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ABSTRACT

We study the effects of injecting human-generated designs into the

initial population of an evolutionary robotics experiment, where

subsequent population of robots are optimised via a Genetic Al-

gorithm and MAP-Elites. First, human participants interact via a

graphical front-end to explore a directly-parameterised legged ro-

bot design space and attempt to produce robots via a combination

of intuition and trial-and-error that perform well in a range of

environments. Environments are generated whose corresponding

high-performance robot designs range from intuitive to complex

and hard to grasp. Once the human designs have been collected,

their impact on the evolutionary process is assessed by replacing

a varying number of designs in the initial population with human

designs and subsequently running the evolutionary algorithm. Our

results suggest that a balance of random and hand-designed initial

solutions provides the best performance for the problems consid-

ered, and that human designs are most valuable when the problem

is intuitive. The influence of human design in an evolutionary algo-

rithm is a highly understudied area, and the insights in this paper

may be valuable to the area of AI-based design more generally.

CCS CONCEPTS

• Computer systems organization → Evolutionary robotics;

•Mathematics of computing→ Evolutionary algorithms; •

Human-centered computing → User studies; • Computing

methodologies → Genetic algorithms.
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Evolutionary Robotics, interactive evolution, MAP-Elites, quality
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Figure 1: Example robots: (a) Human designs included in the

initial population of H25. (b) High-performing designs in

final population of H0. (c) High-performing designs in final

population of H25. Red marks the left front leg.

1 INTRODUCTION

Evolutionary Robotics (ER) (e.g., [5]) is a powerful tool for robot

design, being able to explore interwoven design spaces of cou-

pled body, brain, and environmental interactions. Its fitness-based

performance assessment is particularly useful in this role, as unintu-

itive, surprising designs [20] can be assessed in a bias-free manner

and large, complex design spaces can be automatically explored

in the pursuit of desired behaviours. ER is overwhelmingly imple-

mented as a fully automated process: a robot-producing black box

that relies on computational power, parallelisation, and extensive

trial-and-error to tackle high-dimensional design problems over a

wide design space. Conversely, human-centered design relies on

creativity, intuition, and domain knowledge that digital systems

often struggle to replicate, but typically a narrower design space.

Here, we investigate the impact of injecting human designs (and

thus human creativity, intuition, and expertise) into the initial popu-

lation of an ER experiment that produces legged robots (Figure 1). In

this way, the human designer can influence the search for solutions

that satisfy design requirements, whilst also exploiting the design

space coverage afforded by evolutionary search. We implement a

quality-diversity [28] evolutionary algorithm based on MAP-Elites
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[26], providing an effective performance-design space map. We cou-

ple this to the Robogami [31] design tool, which enables interactive

human-led design exploration and provides a straightforward way

to integrate human designs into the evolutionary process.

We hypothesise that the inclusion of human designs in an ER

experiment affects the running progress and the final result of the

algorithm, either in terms of the performance of the evolved robots,

the coverage of the map, or both. We focus the study mainly on two

research questions: RQ1 What effects would human input have

on the intermediate population when algorithm is running? RQ2

What effects would the human input have on the final population?

First, we collect human designs across a range of terrains using

a visual design interface (Figure 5). Humans are tasked to design

robot morphologies that generate high-performance locomotion

behaviour across a range of increasingly difficult (for the robot)

and decreasingly intuitive (for the designer) terrains (Figure 4).

In stage 2, we conduct a range of experiments that use varying

ratios of human and randomly-initialised designs. We assess the

effect of changing ratios of human and random designs in the initial

population. Overall, results indicate that human inputs could have

either positive or negative impact on the final evolved robot fitness,

depending on the quality of the designs, and a negative impact on

early stage map coverage. Optimal ratios of human and random

designs are shown to depend on environmental complexity.

The main contributions of this work are (i) the first work that

uses human designs to evolve robot morphologies, (ii) extensions

to the Robogami software that allow for coupling to MAP-Elites

and a multi-participant user study, and (iii) a detailed analysis of

the effects of adding human inputs to the initial population.

2 BACKGROUND

2.1 Computational Co-design

Human-influenced computational design aims to combine compute-

based rapid assessment with human intuition and expert knowledge

to collaboratively explore and optimise within a given design space.

Typical goals include reducing designer effort and reaching parts

of the design space that are otherwise difficult to access. Applica-

tions are diverse, including optimising CAD models [32], designing

model aeroplanes [37], and assisting in the sketching of levels for

computer games [22]. Visualisation plays an important role, partic-

ularly when dealing with indirect solution representations which

may be unintuitive to explore without visual and performance feed-

back [14]. Works closely related to ER include interactive design

of 3D printable mechanical characters [8] that reproduce desired

animatronic motions through the computationally-assisted place-

ment of actuation mechanisms, and robotic creatures [25] including

legged robots [9], where computational design is used to generate

a plausible gait for a given hand-designed morphology. In all cases,

the human predominantly leads and controls the design process,

with the computational element used in a supporting role, e.g., to

generate suggestions, verify the design, or support the designer by

creating working actuation for their designs.

2.2 Interactive Evolutionary Algorithms

Human input can be integrated into an Evolutionary Algorithm

(EA) in several ways. For example, expert knowledge can be used to

set parameter limits and to design fitness functions [17]. Typically,

the only feedback the user receives on their choices is at the end

of the experiment, when solutions can be analysed to see if these

settings produced the intended results. Interactive Evolution [3] is

concerned with more in-depth interplay between user input and

evolutionary processes. Early examples include Sims’ ‘Galapagos’

exhibit where a human’s interest (measured by the time spent

looking at a specific screen displaying an evolved art piece) was used

to drive the evolutionary process, and indirectly-represented digital

art [24], as well as the interactive evolution of dynamical systems

[34]. Interactive EAs have applications as diverse as molecular

design [19] to evolution of digital images [33] and brochures [29]

to game level design [6, 30]. Work on exploring the design space

around a provided CAD model [7], e.g., injecting user designs and

then evolving them, demonstrates the benefits of mixing user inputs

and evolution. We also note the success of interactive evolution in

the domain of parametric design [13], which is our target domain.

2.2.1 Interactive Quality-Diversity. Quality-Diversity (QD) algo-

rithms [28] are a family of evolutionary algorithms that aim to

produce a wide range of high-quality designs, with two popular

variants being NSLC [21] (using Pareto optimisation to maintain

diversity) and MAP-Elites [26] (which uses a discretised feature

map). QD is particularly suited to design tasks, as a wide variety

of performant designs are encouraged to effectively map out an

entire design space [12], generating valuable feedback to the de-

signer and identifying regions where interesting solutions might

lie. MAP-Elites has also been investigated in the context of interac-

tive evolution, where game level designs can be selected from the

map and edited by the user during an evolutionary run [1], with

preliminary work showing the ability for human designs to unlock

previously undiscovered areas of the design space.

2.2.2 Interactive Evolutionary Robotics. Evolutionary Robotics (ER)

(see numerous overviews e.g., [5, 10, 27]) studies the automatic

generation of robot morphology and control within a given envi-

ronment, primarily to generate suitable behaviours, or as a tool

to study theories of embodiment, e.g., [15]. Originally simulated

[35], ER is now frequently associated with fabrication and physical

instantiation of both rigid [23] and soft robots [16] via 3D printing.

Robogen is a pertinent UI/simulation enabled evolutionary robotics

platform [2]. In our work, we use the Robogami software, which

was designed for user interaction and which offers a direct route to

eventual fabrication-based studies through 3D printing or folding

of the resulting robots through autogenerated fabrication plans.

Interactive evolutionary robotics is sparsely covered in the litera-

ture. ER automation of certain design tasks can reduce barriers to

robot design [4], for example, by handling controller optimisation

of non-adaptive morphology, by using controller input to add new

rules on-the-fly for an evolved classifier-based robot controller [18],

and interactive approaches based on cellular representations [11].

To the best of our knowledge, interactive evolutionary morphology

generation does not appear in the literature.

2.3 Literature Summary and Motivation

Our work sits at the intersection of Evolutionary Robotics and Com-

putational Co-Design: users interactively design solutions, which
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are then harnessed to improve an evolutionary process. Rather

than tweaking computed designs, users iteratively tweak their own

designs based on fitness and visual behavioural feedback from the

simulator. This paper details the first such experiment in an evo-

lutionary robotics context. Our approach combines the benefits of

evolved and human designs in a way that does not require the user

to constantly interact with the design software to ’tweak’ designs,

nor stop the evolutionary process to wait for user input. Compared

to conventional computational co-design, the emphasis for discov-

ery is shifted more onto the computational (evolutionary) element,

which is responsible for ultimately evolving high-performance so-

lutions yet is guided by its given input designs.

3 SYSTEM OVERVIEW

Our study builds a closed-loop system that let users first build robots

via a interactive design tool backed by the Robogami software [31],

then use a MAP-Elites [26] based searcher to evolve their designs

and generate better solutions.

3.1 Robogami Designer

Robogami is a interactive robotic design tool based on a design-by-

composition framework that let users design robots by composing

independently manufacturable robot parts together. The software

also includes algorithm that provides interactive feedback to users,

guiding their exploration by checking validity and manufacturabil-

ity of the design at each step. This provides a novice user a smooth

approach to get started and generate a design that reflects their

wish. To integrate this front-end to our system loop, we (1) sim-

plify the user interface and add design constraints to the software

to limit the design space as described in Section 3.2; (2) link the

software to a simulator described in Section 3.3 that evaluates the

design’s fitness and provides user with visual feedback; (3) develop

a compiler that compiles the user design to the design vector that

can be loaded by the MAP-Elites searcher described in Section 3.4;

(4) wrap the software with a user study guiding system that helps

the users go through the user study described in Section 4 with

minimum interruption by the researchers.

The resulted UI is shown in Figure 5(a).

3.2 Robot Morphology and Gaits

ER uses a range of robot representations, which can be classified as

direct or indirect. Our choice must balance genome complexity and

design space expressiveness with the ability for changes in genome

parameters to be easily understood by corresponding changes in

the robot to aid in human design exploration. As such, we use a

direct representation that captures these features.

In this study, we consider legged robots with 2-6 legs, each of

which has 2 or 3 links. The genome, allele ranges, and mapping to a

phenotype (robot) are presented in Figure 2(a). The genome vector

contains 17 to 53 variables depending on the complexity of the

robot. Body Shape ID and Link Shape ID correspond to rectangular

prisms of different aspect ratios, and the Body Scale and Link Scale

are multipliers directly applied to the corresponding dimensions of

the parts, providing a flexible and scalable design space suitable for

both human and evolutionary exploration.

Legs are evenly distributed on each side of the robot’s body and

attached to the middle point of the 𝑧 direction (See Figure 4 for

direction definitions). A layout-mirroring flag controls which side

of the robot has more legs when an odd number of total legs is

inputted. This flag is ignored for robots with even number of legs.

Leg links are connected to each other in series with joints located

at either end of the link. All joints are revolute joints with axes of

rotation parallel to the 𝑦 axis. The robot parts are assumed all to

be of uniform density (2.5 g/cm3), with dimension details shown in

Figure 2.

The gait of the robot is directly determined by the morphology,

with a set of predefined joint movements based on the design and

layout of legs. Each of the legs follows amotion sequence depending

on the number of links in the leg (Figure 3) with an offset depending

on its placement on the robot body. In particular, the legs are divided

into two groups. Starting from the front left leg, alternating group

numbers are assigned in clockwise order. Group 1 executes the

motion sequence 𝑀1𝑀2𝑀3 simultaneously as Group 2 executes

𝑀2𝑀3𝑀1, and the process repeats over multiple gait cycles. The

group switches to the next joint target when all of the joint angles

are within 0.01 rad of the target angle, or 3 s after the other group

finishes its current motion, whichever happens earlier. The joint

angles and motion sequences associated with the joints in the legs

are kept constant over all robot designs; that is, they are not included

in the evolutionary design. The gait is controlled by a PI controller

over both velocity (𝑘𝑝 = 10, 𝑘𝑖 = 0.3) and position (𝑘𝑝 = 2, 𝑘𝑖 = 0),

with a maximum joint velocity of 2 rad/s. A deterministic controller

was used to remove a potential level of indirection, in the form of

body-brain optimisation, from the user design problem, allowing a

predictable control output per morphology to simplify the design

process.

3.3 Task and Fitness

To make sure the participants of the user study could get good

intuition on some problems, we define the task for the robot to be

simply walking forward in different environments, and define the

fitness to be heavily determined by the distance traveled during

the given time.

At the start of each simulation, the robot is placed at a fixed

point at one end of the environment, with 𝑧 position determined

by having the foot of its longest leg lifted above the terrain surface

directly under it by 2 cm. The robot is then simulated forward for

30 s of simulated time with simulation step size of 0.005 s. We use

Project Chrono [36] as our simulator.

Since we expect the impact of human-created designs to differ

depending on the complexity of the design task and the quality

of human intuition, we designed three environments Ground (G),

Sine (S), Valley (V) (Figure 4) with increasing degrees of difficulty

of walking forward. Ground is expected to be the easiest task for

a human as the environment has little impact on robot behaviour.

Sine introduces additional difficulty by requiring designers to think

how navigate robots through the bumps. Valley is the most difficult

due to the introduced asymmetry, which is counter to most human

designers’ intuition. The fitness objective 𝑓 is to maximize the

distance of the robot moving forward while minimizing divergence
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x1: Body Shape ID

x2: Body Scale X

x3: Body Scale Y

x4: Body Scale Z

Number of legsBody a 3-link lega 2-Link Leg

Leg Layout Number of 

Links Per Leg

Link Shape ID & 

Link Length Scale

[x1, x2, x3, x4,  x5,  x6,  x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, … ]

(a)

Name Range

Body Shape ID Integer 1 - 6

Body Scale 𝑥 , 𝑦, 𝑧 Double [0.5, 1.5]

Number of Legs Integer 2 - 6

Leg Layout Bool true, false

Number of Links Integer 2, 3

Link Shape ID Integer 1 - 7

Link Length Scale Double [0.5, 1.5]

(b)

ID X Y Z

1 10 10 4

2 15 10 4

3 20 10 4

4 10 5 4

5 15 5 4

6 7 5 4

(c)

ID X Y Z

1 1 1 4

2 4 1 4

3 1 4 4

4 1 4 2

5 1 4 7

6 1 1 7

7 1 1 10

(d)

(e)

(f)

Figure 2: (a) Visual depiction of the robot genome, (b) allele definitions and ranges, (c) body part dimensions (cm), (d) body part

dimensions (cm), (e) example robots highlighting the potential for asymmetric morphologies, (f) body and link shapes.

𝜃1 𝜃2 𝜃3
3 links 𝑀1 𝑀2 𝑀3𝜃1 −0.4 −1.2 0.3𝜃2 0.5 0.8 0.2𝜃3 0.4 0.4 −0.2

2 links 𝑀1 𝑀2 𝑀3𝜃1 −0.4 −0.9 0.4𝜃2 0.8 1.3 0.4
Leg Joint Target Angles (rad)

1 2

1

12

Gait Sequence for Each Group𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟏 𝑴𝟐𝑀2 𝑀3 𝑴𝟏 𝑴𝟐 𝑴𝟑 …

(a) (b)

Figure 3: Gait executed by the robot designs. (a) Target joint

angles for legs of different numbers of links. (b) Example

grouping of legs and corresponding motion sequence. The

front of the robot faces up.

from a straight line:

𝑓 = Δ𝑥 − 0.5 abs(Δ𝑦) (1)

where Δ𝑥 is the net displacement in the forward direction and Δ𝑦 is

the net displacement perpendicular to the forward direction at the

time when the simulation stops. If the system detects the robot has

fallen off the edge of the environment, the simulation terminates

with fitness taken from the robot’s last position.

3.4 MAP-Elites Searcher

We build the evolutionary searcher upon MAP-Elites, and link it to

the simulator described in Section 3.3 for fitness and feature evalu-

ation. MAP-Elites holds its population in the archive map, which is

a discretized low-dimensional projective space of the search space.

We use a 2D map of 20 × 20 cells, with the 2 dimensions (features)

being: (1) the length of the body along the 𝑥 direction (Figure 4

for direction definition), and (2) the standard deviation of the leg

lengths. The length of the robot’s body directly affects its separation

of legs on the forward direction, which then decides robot’s maxi-

mum feasible leg length and stability given our controller (Figure 3).

The standard deviation of the leg lengths quantifies asymmetry of

the robot design. These two features were chosen through a small

number of test runs using random initial populations. Compared to

other tested features, e.g., average length of legs, maximum length

of legs, total volume of robots, length of genome, etc., these two

were found to be two of the most significant factors related to the

environments and fitness (Eq. 1) we use.

We set the size of initial population to be 30 and run the algo-

rithm for 2000 iterations. For each iteration, 30 parent designs are

randomly selected from the archive map to generate a batch of 30

children designs with mutation rate of 0.1 and crossover rate of 0.75.

The children designs are evaluated according to a fitness metric and

projected back onto and stored in the archive map. If the projected

cell is occupied, or if two children designs are projected to the same

cell, the individual with the highest fitness is retained.

4 HUMAN DATA COLLECTION

A user study1 was conducted to collect human designs with the

UI described in Section 3.1. Data was collected from 13 students

(5 undergraduate, 8 graduate) who all had some prior experience

in robot design. Each participant started with a 10-min. tutorial

explanation of the user interface on a sample design, then a 10-min.

exploration session to familiarize themselves with the system and

ask questions, in which they could design and test robots for an

unlimited number of times on a different training environment.

After the training, each participant was given the task and the defi-

nition of fitness, and asked to design a robot for each of the three

environments. At the start of each new environment, all options

on the right panel of the UI are set to the middle point of their

range, showing the default łneutral robot.ž The participant would

adjust the parameters and design a robot that reflects their intuition

and knowledge, and send the robot to simulation for walking visu-

alisation and fitness. Each participant was allowed to update the

design 10 times per environment, and each update was considered

to include all of design changes made between two consecutive

simulation requests. Design genomes were saved at each iteration,

resulting in 11 total designs per environment per user.

1This user study has been approved by the IRB of University of Pennsylvania under
the title Robotic design decision making (protocol #849907).
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Figure 4: Test environments: Ground (G), Sine (S), and asymmetric Valley (V) with one vertical wall and one wall at 45𝑜 . Neutral

robots provided for scale. Red marks the left front leg of robot. +𝑥 points forward, +𝑦 points leftward, +𝑧 points upward
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Figure 5: (a) Robot design interface. Options on the right let user tweak the design of robot. The resulting design is displayed in

the center. Options on the left guides the user through the user study, change the environment, load a pre-existing design, and

simulate the current design. When łTestž button is clicked, a visualisation of the simulation and the final fitness value are

shown to the user. (b) Sample fitness progression over 10 design iterations for one user. (c) (i)-(iii) Archive map of all human

designs per environment, coloured by fitness. (iv) Number of robots per bin on the map, coloured by environment type.

The order of the environments was randomized for each user to

mitigate the bias from one environment to the next, introduced by

the increasing familiarity to the system.

We expect the fitness of the design to improve over the iterations

up until the user is satisfied with their design quality, at which point

they commit to their design by simulating the same design for the

remaining iterations or they test minor tweaks.

A total of 143 designs (11 robots from 13 users) were collected for

each environment. In a post-processing step, we removed duplicates

from when the user requested a simulation multiple times for the

same design, resulting in 125 total designs for the Ground, 128 for

the Sine, and 130 for the Valley.

Figure 5(b) shows the fitness progression of the design iterations

on different environments for one participant. As expected, for

the Ground and Sine, designs improved over the course of design

iterations for the first few iterations before fitness increases slow

down near the final value. The robot designs also undergo larger

changes during earlier iterations than later ones. The general fit-

ness increases support the suitability of our approach as a design

tool. In the Valley, however, the fitness achieved the by the partici-

pant remained low and throughout the iterations and the designs

exhibited larger changes between iterations, indicating that users

performed more exploration for this task and that it was overall

more difficult for them to use their intuition on.

Figure 5(c) (i) - (iii) show the archive maps with all designs

from all users for the corresponding environment are inputted.

A large number of designs are concentrated on the left side of

the map corresponding to symmetric designs for all environments.

Comparing to the sample archive maps of the final population of

H25 shown in Figure 7, we see the users successfully placed their

designs in the high-performing region for Ground and Sine, but not

for the Valley, indicating the less productive intuition for the latter.

And we see more cells in Figure 5(c)(iii) are filled, as the users were

forced to explore more areas in the design space. Figure 5(c)(iv)

shows the number of robots that goes into each cell in the feature

map, with all robots included. The preference of cells is another

indicator that humans’ exploration of the design space is relatively

condensed.
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Env
Mean Fitness Human /

Human H25 I H25 F H0 I H0 F Final H0

G 7.4 5.76 8.09 -0.64 6.5 113.85%

S 5.99 4.61 6.25 -0.56 5.79 103.45%

V 1.24 1.02 5.83 -0.06 6.52 19.02%

G(B) 11.96 11.96 17.29 3.08 12.19 89.87%

S(B) 9.2 9.2 13.89 3.05 10.68 104.31%

V(B) 3.14 9.2 10.84 2.16 13.45 26.87%

Table 1: Mean fitness for the human designs, Initial (I) and

final (F) population of H0 and H25. In the first column, the

letters indicate the environment: G(round), S(ine), or V(alley).

We also show the best fitness of human design, and the mean

of best single fitness of different test runs (B).

5 RESULTS

To explore RQ1 and RQ2, we set up 5 test conditions with varying

numbers of human and random designs.

(H0) No human designs and 30 random robots.

(H5) 5 human designs and 25 random robots. Human inputs were

the top 5 designs, with at most 1 design per user.

(H15) 15 human designs and 15 random robots. Human inputs were

the top 15 designs, with at most 2 designs per user.

(H25) 25 human designs and 5 random robots. Human inputs were

the top 25 designs, with at most 3 designs per user.

(H30) 30 human designs and 0 random robots. Human inputs were

the top 30 designs, with at most 3 designs per user.

Each test condition H𝑥 is repeated 10 times with random designs

uniformly re-sampled for each repeat. The experiments are con-

ducted on a desktop computer with a quad core 10th Gen Intel i7

@ 3.4GHz CPU, taking approximately 6 hours per run.

The curves in Figure 6(a) show the transitional changes of key

metrics during the running of algorithm. Box plots in Figure 6(b)

show key MAP-Elites metrics of the final population. [26] Figure 7

shows sample archive maps from H0 and H25 for three environ-

ments, and Figure 1 shows initial and high-performing robots sam-

pled from those archive maps. Figure 8 shows the Mann-Whitney

U-test result for mean and best fitness of the final population of

different test conditions.2.

5.1 (RQ1) Effects on intermediate population

Mean fitness marks the average performance of the population, a

good indicator of the progress of the algorithm run. The random

H0 test condition follows a generally increasing trend. However,

test conditions with human input shows sharp dips in fitness in the

first few iterations: the human designs are relatively high fitness

and early additions to the map decrease the mean. For Ground and

Sine, higher amounts of human input maintain higher mean and

best fitness. For the Valley, the difficulty of the design task reduces

effectiveness of the human input and the fitness curves largely

overlap.

Best fitness is the fitness of the highest-performing robot of the

population, which directly shows the quality of solution that the

2Supplementary data and resources are available at:
https://sung.seas.upenn.edu/publications/evorobogami-gecco-2022.

algorithm has found at any point of the run. The test conditions

with human inputs all start at the same high fitness value on Ground

and Sine, as the best human design is guaranteed to be included

in the initial population. The curve for H0 starts at a significantly

lower point than the rest, and also converges to a lower value. In

contrast, for the Valley, the curve of H0 is indistinguishable from

the others. The differences between H0 and other conditions at the

start of the curve in different environments also indicates that the

Ground and Sine are easy environments for the users.

QD-score is a performance measurement that considers both

quality and diversity of the population [28]. For the Ground, all

test conditions have a QD-score curve starting roughly at the same

point, but test conditions with human designs increase at a faster

rate, which the largest final QD-score being achieved by H25 on

average. The results of the Sine show a similar trend, but with

narrower gap between H25 and H0. In contrast, for the Valley, H0

achieves the best QD-score shortly after a few iterations and holds

the position for the rest of the run. This implies human designs

with bad quality bring negative effect to QD-score.

Coverage curves show a rapid increase in early iterations, fol-

lowed by a slower convergence to 100% coverage. Lower amounts

of human input achieve higher coverage faster, however 100% cov-

erage is attained within 400 iterations in all cases, indicating that

in our experiment setup, human input affects only the rising speed

of coverage.

5.2 (RQ2) Effects on final population

For the Ground and Sine, human designs help to achieve better

QD-score, global performance, reliability and precision in all test

conditions. And in most cases, H25 outperforms other test condi-

tions in all metrics. For the Valley, H0 records the best QD-score,

precision and reliability. For the Ground and Sine, the human de-

signs had a positive effect on the mean fitness of the final archive

map, and clearly beats H0 for the best fitness. However, for the

Valley, the H0 initial population produced an archive map with a

mean fitness that was statistically significantly higher than almost

all other test conditions. The low mean fitness of the user designs

(1.24) compared to the final mean fitness of the H0 runs (6.52) indi-

cates that users found the Valley task difficult and biased the search

to an unpromising area of the design space.

Results indicate that using only human designs in the initial

population can hinder the search. For the Ground, H30 condition

resulted in a statistically significantly lower mean fitness in the

archive map compared to H25. While for the Sine, the mean fitness

of the two archive maps were approximately the same, indicating

no great benefit from the additional human designs. This implies

that although human intuition was valuable in directing the search

to particular portion of the archive map, there is a benefit to adding

random robots to diversify the population and encourage design

exploration. Importantly, the evolutionary process does not dilute

the benefits of using user designs; stark fitness benefits are observed

even after 2000 iterations of evolution with no additional interac-

tion. Human designs are also frequently replaced in their niche by

evolved designs; evolution uses the provided genetic material to

improve solutions throughout the map.
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Figure 6: Results for 10 runs of each test condition. (a) Mean archive fitness, best single fitness of archive, QD-score, and coverage

at each iteration. Shaded area marks ±1 standard deviation. (b) Box plots of final QD-score, global performance, reliability, and

precision of each test condition. Red line marks median, + indicates outliers.

Given best fitness performance, we conclude that human inputs

are beneficial to evolution in all cases, but more so when the user

has a sound grasp of the problem to be solved. When this is the case,

the human inputs bias the search process towards high-performing

regions of the design space, as well as providing useful genetic

material for further tinkering by evolution.

6 DISCUSSION

In summary, this paper shows the effects of adding human designs

to the initial population of an evolutionary robotics experiment. Our

approach is ‘set and forget’: it does not require constant/repeated

user interaction to achieve its stated benefits, and is an accessible

way to bring intuition into evolutionary design problems with-

out slowing down evolutionary run time. It can also be viewed as

the inverse of related approaches wherein computational designs

are suggested to the user for tweaking; here the human does the

suggesting and evolution does the tweaking.

Results demonstrate that when humans have a reasonable under-

standing of the problem to be solved, their inputs have beneficial

effects on the subsequent evolutionary process, yielding higher
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Figure 7: Representative maps from a single run with H0 and H25 test cases. Colour represents fitness.
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Figure 8: Statistical significance test of final archive maps for

three environments. "+" means the column result is larger

than the row result. "−" indicates the opposite. "∼" means dif-

ference is less than 0.5% of the smaller value. Shaded cells in-

dicate statistically significant differences confirmed byMann-

Whitney U-test at 𝑃 < 0.05. łAž indicates comparison onmean

fitness of archive map; łBž indicates comparison on best sin-

gle fitness of archive map.

best fitness and higher mean archive fitness. Evolution biases the

initial population into high-performing regions of the search space

(a form of expert knowledge injection), and subsequently exploits

the high-quality genetic material to generate performant designs.

We note that evolution plays the key designer role in this process;

initial human inputs are not seen in the final populations and are

frequently overtaken in their niches by evolved designs based on

their genome parameters. We also see that the fitness benefits are

not simply wiped out by the ongoing genetic process; instead fitness

benefits are lasting and readily observable in the final evolved pop-

ulations. Additionally, archive coverage is not unduly affected by

the use of user designs. Maximum map coverage is readily achieved

in all cases within 400 iterations, so would only be detrimental in

very short runs that are commonly not used with MAP-Elites. A

mixture of human and random designs (H25) achieves good results

in all metrics for Ground and Sine, where the human intuition is

reasonable, suggesting an optimal balance of the two sources of

designs.

We note some limitations with this study. First, it is dependent

on human input and a cohort of experienced users, which may

not be available. However this limitation is true of any user-based

study. Furthermore, many CAD packages and robot simulators can

readily support this functionality, and many potential users exist in

academia (with access to students) or industry (with access to peer

employees). The range of applications can therefore be considered

to be relatively large. Finally, results suggest that our approach

is highly beneficial, but is particularly powerful when the human

designers have a reasonable grasp of the problem. This effect is still

to be quantified, but nevertheless this observation may guide the

application of this technique into other domains.

Future work will focus on assessing the impact of representa-

tion on a user’s ability to design, and the interaction of different

representations and evolutionary methods with the process. We

note that Robogami is capable of much more design diversity than

used in this study, so expanding the design space is a key goal.

Additional studies will explore questions such as: Are there regions

that humans can reach that evolution struggles with, or vice versa?

Similarly, we wish to exploit the ability to easily fabricate the robots

and move some of the experimentation to reality.

ACKNOWLEDGMENTS

The work was supported in part by the National Science Foundation

Grant #1845339.

175



EvoRobogami: Co-designing with Humans in Evolutionary Robotics Experiments GECCO ’22, July 9ś13, 2022, Boston, MA, USA

REFERENCES
[1] Alberto Alvarez, Jose Font, Steve Dahlskog, and Julian Togelius. 2021. Assessing

the Effects of Interacting with MAP-Elites. Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment 17, 1 (Oct. 2021),
124ś131. https://ojs.aaai.org/index.php/AIIDE/article/view/18899

[2] Joshua Auerbach, Deniz Aydin, Andrea Maesani, Przemyslaw Kornatowski, Titus
Cieslewski, Grégoire Heitz, Pradeep Fernando, Ilya Loshchilov, Ludovic Daler, and
Dario Floreano. 2014. Robogen: Robot generation through artificial evolution. In
ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation
of Living Systems. MIT Press, 136ś137.

[3] Wolfgang Banzhaf. 2000. Interactive evolution. Evolutionary Computation 1
(2000), 228ś234.

[4] Josh Bongard, Paul Beliveau, and Gregory Hornby. 2012. Avoiding Local Op-
tima with Interactive Evolutionary Robotics. In Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Computation (Philadelphia,
Pennsylvania, USA) (GECCO ’12). Association for Computing Machinery, New
York, NY, USA, 1405ś1406. https://doi.org/10.1145/2330784.2330955

[5] Josh C Bongard. 2013. Evolutionary robotics. Commun. ACM 56, 8 (2013), 74ś83.
[6] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. 2011. Interactive

evolution for the procedural generation of tracks in a high-end racing game. In
Proceedings of the 13th annual conference on Genetic and evolutionary computation.
395ś402.

[7] J. Clune, A. Chen, and H. Lipson. 2013. Upload any object and evolve it: Injecting
complex geometric patterns into CPPNS for further evolution. In 2013 IEEE
Congress on Evolutionary Computation. 3395ś3402. https://doi.org/10.1109/CEC.
2013.6557986

[8] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira
Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Compu-
tational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83
(jul 2013), 12 pages. https://doi.org/10.1145/2461912.2461953

[9] Ruta Desai, Beichen Li, Ye Yuan, and Stelian Coros. 2018. Interactive co-design
of form and function for legged robots using the adjoint method. arXiv preprint
arXiv:1801.00385 (2018).

[10] Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, and Agoston E Gusz
Eiben. 2015. Evolutionary robotics: what, why, and where to. Frontiers in Robotics
and AI 2 (2015), 4.

[11] Fr ed eric Gruau and Kameel Quatramaran. 1996. Cellular encoding for interactive
evolutionary robotics. Technical Report.

[12] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2018. Data-efficient
design exploration through surrogate-assisted illumination. Evolutionary compu-
tation 26, 3 (2018), 381ś410.

[13] John Harding and Cecilie Brandt-Olsen. 2018. Biomorpher: Interactive evo-
lution for parametric design. International Journal of Architectural Com-
puting 16, 2 (2018), 144ś163. https://doi.org/10.1177/1478077118778579
arXiv:https://doi.org/10.1177/1478077118778579

[14] Frank Hoisl. 2012. Visual, interactive 3D spatial grammars in CAD for computa-
tional design synthesis. Ph.D. Dissertation. Technische Universität München.

[15] David Howard, Agoston E Eiben, Danielle Frances Kennedy, Jean-BaptisteMouret,
Philip Valencia, and Dave Winkler. 2019. Evolving embodied intelligence from
materials to machines. Nature Machine Intelligence 1, 1 (2019), 12ś19.

[16] David Howard, Jack O’Connor, Jordan Letchford, James Brett, Therese Joseph,
Sophia Lin, Daniel Furby, and Gary W. Delaney. 2021. Getting a Grip: in Ma-
terio Evolution of Membrane Morphology for Soft Robotic Jamming Grippers.
arXiv:2111.01952 [cs.RO]

[17] Gerard Howard, Thomas Lowe, and Wade Geles. 2020. Diversity-based design
assist for large legged robots. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion. 81ś82.

[18] D. Katagami and S. Yamada. 2002. Interactive evolutionary robotics from different
viewpoints of observation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vol. 2. 1108ś1113 vol.2. https://doi.org/10.1109/IRDS.2002.
1043879

[19] Eric-Wubbo Lameijer, Joost N Kok, Thomas Bäck, and Ad P IJzerman. 2006. The
molecule evoluator. An interactive evolutionary algorithm for the design of

drug-like molecules. Journal of chemical information and modeling 46, 2 (2006),
545ś552.

[20] Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie
Beaulieu, Peter J Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson,
et al. 2020. The surprising creativity of digital evolution: A collection of anec-
dotes from the evolutionary computation and artificial life research communities.
Artificial life 26, 2 (2020), 274ś306.

[21] Joel Lehman and Kenneth O Stanley. 2011. Evolving a diversity of virtual creatures
through novelty search and local competition. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation. 211ś218.

[22] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2013. Sentient
sketchbook: computer-assisted game level authoring. (2013).

[23] Hod Lipson and Jordan B Pollack. 2000. Automatic design and manufacture of
robotic lifeforms. Nature 406, 6799 (2000), 974ś978.

[24] Jon McCormack et al. 1993. Interactive evolution of L-system grammars for
computer graphics modelling. Complex Systems: from biology to computation
(1993), 118ś130.

[25] VittorioMegaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus
Gross, and Stelian Coros. 2015. Interactive Design of 3D-Printable Robotic
Creatures. ACM Trans. Graph. 34, 6, Article 216 (oct 2015), 9 pages. https:
//doi.org/10.1145/2816795.2818137

[26] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 (2015).

[27] Stefano Nolfi and Dario Floreano. 2000. Evolutionary robotics: The biology, intelli-
gence, and technology of self-organizing machines. MIT press.

[28] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. 2016. Quality diversity: A
new frontier for evolutionary computation. Frontiers in Robotics and AI 3 (2016),
40.

[29] Juan C. Quiroz, Amit Banerjee, Sushil J. Louis, and Sergiu M. Dascalu. 2009.
Document design with interactive evolution. 309ś319. https://doi.org/10.1007/978-
3-642-02937-0_28 Copyright: Copyright 2009 Elsevier B.V., All rights reserved.

[30] Jacob Schrum, Jake Gutierrez, Vanessa Volz, Jialin Liu, Simon Lucas, and Sebastian
Risi. 2020. Interactive Evolution and Exploration within Latent Level-Design
Space of Generative Adversarial Networks. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (Cancún, Mexico) (GECCO ’20). Association
for Computing Machinery, New York, NY, USA, 148ś156. https://doi.org/10.
1145/3377930.3389821

[31] Adriana Schulz, Cynthia Sung, Andrew Spielberg, Wei Zhao, Robin Cheng, Eitan
Grinspun, Daniela Rus, and Wojciech Matusik. 2017. Interactive robogami: An
end-to-end system for design of robots with ground locomotion. The International
Journal of Robotics Research 36, 10 (2017), 1131ś1147. https://doi.org/10.1177/
0278364917723465 arXiv:https://doi.org/10.1177/0278364917723465

[32] Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech
Matusik. 2017. Interactive design space exploration and optimization for cad
models. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1ś14.

[33] Jimmy Secretan, Nicholas Beato, David B D Ambrosio, Adelein Rodriguez, Adam
Campbell, and Kenneth O Stanley. 2008. Picbreeder: evolving pictures collab-
oratively online. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1759ś1768.

[34] Karl Sims. 1992. Interactive evolution of dynamical systems. In Toward a practice
of autonomous systems: Proceedings of the first European conference on artificial
life. 171ś178.

[35] Karl Sims. 1994. Evolving virtual creatures. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. 15ś22.

[36] Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel
Melanz, Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan
Negrut. 2015. Chrono: An open source multi-physics dynamics engine. In Inter-
national Conference on High Performance Computing in Science and Engineering.
Springer, 19ś49.

[37] Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014.
Pteromys: Interactive design and optimization of free-formed free-flight model
airplanes. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1ś10.

176

https://ojs.aaai.org/index.php/AIIDE/article/view/18899
https://doi.org/10.1145/2330784.2330955
https://doi.org/10.1109/CEC.2013.6557986
https://doi.org/10.1109/CEC.2013.6557986
https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1177/1478077118778579
https://arxiv.org/abs/https://doi.org/10.1177/1478077118778579
https://arxiv.org/abs/2111.01952
https://doi.org/10.1109/IRDS.2002.1043879
https://doi.org/10.1109/IRDS.2002.1043879
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1007/978-3-642-02937-0_28
https://doi.org/10.1007/978-3-642-02937-0_28
https://doi.org/10.1145/3377930.3389821
https://doi.org/10.1145/3377930.3389821
https://doi.org/10.1177/0278364917723465
https://doi.org/10.1177/0278364917723465
https://arxiv.org/abs/https://doi.org/10.1177/0278364917723465

	Abstract
	1 Introduction
	2 background
	2.1 Computational Co-design
	2.2 Interactive Evolutionary Algorithms
	2.3 Literature Summary and Motivation

	3 System Overview
	3.1 Robogami Designer
	3.2 Robot Morphology and Gaits
	3.3 Task and Fitness
	3.4 MAP-Elites Searcher

	4 Human Data Collection
	5 Results
	5.1 (RQ1) Effects on intermediate population
	5.2 (RQ2) Effects on final population

	6 Discussion
	Acknowledgments
	References

