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ABSTRACT

We study the effects of injecting human-generated designs into the
initial population of an evolutionary robotics experiment, where
subsequent population of robots are optimised via a Genetic Al-
gorithm and MAP-Elites. First, human participants interact via a
graphical front-end to explore a directly-parameterised legged ro-
bot design space and attempt to produce robots via a combination
of intuition and trial-and-error that perform well in a range of
environments. Environments are generated whose corresponding
high-performance robot designs range from intuitive to complex
and hard to grasp. Once the human designs have been collected,
their impact on the evolutionary process is assessed by replacing
a varying number of designs in the initial population with human
designs and subsequently running the evolutionary algorithm. Our
results suggest that a balance of random and hand-designed initial
solutions provides the best performance for the problems consid-
ered, and that human designs are most valuable when the problem
is intuitive. The influence of human design in an evolutionary algo-
rithm is a highly understudied area, and the insights in this paper
may be valuable to the area of Al-based design more generally.
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Figure 1: Example robots: (a) Human designs included in the
initial population of H25. (b) High-performing designs in
final population of HO. (c) High-performing designs in final
population of H25. Red marks the left front leg.

1 INTRODUCTION

Evolutionary Robotics (ER) (e.g., [5]) is a powerful tool for robot
design, being able to explore interwoven design spaces of cou-
pled body, brain, and environmental interactions. Its fitness-based
performance assessment is particularly useful in this role, as unintu-
itive, surprising designs [20] can be assessed in a bias-free manner
and large, complex design spaces can be automatically explored
in the pursuit of desired behaviours. ER is overwhelmingly imple-
mented as a fully automated process: a robot-producing black box
that relies on computational power, parallelisation, and extensive
trial-and-error to tackle high-dimensional design problems over a
wide design space. Conversely, human-centered design relies on
creativity, intuition, and domain knowledge that digital systems
often struggle to replicate, but typically a narrower design space.
Here, we investigate the impact of injecting human designs (and
thus human creativity, intuition, and expertise) into the initial popu-
lation of an ER experiment that produces legged robots (Figure 1). In
this way, the human designer can influence the search for solutions
that satisfy design requirements, whilst also exploiting the design
space coverage afforded by evolutionary search. We implement a
quality-diversity [28] evolutionary algorithm based on MAP-Elites
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[26], providing an effective performance-design space map. We cou-
ple this to the Robogami [31] design tool, which enables interactive
human-led design exploration and provides a straightforward way
to integrate human designs into the evolutionary process.

We hypothesise that the inclusion of human designs in an ER
experiment affects the running progress and the final result of the
algorithm, either in terms of the performance of the evolved robots,
the coverage of the map, or both. We focus the study mainly on two
research questions: RQ1 What effects would human input have
on the intermediate population when algorithm is running? RQ2
What effects would the human input have on the final population?

First, we collect human designs across a range of terrains using
a visual design interface (Figure 5). Humans are tasked to design
robot morphologies that generate high-performance locomotion
behaviour across a range of increasingly difficult (for the robot)
and decreasingly intuitive (for the designer) terrains (Figure 4).
In stage 2, we conduct a range of experiments that use varying
ratios of human and randomly-initialised designs. We assess the
effect of changing ratios of human and random designs in the initial
population. Overall, results indicate that human inputs could have
either positive or negative impact on the final evolved robot fitness,
depending on the quality of the designs, and a negative impact on
early stage map coverage. Optimal ratios of human and random
designs are shown to depend on environmental complexity.

The main contributions of this work are (i) the first work that
uses human designs to evolve robot morphologies, (ii) extensions
to the Robogami software that allow for coupling to MAP-Elites
and a multi-participant user study, and (iii) a detailed analysis of
the effects of adding human inputs to the initial population.

2 BACKGROUND
2.1 Computational Co-design

Human-influenced computational design aims to combine compute-
based rapid assessment with human intuition and expert knowledge
to collaboratively explore and optimise within a given design space.
Typical goals include reducing designer effort and reaching parts
of the design space that are otherwise difficult to access. Applica-
tions are diverse, including optimising CAD models [32], designing
model aeroplanes [37], and assisting in the sketching of levels for
computer games [22]. Visualisation plays an important role, partic-
ularly when dealing with indirect solution representations which
may be unintuitive to explore without visual and performance feed-
back [14]. Works closely related to ER include interactive design
of 3D printable mechanical characters [8] that reproduce desired
animatronic motions through the computationally-assisted place-
ment of actuation mechanisms, and robotic creatures [25] including
legged robots [9], where computational design is used to generate
a plausible gait for a given hand-designed morphology. In all cases,
the human predominantly leads and controls the design process,
with the computational element used in a supporting role, e.g., to
generate suggestions, verify the design, or support the designer by
creating working actuation for their designs.

2.2 Interactive Evolutionary Algorithms

Human input can be integrated into an Evolutionary Algorithm
(EA) in several ways. For example, expert knowledge can be used to
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set parameter limits and to design fitness functions [17]. Typically,
the only feedback the user receives on their choices is at the end
of the experiment, when solutions can be analysed to see if these
settings produced the intended results. Interactive Evolution [3] is
concerned with more in-depth interplay between user input and
evolutionary processes. Early examples include Sims’ ‘Galapagos’
exhibit where a human’s interest (measured by the time spent
looking at a specific screen displaying an evolved art piece) was used
to drive the evolutionary process, and indirectly-represented digital
art [24], as well as the interactive evolution of dynamical systems
[34]. Interactive EAs have applications as diverse as molecular
design [19] to evolution of digital images [33] and brochures [29]
to game level design [6, 30]. Work on exploring the design space
around a provided CAD model [7], e.g., injecting user designs and
then evolving them, demonstrates the benefits of mixing user inputs
and evolution. We also note the success of interactive evolution in
the domain of parametric design [13], which is our target domain.

2.2.1 Interactive Quality-Diversity. Quality-Diversity (QD) algo-
rithms [28] are a family of evolutionary algorithms that aim to
produce a wide range of high-quality designs, with two popular
variants being NSLC [21] (using Pareto optimisation to maintain
diversity) and MAP-Elites [26] (which uses a discretised feature
map). QD is particularly suited to design tasks, as a wide variety
of performant designs are encouraged to effectively map out an
entire design space [12], generating valuable feedback to the de-
signer and identifying regions where interesting solutions might
lie. MAP-Elites has also been investigated in the context of interac-
tive evolution, where game level designs can be selected from the
map and edited by the user during an evolutionary run [1], with
preliminary work showing the ability for human designs to unlock
previously undiscovered areas of the design space.

2.2.2  Interactive Evolutionary Robotics. Evolutionary Robotics (ER)
(see numerous overviews e.g., [5, 10, 27]) studies the automatic
generation of robot morphology and control within a given envi-
ronment, primarily to generate suitable behaviours, or as a tool
to study theories of embodiment, e.g., [15]. Originally simulated
[35], ER is now frequently associated with fabrication and physical
instantiation of both rigid [23] and soft robots [16] via 3D printing.
Robogen is a pertinent Ul/simulation enabled evolutionary robotics
platform [2]. In our work, we use the Robogami software, which
was designed for user interaction and which offers a direct route to
eventual fabrication-based studies through 3D printing or folding
of the resulting robots through autogenerated fabrication plans.
Interactive evolutionary robotics is sparsely covered in the litera-
ture. ER automation of certain design tasks can reduce barriers to
robot design [4], for example, by handling controller optimisation
of non-adaptive morphology, by using controller input to add new
rules on-the-fly for an evolved classifier-based robot controller [18],
and interactive approaches based on cellular representations [11].
To the best of our knowledge, interactive evolutionary morphology
generation does not appear in the literature.

2.3 Literature Summary and Motivation

Our work sits at the intersection of Evolutionary Robotics and Com-
putational Co-Design: users interactively design solutions, which
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are then harnessed to improve an evolutionary process. Rather
than tweaking computed designs, users iteratively tweak their own
designs based on fitness and visual behavioural feedback from the
simulator. This paper details the first such experiment in an evo-
lutionary robotics context. Our approach combines the benefits of
evolved and human designs in a way that does not require the user
to constantly interact with the design software to "tweak’ designs,
nor stop the evolutionary process to wait for user input. Compared
to conventional computational co-design, the emphasis for discov-
ery is shifted more onto the computational (evolutionary) element,
which is responsible for ultimately evolving high-performance so-
lutions yet is guided by its given input designs.

3 SYSTEM OVERVIEW

Our study builds a closed-loop system that let users first build robots
via a interactive design tool backed by the Robogami software [31],
then use a MAP-Elites [26] based searcher to evolve their designs
and generate better solutions.

3.1 Robogami Designer

Robogami is a interactive robotic design tool based on a design-by-
composition framework that let users design robots by composing
independently manufacturable robot parts together. The software
also includes algorithm that provides interactive feedback to users,
guiding their exploration by checking validity and manufacturabil-
ity of the design at each step. This provides a novice user a smooth
approach to get started and generate a design that reflects their
wish. To integrate this front-end to our system loop, we (1) sim-
plify the user interface and add design constraints to the software
to limit the design space as described in Section 3.2; (2) link the
software to a simulator described in Section 3.3 that evaluates the
design’s fitness and provides user with visual feedback; (3) develop
a compiler that compiles the user design to the design vector that
can be loaded by the MAP-Elites searcher described in Section 3.4;
(4) wrap the software with a user study guiding system that helps
the users go through the user study described in Section 4 with
minimum interruption by the researchers.

The resulted Ul is shown in Figure 5(a).

3.2 Robot Morphology and Gaits

ER uses a range of robot representations, which can be classified as
direct or indirect. Our choice must balance genome complexity and
design space expressiveness with the ability for changes in genome
parameters to be easily understood by corresponding changes in
the robot to aid in human design exploration. As such, we use a
direct representation that captures these features.

In this study, we consider legged robots with 2-6 legs, each of
which has 2 or 3 links. The genome, allele ranges, and mapping to a
phenotype (robot) are presented in Figure 2(a). The genome vector
contains 17 to 53 variables depending on the complexity of the
robot. Body Shape ID and Link Shape ID correspond to rectangular
prisms of different aspect ratios, and the Body Scale and Link Scale
are multipliers directly applied to the corresponding dimensions of
the parts, providing a flexible and scalable design space suitable for
both human and evolutionary exploration.
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Legs are evenly distributed on each side of the robot’s body and
attached to the middle point of the z direction (See Figure 4 for
direction definitions). A layout-mirroring flag controls which side
of the robot has more legs when an odd number of total legs is
inputted. This flag is ignored for robots with even number of legs.
Leg links are connected to each other in series with joints located
at either end of the link. All joints are revolute joints with axes of
rotation parallel to the y axis. The robot parts are assumed all to
be of uniform density (2.5 g/cm®), with dimension details shown in
Figure 2.

The gait of the robot is directly determined by the morphology,
with a set of predefined joint movements based on the design and
layout of legs. Each of the legs follows a motion sequence depending
on the number of links in the leg (Figure 3) with an offset depending
on its placement on the robot body. In particular, the legs are divided
into two groups. Starting from the front left leg, alternating group
numbers are assigned in clockwise order. Group 1 executes the
motion sequence M;M;M3 simultaneously as Group 2 executes
MyMsM;, and the process repeats over multiple gait cycles. The
group switches to the next joint target when all of the joint angles
are within 0.01 rad of the target angle, or 3 s after the other group
finishes its current motion, whichever happens earlier. The joint
angles and motion sequences associated with the joints in the legs
are kept constant over all robot designs; that is, they are not included
in the evolutionary design. The gait is controlled by a PI controller
over both velocity (kp = 10, k; = 0.3) and position (kp = 2,k; = 0),
with a maximum joint velocity of 2 rad/s. A deterministic controller
was used to remove a potential level of indirection, in the form of
body-brain optimisation, from the user design problem, allowing a
predictable control output per morphology to simplify the design
process.

3.3 Task and Fitness

To make sure the participants of the user study could get good
intuition on some problems, we define the task for the robot to be
simply walking forward in different environments, and define the
fitness to be heavily determined by the distance traveled during
the given time.

At the start of each simulation, the robot is placed at a fixed
point at one end of the environment, with z position determined
by having the foot of its longest leg lifted above the terrain surface
directly under it by 2 cm. The robot is then simulated forward for
30 s of simulated time with simulation step size of 0.005 s. We use
Project Chrono [36] as our simulator.

Since we expect the impact of human-created designs to differ
depending on the complexity of the design task and the quality
of human intuition, we designed three environments Ground (G),
Sine (S), Valley (V) (Figure 4) with increasing degrees of difficulty
of walking forward. Ground is expected to be the easiest task for
a human as the environment has little impact on robot behaviour.
Sine introduces additional difficulty by requiring designers to think
how navigate robots through the bumps. Valley is the most difficult
due to the introduced asymmetry, which is counter to most human
designers’ intuition. The fitness objective f is to maximize the
distance of the robot moving forward while minimizing divergence
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Figure 2: (a) Visual depiction of the robot genome, (b) allele definitions and ranges, (c) body part dimensions (cm), (d) body part
dimensions (cm), (e) example robots highlighting the potential for asymmetric morphologies, (f) body and link shapes.
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Figure 3: Gait executed by the robot designs. (a) Target joint
angles for legs of different numbers of links. (b) Example
grouping of legs and corresponding motion sequence. The
front of the robot faces up.

from a straight line:

f = Ax — 0.5 abs(Ay) (1

where Ax is the net displacement in the forward direction and Ay is
the net displacement perpendicular to the forward direction at the
time when the simulation stops. If the system detects the robot has
fallen off the edge of the environment, the simulation terminates
with fitness taken from the robot’s last position.

3.4 MAP-Elites Searcher

We build the evolutionary searcher upon MAP-Elites, and link it to
the simulator described in Section 3.3 for fitness and feature evalu-
ation. MAP-Elites holds its population in the archive map, which is
a discretized low-dimensional projective space of the search space.
We use a 2D map of 20 X 20 cells, with the 2 dimensions (features)
being: (1) the length of the body along the x direction (Figure 4
for direction definition), and (2) the standard deviation of the leg
lengths. The length of the robot’s body directly affects its separation
of legs on the forward direction, which then decides robot’s maxi-
mum feasible leg length and stability given our controller (Figure 3).
The standard deviation of the leg lengths quantifies asymmetry of
the robot design. These two features were chosen through a small
number of test runs using random initial populations. Compared to
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other tested features, e.g., average length of legs, maximum length
of legs, total volume of robots, length of genome, etc., these two
were found to be two of the most significant factors related to the
environments and fitness (Eq. 1) we use.

We set the size of initial population to be 30 and run the algo-
rithm for 2000 iterations. For each iteration, 30 parent designs are
randomly selected from the archive map to generate a batch of 30
children designs with mutation rate of 0.1 and crossover rate of 0.75.
The children designs are evaluated according to a fitness metric and
projected back onto and stored in the archive map. If the projected
cell is occupied, or if two children designs are projected to the same
cell, the individual with the highest fitness is retained.

4 HUMAN DATA COLLECTION

A user study' was conducted to collect human designs with the
UI described in Section 3.1. Data was collected from 13 students
(5 undergraduate, 8 graduate) who all had some prior experience
in robot design. Each participant started with a 10-min. tutorial
explanation of the user interface on a sample design, then a 10-min.
exploration session to familiarize themselves with the system and
ask questions, in which they could design and test robots for an
unlimited number of times on a different training environment.
After the training, each participant was given the task and the defi-
nition of fitness, and asked to design a robot for each of the three
environments. At the start of each new environment, all options
on the right panel of the UI are set to the middle point of their
range, showing the default “neutral robot.” The participant would
adjust the parameters and design a robot that reflects their intuition
and knowledge, and send the robot to simulation for walking visu-
alisation and fitness. Each participant was allowed to update the
design 10 times per environment, and each update was considered
to include all of design changes made between two consecutive
simulation requests. Design genomes were saved at each iteration,
resulting in 11 total designs per environment per user.

! This user study has been approved by the IRB of University of Pennsylvania under
the title Robotic design decision making (protocol #849907).
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Valley

Figure 4: Test environments: Ground (G), Sine (S), and asymmetric Valley (V) with one vertical wall and one wall at 45°. Neutral
robots provided for scale. Red marks the left front leg of robot. +x points forward, +y points leftward, +z points upward
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Figure 5: (a) Robot design interface. Options on the right let user tweak the design of robot. The resulting design is displayed in
the center. Options on the left guides the user through the user study, change the environment, load a pre-existing design, and
simulate the current design. When “Test” button is clicked, a visualisation of the simulation and the final fitness value are
shown to the user. (b) Sample fitness progression over 10 design iterations for one user. (c) (i)-(iii) Archive map of all human
designs per environment, coloured by fitness. (iv) Number of robots per bin on the map, coloured by environment type.

The order of the environments was randomized for each user to
mitigate the bias from one environment to the next, introduced by
the increasing familiarity to the system.

We expect the fitness of the design to improve over the iterations
up until the user is satisfied with their design quality, at which point
they commit to their design by simulating the same design for the
remaining iterations or they test minor tweaks.

A total of 143 designs (11 robots from 13 users) were collected for
each environment. In a post-processing step, we removed duplicates
from when the user requested a simulation multiple times for the
same design, resulting in 125 total designs for the Ground, 128 for
the Sine, and 130 for the Valley.

Figure 5(b) shows the fitness progression of the design iterations
on different environments for one participant. As expected, for
the Ground and Sine, designs improved over the course of design
iterations for the first few iterations before fitness increases slow
down near the final value. The robot designs also undergo larger
changes during earlier iterations than later ones. The general fit-
ness increases support the suitability of our approach as a design
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tool. In the Valley, however, the fitness achieved the by the partici-
pant remained low and throughout the iterations and the designs
exhibited larger changes between iterations, indicating that users
performed more exploration for this task and that it was overall
more difficult for them to use their intuition on.

Figure 5(c) (i) - (iii) show the archive maps with all designs
from all users for the corresponding environment are inputted.
A large number of designs are concentrated on the left side of
the map corresponding to symmetric designs for all environments.
Comparing to the sample archive maps of the final population of
H25 shown in Figure 7, we see the users successfully placed their
designs in the high-performing region for Ground and Sine, but not
for the Valley, indicating the less productive intuition for the latter.
And we see more cells in Figure 5(c)(iii) are filled, as the users were
forced to explore more areas in the design space. Figure 5(c)(iv)
shows the number of robots that goes into each cell in the feature
map, with all robots included. The preference of cells is another
indicator that humans’ exploration of the design space is relatively
condensed.
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Env Mean Fitness Human /

Human | H251 | H25F | HOI | HOF | Final HO

G 7.4 5.76 8.09 -0.64 6.5 113.85%
S 5.99 4.61 6.25 | -0.56 | 5.79 103.45%
\% 1.24 1.02 5.83 -0.06 | 6.52 19.02%
G(B) 11.96 11.96 | 17.29 | 3.08 | 12.19 | 89.87%
S(B) 9.2 9.2 13.89 3.05 | 10.68 104.31%
V(B) 3.14 9.2 10.84 2.16 | 13.45 26.87%

Table 1: Mean fitness for the human designs, Initial (I) and
final (F) population of HO and H25. In the first column, the
letters indicate the environment: G(round), S(ine), or V(alley).
We also show the best fitness of human design, and the mean
of best single fitness of different test runs (B).

5 RESULTS

To explore RQ1 and RQ2, we set up 5 test conditions with varying
numbers of human and random designs.

(H0) No human designs and 30 random robots.
(H5) 5 human designs and 25 random robots. Human inputs were
the top 5 designs, with at most 1 design per user.
(H15) 15 human designs and 15 random robots. Human inputs were
the top 15 designs, with at most 2 designs per user.
(H25) 25 human designs and 5 random robots. Human inputs were
the top 25 designs, with at most 3 designs per user.
(H30) 30 human designs and 0 random robots. Human inputs were
the top 30 designs, with at most 3 designs per user.

Each test condition Hx is repeated 10 times with random designs
uniformly re-sampled for each repeat. The experiments are con-
ducted on a desktop computer with a quad core 10th Gen Intel i7
@ 3.4GHz CPU, taking approximately 6 hours per run.

The curves in Figure 6(a) show the transitional changes of key
metrics during the running of algorithm. Box plots in Figure 6(b)
show key MAP-Elites metrics of the final population. [26] Figure 7
shows sample archive maps from HO and H25 for three environ-
ments, and Figure 1 shows initial and high-performing robots sam-
pled from those archive maps. Figure 8 shows the Mann-Whitney
U-test result for mean and best fitness of the final population of

different test conditions.?.

5.1 (RQ1)Effects on intermediate population

Mean fitness marks the average performance of the population, a
good indicator of the progress of the algorithm run. The random
HO test condition follows a generally increasing trend. However,
test conditions with human input shows sharp dips in fitness in the
first few iterations: the human designs are relatively high fitness
and early additions to the map decrease the mean. For Ground and
Sine, higher amounts of human input maintain higher mean and
best fitness. For the Valley, the difficulty of the design task reduces
effectiveness of the human input and the fitness curves largely
overlap.

Best fitness is the fitness of the highest-performing robot of the
population, which directly shows the quality of solution that the

2Supplementary data and resources are available at:
https://sung.seas.upenn.edu/publications/evorobogami-gecco-2022.
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algorithm has found at any point of the run. The test conditions
with human inputs all start at the same high fitness value on Ground
and Sine, as the best human design is guaranteed to be included
in the initial population. The curve for HO starts at a significantly
lower point than the rest, and also converges to a lower value. In
contrast, for the Valley, the curve of HO is indistinguishable from
the others. The differences between HO and other conditions at the
start of the curve in different environments also indicates that the
Ground and Sine are easy environments for the users.

QD-score is a performance measurement that considers both
quality and diversity of the population [28]. For the Ground, all
test conditions have a QD-score curve starting roughly at the same
point, but test conditions with human designs increase at a faster
rate, which the largest final QD-score being achieved by H25 on
average. The results of the Sine show a similar trend, but with
narrower gap between H25 and HO. In contrast, for the Valley, HO
achieves the best QD-score shortly after a few iterations and holds
the position for the rest of the run. This implies human designs
with bad quality bring negative effect to QD-score.

Coverage curves show a rapid increase in early iterations, fol-
lowed by a slower convergence to 100% coverage. Lower amounts
of human input achieve higher coverage faster, however 100% cov-
erage is attained within 400 iterations in all cases, indicating that
in our experiment setup, human input affects only the rising speed
of coverage.

5.2 (RQ2) Effects on final population

For the Ground and Sine, human designs help to achieve better
QD-score, global performance, reliability and precision in all test
conditions. And in most cases, H25 outperforms other test condi-
tions in all metrics. For the Valley, HO records the best QD-score,
precision and reliability. For the Ground and Sine, the human de-
signs had a positive effect on the mean fitness of the final archive
map, and clearly beats HO for the best fitness. However, for the
Valley, the HO initial population produced an archive map with a
mean fitness that was statistically significantly higher than almost
all other test conditions. The low mean fitness of the user designs
(1.24) compared to the final mean fitness of the HO runs (6.52) indi-
cates that users found the Valley task difficult and biased the search
to an unpromising area of the design space.

Results indicate that using only human designs in the initial
population can hinder the search. For the Ground, H30 condition
resulted in a statistically significantly lower mean fitness in the
archive map compared to H25. While for the Sine, the mean fitness
of the two archive maps were approximately the same, indicating
no great benefit from the additional human designs. This implies
that although human intuition was valuable in directing the search
to particular portion of the archive map, there is a benefit to adding
random robots to diversify the population and encourage design
exploration. Importantly, the evolutionary process does not dilute
the benefits of using user designs; stark fitness benefits are observed
even after 2000 iterations of evolution with no additional interac-
tion. Human designs are also frequently replaced in their niche by
evolved designs; evolution uses the provided genetic material to
improve solutions throughout the map.
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Figure 6: Results for 10 runs of each test condition. (a) Mean archive fitness, best single fitness of archive, QD-score, and coverage
at each iteration. Shaded area marks +1 standard deviation. (b) Box plots of final QD-score, global performance, reliability, and
precision of each test condition. Red line marks median, + indicates outliers.

Given best fitness performance, we conclude that human inputs
are beneficial to evolution in all cases, but more so when the user
has a sound grasp of the problem to be solved. When this is the case,
the human inputs bias the search process towards high-performing
regions of the design space, as well as providing useful genetic
material for further tinkering by evolution.

6 DISCUSSION

In summary, this paper shows the effects of adding human designs
to the initial population of an evolutionary robotics experiment. Our
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approach is ‘set and forget’: it does not require constant/repeated
user interaction to achieve its stated benefits, and is an accessible
way to bring intuition into evolutionary design problems with-
out slowing down evolutionary run time. It can also be viewed as
the inverse of related approaches wherein computational designs
are suggested to the user for tweaking; here the human does the
suggesting and evolution does the tweaking.

Results demonstrate that when humans have a reasonable under-
standing of the problem to be solved, their inputs have beneficial
effects on the subsequent evolutionary process, yielding higher
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Figure 7: Representative maps from a single run with HO and H25 test cases. Colour represents fitness.
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Figure 8: Statistical significance test of final archive maps for
three environments. "+" means the column result is larger
than the row result. "—" indicates the opposite. "~" means dif-
ference is less than 0.5% of the smaller value. Shaded cells in-
dicate statistically significant differences confirmed by Mann-
Whitney U-test at P < 0.05. “A” indicates comparison on mean
fitness of archive map; “B” indicates comparison on best sin-
gle fitness of archive map.

best fitness and higher mean archive fitness. Evolution biases the
initial population into high-performing regions of the search space
(a form of expert knowledge injection), and subsequently exploits
the high-quality genetic material to generate performant designs.
We note that evolution plays the key designer role in this process;
initial human inputs are not seen in the final populations and are
frequently overtaken in their niches by evolved designs based on
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their genome parameters. We also see that the fitness benefits are
not simply wiped out by the ongoing genetic process; instead fitness
benefits are lasting and readily observable in the final evolved pop-
ulations. Additionally, archive coverage is not unduly affected by
the use of user designs. Maximum map coverage is readily achieved
in all cases within 400 iterations, so would only be detrimental in
very short runs that are commonly not used with MAP-Elites. A
mixture of human and random designs (H25) achieves good results
in all metrics for Ground and Sine, where the human intuition is
reasonable, suggesting an optimal balance of the two sources of
designs.

We note some limitations with this study. First, it is dependent
on human input and a cohort of experienced users, which may
not be available. However this limitation is true of any user-based
study. Furthermore, many CAD packages and robot simulators can
readily support this functionality, and many potential users exist in
academia (with access to students) or industry (with access to peer
employees). The range of applications can therefore be considered
to be relatively large. Finally, results suggest that our approach
is highly beneficial, but is particularly powerful when the human
designers have a reasonable grasp of the problem. This effect is still
to be quantified, but nevertheless this observation may guide the
application of this technique into other domains.

Future work will focus on assessing the impact of representa-
tion on a user’s ability to design, and the interaction of different
representations and evolutionary methods with the process. We
note that Robogami is capable of much more design diversity than
used in this study, so expanding the design space is a key goal.
Additional studies will explore questions such as: Are there regions
that humans can reach that evolution struggles with, or vice versa?
Similarly, we wish to exploit the ability to easily fabricate the robots
and move some of the experimentation to reality.
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