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ABSTRACT
Traditional learning-based approaches to student modeling general-
ize poorly to underrepresented student groups due to biases in data
availability. In this paper, we propose a methodology for predicting
student performance from their online learning activities that opti-
mizes inference accuracy over di�erent demographic groups such
as race and gender. Building upon recent foundations in federated
learning, in our approach, personalized models for individual stu-
dent subgroups are derived from a global model aggregated across
all student models via meta-gradient updates that account for sub-
group heterogeneity. To learn better representations of student
activity, we augment our approach with a self-supervised behav-
ioral pretraining methodology that leverages multiple modalities of
student behavior (e.g., visits to lecture videos and participation on
forums), and include a neural network attention mechanism in the
model aggregation stage. Through experiments on three real-world
datasets from online courses, we demonstrate that our approach
obtains substantial improvements over existing student modeling
baselines in predicting student learning outcomes for all subgroups.
Visual analysis of the resulting student embeddings con�rm that
our personalization methodology indeed identi�es di�erent activity
patterns within di�erent subgroups, consistent with its stronger
inference ability compared with the baselines.

CCS CONCEPTS
• Information systems! Personalization.
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1 INTRODUCTION
Online learning [48] has proven to be an important component of
today’s educational processes, highlighted by its signi�cant uptick
in usage during the COVID-19 pandemic [1]. Due to the remote
nature of online learning, it is harder for instructors to pay atten-
tion to each individual student to provide feedback and to deliver
personalized learning experiences. This has motivated the investi-
gation of arti�cial intelligence (AI)-based approaches to delivering
personalized instruction and feedback based on measured student
progress in online learning activities [4, 28, 35].

Student modeling [39] is an important research area since it
provides information on key individual student factors that drive
personalization systems. There exist a wide range of student models,
from those that analyze student knowledge, such as item response
theory [38] and models for knowledge tracing [15], to those that an-
alyze student behavior within computer-based learning platforms
to detect psychological states [23, 44] and discover learning tenden-
cies [11, 43, 46]. Since these student models are �tted from actual
student data collected from real-world learning platforms, they are
inherently prone to any biases that exist in the available data [18].
The research topic of de-biasing data-driven student models has
gained signi�cant recent traction; there exist studies that investigate
existing algorithmic biases in educational applications [19, 25] and
explorations on how to impose constraints during model training
to promote fairness across di�erent student groups [47].
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Figure 1: (a) Our problem setting of extracting online student
learning activity to predict learning outcomes. (b) Heatmaps
of di�erences in learning activities exhibited (b1) between
di�erent student subgroups, male vs. female, and (b2) within
the male subgroup for the QDS dataset (see Section 2).

One common theme of these works is that they study the bias/-
fairness aspects of a single global student model that is trained on
data collected from all students [33]. This setup is typically e�ec-
tive in AI applications since more data generally leads to improved
model �t. However, this setup ignores the fact that underrepresented
minorities may not be well-captured by a population-level model,
resulting in unfair predictions that may cause catastrophic errors
[3, 10, 27]. On the contrary, training separate local models for each
student subgroup may not be e�ective since small subgroups do not
have enough data for us to train an accurate model. In this work,
we aim to develop a personalized student modeling methodology that
addresses the data availability challenges across subgroups.

1.1 Federated Learning and Student Modeling
The recently proposed federated deep knowledge tracing (FDKT) [42]
method is a �rst step towards coordinating between global and local
student models, based on federated learning (FL) [26]. While FL
was traditionally envisioned for distributed systems, its main idea
is more general: enabling collaboration among models trained on
local datasets to achieve better performance collectively. Research
in Global FL has proposed various aggregation strategies to opti-
mize the discovered global model, e.g., FedAvg [30] and FedAtt [21].
However, statistical heterogeneity across local data distributions
presents fundamental challenges to Global FL [20], which has moti-
vated approaches for Personalized FL to adapt local models [17, 22].

FDKT considers statistical heterogeneity arising from student
training data being split across di�erent schools, where the schools
are not willing to share data due to privacy concerns. Thus, lo-
cal models are trained for each school, and updating/averaging
between the global and local models is coordinated without mov-
ing the actual data. While this setup is representative of some
real-world educational settings, it ignores the bigger picture of het-
erogeneous student subgroups according to race, gender, and other
demographic variables. The aggregation scheme in FDKT weights
the local models according to “data quality,” measured through
�tting local psychometric models such as classical test theory and

item response theory. Down weighting a student subgroup is not ac-
ceptable in our setting since the data from each subgroup contains
important information about how these students learn.

FDKT’s personalization strategy relies on heuristic linear inter-
polation to adapt the global model to each local model, resembling
existing techniques in domain adaptation [5, 16]. The interpolation
coe�cient is calculated through a rule set of priori, and thusmay not
strike the right balance between these models. Our personalization
approach instead builds upon federated meta learning [17], a recent
innovation in FL which re�nes the global model to encapsulate local
adaptation through meta-functions. As we will see, managing local
models for each student subgroup under this framework provides
signi�cant enhancements in prediction quality across subgroups.

1.2 Activity-Based Performance Prediction
In this work, we focus on the downstream application of student
outcome prediction in online courses. Our approach will build upon
and formalize two key observations from past educational data min-
ing research. First is that patterns in student learning activity (e.g.,
video-watching behavior, discussion forum interactions) contain
signals of student performance in online courses [7–9, 12, 14, 45].
Since each student tends to generate a substantial number of ac-
tivity measurements, incorporating them may alleviate sparsity
issues faced by prediction models trained on subgroups with fewer
students. Figure 1(a) visualizes our goal of predicting a student’s
�nal course grade from various online learning activities captured.

The second observation is that distinctive patterns of learning
activities can be identi�ed both within and across demographic sub-
groups [2, 13, 32]. This was originally discovered among in-person
learning behaviors (e.g., participation and learning style), and more
recently in digital environments [29]. We thus aim to capture how
sequences of learning activities (e.g., viewing a forum, then watch-
ing a speci�c video, then answering a speci�c quiz question) di�er
based on student subgroups in our construction of personalized
FL models. However, online learning activities contain more noise
than those capture in-person (e.g., a student accessing a video ac-
cidentally), making it di�cult to identify these patterns through
standard data mining techniques [7]. For example, considering one
of the datasets in this paper, Figure 1(b) gives heatmaps of di�er-
ences observed in when students are engaged in particular learning
activities. Two cases are considered: (b1) between learners across
a demographic group (all males vs. all females), and (b2) between
learners within a subgroup (50% of the males vs. the other 50%,
chosen randomly), with each value indicating the di�erence in the
fraction of students engaged in the activity at that point in their
learning trajectory. (b1) exhibits a more varied set of trajectories
than (b2), consistent with the observation that di�erent subgroups
have di�erent learning behaviors, but (b2) still has noticeable di�er-
entials even though it is a comparison among a cross-section of the
same subgroup. This is further motivation for our meta-learning ap-
proach to subgroup personalization, where any machine-identi�ed
commonalities in the data across the subgroups are captured in
a global model that is further re�nable based on local subgroup
information. As we will see in Sec. 4.5, visualizations of the student
embeddings learned by our methodology validate that distinctive
activity patterns can be extracted between subgroups.
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Figure 2: Overview of our proposed method for customizing prediction models for each demographic student subgroup. A
personalized federated learning framework trains local student models that are personalized to each student subgroup by
adapting from a shared global model to both leverage commonality and maintain heterogeneity between subgroups.
1.3 Summary of Contributions
The methodology that we develop in this paper is depicted at a high
level in Figure 2. Speci�cally, we make three major contributions:

• We develop a personalized federated learning methodology
(Sec. 3.3 & 3.4) where local models associated with di�erent
student subgroups are adapted from the global model. This
adaptation is in the form of meta-gradient updates taken
on data that is localized to the speci�c student subgroup,
instead of using data quality heuristics as in prior work.

• We develop a behavior-based local modeling architecture
for predicting student performance from multi-modal learn-
ing activity logs (Sec. 2 & 3.1). We further show that a self-
supervised pre-training process leads to better activity rep-
resentations and improvements in prediction performance.

• Through extensive experiments on three real-world online
courses datasets (Sec. 4), we demonstrate that our methodol-
ogy leads to a set of student models that signi�cantly outper-
form existing approaches to performance prediction. We �nd
this advantage appears at both the global and local levels,
resulting in a prediction model that can be quickly adapted
to di�erent student subgroups.

2 DATA ENCODING METHODOLOGY
In this section, we formalize our methodology for encoding student
activity and demographic data, which will be employed in our stu-
dent modeling techniques in Section 3. We collect our datasets from
Purdue University’s o�erings of online courses on the edX platform
(www.edx.org). We study three graduate-level online certi�cate
courses: Fiber Optic Communications (FOC), Quantum Detectors
and Sensors (QDS), and Essentials of MOSFETs (MOSFETs). Each
course consists of a series of lecture videos, some of which have
an end-of-video quiz that assesses student learning progress. More-
over, each course provides a discussion forum page for students to
discuss with each other. The platform also records each student’s
�nal grade, which is a pass or fail label based on the grading pol-
icy. Summary statistics of the three courses are given in Table 1,
emphasizing a broad range of activity levels for our evaluation.

FOC QDS MOSFETs
# of students 1,265 2,304 886
# of lecture videos 43 31 26
# end-of-video quizzes 25 23 11
# of discussion threads 20 35 17
Avg. reply per thread 1.95 0.48 1.44
# of activities 63,789 95,487 31,382
video activity vs. forum activity 67%, 33% 70%, 30% 59%, 41%
�nal pass rate 29.3% 24.8% 31.1%

Table 1: Basic information on datasets collected from edX.
2.1 Video-watching Activity
Each time a student D accesses a lecture video E , their activity
is recorded with the following information: student ID, video ID,
and UNIX timestamp. The in-video quizzes for each of the courses
consist of a single multiple-choice question or a True/False question,
appearing at the end of the video. When student D submits an
answer to the in-video question for video E , the platform records
the student’s answer, the points rewarded >D,E , and the maximum
possible points for this question >max

E . A commonmetric for student
performance on quiz questions is whether they were correct on
their �rst attempt or not [7, 9, 14]. Therefore, we consider the score
that studentD obtained at the end of lecture video E as sD,E = 1when
>D,E = >max

E ; otherwise, sD,E = 0. The video-watching activities can
then be divided into four types according to the quiz outcome:

(1) watch_noquiz: The student watched the lecture video, but
the video did not have an end-of-video quiz.

(2) watch_correct: The student watched the lecture video and
answered the end-of-video quiz correctly, i.e., sD,E = 1.

(3) watch_incorrect: The student watched the lecture video and
answered the quiz incorrectly, i.e., sD,E = 0.

(4) watch_noanswer: The student watched the lecture video but
did not submit any answer to the end-of-video quiz.

2.2 Forum-participation Activity
Discussion forums are considered an extension of traditional learn-
ing that promotes dialogue, re�ection, and knowledge construc-
tion [8]. They are particularly important in virtual learning envi-
ronments, motivating us to consider them for student knowledge
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modeling. The learning platform records forum-participation ac-
tivities when student D visits the discussion forum page. Similar
to video-watching, the learning platform records the student ID
and UNIX timestamp, and also the text of the post/reply for each
activity. We de�ne three types of forum-participation activities:

(1) forum_post: The student either started a new thread or made
a post in a thread.

(2) forum_reply: The student replied to another student’s post.
(3) forum_view: The student visited a thread without posting or

replying. Most of the forum-participation activities belong
to the forum_view type. The platform cannot identify which
thread a student views; nevertheless, this activity suggests
that a student is seeking information through the forums.

2.3 Activity Encoding
We use one-hot encodings to represent the di�erent activity types.
We encode the video ID as vid 2 {0, 1}= , where = denotes the
number of videos, which are 43, 31, and 26 for the FOC, QDS, and
MOSFET datasets, respectively. Video-watching activity is encoded
as av 2 {0, 1}4 according to the four di�erent activity types. Sim-
ilarly, forum-participation activity is encoded as af 2 {0, 1}3. For
each student D, their activity record at time step C is de�ned as:
aD (C) =

⇣
vid; av; af

⌘
, where (; ) denotes vector concatenation. We

concatenate video-watching and forum-participation activity in
this way to ensure a consistent activity dimension. Note that these
two activities do not happen simultaneously; whenever a student
watches a video, the forum-participation part of this encoding, i.e.,
af = 0, while vid and av capture the activity. On the other hand,
vid, av = 0 when the student engages in a forum-participation ac-
tivity. The time series {aD (C)} of activities for each student are
ordered by UNIX timestamp.

2.4 Student Subgroups
edX solicits a student’s demographic information when they reg-
ister, which they can �ll out voluntarily. We consider three demo-
graphic variables in our analysis: (i) gender1, (ii) country, and (iii)
year of birth. We group countries into continents2 and year of birth
into decades to have a reasonable sample size in each subgroup.

The distribution of students’ demographic variables is summa-
rized in Table 2. For each course, we group students into two sub-
sets, ⌦� and ⌦¬� , based on each demographic variable � 2 {⌧,⇠,. },
where ⌧,⇠, and . represent gender, continent, and year of birth,
respectively. ⌦� is the set of students that voluntarily provided in-
formation on variable � while ⌦¬� denotes the set of students that
chose not to provide this information. For the set ⌦� , we further de-
�ne ⌦� ,G as the set of students belonging to subgroup G 2 X, where
X is the set of groups in variable � . For example, X = {", � } repre-
sents male and female subgroups for gender information (� = ⌧)
when it is provided. For each demographic variable, underrepre-
sented groups de�ned as the student subgroups with relatively
minor population. The pass rate distributions for each student sub-
group are also summarized in Table 2.

1edX only provided a binary choice of male and female for selection.
2We group students into �ve continents according to their country information since
no students claimed to be from Antarctica and countries in Oceania.

dataset FOC QDS MOSFETs FOC QDS MOSFETs
overall statistics 1,265 2,304 886 29.3% 24.8% 28.5%

Gender (G)
Male (⌦⌧," ) 42.7% 42.9% 43.2% 27.7% 31.8% 33.6%
Female (⌦⌧,� ) 8.3% 11.3% 23.7% 23.0% 32.5% 30.9%
Unspeci�ed (⌦¬⌧ ) 49.0% 45.8% 33.1% 27.2% 31.8% 30.1%

Continent (C)
Asian (⌦⇠,�( ) 35.0% 42.8% 41.4% 31.4% 34.5% 36.7%
African (⌦⇠,�� ) 10.1% 6.9% 7.2% 8.5% 5.2% 10.6%
European (⌦⇠,⇢* ) 14.4% 13.3% 14.6% 11.2% 9.9% 17.7%
North American (⌦⇠,#�) 24.5% 21.9% 21.9% 19.8% 18.3% 28.1%
South American (⌦⇠,(�) 5.5% 4.2% 3.9% 4.4% 2.8% 10.0%
Unspeci�ed (⌦¬⇠ ) 10.5% 10.9% 11.0% 4.6% 6.7% 11.4%

Year of Birth (Y)
Y  1980 (⌦. ,⇠80) 12.1% 9.0% 14.0% 18.7% 29.5% 27.9%
1980 < Y  1990 (⌦. ,80⇠90) 17.9% 16.2% 15.2% 26.5% 28.2% 34.8%
Y > 1990 (⌦. ,90⇠) 22.8% 29.8% 31.5% 32.7% 23.7% 30.9%
Unspeci�ed (⌦¬. ) 42.7% 45.0% 39.3% 28.8% 22.1% 28.6%

Table 2: (Left) Population distribution and (Right) pass rate
distribution for each student subgroup in each course.

3 PERSONALIZED PREDICTION MODELING
We now present our prediction methodology based on the student
activity encodings. Referring back to Figure 2, our base prediction
model architecture will leverage recurrent neural networks (RNNs)
given the sequential nature of the input data (Section 3.1). To aug-
ment these RNNs with prior knowledge on how students behave,
we develop a self-supervised pre-training process (Section 3.2). Our
personalized FL framework is depicted in Figure 2(c), consisting of
a local-global architecture which customizes prediction models for
each student subgroup through meta-learning (Section 3.3). After
a few local updates, the global model is re-computed through an
attention-based aggregation scheme (Section 3.4).

3.1 Prediction Model Structure
We leverage attention-based Gated Recurrent Units (GRU), known
for their ability to capture dependencies over long time periods [14].
For each student D, our prediction model aims to predict a binary
classi�cation label ~D 2 {0, 1}, representing whether the student
passes the course or not, based on their time-dependent activity
sequence aD (C), where C 2 {1, ..., !D } is the discrete time index and
!D is the length of the time series sequence for user D.

The model takes encoded activities as an input, generates learned
representations for each user, and outputs representations for pre-
dicting learning performance. The hidden state of the GRU model
is formulated as:

hD (C) = GRU (aD (C), hD (C � 1)) . (1)

Encoding a long time sequence into a single �nal state (hD (!D ))
might be unrealistic. To overcome this, [40] proposed a self-attention
mechanism that weights the hD (C) over time. Speci�cally, instead
of forcing the network to encode all the information into the �nal
state, an attention module takes all the hD (C) as inputs and gener-
ates the learned representation ehD as output. Adopting this idea
for our setting, we de�ne an attention module as:

ehD =
’
C

U (C)hD (C), (2)

where theweightU (C) = exp(4 (C ))Õ
C exp(4 (C )) , 4 (C) = ? (C)

> tanh (WUhD (C)),
and WU is a learned parameter. A linear layer then transforms the
learned representation, and the predicted probability of pass/fail
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labels is de�ned as:

y0D = softmax
⇣
W; · ehD + b;

⌘
, (3)

where W; 2 R:⇥2 is the weight matrix for linearly transformingehD , : = 48 is hidden dimension, and b; 2 R2 is the bias vector.
The parameters of our attention-based GRU model are initialized
through the pre-training process discussed next. Finally, the loss
function for evaluating the prediction quality is taken as binary
cross entropy (BCE) loss L⌫⇠⇢ :

L⌫⇠⇢ = �
’
D2⌦

yD log(y0D ) + (1 � yD ) log(1 � y0D ), (4)

where 1 is an all-one vector, y0D is the prediction of the model, and
yD is the one-hot encoding vector of the binary label ~D .

3.2 Self-Supervised Behavioral Pre-training
As discussed in Section 1, a key challenge we face is that the number
of students in an underrepresented subgroup can be small. With a
large amount of activity information per student, our methodology
will bene�t from a pre-training process that learns a representation
of how students behave. Motivated by this, we design a pre-training
method for our framework based on the concept of Continuous Bag
Of Words (CBOW) [31], which has achieved notable success for
NLP applications. In our setting, the representations of surrounding
activities are combined to predict the current activity.

The pre-training architecture is shown in Figure 2(a). We extract
each activity aD (C) as a target and train the model by taking the
rest of the activities as an input. Note that we inject a zero vector
at the position where the activity is taken as the prediction target.
The model architecture employed (GRU with attention) is the same
as in the previous section. The model generates the �nal hidden
state hpre from taking all encoded activity vectors except for aD (C)
as an input. Formally, the predicted activity is formulated as:

a0D (C) = softmax
�
W? · hpre + b?

�
, (5)

where W? 2 R:⇥(=+7) is the weight matrix for the �nal hidden
state hpre, : = 48 is the hidden dimension, and b? is the bias vector.
We minimize the mean square error Lpre between the predicted
activity a0D (C) and the target activity aD (C). The weights of the
pre-trained model are then transferred to the learning outcome
prediction module for training initialization. The dataset used in
the pre-training process is aligned to that for training.

3.3 Meta-Learning Local Model Personalization
In order to facilitate personalized predictions based on student
subgroup information, our methodology maintains a separate local
model for each subgroup. The tasks handled locally are: (i) providing
a subgroup-personalized model for global aggregations and (ii)
adapting the global model based on the local subgroup dataset.
We will investigate the impact of models constructed based on the
di�erent demographic variables � 2 {⌧,⇠,. } from Section 2.4. In
the following, we use X to denote an arbitrary set of subgroups
for any particular variable. Further, we de�ne the global prediction
model as ⇥g and the local model for subgroup G 2 X as ⇥G .

We aim to train a global model that is easily adaptable to each
local student subgroup. To this end, we employ a meta-learning

Algorithm 1 Attention-based Personalized Federated Learning

1: Global Execution:
2: Initialize global model ⇥(0)

g
3: for each global aggregation period : = 1, 2, ..., do
4: for each student subgroup G 2 X in parallel do
5: ⇥(:,⇢)

G  LocalAdaptation ( ⇥(:)
g )

6: for each subgroup G 2 X do
7: Compute attention weight U (:)

G using (9).
8: Obtain the global model ⇥(:+1)

g according to (10).

1: LocalAdaptation ( ⇥(:)
6 ):

2: Initialize the local model ⇥(:,0)
G = ⇥(:)

g
3: for Each local iteration 4 = 1, · · · , ⇢ do
4: Obtain ⇥(:,4)

G using the meta-update rule (7).
5: Return parameters ⇥(:,⇢)

G

based personalized FL framework, as in PerFed [17], seek the global
model that solves the following optimization problem:

min
⇥

’
G 2X

�G (⇥) , 5G
�
⇥ � r5G (⇥)|        {z        }

(0)

�
, (6)

where �G (·) is the meta-loss function of student subgroup G , and
5G (·) is the original loss function, which is the sum of prediction
loss (i.e., BCE from Section 3.1) over the dataset of group G .

The main di�erence between our loss function in (6) and the loss
functions used in existing student modeling work [6, 34] is that our
loss function aims to minimize the loss of the adapted versions of
the global model. This adaptation is based on one gradient descent
step, i.e., term (0) in (6), which is taken over the local dataset of
subgroup G . That is, our method exploits the commonality of data
across subgroups to train an adaptable global model, which can be
easily tailored to each individual subgroup.

To solve (6), we derive meta-gradient based local update steps.
In particular, training proceeds through a sequence of training
rounds : 2 {1, · · · , }, with each round consisting of multiple local
training iterations 4 2 {1, · · · , ⇢}. In each iteration 4 , subgroup
G 2 X updates its local model ⇥(:,4)

G using only the data of students
from this subgroup. These local models are synchronized through
a global aggregation step at the end of each round. Speci�cally, in
each round : , the local model is initialized as ⇥(:,0)

G = ⇥(:)
g , 8G ,

where ⇥(:)
g is the global aggregation at the end of : � 1. Then, each

subgroup G conducts its meta-gradient updates according to

⇥(:,4)
G = ⇥(:,4�1)

G � [r�G
⇣
⇥(:,4�1)
G

⌘
, 4 = 1, · · · , ⇢, (7)

where [ is the step size, and based on (6) the meta gradient r�G is

r�G (⇥) =
⇣
I � r2 5G (⇥)

⌘
r5G (⇥ � r5G (⇥)) , 8⇥, (8)

where r2 is the Hessian operator. The second-order Hessian term
in (8) can be well-approximated by �rst-order methods without
incurring signi�cant performance degradation, leading to e�cient
computations [17]. After these local updates, the global aggregation
⇥(:+1)
g is obtained using a method that we detail next.
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forum video both

Course 3
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forum video both

w/o w/ w/o w/ w/o w/

forum video both

w/o w/ w/o w/ w/o w/

forum video bothInput:

(a) FOC (b) QDS (c) MOSFETs
Figure 3: AUC scores of recurrent neural networks (LSTM, GRU, AttnGRU) with and without self-supervised behavioral
pre-training according to di�erent input modalities.

3.4 Attention-Based Global Model Aggregation
The global modeling stage in our methodology is responsible for
two tasks: (i) aggregating the local models and (ii) synchronizing
the subgroup models with the resulting parameter vector for sub-
sequent adaptation. Instead of using the standard averaging-based
aggregation method from FedAvg [30], we employ a recently de-
veloped attention-based aggregation method, FedAtt [21]. FedAtt
introduces an attention mechanism for weighting local neural net-
work models according to how far the parameters in each of their
layers have deviated from the previous global model.

Formally, at each aggregation step, the global model receives
two pieces of information: (i) all the local models ⇥(:,⇢)

G , and (ii)
the attention weight for each local model. The attention weight
U (:)
G for local model G is computed across its set of layers L:

U (:)
G =

’
✓2L

softmax
⇣���⇥(:)

g (✓) � ⇥(:,⇢)
G (✓)

���⌘ , (9)

where ✓ 2 L denotes a particular model layer, and ⇥(:)
g (✓) and

⇥(:,⇢)
G (✓) represent the parameter vector of the ✓-th layer in the

global and local model, respectively, at the instance of global aggre-
gation. The aggregated global model is then obtained as:

⇥(:+1)
g = ⇥(:)

g � n
’
G 2X

U (:)
G

⇣
⇥(:)
g � ⇥(:,⇢)

G

⌘
, (10)

where n is a tunable step size. The full attention-based personalized
FL procedure is summarized in Algorithm 1 and Figure 2(c).

4 EXPERIMENTAL EVALUATION
We now conduct experiments on our three online course datasets
from Section 2 to evaluate our personalization methodology.

4.1 Dataset Partitioning
Recall the subgroup datasets de�ned in Section 2.4. Instead of
constructing personalizing models for only the students who pro-
vided the speci�c information � 2 {⌧,⇠,. }, in dataset ⌦� , we
also consider those who did not, in dataset ⌦¬� , as another stu-
dent subgroup. For each subgroup under consideration, we �rst
split students into train-test sets at a ratio of 4:1, that is, ⌦� ,G =
{⌦� ,Gtrain,⌦

� ,G
test}. Therefore, the overall training set is the union of

the training set for each subgroup: ⌦�train =
–
G 2X ⌦� ,Gtrain; likewise,

⌦�test =
–
G 2X ⌦� ,Gtest. In some cases, we will conduct our experi-

ments on ⌦� = {⌦�train,⌦
�
test} only, representing the data of stu-

dents who have provided their demographic information � . In other
cases, we consider both ⌦� and ⌦¬� , where ⌦¬� = {⌦¬�

train,⌦
¬�
test}.

4.2 Model Baselines and Variations
4.2.1 Standard Recurrent Neural Networks: While our main pre-
diction model from Section 3.1 is an attention-based GRU model
(AttnGRU), we also experiment with simpler recurrent models,
LSTM and GRU. By taking the student activity vectors aD (C) as the
model input, LSTM and GRU then generate a �nal hidden state
representing each student and predict the learning outcomes.

4.2.2 Local Modeling: We consider an attention-based GRU model,
AttnGRU-L, which evaluates the e�cacy of training separate local
models for each student subgroup. More speci�cally, AttnGRU-L is
trained on ⌦� ,Gtrain and evaluated on ⌦� ,Gtest for each subgroup G .

4.2.3 GlobalModeling: We implement three global models for com-
parison. One of them (G1) is a centralized model without FL, while
the others (G2)&(G3) are Global FL models. All of them implement
our proposed self-supervised behavioral pre-training process.
(G1) AttnGRU-G: This is a centralized global AttnGRU-based
model that is trained on⌦�train and evaluated on⌦

�
test =

–
G 2X ⌦� ,Gtest.

(G2) FedAvg [30]: In FedAvg, for training round : , we train lo-
cal models ⇥(:,4)

G on ⌦� ,Gtrain without meta-learning. After ⇢ iter-
ations, FedAvg weighs each local model based on the number of
students in each subgroup to conduct a standard global aggregation:
⇥(:+1)
g =

Õ
G 2X

#G
# ⇥(:,⇢)

G , where #G is the number of students
within subgroup G , and # =

Õ
G 2X #G . After  global aggrega-

tions, we then use ⇥( )
g to evaluate FedAvg on ⌦� ,Gtest.

(G3) FedAttn [21]: After ⇢ local iterations, FedAttn aggregates
local models based on the attention mechanism with attention
weights introduced in (9). After  global aggregations, the aggre-
gated global model ⇥( )

g de�ned in (10) is evaluated on ⌦� ,Gtest.

4.2.4 Personalized Modeling: We consider two baselines (P1)&(P2)
with local model personalization in FL:
(P1) FedIRT [42]: As discussed in Section 1, [42] introduces feder-
ated deep knowledge tracing (FDKT) to coordinate between local
and global models. They use classical test theory and item response
theory (IRT) [36] to calculate the score representing the “data qual-
ity" of local subgroups, and use the scores to weight each subgroup
when aggregating models.

Though we are not considering their speci�c knowledge tracing
task, we implement their model update and aggregation method
by calculating the IRT con�dence U IRTG for each student subgroup
G , since IRT produces the best results in their paper. Local model
updates are based on hierarchical interpolation, where the initial
model is de�ned as: ⇥(:,0)

G = _ (: )⇥(:�1,⇢)
G + (1 � _ (: ) )⇥(: )

6 , _ (: ) =⇣
⇥(:�1,⇢)
G · ⇥(: )

g

⌘ � ⇣��⇥(:�1,⇢)
G

�� ⇥ ��⇥(: )
g

��⌘ , and the �nal local model
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⇥(:,⇢)
G is obtained after ⇢ local epochs of conventional gradient

descent. The aggregated global model is then computed as ⇥(:+1)
g =Õ

G2X U
IRT
G ⇥(:,⇢)

G . The IRT con�dence in our setting is calculated
using the students’ answers to the end-of-video quizzes. For fair
comparison with our personalization method, we use AttnGRU and
apply our self-supervised pre-training.
(P2) Ours¬AttnAgg: Finally, to compare di�erent aggregation
rules that can be used in meta-learning, we also implement a
baseline that replaces our attention-based aggregation method
with the averaging-based method of [17]. Denoted Ours¬AttnAgg,
this baseline also incorporates our self-supervised behavioral pre-
training. The substantial performance improvements obtained by
Ours¬AttnAgg over the other baselines will validate the bene�t of
meta-learning methods in model personalization.

4.3 Implementation and Evaluation Metric
We perform 5-fold cross-validation on each dataset and randomly
select 20% of the students in the training set for validation. For all
models that use the attention-based GRU, the hidden state dimen-
sion is 48. 50 training epochs are used for non-FL approaches (LSTM,
GRU, AttnGRU-L, and AttnGRU-G), and for FL methods (FedAvg,
FedAttn, FedIRT, PerFed, and our method), the global aggregations
( ) and local iterations (⇢) are set to be 10 and 5, respectively. For
all models, the un�xed hyper-parameters are determined by a grid
search over the search space: (i) Learning Rate: {1e-2, 5e-2, 1e-3,
5e-3, 1e-4, 1e-5}, (ii) Learning Rate Decay: {5e-2, 1e-3, 5e-3, 1e-4},
(iii) Droupout Rate: {0.3, 0.4, 0.5, 0.6, 0.7}, (iv) Optimizer: {Adam,
SGD}, and (v) Batch Size: {4, 8, 16, 32}. Our method is trained using
the parameters highlighted in boldface. We test all combinations of
parameters for each baseline model and use the one achieving the
highest accuracy in Section 4.4.

To evaluate the performance, we use the Area Under the ROC
Curve (AUC) metric. The ROC curve shows the true positive rate
versus false positive rate in a binary classi�cation task, and AUC as-
sesses the tradeo� between these rates.We execute each experiment
�ve times with random initialization for each method and report
the average and the standard deviation of AUC values. We evalu-
ate on the test set using the model at the training epoch with the
highest validation AUC value. For our method, according to (6), we
measure the AUC of the adapted models obtained after performing
one local epoch on the global model at each student subgroup.

4.4 Results and Discussion
4.4.1 Model Structures and Input Features Analysis. First, in Fig-
ure 3, we compare the performance of models using di�erent recur-
rent neural networks (LSTM, GRU, and AttnGRU), models with and
without self-supervised behavioral pre-training, and models using
di�erent sources of activity data. All models are trained on {⌦�train,
⌦¬�
train} and tested on {⌦

�
test,⌦

¬�
test}without grouping students. Con-

sidering only forum-participation activity (af ), all models tend to
over�t due to the small amount of data, yielding approximately 50%
AUC and high standard deviation for all model structures. Using
only video-watching activity ([vid; av]), all models consistently out-
perform those that use af only, which shows that video activities
contain more information on knowledge acquisition than forum
activities in our datasets. For AttnGRU without self-supervised
behavioral pre-training, the average AUC improves by 5.5% when

replacing forum activities with video activities. However, incor-
porating both forum activity and video activity results in the best
performance in most cases, which shows that forum activities also
contain useful information about students’ learning processes and
outcomes when incorporated properly. The average AUC improves
1.6% from using [vid; av] as compared to using [af ; vid; av] for At-
tnGRU without self-supervised behavioral pre-training.

The consistently better performance of AttnGRU over LSTM and
GRU indicates that the attention mechanism can e�ectively incor-
porate activities in the distant past, especially for students with a
large number of activities. Using both video and forum activities
([af ; vid; av]) as input and without performing self-supervised pre-
training, AttnGRU outperforms GRU and LSTM by an average AUC
of 2.5% and 3.3%. Furthermore, initializing the prediction model with
self-supervised behavioral pre-training improves the performance in
most cases, revealing that pre-training gives us better representa-
tions of di�erent student activity types. To be more speci�c, using
both forum-participation and video-watching as input, the AUC in
AttnGRU increases by 1.4% with the help of pre-training.

Apart from the listed RNN models, for completeness, we also
conducted experiments using the Transformer model [40]. How-
ever, we did not observe signi�cant improvement from replacing
AttnGRU with Transformer architecture, which we attribute to the
limited amount of student samples available in our setting. Recent
work has also shown the promise of non Transformer-based mod-
els in di�erent applications [37, 41]. Henceforth, we use our best
model setting, i.e., AttnGRU with self-supervised pre-training that
uses both video-watching and forum-participation activity as input.

4.4.2 Predictive�ality on Student Subgroups. In Tables 3, 4, and 5,
we compare our method to the baselines in terms of the predictive
quality achieved on each student group. We �rst show results on
the set of students who provided speci�c demographic information
� ; we train models on ⌦�train and test them on each subgroup of
⌦�test. Speci�cally, we divide the dataset into groups by gender,
continent, and age information in Tables 3, 4, and 5, respectively.
We also present the results of incorporating students who did not
disclose their personal information (i.e., the models trained on
{⌦�train,⌦

¬�
train} and tested on each subgroup of {⌦�test,⌦¬�

test}) in
Tables 6, 8, and 7; the results are qualitatively similar.

In Tables 3, 4, and 5, we can see that AttnGRU-L provides only up
to 60% AUC on each subgroup according to di�erent demographic
groupings, con�rming our hypothesis that small subgroups do not
have enough data for the model to be highly accurate. AttnGRU-L
is thus not practical since local models cannot bene�t from the
commonality of information contained in other subgroups. Also,
AttnGRU-G outperforms both global federated models (FedAvg and
FedAttn) in most cases, suggesting that the centralized model de-
livers a better overall picture of the data than decentralized models
when personalization is not employed. However, we also �nd that
AttnGRU-G often performs better on subgroups with more stu-
dents, which indicates that the model will ignore underrepresented
minorities and thus may have ethical concerns. For example, the
performance of AttnGRU-G on the male subgroup is better that on
the female subgroup for QDS and MOSFETs (see Table 3); more-
over, the model performs better on the Asian and North American
subgroups than other subgroups on FOC and QDS (see Table 4).
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Dataset FOC QDS MOSFETs
type model male female male female male female
Local AttnGRU-L 54.6% (1.3%) 60.0% (1.7%) 62.5% (1.0%) 61.2% (1.2%) 60.3% (0.9%) 55.5% (0.6%)

AttnGRU-G 59.7% (0.9%) 62.7% (0.7%) 60.3% (1.3%) 59.4% (1.0%) 59.2% (0.8%) 56.4% (1.0%)
Global FedAvg 56.3% (1.0%) 61.9% (1.0%) 57.7% (0.7%) 60.3% (0.9%) 56.3% (1.2%) 57.5% (1.0%)

FedAttn 57.2% (0.6%) 62.2% (0.9%) 59.2% (0.7%) 59.6% (1.2%) 56.9% (1.0%) 56.2% (0.9%)
FedIRT 70.2% (1.3%) 65.8% (0.9%) 67.9% (1.5%) 61.7% (1.3%) 59.6% (1.2%) 61.4% (1.0%)

Personalized Ours¬AttnAgg 69.3%(0.6%) 70.4%(0.5%) 71.4% (1.2%) 68.0% (0.9%) 64.9% (1.0%) 63.8% (0.8%)
Ours 73.5% (0.4%) 75.3% (1.3%) 79.5% (0.7%) 70.0% (0.9%) 66.1% (0.7%) 65.3% (0.9%)

Table 3: Prediction performance obtained by di�erent models on each gender subgroup. Overall, we see that our meta learning-
based personalization methods obtain substantial improvements over the baselines, particularly for the FOC and QDS datasets.

Dataset FOC
model AS AF EU NA SA

AttnGRU-L 57.3% (1.3%) 60.1% (1.0%) 61.5% (1.1%) 53.9% (1.5%) 60.7% (0.9%)
AttnGRU-G 62.9% (1.1%) 54.2% (0.7%) 58.9% (1.5%) 64.7% (1.4%) 56.4% (1.0%)
FedAvg 58.9% (0.6%) 55.4% (0.7%) 60.1% (1.2%) 63.9% (1.1%) 57.1% (1.1%)
FedAttn 60.1% (1.1%) 54.0% (1.0%) 59.9% (0.7%) 64.4% (0.5%) 56.3% (0.9%)
FedIRT 63.2% (0.8%) 65.1% (1.0%) 73.3% (0.6%) 67.3% (0.8%) 71.1% (0.9%)

Ours¬AttnAgg 66.2% (1.0%) 68.0% (1.1%) 77.9% (0.8%) 68.4% (1.1%) 79.3% (0.9%)
Ours 66.5% (0.8%) 67.2% (1.0%) 79.2% (1.1%) 68.9% (0.9%) 81.1% (1.3%)

Dataset QDS
model AS AF EU NA SA

AttnGRU-L 61.2% (0.6%) 64.7% (1.0%) 57.3% (1.6%) 59.9% (1.4%) 62.8% (1.0%)
AttnGRU-G 68.7% (1.0%) 57.6% (0.9%) 52.5% (1.1%) 60.9% (1.4%) 53.3% (1.1%)
FedAvg 67.7% (1.2%) 56.8% (1.5%) 54.3% (0.8%) 61.2% (1.0%) 53.1% (1.2%)
FedAttn 68.3% (1.0%) 57.4% (0.8%) 54.0% (0.8%) 62.0% (1.4%) 52.9% (1.1%)
FedIRT 77.9% (0.8%) 71.9% (1.1%) 68.2% (0.9%) 70.9% (1.2%) 68.2% (1.5%)

Ours¬AttnAgg 79.2% (1.3%) 76.4% (1.5%) 72.3% (1.3%) 73.8% (1.6%) 75.5% (1.0%)
Ours 80.7% (1.0%) 77.0% (1.1%) 72.0% (0.6%) 75.4% (0.9%) 77.4% (1.0%)

Dataset MOSFETs
model AS AF EU NA SA

AttnGRU-L 58.6% (1.1%) 55.4% (0.9%) 60.3% (0.7%) 60.6% (1.0%) 59.3% (0.9%)
AttnGRU-G 61.4% (1.0%) 52.3% (0.9%) 55.7% (1.3%) 56.4% (1.0%) 59.1% (0.9%)
FedAvg 60.5% (1.6%) 55.8% (0.8%) 58.1% (0.8%) 55.3% (1.0%) 58.3% (0.9%)
FedAttn 60.8% (0.9%) 54.9% (1.1%) 58.9% (0.7%) 54.7% (1.3%) 58.7% (0.9%)
FedIRT 63.1% (1.0%) 65.3% (1.3%) 63.7% (0.9%) 61.2% (0.8%) 58.4% (0.6%)

Ours¬AttnAgg 62.8% (1.0%) 69.4% (1.1%) 62.8% (1.2%) 64.9% (0.9%) 60.5% (1.1%)
Ours 63.9% (1.5%) 69.9% (1.1%) 64.3% (0.8%) 65.4% (0.5%) 60.1% (0.4%)

Table 4: Prediction performance obtained with di�erentmod-
els on each student subgroup grouped by continent.

Through our proposed personalized method, underrepresented sub-
groups gain certain prediction quality, eliminating the biases in
data availability

Across Tables 3, 4, and 5, we see that most local- and global-
based models have at least 10% lower AUC than the personalized
models on the FOC and QDS datasets. The performance of the per-
sonalized models is possibly limited in the MOSFETs dataset by
its overall smaller size (see Table 1). The improvements obtained
by the personalized models show the signi�cance of adapting the
global models based on local student subgroup data, which cannot
be matched even by a sophisticated global aggregation technique
such as FedAttn. Importantly, our method and Ours¬AttnAgg consis-
tently outperform FedIRT in most cases by at least 5%,which suggests
the bene�ts o�ered by our meta learning-based personalization ap-
proach. This improvement validates our hypothesis that weighting
student subgroups based on their “data quality” as in FedIRT may
lose important information on subgroup heterogeneity, which is
captured by our rede�nition of the global model in (6). Finally,
compared to Ours¬AttnAgg, our method performs better on most
student subgroups, albeit marginally for the country demographic.
This con�rms our intuition on the advantages of layer-wise model
aggregations with an attention mechanism.

Comparing Tables 6, 8, and 7 (incorporating students who did
not disclose their personal information) with Tables 3, 4, and 5, we

Unspecified GenderFemaleMale

(a1) (a2) (a3)

(b1) (b2) (b3)

AttnGRU-G

AttnGRU-G

FedAttn

FedAttn

Ours

Ours

African EuropeanAsian North American South American Unspecified Continent

Unspecified Age>19901980-1990<1980

(c1) (c2) (c3)AttnGRU-G FedAttn Ours

Figure 4: Student representations learned by the centralized
method (AttnGRU-G), attention-based federated learning (Fe-
dAttn), and our personalized method according to di�erent
demographic variables: (a1-3) gender, (b1-3) continent, and
(c1-3) age.

�nd a similar trends for the results. For example, centralized model
(AttnGRU-G) performs better than federated global models (FedAvg
and FedAttn), and personalized models outperform global- and
local-based models. Our method consistently outperforms baselines
on each subgroup, showing that personalized prediction with a
better aggregation method can lead to a better prediction accuracy.

4.5 Embedding Visualization
In Figure 4, we use t-SNE to visualize the learned students’ ac-
tivity representations in a 2D space to qualitatively assess the in-
tepretability of our framework. We plot the student embeddings for
our method, FedAttn, and AttnGRU-G, according to di�erent de-
mographic groupings in the QDS dataset. All models are trained on
{⌦�train,⌦

¬�
train}, and the student embeddings are the combined hid-

den state ehD after the attention module that is used to predict their
learning outcomes. The colors represent the corresponding student
demographic groups. We see that the student embeddings learned
by our method are organized and sometimes well-clustered, re�ect-
ing speci�c demographic groups. Compared to AttnGRU-G and
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Dataset FOC QDS MOSFETs
type model ⇠ 80 80⇠90 90⇠ ⇠ 80 80⇠90 90⇠ ⇠ 80 80⇠90 90⇠
Local AttnGRU-L 58.2% (1.3%) 60.0% (1.7%) 61.9% (1.4%) 61.7% (1.0%) 58.8% (1.0%) 60.1% (0.9%) 55.9% (1.2%) 59.3% (1.1%) 56.1% (0.9%)

AttnGRU-G 61.3% (1.0%) 55.2% (1.2%) 59.9% (1.1%) 58.7% (0.7%) 61.0% (0.4%) 57.2% (0.6%) 56.4% (1.1%) 58.9% (0.9%) 57.0% (0.9%)
Global FedAvg 62.2% (0.7%) 54.3% (0.6%) 58.6% (0.9%) 61.9% (0.9%) 60.3% (0.9%) 58.6% (1.1%) 55.3% (1.3%) 58.6% (1.0%) 55.2% (1.0%)

FedAttn 63.9% (1.1%) 54.8% (0.9%) 58.0% (0.8%) 61.2% (0.9%) 61.9% (1.0%) 59.4% (1.0%) 56.1% (1.0%) 58.1% (0.9%) 56.8% (1.2%)
FedIRT 69.7% (0.8%) 79.9% (1.3%) 71.3% (1.1%) 65.4% (0.8%) 73.8% (1.2%) 68.9% (0.5%) 60.9% (0.7%) 62.3% (0.8%) 65.4% (1.1%)

Personalized Ours¬AttnAgg 74.9% (1.2%) 83.2% (2.3%) 73.3% (1.6%) 67.9% (1.0%) 76.8% (1.2%) 73.9% (1.4%) 59.2% (1.1%) 61.6% (1.2%) 68.2% (1.5%)
Ours 75.2% (1.1%) 83.0% (1.9%) 75.9% (1.5%) 67.2% (1.6%) 78.9% (1.6%) 75.1% (1.1%) 61.3% (0.9%) 62.5% (1.0%) 68.2% (1.2%)

Table 5: The prediction performance obtained with di�erent models on each student subgroup grouped by age.

Dataset FOC QDS MOSFETs
type model male female unspeci�ed male female unspeci�ed male female unspeci�ed
Local AttnGRU-L 54.6% (1.0%) 60.0% (1.1%) 56.2% (0.9%) 62.5% (1.3%) 61.2% (1.1%) 61.7% (1.3%) 58.4% (0.8%) 59.7% (0.9%) 60.4% (1.1%)

AttnGRU-G 62.2% (1.3%) 55.9% (0.7%) 57.1% (1.5%) 59.2% (0.9%) 63.4% (1.3%) 58.8% (1.0%) 59.9% (1.0%) 60.3% (1.2%) 61.9% (1.1%)
Global FedAvg 58.3% (0.9%) 62.1% (1.2%) 56.5% (1.0%) 58.8% (1.5%) 59.3% (1.0%) 59.9% (1.1%) 62.2% (1.0%) 58.3% (0.9%) 59.2% (1.1%)

FedAttn 59.4% (1.0%) 63.5% (1.2%) 57.3% (1.1%) 60.1% (1.0%) 62.0% (0.7%) 58.6% (0.9%) 61.8% (0.6%) 58.9% (1.0%) 59.9% (1.0%)
FedIRT 62.0% (1.6%) 61.0% (1.3%) 55.4% (0.9%) 60.9% (1.1%) 64.9% (1.2%) 59.4% (1.0%) 65.2% (1.3%) 69.3% (1.1%) 66.4% (1.5%)

Personalized Ours¬AttnAgg 66.3% (1.0%) 68.4% (1.2%) 66.3% (1.2%) 73.9% (1.6%) 64.3% (0.9%) 65.8% (1.5%) 70.9% (1.0%) 71.5% (1.1%) 65.8% (0.9%)
Ours 67.9% (0.8%) 69.1% (1.0%) 68.8% (1.5%) 73.1% (1.1%) 65.7% (1.0%) 65.6% (0.9%) 71.2% (1.1%) 71.5% (1.0%) 66.4% (1.2%)

Table 6: The prediction performance obtained with di�erent methods on each student subgroup grouped by gender. The
“unspeci�ed” subgroup represents the students who did not disclose their gender. Similar to Table 3, the results show that our
method outperform baselines on most subgroups.

Dataset FOC QDS MOSFETs
type model ⇠ 80 80⇠90 90⇠ unspeci�ed ⇠ 80 80⇠90 90⇠ unspeci�ed ⇠ 80 80⇠90 90⇠ unspeci�ed
Local AttnGRU-L 58.2% (1.0%) 60.0% (1.7%) 61.9% (0.9%) 55.3% (0.9%) 61.7% (1.0%) 58.8% (1.1%) 60.1% (0.9%) 55.4% (1.1%) 62.9% (0.9%) 55.3% (1.0%) 55.9% (1.0%) 59.2% (1.1%)

AttnGRU-G 63.5% (1.4%) 59.7% (1.1%) 62.6% (1.0%) 61.9% (1.0%) 59.6% (1.2%) 60.1% (0.9%) 61.2% (1.7%) 58.4% (0.8%) 61.3% (1.0%) 62.9% (1.0%) 58.3% (0.9%) 59.8% (0.9%)
Global FedAvg 59.2% (1.0%) 58.9% (1.1%) 61.2% (0.9%) 59.4% (1.1%) 60.2% ()0.5% 60.9% (0.7%) 59.7% (1.3%) 59.6% (1.0%) 59.3% (1.1%) 59.2% (0.9%) 58.6% (1.2%) 55.9% (0.8%)

FedAttn 60.6% (1.3%) 58.3% (0.9%) 61.5% (1.0%) 58.8% (1.1%) 59.1% (1.0%) 62.3% (1.6%) 60.1% (0.9%) 61.3% (1.2%) 60.2% (0.8%) 61.3% (1.0%) 56.0% (1.1%) 56.5% (1.2%)
FedIRT 69.2% (1.7%) 74.2% (2.0%) 76.0% (2.7%) 65.2% (1.5%) 70.9% (1.6%) 72.8% (1.8%) 70.1% (0.9%) 70.5% (1.1%) 69.3% (1.3%) 66.9% (1.0%) 62.4% (1.2%) 67.2% (1.1%)

Personalized Ours¬AttnAgg 70.8% (2.1%) 75.2% (2.0%) 75.0% (1.9%) 64.2% (1.1%) 70.9% (1.0%) 73.1% (1.0%) 74.0% (2.2%) 72.5% (2.1%) 73.2% (2.3%) 70.2% (1.9%) 68.4% (1.1%) 71.5% (2.1%)
Ours 71.2% (1.8%) 77.1% (2.0%) 77.1% (1.5%) 65.1% (1.6%) 71.4% (1.4%) 73.3% (2.0%) 75.1% (1.7%) 72.3% (1.0%) 74.8% (1.7%) 69.5% (1.2%) 69.6% (0.9%) 70.1% (1.6%)

Table 7: The prediction performance of di�erent methods on each age and unspeci�ed student subgroup.

FedAttn, this is correlated with our method’s better inference abil-
ity in predicting student performance. These visualizations con�rm
the ability of our method to adapt a global model to each student
subgroup, helping us learn more expressive and predictive represen-
tations of student behavior, since we exploit available information
unique to each subgroup that would be otherwise discarded.

In addition, the visuals show that student embeddings are at
least moderately correlated with the speci�c student subgroup. For
instance, in case of gender (Figure 4(a3)), males (orange dots) tend to
appear on the right side of the �gure, while females (turquoise dots)
tend to be at the far left. The same phenomenon can be observed in
other subplots of Figure 4. This result suggests that students from
di�erent subgroups exhibit some unique learning behaviors, con-
sistent with prior work discussed in Section 1.2. Our meta learning-
based personalization approach takes into account via tailoring
global models to di�erent student subgroups.

5 CONCLUSION
In this paper, we developed a personalized federated learning frame-
work for improving student modeling on underrepresented groups.
Our approach is based on meta learning, where local models corre-
sponding to di�erent student subgroups are adapted from a shared
global crafted to incorporate the personalization step. We applied
our framework to the problem of predicting learning outcomes
from student activities, where subgroups are de�ned according
to demographic variables. Our evaluation on three online course
datasets showed that our methodology (sometimes signi�cantly)
outperforms baseline algorithms on maximizing predictive qual-
ity for every student subgroup. Moreover, well-organized student
embeddings learned by our method are correlated with improved

Dataset FOC
model AS AF EU NA SA unspeci�ed

AttnGRU-L 57.3% (1.2%) 60.1% (0.9%) 61.5% (1.6%) 53.9% (1.5%) 60.7% (1.1%) 54.8% (1.0%)
AttnGRU-G 59.4% (1.1%) 53.1% (1.0%) 58.3% (0.9%) 61.3% (1.2%) 61.2% (1.1%) 58.7% (0.6%)
FedAvg 58.1% (0.9%) 60.7% (0.9%) 54.6% (1.1%) 60.9% (1.0%) 60.1% (0.9%) 55.2% (1.3%)
FedAttn 58.9% (1.4%) 59.9% (0.9%) 56.3% (1.1%) 59.0% (1.3%) 60.8% (1.5%) 56.9% (1.4%)
FedIRT 62.3% (0.9%) 70.2% (1.2%) 69.9% (1.4%) 65.8% (1.1%) 63.3% (1.5%) 57.0% (1.6%)

Ours¬AttnAgg 61.9% (1.3%) 73.1% (1.1%) 71.2% (1.5%) 66.7% (1.2%) 65.2% (1.1%) 57.9% (1.2%)
Ours 62.3% (0.9%) 73.9% (1.1%) 73.6% (1.8%) 66.4% (1.6%) 66.0% (1.0%) 58.4% (1.1%)

Dataset QDS
model AS AF EU NA SA unspeci�ed

AttnGRU-L 61.2% (1.2%) 64.7% (1.0%) 57.3% (0.9%) 59.9% (1.0%) 62.8% (1.2%) 53.2% (0.7%)
AttnGRU-G 60.5% (0.9%) 62.3% (1.1%) 55.6% (1.1%) 59.0% (0.9%) 61.0% (1.2%) 57.9% (1.0%)
FedAvg 63.1% (1.1%) 60.9% (1.0%) 58.7% (1.2%) 59.2% (0.9%) 59.3% (1.1%) 54.9% (0.9%)
FedAttn 64.3% (0.9%) 59.2% (1.0%) 60.0% (1.1%) 58.9% (1.6%) 60.2% (0.9%) 56.6% (1.3%)
FedIRT 68.9% (1.1%) 71.3% (1.7%) 72.3% (1.3%) 70.9% (1.8%) 67.8% (0.9%) 55.4% (1.4%)

Ours¬AttnAgg 73.8% (0.7%) 80.4% (1.9%) 74.9% (1.1%) 72.3% (1.6%) 66.1% (1.5%) 57.1% (1.1%)
Ours 75.5% (0.8%) 78.3% (2.0%) 75.5% (1.1%) 72.8% (1.9%) 68.2% (1.0%) 57.9% (1.2%)

Dataset MOSFETs
model AS AF EU NA SA unspeci�ed

AttnGRU-L 59.4% (0.5%) 55.3% (1.0%) 57.2% (1.3%) 60.8% (0.9%) 55.3% (1.0%) 58.6% (0.9%)
AttnGRU-G 63.2% (1.1%) 60.9% (0.9%) 58.1% (1.2%) 56.7% (0.9%) 53.6% (1.1%) 59.8% (1.0%)
FedAvg 60.2% (1.2%) 58.9% (1.0%) 56.3% (1.1%) 55.8% (1.3%) 54.1% (1.3%) 58.2% (1.6%)
FedAttn 60.5% (0.8%) 58.5% (1.1%) 55.9% (1.6%) 57.1% (0.7%) 53.6% (1.3%) 58.5% (1.1%)
FedIRT 66.3% (1.0%) 68.3% (1.1%) 70.5% (1.5%) 69.4% (1.1%) 68.8% (0.9%) 69.2 % (1.2%)

Ours¬AttnAgg 68.9% (1.0%) 67.9% (1.1%) 69.2% (1.5%) 72.5% (1.9%) 69.4% (1.1%) 72.3% (1.6%)
Ours 69.4% (1.8%) 68.5% (1.1%) 70.1% (1.9%) 73.3% (2.0%) 69.4% (1.5%) 72.9% (1.3%)

Table 8: The performance of di�erent models on each conti-
nent and unspeci�ed student subgroup.

student modeling. Avenues for future work include (i) exploring
more rigorous student subgroup de�nitions [24] and (ii) applying
our framework to other types of student models.
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