}.

The goal of signal exchange among the users is to transmit
the message available at each user to the other. In particular,
each User i, i 2 {1, 2}, aims to transmit a unique message
mi 2 R to the other user where E[mi] = 0 and E[|mi|2] = 1.
Motivated by the advantages of incorporating the received
signals into transmit signals through feedback in GOWCs, e.g.,
enhancing communication reliability [3]–[5], [9], we consider a
linear coding framework at the users that exploits the feedback
in GTWCs. In our framework, users receive some feedback
information from one another and utilize that to generate their
transmit signals. User i constructs the transmit signal at time
k, xi[k], as a function of the message mi and the received
signals up to time k � 1, {yi[⌧ ]}k�1

⌧=1.
We consider that User i, i 2 {1, 2}, employs the message

encoding vector g̃i 2 RN⇥1 for encoding the message mi and
the feedback encoding matrix F̃i 2 RN⇥N for encoding the
received signals. Note that F̃i, i 2 {1, 2}, is strictly lower
triangular (i.e., the matrix entries are zero on and above the
diagonal) due to causality of the system. To avoid feeding back

redundant information, we consider that each user removes the
contribution of its known prior transmitted signals from the
received signals to generate its future transmit signals. For the
case of User 1, the transmit signal x1 is encoded by User 2
with F̃2 and then transmitted back to User 1. Therefore, User
1 subtracts its signal portion x1 from the receive signal y1 as
y1 � F̃2x1. It is obvious that using the feedback information
y1 is equivalent to using the modified feedback information
y1�F̃2x1. Similarly, User 2 subtracts its signal portion x2 from
y2 and obtains the modified feedback information y2 � F̃1x2.
The transmit signals of the users are then given by

x1 = g̃1m1 + F̃1(y1 � F̃2x1), (5)
x2 = g̃2m2 + F̃2(y2 � F̃1x2). (6)

Since each of the users transmits the signals encapsulating
the received signals from the other over the multiple channel
uses, a coupling occurs between the transmit signals at the users.
To mitigate the coupling effects in the signal representation,
we rewrite the signal model in (5)-(6) as

x1 = g1m1 + F1(y1 � F2x1), (7)
x2 = g2m2 + F2y2, (8)

by expressing g1, F1, g2, and F2 as functions of g̃1, F̃1, g̃2,
and F̃2. Specifically, we can reformulate the equation in (6)
and obtain

x2 = (I+ F̃2F̃1)
�1g̃2m2 + (I+ F̃2F̃1)

�1F̃2y2. (9)

By comparing the equations in (8) and (9), we can find g2 =
(I + F̃2F̃1)�1g̃2 and F2 = (I + F̃2F̃1)�1F̃2. Similarly, we
can rewrite the equation in (5) as

x1 = g̃1m1 + F̃1(y1 � F̃2x1 � F2x1 + F2x1)

=
�
I� F̃1(F2 � F̃2)

��1
g̃1m1

+
�
I� F̃1(F2 � F̃2)

��1
F̃1(y1 � F2x1). (10)

By comparing the equations in (7) and (10), we can find
g1 = A�1g̃1 and F1 = A�1F̃1, where A = I � F̃1(F2 �
F̃2) = I� F̃1((I+ F̃2F̃1)�1 � I)F̃2. Note that both F1 and
F2 are strictly lower triangular.

Henceforth, we aim to design g1, F1, g2, and F2 and focus
on the signal representation in (7)-(8). Accordingly, we rewrite
the received signal expressions in (3)-(4) as

y1 = g2m2 + F2y2 + n2, (11)
y2 = g1m1 + F1(y1 � F2x1) + n1

= g1m1 + F1g2m2 + (I+ F1F2)n1 + F1n2. (12)

Considering the received signals (11)-(12), the transmit
signals in (7)-(8) can be written as the sum of the messages
and noises as follows:

x1 = g1m1 + F1(g2m2 + F2n1 + n2), (13)
x2 = g2m2 + F2(g1m1 + F1g2m2 + (I+ F1F2)n1 + F1n2)

= (I+ F2F1)g2m2 + F2g1m1

+ F2(I+ F1F2)n1 + F2F1n2. (14)

2
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Using the above two expressions, we formulate the transmit
power of the users as

E
⇥
kx1k2

⇤
= kg1k2 + kF1g2k2 + kF1F2k2F�2

1 + kF1k2F�2
2 ,

(15)
E
⇥
kx2k2

⇤
= k(I+ F2F1)g2k2 + kF2g1k2

+ kF2(I+ F1F2)k2F�2
1 + kF2F1k2F�2

2 , (16)

where the messages and the noises are assumed to be un-
correlated to each other. In the following section, we define
SNRs of the users and obtain the optimal decoding schemes by
maximizing the SNRs. We then introduce our encoding design
and solution method.

III. LINEAR ENCODING AND DECODING SCHEMES IN
GTWC

A. Design of Optimal Linear Decoding Schemes

Since the decoding is conducted at each of the users
independently, we can use the same technique used in GOWC
to find the optimal linear decoding scheme [4], [5]. After the
N channel uses, each user aims to estimate the message of
the other user. We first consider that User 1 estimates m2

with the received signal y1 by using a linear combining vector
w2 2 RN⇥1. By plugging y2 (given by (12)) in y1 (given by
(11)), we can rewrite y1 as y1 = F2g1m1+(I+F2F1)g2m2+
F2(I+ F1F2)n1 + (I+ F2F1)n2. Through a pre-processing
phase, User 1 is assumed to subtract its message contribution,
F2g1m1, from y1 to obtain z1 = y1 � F2g1m1 = (I +
F2F1)g2m2+(I+F2F1)F2n1+(I+F2F1)n2. For estimating
m1, using z1 is equivalent to using ỹ1 = (I+ F2F1)�1z1 =
g2m2 + F2n1 + n2. Using the result of pre-processing, User
1 obtains the message estimate m̂2 = w>

2 ỹ1. The SNR used
to estimate m2 is

SNR2 =
|w>

2 g2|2

w>
2 Q2w2

, (17)

where

Q2 = F2F
>
2 �

2
1 + �2

2I. (18)

Similarly, we consider that User 2 estimates m1 using the
received signal y2 via a linear combining vector w1 2 RN⇥1.
In pre-processing, User 2 is assumed to subtract its message
contribution from y2 in (12), and obtains ỹ2 = y2�F1g2m2 =
g1m1+(I+F1F2)n1+F1n2. User 2 then obtains the message
estimate m̂1 = w>

1 ỹ2 under SNR

SNR1 =
|w>

1 g1|2

w>
1 Q1w1

, (19)

where

Q1 = (I+ F1F2)(I+ F1F2)
>�2

1 + F1F
>
1 �

2
2 . (20)

Given g1, F1, g2, and F2, the optimal combining vector (that
minimizes the error probability for message estimation) is
obtained by maximizing the SNRs given by [4], [5]

w?
i =

Q�1
i gi

g>
i Qi

�1gi

, i 2 {1, 2}. (21)

Plugging (21) in (17) and (19), we obtain the SNR as

SNRi = g>
i Q

�1
i gi, i 2 {1, 2}. (22)

B. Optimization Formulation for Linear Encoding Schemes

The decoding schemes in (21) are represented as functions
of the encoding schemes of the users. Thus, for joint encoding
and decoding design, we focus on designing the encoding
schemes with the derived form of SNRs in (22). In this work,
we minimize the weighted sum of the users’ transmit powers
under their SNR constraints. Accordingly, the optimization
problem is given by

(P) : min
g1,F1,g2,F2

↵E
⇥
kx1k2

⇤
+ (1� ↵)E

⇥
kx2k2

⇤

s.t. SNR1 = ⌘1, SNR2 = ⌘2, (23)

where ⌘1, ⌘2 2 R+ are the target SNRs and ↵ 2 (0, 1) is a
weighting coefficient.

Remark 1. The equality constraints in (23) are equivalent to

inequality constraints SNR1 � ⌘1 and SNR2 � ⌘2 in terms of

minimizing the objective function of P . This is because if we

obtain g1 such that SNR1 > ⌘1, we can always choose ḡ1 =
(1�✏)g1 with ✏ 2 (0, 1) under which SNR1 = ḡ>

1 Q
�1
1 ḡ1 = ⌘1.

This choice of ḡ1 will yield a smaller transmit power of the

users in (15) and (16), since kḡ1k2 < kg1k2 and kF2ḡ1k2 <
kF2g1k2. The same holds for the value of SNR2.

In general, at time k � 2, User i feeds back a linear
combination of the previously received signals up to time
k� 1, i.e., {yi[⌧ ]}k�1

⌧=1, where i 2 {1, 2}. This implies that the
initially received signals at the users are repetitively fed back to
the other over a total of N channel uses, e.g., the information
of y2[1] at User 2 is fed back to User 1 over N �1 times. This
repetitive feedback in both ways would make the design of
the encoding schemes more complicated because the encoding
schemes of the users are coupled. To mitigate the complexity
of designing the encoding schemes, we assume that User 2
only feeds back the recently received signal of y2 in (8), i.e.,
F2 is in the form of

F2 =

2

666664

0 0 0 ... 0
f2,2 0 0 ... 0
0 f2,3 0 ... 0
...

...
. . . 0

0 0 ... f2,N 0

3

777775
2 RN⇥N . (24)

First, we investigate the solution behavior for the feedback
of User 2. Specifically, we reveal that it is optimal for User 2
not to utilize the last channel use for feeding back the previous
received signals to User 1, i.e., f2,N = 0, for arbitrary encoding
schemes.

Proposition 1. In the problem P with F2 in the form of (24),
it is optimal that f2,N = 0.

Proof. We let (g1, F1, g2, F2) be any feasible solution to P .
We also let F̄2 be equal to F2, except that the last entry of F̄2

is zero, i.e., f̄2,N = 0. We will show that (i) the solution (g1,

3
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F1, ḡ2, F̄2) is a feasible solution where ḡ2 = (1� ✏)g2 with
some ✏ 2 [0, 1), and (ii) the solution (g1, F1, ḡ2, F̄2) results
in an objective value smaller than or equal to that with (g1,
F1, g2, F2).

We will show the first statement (i). Since (g1, F1, g2, F2)
is a feasible solution, it satisfies the constraints for SNR1 and
SNR2 in (23). First, for SNR2, using (22) and (18), we get

SNR2 = ⌘2 = g>
2 (F2F

>
2 �

2
1 + �2

2I)
�1g2

 g>
2 (F̄2F̄

>
2 �

2
1 + �2

2I)
�1g2. (25)

In (25), we can always choose ḡ2 = (1� ✏)g2 with ✏ 2 [0, 1)
that satisfies ḡ>

2 (F̄2F̄>
2 �

2
1 + �2

2I)
�1ḡ2 = ⌘2. This implies

that (g1, F1, ḡ2, F̄2) satisfies the constraint for SNR2. The
constraint for SNR1 is also satisfied with (g1, F1, ḡ2, F̄2)
since SNR1 relies on Q1 in (20) and we have F1F2 = F1F̄2.
Therefore, (g1, F1, ḡ2, F̄2) is a feasible solution to P .

We then will show the second statement (ii). First, (g1,
F1, ḡ2, F̄2) yields a smaller or an equal transmit power of
E
⇥
kx2k2

⇤
since

E
⇥
kx2k2

⇤
= k(I+ F2F1)g2k2 + kF2g1k2

+ kF2(I+ F1F2)k2F�2
1 + kF2F1k2F�2

2

� k(I+ F̄2F1)ḡ2k2 + kF̄2g1k2

+ kF̄2(I+ F1F̄2)k2F�2
1 + kF̄2F1k2F�2

2 . (26)

Note that E
⇥
kx1k2

⇤
in (15) are not dependent on f2,N since

F1F2 does not include f2,N . Therefore, when f2,N = 0, we
can always obtain a smaller or an equal objective value of P ,
while satisfying the constraints in (23).

We next look into the solution behavior of the message
encoding vector for User 2, g2. To this end, we first formulate
the optimization problem P only with respect to g2, given by

min
g2

↵kF1g2k2 + (1� ↵)k(I+ F2F1)g2k2

s.t. g>
2 Q

�1
2 g2 = ⌘2. (27)

Defining q2 = Q�1/2
2 g2 where Q2 = (Q1/2

2 )2, we write the
equivalent optimization problem as1

min
q2

q>
2 Bq2

s.t. kq2k2 = ⌘2, (28)

where

B = ↵Q1/2
2 F>

1 F1Q
1/2
2

+ (1� ↵)Q1/2
2 (I+ F2F1)

>(I+ F2F1)Q
1/2
2 . (29)

We then introduce our conjecture on the objective function
value of (28), based on which we find the optimal solution for
g2 in (27).

Conjecture 1. For any F1 and F2 (in the form of (24)),

min{↵�2
1 , (1� ↵)�2

2}  ⌫min[B]  (1� ↵)�2
2 , (30)

1If we conduct the singular value decomposition on Q2, we have Q2 =
U⌃U> and obtain Q

1/2
2 = U⌃1/2U>.

where ⌫min[B] denotes the smallest eigenvalue of B in (28).

Proof for N = 3. We note that min{↵�2
1 , (1� ↵)�2

2}  (1�
↵)�2

2 for any ↵ 2 (0, 1). In the special case with N = 3, we
will show that ⌫min[B] = (1�↵)�2

2 for any F1 and F2 (in the
form of (24)). We first rewrite B = (1�↵)�2

2I+C where C =
(1�↵)�2

1F2F>
2 +Q1/2

2

�
↵F>

1 F1 + (1�↵)(F2F1 +F>
1 F

>
2 +

F>
1 F

>
2 F2F1)

�
Q1/2

2 . Then, showing ⌫min[B] = (1 � ↵)�2
2

is equivalent to showing ⌫min[C] = 0. Using (i) Q1/2
2 =

diag([�2,
p
�2
2 + f2,2�2

1 , 0]) from (17) where f2,3 = 0 from
Proposition 1, (ii) [F1]i,j = f1,i,j for 1  j < i 2 {2, 3} while
other entries are zeros, and (iii) F2F1 = 0 due to f2,3 = 0,
we have

C =

2

4
c11 c12 0
c21 c22 0
0 0 0

3

5 ,

where

c11 = ↵�2
2(f

2
1,2,1 + f2

1,3,1),

c12 = ↵�2

q
�2
2 + f2

2,2�
2
1f1,3,1f1,3,2,

c21 = ↵�2

q
�2
2 + f2

2,2�
2
1f1,3,1f1,3,2,

c22 = (1� ↵)�2
1f

2
2,2 + ↵(�2

2 + f2
2,2�

2
1)f

2
1,3,2.

We can easily show that, for any F1 and F2, all the principal
minors of C (i.e., the determinants of the principal matrices)
are non-negative, which proves that C is positive semi-definite.
We then have ⌫min[C] = 0, which leads to ⌫min[B] = (1 �
↵)�2

2 .

We note that, for any N , any example that violates the above
conjecture has not been observed from the extensive numerical
simulations where F1 and F2 are randomly generated.

Proposition 2. If Conjecture 1 is true, g2 = [0, ..., 0,
p
⌘2�2]>

is optimal in P when ↵ � �2
2

�2
1+�2

2
.

Proof. We have a lower bound of the objective function
in (28) as q>

2 Bq2 � ⌫min[B]kq2k2. From Conjecture 1,
we have ⌫min[B] = (1 � ↵)�2

2 when ↵ � �2
2

�2
1+�2

2
. Then,

we have the lower bound as q>
2 Bq2 � (1 � ↵)�2

2kq2k2.
Here, q?

2 = [0, ..., 0,
p
⌘2]> satisfies the lower bound with

kq?
2k2 = ⌘2, which can be easily shown by the fact that

all the entries in the last column and row of B are zeros
except the last diagonal entry is (1 � ↵)�2

2 due to f2,N = 0
from Proposition 1. In other words, q?

2 is an optimal solution
of (28). We then have the optimal solution for (27) as
g?
2 = Q1/2

2 q?
2 = [0, ..., 0,

p
⌘2�2]>, since f2,N = 0 from

Proposition 1.
The result of Proposition 2 shows that it is optimal for User

2 to transmit the message only over the last channel use when
the weight coefficient in (23) satisfies ↵ � �2

2

�2
1+�2

2
.

Using Propositions 1 and 2, we next aim to simplify our
optimization problem P . In our optimization, we consider
the case with ↵ � �2

2

�2
1+�2

2
. From Proposition 2, we have g2 =

[0, ..., 0,
p
⌘2�2]> as an optimal solution, which always satisfies

4
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SNR2 = ⌘2 regardless of other variables. Thus, we can remove
the dependency of the constraint for SNR2 in P . Further, to
make P more tractable, we define q1 = Q�1/2

1 g1 where
Q1 = (Q1/2

1 )2, which implies SNR1 = kq1k2 and kg1k2 =
q>
1 Q1q1. Consequently, we rewrite the transmit powers in (15)

and (16) as

E[kx1k2] = q>
1 Q1q1 + kF1F2k2F�2

1 + kF1k2F�2
2

= kq>
1 (I+ F1F2)k2�2

1 + kq>
1 F1k2�2

2

+ kF1F2k2F�2
1 + kF1k2F�2

2 , (31)

E[kx2k2] = kg2k2 + kF2Q
1/2
1 q1k2 + kF2(I+ F1F2)k2F�2

1

+ kF2F1k2F�2
2 . (32)

Finally, we simplify our optimization P as

( eP) : min
q1,F1,F2

↵E
⇥
kx1k2

⇤
+ (1� ↵)E

⇥
kx2k2

⇤

s.t. kq1k2 = ⌘1. (33)

IV. ITERATIVE TWO-WAY OPTIMIZATION FOR LINEAR
ENCODING SCHEMES IN GTWC

To solve the optimization problem eP , we divide it into two
sub-problems, and solve them alternately through a series of
iterations. The first sub-problem is to solve eP for q1 and F1

given that F2 is fixed, and the second sub-problem is to solve
for F2 assuming q1 and F1 are fixed.

A. First sub-problem for obtaining q1 and F1

We assume a fixed value for F2. We first show that E[kx2k2]
is upper bounded by sum of the scaled version of E[kx1k2]
and some constant terms as follows:

E[kx2k2]
(i)
= kg2k2 + kF2Q

1/2
1 q1k2 + kF2k2F�2

1

+ kF2F1F2k2F�2
1 + kF2F1k2F�2

2

 kg2k2 + kF2k2F�2
1

+ f2
2,max

�
kQ1/2

1 q1k2 + kF1F2k2F + kF1k2F
�

= kg2k2 + kF2k2F�2
1 + f2

2,maxE[kx1k2], (34)

where f2
2,max = max

i=2,...,N�1
f2
2,i. We use the fact that

tr(F2F1F2F>
2 ) = 0 to obtain the equality (i) in (34).

Accordingly, we upper bound the objective function of eP as

(1� ↵)(kg2k2 + kF2k2F�2
1) + (↵+ f2

2,max(1�↵))E
⇥
kx1k2

⇤
,

(35)
In the first sub-problem, instead of solving eP directly, we

aim to minimize the upper bound of the objective function of
eP in (35). Since the other terms in (35) are constants except

for E
⇥
kx1k2

⇤
, the first sub-problem is reduced to

( eP1) : min
q1,F1

E
⇥
kx1k2

⇤

s.t. kq1k2 = ⌘1. (36)

We will solve eP1 via (i) first obtaining the optimal solution
form of F1 in terms of q1, and then (ii) plugging the optimal
solution form of F1 in E[kx1k2] and solving for q1.

Solving for F1. Note that F1 2 RN⇥N is a strictly lower
triangular matrix given by

F1 =

2

6664

0 0 ... 0
f1,2,1 0 ... 0

...
. . . . . .

...
f1,N,1 ... f1,N,N�1 0

3

7775
=

2

6664

0 0 ... 0
f1,1 0 ... 0

. . . . . .
...

f1,N�1 0

3

7775
,

where f1,i = [f1,i+1,i, f1,i+2,i, ..., f1,N,i]> 2 R(N�i)⇥1, i 2
{1, ..., N � 1}. Considering q1 = [q1,1, q1,2, ..., q1,N ]>, we
define the vector that contains a portion of the entries of q1 as

hi = [q1,i+1, q1,i+2, ..., q1,N ]> 2 R(N�i)⇥1, (37)

where i 2 {0, ..., N � 1}. With the defined vectors {f1,i} and
{hi}, we can rewrite E[kx1k2] in (31) as

E[kx1k2] =
N�1X

i=1

�i(f1,i) + �2
1

�
q21,N�1 + q21,N

�
, (38)

where �1(f1,1) , |h>
1 f1,1|2�2

2 + f>1,1f1,1�
2
2 and �i(f1,i) ,��q1,i�1 + f2,ih>

i f1,i
��2�2

1 + |h>
i f1,i|2�2

2 + f>1,if1,i(f
2
2,i�

2
1 + �2

2),
i 2 {2, · · · , N � 1}.

Using (38), our problem of interest (i.e., min
F1

E
⇥
kx1k2

⇤
)

can be decomposed into N � 1 independent problems each
in the form of min

f1,i
�i(f1,i), i 2 {1, ..., N � 1}. Since each

independent problem is convex with respect to f1,i, we find
f1,i optimally by solving @�i(f1,i)

@f1,i
= 0>. Obviously, we have

f1,1 = 0. Also, for i 2 {2, ..., N � 1}, we need to solve

@�i(f1,i)

@f1,i
= (q1,i�1 + f2,ih

>
i f1,i)

>h>
i f2,i�

2
1

+ (h>
i f1,i)

>h>
i �

2
2 + (f2

2,i�
2
1 + �2

2)f
>
1,i = 0>. (39)

In order to satisfy the above equality, we need to have

(f2
2,i�

2
1 + �2

2)(hih
>
i + I)f1,i = �q1,i�1f2,i�

2
1hi. (40)

Finally, the optimal solution form of f1,i, i 2 {2, ..., N � 1},
is given in terms of the entries of q1 (encapsulated in hi

according to (37)) by

f1,i = �q1,i�1f2,i�2
1

f2
2,i�

2
1 + �2

2

�
hih

>
i + I

��1
hi

(i)
= �q1,i�1f2,i�2

1

f2
2,i�

2
1 + �2

2

✓
I� hih>

i

1 + khik2

◆
hi

= � f2,i�2
1

f2
2,i�

2
1 + �2

2

q1,i�1

1 + khik2
hi, (41)

where the Sherman–Morrison formula is used to obtain equality
(i) in (41).
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Solving for q1. Putting the optimal solution of {f1,i}N�1
i=1

obtained in (41) back into (38), we get

E[kx1k2] =
N�1X

i=2

✓
q1,i�1 �

f2
2,i�

2
1

f2
2,i�

2
1 + �2

2

q1,i�1khik2

1 + khik2

◆2

�2
1

+

✓
f2,i�2

1

f2
2,i�

2
1 + �2

2

q1,i�1khik2

1 + khik2

◆2

�2
2

+

✓
f2,i�2

1

f2
2,i�

2
1 + �2

2

q1,i�1

1 + khik2

◆2

khik2(f2
2,i�

2
1 + �2

2)

�

+
�
q21,N�1 + q21,N

�
�2
1

=
N�1X

i=2

�2
1q

2
1,i�1

�
f2
2,i�

2
1 + �2

2(1 + khik2)
�

(f2
2,i�

2
1 + �2

2)(1 + khik2)

+
�
q21,N�1 + q21,N

�
�2
1 . (42)

Then, eP1 is reduced to the following optimization problem:

minimize
q1

N�2X

i=1

�2
1q

2
1,i

�
f2
2,i+1�

2
1 + �2

2(1 + khi+1k2)
�

(f2
2,i+1�

2
1 + �2

2)(1 + khi+1k2)

+
�
q21,N�1 + q21,N

�
�2
1

s.t. kq1k2 = ⌘1. (43)

Defining xi = q21,i � 0, we rewrite the objective function in
(43) as

N�2X

i=1

f2
2,i+1�

4
1xi

(f2
2,i+1�

2
1 + �2

2)(1 + xi+2 + ...+ xN )

+
N�2X

i=1

�2
1�

2
2xi

f2
2,i+1�

2
1 + �2

2

+ �2
1(xN�1 + xN ),

and the constraint in (43) as
PN

i=1 xi = ⌘1.
Using the vector form of x = [x1, ..., xN ]> 2 RN⇥1, we

can formulate the equivalent optimization problem as

minimize
x

N�1X

i=1

u>
i x

1 +m>
i x

subject to 1>x = ⌘1, x � 0, (44)

where 1 = [1, ..., 1]> 2 RN⇥1 and 0 = [0, ..., 0]> 2 RN⇥1.
In (44), ui 2 RN⇥1 and mi 2 RN⇥1, i 2 {1, ..., N � 1}, are
defined as

ui =


0, ..., 0,

|f2,i+1|2�4
1

|f2,i+1|2�2
1 + �2

2| {z }
i�th

, 0, ..., 0

�>
, i 2 {1, ..., N � 2},

uN�1 =


�2
1�

2
2

|f2,2|2�2
1 + �2

2

, ...,
�2
1�

2
2

|f2,N�1|2�2
1 + �2

2

,�2
1 ,�

2
1

�>
,

mi = [0, ..., 0, 1|{z}
i�th

, ..., 1]>, i 2 {1, ..., N � 2},

mN�1 = [0, ..., 0]>,

where ui,mi � 0. The equivalent optimization problem in (44)
is a multi-objective linear fractional programming [11]. We
thus can adopt commercial software [12] to solve this problem.

B. Second sub-problem for obtaining F2

While fixing q1 and F1, we formulate the second sub-
problem as

( eP2) : min
F2

↵E
⇥
kx1k2

⇤
+ (1� ↵)E

⇥
kx2k2

⇤
. (45)

We aim to minimize the objective of eP2 for each f2,i, i 2
{2, ..., N � 1} by setting the derivative with respect to f2,i
equal to zero. Our methodology would yield a sub-optimal
solution given the non-triviality of the problem eP2.

Considering the expression for E[kx2k2] in (32), we express
each of the terms including F2 as a sum of entries of F2, i.e.,
{f2,i}N�1

i=2 . First, revisiting the second term in (32), we obtain

kF2Q
1/2
1 q1k2 = q>

1 Q
1/2
1 F>

2 F2Q
1/2
1 q1

= p>F>
2 F2p =

NX

i=2

p2i�1f
2
2,i, (46)

where we assumed that p , Q1/2
1 q1 = [p1, ..., pN ]> is fixed

for tractability although Q1/2
1 depends on F2. We then express

the third term in (32) as

kF2(I+ F1F2)k2F�2
1

= �2
1

NX

i=2

f2
2,i + �2

1

N�2X

i=2

N�1X

j=i+1

f2
1,j,if

2
2,if

2
2,j+1. (47)

Also, the last term in (32) can be expressed as

kF2F1k2F�2
2 = �2

2

NX

i=3

f2
2,i

i�2X

j=1

f2
1,i�1,j . (48)

Since the derivatives, @E
⇥
kx1k2

⇤
/@f2,i and

@E
⇥
kx2k2

⇤
/@f2,i, can be readily derived from (38) and (32)

using (48), respectively, we finally have

↵
@E

⇥
kx1k2

⇤

@f2,i
+ (1� ↵)

@E
⇥
kx2k2

⇤

@f2,i

= 2↵�2
1q1,i�1h

>
i f1,i + cif2,i, (49)

where

ci , 2↵�2
1

�
|h>

i f1,i|2 + kf1,ik2
�
+ 2(1� ↵)p2i�1 + 2(1� ↵)�2

1

+ 2(1� ↵)�2
1

✓ N�1X

j=i+1

f2
1,j,if

2
2,j+1 +

i�2X

k=2, i�4

f2
1,i�1,kf

2
2,k

◆

+ 2�2
2(1� ↵)

i�2X

j=1, i�3

f2
1,i�1,j .

By setting the right-hand equation in (49) to be zero, we obtain
the solution for f2,i as

f2,i = �2↵�2
1q1,i�1h>

i f1,i
ci

, i 2 {2, ..., N � 1}. (50)

The pseudo-code of our iterative method to solve the overall
optimization problem P is summarized in Algorithm 1. We
solve the two sub-problems alternatively through a series of
outer iterations denoted in lines 5-17. In the inner iterations,
lines 11-13, we solve the second sub-problem.
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Algorithm 1 Iterative Two-Way Optimization for Linear
Encoding in Gaussian Two-Way Channels

1: Input. N , �2
1 , �2

2 , ⌘1, ⌘2, ↵, ✏
2: Output. g1, F1, g2, F2

3: Obtain the optimal solution for g2 and f2,N as g2 =
[0, 0, ...,

p
⌘2�2]

> and f2,N = 0 from Propositions 1 and 2
4: Randomly generate {f2,i}N�1

i=2
5: while |snew � sold| > ✏ do
6: • Sub-problem 1. Obtain g1 and F1

7: Solve the problem in (44) for x = [x1, ..., xN ]> and obtain
q1,i =

p
xi, i 2 {1, ..., N}

8: Obtain the columns of F1, {f1,i}N�1
i=1 , from (41)

9: Obtain g1 = Q1/2
1 q1 where Q1 is given in (20)

10: • Sub-problem 2. Obtain F2

11: while |⌫new � ⌫old| > ✏ do
12: Obtain f2,i sequentially for i 2 {2, ..., N � 1} by (50)

⌫old  ⌫new
Calculate the objective function value ⌫new of (23) with
the updated {f2,i}N�1

i=2
13: end while
14: • Update values for stopping criterion

15: sold  snew
16: Calculate the objective function value snew of (23) with the

updated g1, F1, and F2

17: end while

V. NUMERICAL EXPERIMENTS

We next present numerical simulations to measure the
performance of our proposed two-way optimization scheme.
We consider �2

1 = 1, �2
2 = 0.5, and ⌘1 = ⌘2 = 10. For

our two-way optimization scheme, we consider 30 different
initializations of {f2,i}N�1

i=2 with f2,i ⇠ U(0, 1), and select
the best solution. The threshold for the stopping criterion in
Algorithm 1 is ✏ = 10�3. For performance comparisons, we
consider two baselines. The first baseline is the open loop
scheme where each user only transmits its own message to the
other without employing any feedback scheme. In this case,
F1 = F2 = 0, kg1k2 = ⌘1�2

1 , and kg2k2 = ⌘2�2
2 . The second

baseline is the one-way optimization method that is especially
designed for one-way noisy feedback channels,2 for which we
consider the optimization scheme proposed in [5].

Fig. 2 depicts the weighted sum of transmit powers of the
users under the varying weight ↵ in P with N = 7. We
examine the simulation performances for ↵ � �2

2

�2
1+�2

2
= 0.33.

Our proposed two-way optimization enables us to design the
encoding schemes of both the users adaptively according to the
value of ↵. Specifically, for a small ↵  0.5, the solution
inclines toward minimizing the transmit power of User 2
in P . In this case, providing the feedback information from
User 2 to User 1 may increase the weighted sum of transmit
powers severely, which causes User 1 not to use the feedback

2In two-way channels, two channel uses are needed to receive back the
transmit signals at each user, while only a single channel use is needed in
one-way channels. Therefore, the feedback scheme for the one-way channels
can be applied to the two-way channels by designing the feedback scheme for
User 1 over the odd/even-numbered channel uses. For User 2, the message can
be transmitted only over the last channel use while the feedback information
is conveyed over the even/odd-numbered channel uses without scaling.
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Fig. 2: The weighted sum of transmit powers along ↵.
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2
[k]]
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2
[k]] - E[g2

2
[k]]

Fig. 3: Power profiles for blocklength N = 7.

scheme in the low ↵ regime and thus the performance of our
method resembles that of the open loop in Fig. 2. On the
other hand, as ↵ increases, the problem P is more focused
on minimizing the transmit power of User 1. In this case,
employing the feedback scheme will be beneficial since the
feedback scheme allows User 1 to use lower transmit power
for satisfying the SNR constraint, while it requires User 2 to
use more power for providing the feedback information to User
1. This causes a significant performance enhancement of our
method as compared to baselines in Fig. 2 upon having higher
values of ↵ (0.5  ↵  1).

Fig. 3 shows the power profiles for the message transmission
and the feedback at User 1 and 2 with N = 7 and ↵ = 0.8,
which are obtained by our two-way optimization method. We
note that gi[k] is the value of the k-th entry of the message
encoding vector gi, i 2 {1, 2}. From the figure, User 1 only
uses the 1, 3, 5, 7-th channel uses, while User 2 only uses the
2, 4, 6, 7-th channel uses. In other words, the channel uses do
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Fig. 4: The weighted sum of transmit powers along N .

not overlap between User 1 and 2 except the last channel
use. It is interesting that we do not put any constraints on
the separation of the channel usages between the two users
when solving the optimization problem in (23). However,
solving the optimization problem results in the separation of
the channel usages. It can be also seen that the transmit power
of User 1 decreases along the channel uses, which resembles
the results of the optimal feedback scheme for one-way noisy
feedback channels [5]. User 2 also exhibits diminishing power
consumption along the channel uses.

We note that User 2 conveys its message only over the
last channel based on Proposition 2. It is worth mentioning
that User 2 can split its power for the message transmission
over the empty channel uses, i.e., 1, 3, 5-th channel uses while
maintaining the same objective function value and satisfying
the SNR constraints. This implies that we have multiple optimal
solutions for g2 given the non-convex structure of the problem
P . Thus, although in our problem P we are concerned with
minimizing the average transmit power over the channel block
rather than imposing constraints on the instantaneous transmit
powers, we may prefer to distribute the powers of g2 to mitigate
the instantaneous power concentration.

Fig. 4 depicts the weighted sum of transmit powers under
varying number of channel uses N with ↵ = 0.8. Once N � 3,
User 1 can employ the feedback scheme, which decreases the
weight sum of powers significantly. For N � 5, the weighted
sum of transmit powers of our method is around 23% lower than
the open loop case. Also, having larger number of channel uses,
i.e., when N � 5, result in marginal performance gains. As a

future work, it will be interesting to investigate the performance
improvement along N when instantaneous power constraints
are imposed so that the users avoid to pour most of their
transmit powers to a small portion of the channel uses.

VI. CONCLUSION

In this work, we presented a system model for linear coding
in Gaussian two-way channels to bridge the gap between
the well-developed model for Gaussian one-way channels
proposed by Butman [9] and the case of Gaussian two-way
channels. We then formulated an optimization problem jointly
designing the encoding/decoding schemes for the users and
investigated its solution behavior. We then proposed an iterative
two-way optimization solver to solve our problem. Through
simulations, we showed that our two-way optimization scheme
performs better than the non-feedback scheme and the one-way
optimization scheme. As a future work, imposing instantaneous
transmit power constraints at the users is worth investigating.
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