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ABSTRACT

Given a countable Borel equivalence relation E and a countable group G,

we study the problem of when a Borel action of G on X/E can be lifted

to a Borel action of G on X.

1. Introduction

1.A. Automorphisms of equivalence relations. A countable Borel

equivalence relation (CBER) is an equivalence relation E on a standard

Borel space X such that E is Borel when considered as a subset of X2.

Let πE : X → X/E denote the quotient map.

Let E be a CBER onX . The automorphism group of E, denoted AutB(E)

(or NB[E]), is the group of Borel automorphisms of E, that is, Borel automor-

phisms T : X → X such that x E y ⇐⇒ T (x) E T (y), under composition. The

inner automorphism group of E (or the full group of E), denoted InnB(E)

(or [E]B), is the normal subgroup of AutB(E) consisting of the T ∈ AutB(E)

such that x E T (x). The normalizer of InnB(E) in the group of Borel automor-

phisms ofX is AutB(E). By a result of Miller and Rosendal [MR07, Proposition

2.1], if E is aperiodic, then the natural map AutB(E) → Aut(InnB(E)) is an

isomorphism. The outer automorphism group of E, denoted OutB(E), is

the quotient group AutB(E)/ InnB(E).
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Let E and F be CBERs onX and Y respectively. A function f : X/E → Y/F

is Borel if the set {(x, y) ∈ X × Y : f([x]E) = [y]F } is Borel, or equivalently

by the Lusin–Novikov theorem [Kec95, Theorem 18.10], if there exists a Borel

map T : X → Y such that f([x]E) = [T (x)]F . The Borel symmetric group

of X/E, denoted SymB(X/E), is the set of Borel permutations of X/E under

composition. There is a natural map AutB(E) → SymB(X/E), defined by

sending T ∈ AutB(E) to the permutation [x]E �→ [T (x)]E . This morphism has

kernel InnB(E), so there is a factorization

AutB(E) OutB(E) SymB(X/E).
pE iE

A Borel permutation of X/E in the image of this morphism is called an outer

permutation. In other words, f ∈SymB(X/E) is outer if there is T ∈AutB(E)

such that f([x]E) = [T (x)]E .

1.B. Lifts of Borel actions on quotient spaces. Let E be a CBER

on X and let G be a countable group. We write G �B (X,E) to denote

an action of G on X by Borel automorphisms of E, which is equivalent to a

morphism G → AutB(E). An action G �B (X,E) is class-bijective if πE

is class-bijective, that is, the restriction of πE to every G-orbit is an injection,

i.e., g ·x E x =⇒ g ·x = x. A Borel action of G on X/E, denoted G �B X/E,

is an action of G on X/E by Borel permutations, which is equivalent to a

morphism G → SymB(X/E). An action G �B X/E is outer if G acts by

outer permutations, or equivalently, if the morphism G → SymB(X/E) factors

through iE . Every action G �B (X,E) induces an action G �B X/E by

composing with iE ◦ pE , and πE is G-equivariant with respect to these actions.

We initiate in this paper the study of the reverse problem: when does a Borel

action G �B X/E have a lift to an action G �B (X,E)? In other words, we

are interested in the lifting problem

AutB(E)

OutB(E)

G SymB(X/E)

pE

iE

which we will break up into steps by going through OutB(E).
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1.C. Main results. We give in Section 3 examples of CBERs E that show

that even the first step of the lifting problem

OutB(E)

G SymB(X/E)

iE

does not always have a positive solution, i.e., that there are Borel actions

G �B X/E which are not outer. In all these examples, E admits an invariant

Borel probability measure (i.e., it is generated by a Borel action of a countable

group that has an invariant Borel probability measure). On the other hand, we

show in Theorem 3.5 that the full lifting problem has a positive solution, in a

strong sense, when the CBER E admits no such invariant measure or equiv-

alently (by Nadkarni’s Theorem) that it is compressible (i.e., there is a Borel

injection that sends every equivalence class to a proper subset of itself).

Theorem 1.1: Let E be a compressible CBER. Then every Borel action

G �B X/E has a class-bijective lift

G �B (X,E).

This theorem follows from a result (see Theorem 3.6) about links (see Def-

inition 3.3) of pairs E ⊆ F of compressible CBERs that was also proved (by

a different method) independently by Ben Miller. Our proof uses some ideas

coming from [FSZ89].

We do not know if there are non-compressible E that satisfy Theorem 1.1.

Using this result and a variant of [KM04, Corollary 13.3], we show, in Corol-

lary 3.11, that the full lifting problem has a positive solution generically for an

arbitrary aperiodic (i.e., having all its classes infinite) CBER E.

Below if G �B X/E, we let E∨G ⊇ E be the CBER defined as follows:

x E∨G y ⇐⇒ ∃g ∈ G(g · [x]E = [y]E).

Corollary 1.2: Let E be an aperiodic CBER on a Polish space X . Then for

any Borel action G �B X/E, there is a comeager E∨G-invariant Borel subset

Y ⊆ X such that G �B Y/E has a class-bijective lift.
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In Sections 4–6, we study the lifting problem for outer actions. A lift of an

outer action is a solution to the following lifting problem:

AutB(E)

G OutB(E)

pE

Below we use the following terminology. If a group G acts on a set X , we

denote by EX
G the induced equivalence relation whose classes are the G-orbits.

An action of group G on a set X is free if for any g �= 1 and x ∈ X , g · x �= x.

If the set X carries a measure and the action is measure-preserving, we only

require that this holds for almost all x. A Borel action of a countable group G

on a standard Borel space X is pmp if it has an invariant Borel probability

measure. A countable group G is treeable if it admits a free, pmp Borel action

on a standard Borel space X such that the induced CBER EX
G is treeable,

i.e., its classes are the connected components of an acyclic Borel graph on X .

For example, all amenable and free groups are treeable but all property (T)

groups and all products of an infinite group with a non-amenable group are not

treeable.

We now have the following results (see Corollary 6.14, Corollary 5.12 for (1),

and Corollary 5.10, Theorem 6.13 for (2)). Below a CBER is smooth if it

admits a Borel set meeting every class in exactly one point.

Theorem 1.3:

(1) Every outer action of any abelian group, and in fact any group for which

the conjugacy equivalence relation on its space of subgroups is smooth,

and any locally finite group has a class-bijective lift.

(2) Every outer action of any amenable group and any amalgamated free

product of finite groups has a lift.

The proof of Theorem 1.3(2) for the case of amenable groups makes use of

the quasi-tiling machinery developed in the work of Ornstein and Weiss [OW80],

[OW87] and also uses some ideas from [FSZ89]. Also the proof of Theorem 1.3(2)

for the case of amalgamated free products of finite groups also uses some ideas

from [Tse13]. We do not know if the conclusion of (2) can be restrengthened to

having a class-bijective lift.
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On the other hand we have an upper bound for groups that have this lifting

property (see Proposition 4.11). The proof of the next result is motivated by

[CJ85] and [FSZ89].

Proposition 1.4: If every outer action of a countable group G lifts, then G is

treeable.

We do not know a characterization of the class of countable groups all of whose

outer actions have a lift or a class-bijective lift. Section 7 contains a summary

of what we know about the classes of groups all of whose outer actions have a

lift (resp., a class-bijective lift).

Acknowledgements. We would like to thank Aristotelis Panagiotopoulos,
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comments and suggestions, and Adrian Ioana for helpful discussions concern-

ing Problem 3.12(1). Research was partially supported by NSF Grant DMS-

1950475.

2. Preliminaries

2.A. Countable Borel equivalence relations. We review here some ba-

sic notions and results that we will use in the sequel. A general reference is

the survey paper [Kec22]. Given a CBER E on X , we denote for each A ⊆ X

by [A]E = {x ∈ X : ∃y ∈ A (x E y)} the E-saturation of A. In particular

if x ∈ X , [{x}]E = [x]E is the equivalence class of E. Dually the E-hull of A is

the set {x ∈ X : [x]E ⊆ A}. Finally, we let E � A = E ∩ A2 be the restriction

of E to A. A set A ⊆ X is E-invariant if A = [A]E . For each set S, we denote

by ∆S the equality relation on S and we also let IS = S2.

For CBERs E,F on X,Y resp., we denote by E⊕F the direct sum of E,F .

Formally this is the equivalence relation on the direct sum X �Y of X,Y which

agrees with E onX and with F on Y . Similarly we define the direct sum
⊕

n En

for a sequence (En) of CBERs. The product of E,F is the equivalence relation

on X × Y given by

(x, y) E × F (x′, y′) ⇐⇒ (x E x′) & (y F y′).

If E,F are CBERs on X and E ⊆ F (as sets of ordered pairs), then E is a

subequivalence relation of F and F is an extension of E. If every F -class
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contains only finitely many E-classes, we say that F has finite index over E

and if for some N every F -class contains at most N E-classes, we say that F has

bounded index over E. If every F -class contains exactly N E-classes we write

[F : E] = N . Finally, E ∨ F is the smallest equivalence relation containing E

and F .

A complete section of a CBER E on X is a set S ⊆ X that meets every

E-class. A transversal of E is a subset T ⊆ X that meets every E-class in

exactly one point. If a Borel transversal exists, we say that E is smooth. A

CBER E is finite if every E-class is finite and it is hyperfinite if E =
⋃

n En,

where En ⊆ En+1 and En is finite, for each n. A canonical non-smooth hyper-

finite CBER is E0 on 2N defined by

x E0 y ⇐⇒ ∃m ∀n ≥ m (xn = yn).

We say that a CBER E is aperiodic if every E-class is infinite. For any CBER

E there is a unique decomposition X = A �B into E-invariant Borel sets such

that E � A is finite and E � B is aperiodic. These are, resp., the finite and

infinite parts of E. A CBER E on X is treeable if there is an acyclic Borel

graph Γ ⊆ X2 whose connected components are exactly the E-classes. Every

hyperfinite CBER is treeable.

A CBERE onX is compressible if there is a Borel injection T : X → X such

that T ([x]E) � [x]E , for each x. A Borel set A ⊆ X is (E-)compressible if E � A

is compressible. In that case [A]E is compressible as well and there is a Borel

injection T : X → X such that T (x) E x, for every x, and T ([A]E) = A; see

[Kec22, Proposition 3.26]. Recall also from [Kec22, Proposition 3.23] that E

is compressible iff E ∼=B E × IN (where for two CBERs F1, F2 on X1, X2,

resp., F1
∼=B F2 means that they are Borel isomorphic, i.e., there is a Borel

bijection T : X1 → X2 that takes F1 to F2) and also E is compressible iff it

contains a smooth, aperiodic subequivalence relation.

Given CBERs E,F on X,Y , resp., we say that E is Borel reducible to F ,

in symbols E ≤B F , if there is a Borel map T : X → Y such that

x E x′ ⇐⇒ T (x) F T (x′).

Such a T is called a reduction of E to F . Moreover E,F are Borel bire-

ducible, in symbols E ∼B F , if

(E≤BF )&(F ≤BE).
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We have that E ∼B F iff there is a Borel bijection T : X/E → Y/F ; see [Kec22,

Theorem 3.32].

Given a countable group G and a Borel action of G on X , denote by EX
G

the CBER induced by this action, i.e., the equivalence relation whose classes

are exactly the orbits of this action. The Feldman–Moore Theorem (see, e.g.,

[Kec22, Theorem 3.3]) asserts that for every CBER E on X there is a countable

group G and a Borel action of G on X such that E = EX
G .

By a partial subequivalence relation of a CBER E on X , we mean an

equivalence relation F on a subset A ⊆ X such that F ⊆ E. A Borel finite

partial subequivalence relation is abbreviated as fsr.

Let now X be a standard Borel space and denote by [X ]<∞ the standard

Borel space of finite subsets of X . If E is a CBER on X , we denote by [E]<∞

the subset of [X ]<∞ consisting of all finite sets that are contained in a single

E-class. Then [E]<∞ is Borel. For each set Φ ⊆ [E]<∞, an fsr F of E defined

on the set A ⊆ X is Φ-maximal, if every F -class is in Φ and every finite set S

disjoint from A is not in Φ. We now have the following result; see [KM04,

Lemma 7.3]: If E is a CBER and Φ ⊆ [E]∞ is Borel, then there is a Borel

Φ-maximal fsr of E. The intersection graph of E is the graph on [E]<∞,

where S, T are connected by an edge iff there are distinct and have nonempty

intersection. The proof of [KM04, Lemma 7.3] uses the fact that this graph has

a countable Borel coloring, i.e., a Borel map c : [E]<∞ → N, which is a coloring

of this graph.

For each CBER E on X , denote by INVE the standard Borel space of invari-

ant Borel probability measures on X , i.e., the Borel probability measures on X

for which there is a Borel, measure-preserving action of a countable group G

on X with EX
G = E. We also let EINVE be the Borel subset of INVE consisting

of all ergodic measures in INVE . Nadkarni’s Theorem (see [Kec22, Theorem

5.6]) states that E is compressible iff INVE is empty. The Ergodic Decompo-

sition Theorem of Farrell and Varadarajan (see [Kec22, Theorem 5.12]) asserts

that if INVE �= ∅, then there is a Borel surjection π : X � EINVE such that

(i) π is E-invariant;

(ii) if Xe = π−1({e}), for e ∈ EINVE , then e(Xe) = 1 and e is the unique

E-invariant probability measure concentrating on Xe;

(iii) if µ ∈ INVE , then µ =
∫
π(x) dµ(x) =

∫
e dπ∗µ(e).
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Moreover, this map is unique in the following sense: If π, π′ satisfy (i)–(iii),

then the set {x : π(x) �= π′(x)} is compressible.

The sets Xe are the ergodic components of E.

We say that E is uniquely ergodic (resp., finitely ergodic, countably

ergodic) if EINVE is a singleton (resp., finite, countable).

The Classification Theorem for hyperfinite CBERs (see [Kec22, Theorem 8.4])

states that for aperiodic, non-smooth, hyperfinite E,F , we have that E ∼=B F

iff EINVE and EINVF have the same cardinality.

2.B. Cardinal algebras. A cardinal algebra is a tuple (A, 0,+,
∑

), where

(A, 0,+) is a commutative monoid, and
∑

: AN → A is an infinitary operation

satisfying the following axioms:

(i)
∑

i ai = a0 +
∑

i ai+1.

(ii)
∑

i(ai + bi) =
∑

i ai +
∑

i bi.

(iii) The refinement axiom: If a+b =
∑

i ci, then there are (ai)i and (bi)i

such that a =
∑

i ai, b =
∑

i bi and ai + bi = ci.

(iv) The remainder axiom: If (ai)i and (bi)i satisfy ai = bi + ai+1, then

there is some c such that ai = c+
∑

j bi+j .

We will need two consequences of these axioms. For 0 ≤ n ≤ ∞, let na denote

the sum of n copies of a (in particular, let ∞a denote
∑

i a).

(1) For any a, b,

a = a+ b =⇒ a = a+∞b.

To see this, use the remainder axiom with ai = a and bi = b. This gives

some c such that a = c+∞b. Then

a+∞b = c+∞b+∞b = c+∞b = a.

(2) The cancellation law: For any a, b and 0 < n < ∞,

na = nb =⇒ a = b;

see [Tar49, Theorem 2.34].

We will need the following cardinal algebras:

(1) The collection of all CBERs up to Borel isomorphism is a cardinal

algebra under direct sum; see [KM16, 3.C].

(2) Let E be a CBER on X . We say that A,B ⊆ X are E-equidecompos-

able, denoted A ∼E B, if there is some Borel bijection T : A → B whose

graph is contained in E. This is an equivalence relation, and we denote
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the class of A by Ã. Let K(E) denote the set of E-equidecomposability

classes.

Assume now that E is compressible. Then for any countable sequence

Ã0, Ã1, . . ., we can assume that the An are pairwise disjoint, and we can

define the infinitary operation as follows:

∑

n

Ãn :=
⋃̃

n

An.

(We define + analogously, and we define 0 to be the class of the empty

set.) Then K(E) with these operations is a cardinal algebra; see [Che21,

Proposition 4.1].

There is an action AutB(E) � K(E) (i.e., a group action preserving

(0,+,
∑

)) defined by

T · Ã = T̃ (A),

and this descends to an action OutB(E) � K(E).

2.C. Actions on probability spaces. Let (X,µ) be a standard probability

space, i.e., a standard Borel space with a non-atomic Borel probability measure.

Let Autµ(X) denote the group of Borel automorphisms T : X → X such

that T∗µ = µ, where T and T ′ are identified if they agree on a conull set.

Let E be a pmp CBER on X , i.e., a CBER which is generated by a measure-

preserving action of a countable group. Then Autµ(E) denotes the set of

T ∈ Autµ(X) such that x E y ⇐⇒ T (x) E T (y), for all x, y in a conull

subset of X . Let Innµ(E) denote the normal subgroup of T ∈ Autµ(E) such

that x E T (x) for almost every x ∈ X . Then Outµ(E) denotes the quotient

Autµ(E)/ Innµ(E).

All of the proofs below in the Borel setting go through mutatis mutandis in

the pmp setting.

3. Borel actions on quotient spaces

3.A. Outer and non-outer actions. Not every Borel action G �B X/E is

outer. For example, let 2N = A�B, where A and B are complete Borel sections

for E0 with µ(A) �= µ(B), where µ is Lebesgue measure. Let

E = (E0 � A)⊕ (E0 � B).
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Then the involution on X/E sending [x]E0
∩A to [x]E0

∩B is not outer, since

otherwise we would have µ(A) = µ(B).

Note that the following are equivalent:

(1) every Borel action on X/E is outer;

(2) iE is a bijection.

This condition is quite strong:

Proposition 3.1: Let G be a countable group and let E be a CBER. Suppose

that every action G �B X/E is outer.

(1) Whenever E ∼=B

⊕
g∈G Eg, with the Eg pairwise Borel bireducible, then

the Eg are pairwise Borel isomorphic.

(2) If G is nontrivial and E ∼=B E ⊕ (E × IN), then E is compressible.

Proof. For (1), suppose Eg lives on Xg, and let F be a CBER on Y such

that F ∼B Eg for every g ∈ G, and for each g ∈ G, fix a Borel bijection

fg : Y/F → Xg/Eg. Define G �B X/E for [x]E ∈ Xg/Eg by

h · [x]E = fhg(f
−1
g ([x]E)).

By assumption, this action is induced by some G → OutB(E), which induces

isomorphisms between the Eg.

For (2), since E ∼=B E ⊕ (E × IN), by working in the cardinal algebra of

(Borel isomorphism classes of) CBERs, we have E ∼=B E ⊕
⊕

g∈G\{1}(E × IN).

So by (1), we have E ∼=B E × IN.

So if E is non-compressible and satisfies E ∼=B E ⊕ (E × IN), then every

nontrivial countable group admits a non-outer action on X/E. There are many

such examples:

Example 3.2:

(1) (Miller) We have E0
∼= E0 ⊕ (E0 × IN), since they are both uniquely

ergodic and hyperfinite. More generally E ∼=B E ⊕ (E × IN), for any

aperiodic hyperfinite CBER E.

(2) A countable group G is dynamically compressible if every aperiodic

orbit equivalence relation of G is Borel reducible to a compressible or-

bit equivalence relation of G. Examples include amenable groups, and

groups containing a non-abelian free group. If G is dynamically com-

pressible, then

Eap(G,R) ∼=B Eap(G,R)⊕ (Eap(G,R)× IN),
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where Eap(G,R) denotes the aperiodic part of the shift action of G

on RG; see [FKSV21, 5(B)].

3.B. Lifts of compressible CBERs. Every action G �B X/E induces a

CBER E∨G ⊇ E defined as follows:

x E∨G y ⇐⇒ ∃g ∈ G(g · [x]E = [y]E).

Every action G �B (X,E) induces an action G �B X/E, and we write E∨G

for the CBER induced by the latter. Note that

E∨G = E ∨ EX
G .

If G is a subgroup of AutB(E) or OutB(E), we write E∨G for the CBER given

by the (outer) action induced by the inclusion map, and if T ∈ AutB(E), we

write E∨T for E∨〈T 〉.

In [dRM21], it is shown that there is a countable basis of pairs E ⊆ F of

CBERs such that there is no Borel action G �B X/E with F = E∨G (see

Section 8.C for a precise statement).

Given f ∈ SymB(X/E), a lift of f is a map T ∈ AutB(E) such that

[T (x)]E = f([x]E)

for every x ∈ X . Given an action G �B X/E, a lift of g ∈ G is a lift of its

image in SymB(X/E).

The following notion is from [Tse13]:

Definition 3.3: Let E ⊆ F be CBERs. An (E,F )-link is a CBER L ⊆ F such

that for every F -class C, every E � C-class meets every L � C-class exactly

once.

The connection to lifts is the following:

Proposition 3.4: Let G �B X/E. Then the following are equivalent:

(1) There is an (E,E∨G)-link.

(2) There is a class-bijective lift G �B (X,E).

Proof. (2) =⇒ (1) EX
G is a link.

(1) =⇒ (2) Let g · x be the unique element in [x]L ∩ (g · [x]E).

Proposition 3.1 perhaps suggests that if E is compressible, then every Borel

action on X/E is outer. It turns out that something much stronger is true:
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Theorem 3.5: Let E be a compressible CBER. Then every Borel action on

X/E has a class-bijective lift.

By Proposition 3.4, it suffices to prove the following, independently estab-

lished using a different method by Ben Miller (see comments following Corol-

lary 3.8 below for his approach):

Theorem 3.6: Let E ⊆ F be compressible CBERs. Then there is a smooth

(E,F )-link.

We will repeatedly use the following, where we identify a positive integer N

with {0, 1, . . . , N − 1}.

Lemma 3.7: Let E ⊆ F be compressible CBERs and let N ∈ {1, 2, . . . ,N}.
Then (E,F ) is Borel isomorphic to (E × IN , F × IN ), in symbols

(E,F ) ∼=B (E × IN , F × IN ),

i.e., there is a Borel isomorphism that takes E to E × IN and F to F × IN.

Proof. Since E is compressible, E ∼=B E × IN. So (E,F ) is Borel isomorphic

to (E × IN, R), for some R, which then must be of the form F ′ × IN. Thus

(E,F ) ∼=B (E × IN, F
′ × IN), and therefore

(E × IN , F × IN ) ∼=B (E × IN × IN , F ′ × IN × IN )

∼=B (E × IN, F
′ × IN) ∼=B (E,F ),

since IN ∼=B IN × IN .

Proof of Theorem 3.6. We can assume that every F -class contains exactly N

E-classes, where N ∈ {1, 2, . . . ,N}. Below, i < N means i ∈ N .

Fix a Borel action of a countable group Γ generating F .

Fix a choice sequence for (E,F ), that is, a sequence (fi)i<N of Borel maps

X → X such that for every x ∈ X , the function i �→ [fi(x)]E is a bijection from

N to [x]F /E. For instance, define fi inductively by setting

f0(x) = x and fi(x) = γ · x,

where γ is least (in some enumeration of G) such that γ · x is not E-related to

any fj(x) for j < i.

We can assume that each fi is injective. By Lemma 3.7, it suffices to de-

fine an injective choice sequence for (E × IN, F × IN). Fix a pairing function
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〈−,−〉 : N× Γ → N. Then we take the choice sequence for (E × IN, F × IN) de-

fined by (x, n) �→ (fi(x), 〈n, γ〉), where fi is a choice sequence for (E,F ) and γ

is least such that γ · x = fi(x).

We can further assume that each im fi is a complete E-section. To see

this, endow N with some group operation �, and take the choice sequence for

(E × IN , F × IN ) defined by

(x, k) �→ (fi�k(x), k),

where (fi) is a choice sequence for (E,F ) with each fi injective.

Moreover, we can assume that each im fi is E-compressible. To see this, take

the choice sequence for (E × IN, F × IN) defined by (x, n) �→ (fi(x), n), where

(fi) is a choice sequence for (E,F ), with each fi injective and im fi a complete

E-section.

Finally, we can assume that each fi is bijective. To see this, since im fi is

an E-compressible complete section for E, there is some Borel injection Ti such

that T (x) E x for every x, and Ti(X) = im fi. Then (T−1
i ◦ fi) is a choice

sequence for (E,F ) with each T−1
i ◦ fi bijective.

Now we can define a smooth (E × IN , F × IN )-link L as follows:

(x, i) L (y, j) ⇐⇒ f−1
i (x) = f−1

j (y)

and we are done again by Lemma 3.7.

Corollary 3.8: Let E be an aperiodic CBER satisfyingE ∼=B E⊕(E×IN) (for

instance, any aperiodic hyperfinite CBER). Then the following are equivalent:

(1) Every Borel action on X/E has a class-bijective lift.

(2) Every Borel action on X/E has a lift.

(3) Every Borel action on X/E is outer.

(4) There is a nontrivial countable group G such that every action

G �B X/E is outer.

(5) E is compressible.

Proof. (1) =⇒ (2) Immediate.

(2) =⇒ (3) Immediate.

(3) =⇒ (4) Immediate.

(4) =⇒ (5) Follows from Proposition 3.1.

(5) =⇒ (1) Follows from Theorem 3.5.
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Concerning Theorem 3.6, Ben Miller derives this from the following more

general result whose proof uses Proposition 4.1 and 4.2 from [Mil18].

Theorem 3.9 (Miller): Let E and F be compressible CBERs on X and Y re-

spectively, and let f : X/E → Y/F be Borel. Then the following are equivalent:

(1) f is smooth-to-one, i.e., for every y ∈ Y , the restriction of E to

{x ∈ X : f([x]E) = [y]F } is smooth.

(2) There is a Borel function T : X → Y such that for every x ∈ X , the

restriction T � [x]E is a bijection from [x]E to f([x]E).

However, one only needs the special case where f is countable-to-one. Ap-

plying this to the case where E ⊆ F and f([x]E) = [x]F , we find a Borel map

T : X → X such that T � [x]E is a bijection from [x]E to [x]F . Then we can

define the link L by

x L y ⇐⇒ T (x) = T (y).

To show generic lifting, we need a strengthening of generic compressibility,

whose proof is a simple modification of the proof of [KM04, Corollary 13.3]. A

more general version appears in [Mil17, Theorem 11.1]. We include a proof for

the reader’s convenience.

Theorem 3.10: Let E ⊆ F be aperiodic CBERs on a Polish space X . Then

there is a comeager F -invariant, E-compressible Borel subset of X .

Proof. Fix a Borel coloring c : [E]<∞ → N of the intersection graph. Write

X =
⊔

n∈N
An, where each An is a Borel set meeting every E-class infinitely

often; for instance, write

X =
⊔

(n,m)∈N2

Bn,m,

where each Bn,m is a complete E-section (see [CM17, 1.2.6]), and take

An =
⋃

m

Bn,m.

Let N<N denote the set of finite strings in N. For s ∈ N<N, let len(s) denote

the length of s. For s, t ∈ N<N, we write s � t to mean that s is a prefix of t.

We define fsr’s {Es}s∈N<N of E such that

(i) if s � t, then Es ⊆ Et,

(ii) A0 is a transversal for Es,

(iii) every Es-class is contained in
⊔

k≤len(s) Ak.
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We proceed by induction on the length of s. Let E∅ be the equality relation

on A0. Now for each a ∈ A0, let [a]Esˆi
be the unique set, if it exists, of the

form [a]Es
� S, where S ∈ [E]<∞ is contained in Alen(s)+1 and c([a]Es

� S) = i,

and otherwise set [a]Esˆi
= [a]Es

. This defines an fsr Es with the desired

properties.

For every α ∈ NN, let Eα =
⋃

n Eα�n. We claim that for every a ∈ A0, we

have

∀∗α ([a]Eα
is infinite),

where ∀∗αΦ(α) means that the set {α ∈ NN : Φ(α)} is comeager (see [Kec95,

8.J]). It suffices to show that for every n, we have

∀∗α (|[a]Eα
| > n).

Since the set {α ∈ NN : |[a]Eα
| > n} is open, it suffices to show that it is dense.

Fix some s ∈ N<N. Let S ∈ [E]<∞ be a subset of Alen(s)+1 with |S| > n. Then

if c([a]Es
�S) = i, then for every α � sˆi, we have |[a]Eα

| ≥ |[a]Esˆi
| > n, so we

are done.

Thus for every x ∈ X , we have

∀a ∈ A0 ∩ [x]F ∀∗α ([a]Eα
is infinite),

or equivalently

∀∗α ∀a ∈ A0 ∩ [x]F ([a]Eα
is infinite),

so by the Kuratowksi-Ulam theorem [Kec95, 8.K], we have

∀∗α ∀∗x∀a ∈ A0 ∩ [x]F ([a]Eα
is infinite),

so in particular, there is some α ∈ NN such that the F -invariant set

C := {x ∈ X : ∀a ∈ A0 ∩ [x]F ([a]Eα
is infinite)}

is comeager. Note that C is E-compressible, since dom(Eα) ∩ C is an (E � C)-

compressible, complete (E � C)-section, so we are done.

Corollary 3.11: Let E be an aperiodic CBER on a Polish space X . Then for

any Borel action G �B X/E, there is a comeager E∨G-invariant Borel subset

Y ⊆ X such that G �B Y/E has a class-bijective lift.

Proof. Apply Theorem 3.10 with F = E∨G. Then the result follows from

Theorem 3.5.
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In conclusion, let us say that an aperiodic CBER E is outer if every

G �B X/E is outer, or equivalently iE is a bijection. We have seen that every

compressible CBER is outer, while there are non-outer CBER. However we have

the following problems:

Problem 3.12:

(1) Are there outer, non-compressible CBER?

(2) Characterize the outer CBERs.

Concerning the first part of this problem, we note the following possible

approach to finding such an example:

Assume that there is a free, pmp action of a countable group G on a standard

probability space (X,µ) with the following properties:

(i) G is co-Hopfian (i.e., injective morphisms of G into itself are surjective)

and G has no non-trivial finite normal subgroups (e.g., SL3(Z)),
(ii) the action is totally ergodic (i.e., every infinite subgroup acts ergodi-

cally) and satisfies cocycle superrigidity (i.e., every cocycle of the action

to a countable group is cohomologous to a homomorphism),

(iii) Outµ(E
X
G ) is trivial.

There are many examples that satisfy (ii) and others that satisfy (iii) but

it does not seem to be known whether there are examples that satisfy both.

Assuming that such an action exists, one can see that the first part of the above

problem has a positive answer.

By going to a G-invariant Borel set, we can assume that µ is the unique

invariant measure for this action. Then if Z ⊆ X is Borel and G-invariant of

measure 1, we have that Y = X \ Z is compressible. Put E = EX
G . Let now

f ∈ SymB(X/E) and let T : X → X be Borel such that f([x]E) = [T (x)]E .

Then T is a reduction of E to E and so it gives rise to a cocycle α of this action

into G, which is therefore cohomologous to a homomorphism ϕ : G → G. Thus

we can find another Borel map S with S(x) E T (x) and S(g · x) = ϕ(g) · S(x)

a.e. Let N = ker(ϕ). If it is not trivial, it must be infinite. Then for g ∈ N ,

S(g · x) = S(x) a.e.,

so by the ergodicity of the N -action, S is constant a.e., which is a contradiction.

So N is trivial and thus ϕ is injective, therefore an automorphism. It follows

that S is in Autµ(E) and thus in Innµ(E). Therefore there is an E-invariant
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Borel set Z ⊆ X of measure 1 with f � (Z/E) the identity. Then f � (Z/E)

can be lifted to the identity of Z. Moreover Y = X \ Z is compressible, so, by

Theorem 3.5, f � (Y/E) can be lifted to some Borel automorphism of E � Y .

Thus f is an outer permutation.

Concerning the second part of the problem, note that by Corollary 3.8, an

aperiodic hyperfinite CBER is outer iff it is compressible.

The following problem about the algebraic structure of these groups is also

open:

Problem 3.13: When is OutB(E) a normal subgroup of SymB(X/E)?

4. Outer actions

A lift of an outer action is a solution to the following lifting problem:

AutB(E)

G OutB(E)

pE

Many outer actions arise from the following construction:

Example 4.1: Given a Borel action G � X of a countable group G and a normal

subgroup N � G, there is a morphism G → OutB(E
X
N ) defined by

g · [x]EX
N

= [g · x]EX
N
,

and this descends to a morphism G/N → OutB(E
X
N ).

4.A. Normal subequivalence relations. The concept of normality is cen-

tral to the study of outer actions:

Definition 4.2: Let E ⊆ F be CBERs. We say that E is normal in F , denoted

E � F , if any of the following equivalent conditions hold:

(1) There is an action G �B (X,E) of a countable group G such that

F = E∨G.

(2) There is a morphism G → OutB(E) from a countable group G such

that F = E∨G.

(3) There is a countable subgroup G ≤ AutB(E) such that F = E∨G.

(4) There is a countable subgroup G ≤ OutB(E) such that F = E∨G.
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To see the equivalence, note that (3) =⇒ (1) =⇒ (2) is immediate, (2) =⇒ (4)

holds by taking the image of G in OutB(E), and (4) =⇒ (3) holds by fixing a

lift Tg ∈ AutB(E) of each g ∈ G and taking the subgroup of AutB(E) generated

by the Tg.

For CBERs E ⊆ F , it is possible that E is not normal in F , but that there

is still a Borel action G �B X/E such that F = E∨G, as witnessed by the

example at the beginning of Section 3.A. For more discussion concerning the

weaker notion, see Section 8.C.

Proposition 4.3: Let E � F be CBERs on X .

(1) If F ′ is a CBER with E ⊆ F ′ ⊆ F , then E � F ′.

(2) For any E-invariant subset Y ⊆ X , we have E � Y � F � Y .

Proof. Note that (2) follows immediately from (1) by taking

F ′ = (F � Y )⊕ (F � (X \ Y )),

so it suffices to prove (1).

We first assume that F = E∨T for some T ∈ AutB(E). We will show

that F ′ = E∨T ′

for some T ′ ∈ AutB(E).

For each x ∈ X , let ≤x be the preorder on [x]F ′/E defined by [y]E ≤x [z]E iff

there exists some n ≥ 0 such that T n(y) E z. If ≤x is isomorphic to Z or not an-

tisymmetric, then set T ′(x) = T n(x), where n > 0 is least such that T n(x) F ′ x.

Otherwise, there is a unique isomorphism from ≤x to either the negative in-

tegers ({· · · ,−3,−2,−1},≤) or to an initial segment of (N,≤). So by fixing

a transitive Z-action on each of these linear orders, we obtain a transitive Z-
action on [x]F ′/E, and we set T ′(x) = T n(x), where n is unique such that

T n(x) ∈ 1 · [x]E .

Now suppose that F =E∨G for some G ≤ AutB(E). By above, for each T ∈G,

we can fix some T ′ ∈ AutB(E) such that E∨T ′

= F ′ ∩ E∨T . Then F ′ = E∨H ,

where H = 〈T ′〉T∈G.

We next make some remarks about smooth links. Let E � F be CBERs.

Suppose that E is aperiodic and [F : E] = ∞, since the finite parts have

smooth links via the forthcoming Theorem 5.1 and Proposition 4.6. If E is

compressible, then there is a smooth link by Theorem 3.6. On the other hand,

if there is a smooth link L, then F must be compressible, since it contains the

aperiodic smooth L.
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Thus the existence of a link does not imply the existence of a smooth link.

For instance, fix a free pmp Borel action Z2 � X , and consider E = EX
Z×{0}

and F = EX
Z2 . Then there is a link given by the action of {0} × Z, but there

is no smooth link, since F is not compressible. If X is the circle and the Z2-

action is by two linearly independent irrational rotations, then E and F are both

uniquely ergodic, and by taking copies of these, one can obtain an example with

any number of ergodic measures.

If E � F with E finitely ergodic, then F is not compressible, since if

EINVE = (ei)i<n, then

1

n
(e0 + · · ·+ en−1) ∈ EINVF .

Thus there is no smooth link. If EINVE is infinite, it is still possible for a

smooth link to exist. For instance, consider E = E0 ×∆N and F = E0 × IN. In

general, the following is open:

Problem 4.4: Let E � F be CBERs with F is compressible. Is there a smooth

(E,F )-link?

Another open question, related to Theorem 3.6, is as follows:

Problem 4.5: Let E � F � F ′ be compressible CBERs. Can every (E,F )-link

be extended to an (E,F ′)-link?

If this were true, then assuming the Continuum Hypothesis, for any com-

pressible CBER E, the epimorphism pE : AutB(E) � OutB(E) would split,

i.e., there would exist a morphism s : OutB(E) → AutB(E) with pE ◦ s equal

to the identity. To see this, write OutB(E) as an increasing union
⋃

α<ω1
Gα

of countable subgroups. It suffices to obtain class-bijective lifts Gα → AutB(E)

such that if α < β, then the Gβ lift extends the Gα lift. For λ limit, take the

union of the corresponding links for the Gα with α < λ, and for β = α + 1 a

successor, use a positive answer to Problem 4.5.

4.B. Basic results.

Proposition 4.6: Let E be a smooth CBER.

(1) If F is a CBER with E � F , then there is an (E,F )-link.

(2) Every outer action on X/E has a class-bijective lift.
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Proof. By Proposition 3.4, it suffices to show (1).

By normality, any two E-classes contained in the same F -class have the same

cardinality, so by partitioning the space into F -invariant Borel sets, we can

assume that there is some n ∈ {1, 2, . . . ,N} such that every E-class has car-

dinality n. Then there is a partition X =
⊔

k<n Sk such that each Sk is a

transversal for E. Thus the CBER L defined by

x L y ⇐⇒ (x F y) & (∃k < n [x, y ∈ Sk])

is an (E,F )-link.

It is clear that if G is a free group, then every outer action of G has a lift.

There are also some basic closure properties for the class of groups for which

every outer action admits a (class-bijective) lift.

Proposition 4.7: Let H ≤ G. If every outer action of G has a (class-bijective)

lift, then the same holds for H .

Proof. Let E be a CBER, and fix a morphismH → OutB(E). Let F =
⊕

G/H E.

Then there is a morphism G → OutB(F ), induced by the action of G on G/H ,

so we get a lift G → AutB(F ). Restricting to H and E gives the desired

lift.

Proposition 4.8: Let G � H be an epimorphism. If every outer action of G

has a class-bijective lift, then the same holds for H .

Proof. Fix a morphism H → OutB(E). This gives a morphism G → OutB(E).

Since by surjectivity E∨G = E∨H , we are done by Proposition 3.4.

At this point, it is good to show that not every outer action has a lift.

Definition 4.9: A countable group G is treeable if it admits a free pmp Borel

action whose induced equivalence relation is treeable.

Example 4.10: There are many examples of groups which are not treeable (see

[KM04, 30], [Kec22, 10.8]):

• Infinite property (T) groups.

• G×H , where G is infinite and H is non-amenable.

• More generally, lattices in products of locally compact Polish groups

G×H , where G is non-compact and H is non-amenable.
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The proof of the next result is motivated by [CJ85, Theorem 5] and the

remark following the proof of [FSZ89, Theorem 3.4].

Proposition 4.11: Suppose that every outer action of G lifts. Then G is

treeable.

Proof. We can assume that G = F∞/N for some N � F∞, where F∞ is the free

group on infinitely many generators. Fix a free pmp Borel action F∞ �B (X,µ)

(for instance, the Bernoulli shift on 2F∞), and consider the induced free outer

action

G → OutB(E
X
N )

(see Example 4.1). By assumption, there is a lift G → AutB(E
X
N ), which is also

a free action. Then EX
G is treeable and preserves µ, since EX

F∞

satisfies these

properties and contains EX
G .

Note that we have no control over the treeable CBER in the proof of Propo-

sition 4.11. In particular, the following is open:

Problem 4.12: Does every outer action on X/E0 lift?

5. Outer actions of finite groups

The following is a strengthening of [Tse13, Proposition 7.1]:

Theorem 5.1: Let E � F be a finite index extension of CBERs. Then there is

an (E,F )-link.

Proof. Let Φ be the set of elements of [F ]<∞ which are a transversal for E � C

for some F -class C. By [KM04, Lemma 7.3], there is a Φ-maximal fsr R. Let

Y = (dom(R))E be the E-hull of dom(R).

Let G ≤ AutB(E) be a countable subgroup such that F = E∨G. For

every x ∈ X \ Y , let gx ∈ G be least (in some enumeration of G) such

that gx · x ∈ Y ; this exists by Φ-maximality of R. Then the equivalence re-

lation generated by R � Y and {(x, gx · x) : x ∈ X \ Y } is an (E,F )-link.

Corollary 5.2: Every outer action of a finite group has a class-bijective lift.

Proof. Follows from Proposition 3.4 and Theorem 5.1.

The following is a special case of Corollary 6.14, whose proof is much harder.
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Corollary 5.3: Every outer action of Z has a class-bijective lift.

Proof. On the finite Z-orbits, apply Corollary 5.2. On the infinite Z-orbits
of X/E, just lift uniquely.

We next introduce lifts of morphisms:

Definition 5.4: Let H → G be a morphism of countable groups. Then H → G

has the class-bijective lifting property if for any CBER E and any diagram

of the form

H AutB(E)

G OutB(E)

pE

with H → AutB(E) class-bijective, there is a class-bijective lift G → AutB(E).

Proposition 5.5: LetH be a countable group, let (Gn)n be a countable family

of countable groups, let H → Gn be morphisms, and let G be the amalgamated

free product of the Gn over H . If every outer action of H has a class-bijective

lift, and each H → Gn has the class-bijective lifting property, then every outer

action of G lifts.

Proof. Let E be a CBER, and fix G → OutB(E). By assumption, there is a

class-bijective lift of H → OutB(E). Then for each n, there is a class-bijective

lift Gn → AutB(E) such that the following diagram commutes:

H AutB(E)

Gn OutB(E)

pE

Thus by the universal property of amalgamated products, there is a lift

G → AutB(E).

Theorem 5.6: Let G be a countable group and let N � G be a finite normal

subgroup such that every outer action of H = G/N has a class-bijective lift.

(1) The inclusion N ↪→ G has the class-bijective lifting property.

(2) Every outer action of G has a class-bijective lift.
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Proof. (1) implies (2) by Corollary 5.2, so it suffices to show (1).

Let E be a CBER on X , and suppose we have

N AutB(E)

G OutB(E)

pE

with N → AutB(E) class-bijective, and let F = E∨N . Note that L = EX
N is an

(E,F )-link. There is an induced outer action H → OutB(F ). We can assume

that [F : E] = n < ∞. Let S be a transversal for L, and fix a Borel action

Z/nZ � X generating L.

Define an injection AutB(F �S) ↪→AutB(F ) as follows: given T ∈AutB(F �S),

let T ′ ∈ AutB(F ) be the unique morphism satisfying

T ′(k · x) = k · T (x) for every x ∈ S and k ∈ Z/nZ

This descends to an injection OutB(F � S) ↪→ OutB(F ) satisfying the following

commutative diagram:

OutB(F � S) OutB(F )

SymB(F � S) SymB(F )

iF �S iF

∼=

We claim that this injection is a bijection. To see this, let T ∈ AutB(F ). Since

X =
⊔

k∈Z/nZ k · S, we have nS̃ = X̃ in the cardinal algebra K(F × IN). Thus

nT̃ (S) = T̃ (X) = X̃,

so by the cancellation law, we have S̃ = T̃ (S), i.e., there is some T ′ ∈ InnB(F )

with

T ′(T (S)) = S.

Then (T ′T ) � S ∈ AutB(F � S) is the desired map.

Thus we obtain an outer action H → OutB(F � S) and by assumption, there

is an (F � S,E∨G � S)-link L′. Then the equivalence relation generated by L

and L′ is an (E,F ′)-link.

We will prove next a generalization of Corollary 5.2 to morphisms. For that,

we need the following result.
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Proposition 5.7: Let E ⊆ F be a bounded index extension of CBERs. Then

the following are equivalent:

(1) E � F .

(2) There is a finite subgroup G ≤ OutB(E) such that F = E∨G.

Proof. (2) =⇒ (1) Immediate.

(1) =⇒ (2) Let H = (hn)n ≤ AutB(E) be a countable subgroup such that

F = E∨H . We define inductively a sequence

(gn)n ⊆ InnB(F ) ∩ AutB(E)

as follows: for every F -class C, if there is i such that

pE�C(hi � C) �= pE�C(gj � C)

for all j < n, then for the least i with this property, set

gn � C = hi � C;

otherwise set

gn � C = id � C.

Note that the sequence (gn)n is eventually equal to idX , since E is of bounded

index in F . Thus the group

G̃ = 〈gn〉n<∞ ≤ InnB(F ) ∩AutB(E)

is finitely generated. Note also that

F = E∨G̃.

Now the image of InnB(F ) ∩AutB(E) in OutB(E) is locally finite, since it is a

subgroup of (Sn)
X/F for some finite symmetric group Sn. So the image G of G̃

in OutB(E) is finite, and we are done.

We have a generalization of Theorem 5.1:

Theorem 5.8: Let E ⊆ F ⊆ F ′ be CBERs such that E has finite index in F ′

and E � F ′. Then every (E,F )-link is contained in an (E,F ′)-link.

Proof. By partitioning the underlying standard Borel space X , we can assume

that there is some n < ∞ such that every F ′-class contains at most n F -classes.

We proceed by induction on n. The case n = 1 is trivial.
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Let L be an (E,F )-link and let S be a transversal for L. Let Φ be the set

of A ∈ [F ′ � S]<∞ which are a transversal for F � C for some F ′-class C. By

[KM04, Lemma 7.3], there is a Φ-maximal fsr R. Let Y ⊆ X be the set of

x ∈ X such that [x]F ⊆ [dom(R)]L and let Z = X \ Y . We can assume that

no F ′-class is contained in Y , since the equivalence relation generated by R

and L is an (E,F ′)-link on such a class. By Φ-maximality of R, no F ′-class is

contained in Z either. By (2) of Proposition 4.3, we have E � Y � F ′ � Y , so by

the induction hypothesis, there is an (E � Y, F ′ � Y )-link LY containing L � Y .

Similarly, there is an (E � Z, F ′ � Z)-link LZ containing L � Z.

Let SY and SZ be transversals for LY and LZ respectively. It suffices to

show that there is some T ∈ InnB(F
′) such that T (SY ) = SZ , since then the

smallest equivalence relation containing LY and LZ and {(x, T (x)) : x ∈ SY } is

an (E,F ′)-link. In other words, we need to show that S̃Y = S̃Z in the cardinal

algebra K(F ′×IN). By Proposition 5.7, there is a finite subgroup G ≤ OutB(E)

such that F ′ = E∨G. By partitioning X , we can assume that

[F ′ � Y : E � Y ] = nY and [F ′ � Z : E � Z] = nZ

for some nY , nZ < ∞. Then

Ỹ = nY S̃Y and Z̃ = nZ S̃Z .

Let

k =
|G|

nY + nZ
.

Then for every x ∈ X , we have

|{g ∈ G : [x]E ⊆ g · Y }| =
∑

[y]E⊆Y

|{g ∈ G : [x]E = g · [y]E}| = knY ,

and thus |G|Ỹ = knY X̃ . Similarly, |G|Z̃ = knZX̃. Thus

|G|nY nZ S̃Y = |G|nZ Ỹ = knY nZX̃ = |G|nY Z̃ = |G|nY nZ S̃Z ,

which yields

S̃Y = S̃Z

by the cancellation law.
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Corollary 5.9: Every morphism of finite groups has the class-bijective lifting

property.

Proof. Suppose we have

H AutB(E)

G OutB(E)

pE

with H and G finite, and H → AutB(E) class-bijective. Then EH is an

(E,E∨H )-link, so by Theorem 5.8, there is an (E,E∨G)-link LG containing EH .

This lets us define an action of G by setting g · x to be the unique element in

both [x]LG
and g · [x]E .

Corollary 5.10: Every outer action of an amalgamated free product of finite

groups has a lift.

Proof. Let H be a finite group, let (Gn)n<∞ be finite groups, let H → Gn be

morphisms, and let G be the amalgamated free product of the Gn over H . By

Corollary 5.2, every outer action of H has a class-bijective lift. By Corollary 5.9,

the morphisms H → Gn have the class-bijective lifting property. Thus by

Proposition 5.5, every outer action of G lifts.

Given CBERsE ⊆ F , we say that F/E is hyperfinite if there is an increasing

sequence (Fn)n of finite index extensions of E such that

F =
⋃

n

Fn.

Corollary 5.11: Let E � F be CBERs with F/E hyperfinite. Then there is

an (E,F )-link.

Proof. Apply Theorem 5.8 countably many times.

Corollary 5.12: Every outer action of a locally finite group has a class-

bijective lift.

Proof. Immediate from Corollary 5.11.
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6. Outer actions of amenable groups

Our goal in this section is to show that every outer action of an amenable group

lifts. We will prove in 6.A some special cases of this result, using (as a black

box) [FSZ89, Theorem 3.4] (stated in Theorem 6.1 below). The general case,

which is based on some ideas from the proof of Theorem 6.1 in combination

with Theorem 3.5, will be proved in 6.D.

6.A. Special cases. We will use the following result from the pmp setting:

Theorem 6.1 ([FSZ89, Theorem 3.4]): Let G be an amenable group and let E

be a pmp ergodic CBER. Then any morphism G → Outµ(E) has a lift.

Remark 6.2: In [FSZ89] this result is stated for free outer actions, i.e., outer

actions ϕ : G → Outµ(E) that have the following additional property: if g ∈ G

is not the identity and Tg ∈ Autµ(E) maps by the canonical projection to ϕ(g),

then Tg(x) /∈ [x]E a.e. Using the ergodicity of E, this is equivalent to the kernel

of ϕ being trivial. Thus for an arbitrary outer action ϕ : G → Outµ(E), if H is

the kernel of ϕ, this gives a free outer action of G/H , which by the special case

lifts to an action of G/H which, composed with the projection of G to G/H ,

gives a lifting of ϕ.

Remark 6.3: Note that (the measurable version of) Corollary 5.10 gives exam-

ples of non-amenable groups that satisfy Theorem 6.1.

Now Theorem 6.1 together with Theorem 3.5 implies the following Borel

result:

Theorem 6.4: Let G be an amenable group and let E be a uniquely ergodic

CBER. Then every morphism G → OutB(E) lifts.

Proof. Let µ be the ergodic invariant measure for E. Note that any element

of AutB(E) preserves µ by unique ergodicity. Thus by Theorem 6.1, there is

a lift G → Autµ(E), so there is a conull E-invariant Borel set Y ⊆ X such

that G → OutB(E � Y ) lifts to AutB(E � Y ). But since the complement is

compressible, we are done here by Theorem 3.5.

In fact the following stronger result holds.
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Theorem 6.5: Let G be an amenable group and let E be a countably ergodic

CBER. Then every morphism G → OutB(E) lifts.

Proof. Note that G acts on the ergodic components modulo compressible sets,

which we can ignore by Theorem 3.5. We can assume that this action is transi-

tive. Fix an ergodic component Y , and let

H = {g ∈ G : g · Y = Y }.

By the uniquely ergodic case, there is a lift H → AutB(E � Y ). Let S ⊆ G be

a transversal for the left cosets of H in G, with 1 ∈ S. For every s ∈ S, choose

a lift Ts ∈ AutB(E), with T1 = idX . Now fix g ∈ G and s ∈ S. We define the

action of g on sY . We have gsY = tY for some t ∈ S, so we have t−1gs ∈ H .

Thus we can define

g · (Tsy) := Tt((t
−1gs) · y).

6.B. E-null sets. LetE be an aperiodic CBER onX , so that every µ∈EINVE

is non-atomic. A Borel subset A ⊆ X is E-null if either of the following equiv-

alent conditions holds:

(1) µ(A) = 0 for every µ ∈ EINVE .

(2) E � [A]E is compressible.

An E-conull set is the complement of an E-null set.

Let

NULLE ⊆ B(X)

be the σ-ideal of E-null Borel sets, and let ALGE be the quotient σ-algebra

B(X)/NULLE . A Borel map T : X → X is NULLE-preserving if the preimage

under T of every E-null set is E-null. Let EndNULLE
(E) be the monoid of

NULLE-preserving Borel maps X → X such that

x E y =⇒ ϕ(x) E ϕ(y)

for all x, y in an E-conull set, where two such maps are identified if they agree

on an E-conull set. Let AutNULLE
(E) be the group of invertible elements of

EndNULLE
(E). There is a natural action of AutNULLE

(E) on ALGE . Denote

by InnNULLE
(E) the normal subgroup of AutNULLE

(E) of ϕ such that

ϕ(x) E x

for an E-conull set of x, and denote by OutNULLE
(E) the quotient group

AutNULLE
(E)/ InnNULLE

(E).
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Lifts of elements of OutNULLE
(E) are defined analogously as in the case of

OutB(E), as well as lifts of morphismsG→OutNULLE
(E). Let G→AutNULLE

(E)

be a morphism. Let G → OutNULLE
(E). There is an action on X/E given by

g · [x]E = [T (x)]E

where T is a lift of g, which is well-defined for an E-conull set of x. Then

StabG([x]E) is well-defined for an E-conull set of x. We say that this is a free

action if

StabG([x]E) = 1

for an E-conull set of x. A morphism G → AutNULLE
(E) is class-bijective if

for every g ∈ G, there is an E-conull set of x such that

StabG(x) = StabG([x]E)

(note that StabG(x) is also well-defined for an E-conull set of x). Links are

defined as before, except that everything only needs to hold on an E-conull set.

Given g ∈ OutNULLE
(E), a partial lift ψ of g is the restriction of a lift φ

of g to some A ∈ ALGE . In this case, we write ψ : A → B, where

B = φ(A).

There is a commutative diagram

1 InnB(E) AutB(E) OutB(E) 1

1 InnNULLE
(E) AutNULLE

(E) OutNULLE
(E) 1

In particular, any morphism G → OutB(E) induces a morphism

G → OutNULLE
(E).

Proposition 6.6: Let E be an aperiodic CBER on X , let G be a countable

group and fix a morphism G → OutB(E). Then the following are equivalent:

(1) G → OutB(E) lifts.

(2) G → OutNULLE
(E) lifts.
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Proof. (1) =⇒ (2) Immediate.

(2) =⇒ (1) Denote the lift by ϕ : G → AutNULLE
(E), and denote by

ϕg ∈ AutNULLE
(E) the image of g under ϕ. For each g ∈ G, pick a repre-

sentative Tg : X → X of ϕg. There is an E-conull subset Y ⊆ X such that

(i) x E y ⇐⇒ Tg(x) E Tg(y) for every g ∈ G and x, y ∈ Y ,

(ii) T1(x) = x for every x ∈ Y ,

(iii) Tg(Th(x)) = Tgh(x) for every g, h ∈ G and x ∈ Y ,

(iv) [Tg(x)]E = g · [x]E for every g ∈ G and x ∈ Y .

By taking the E∨G-hull, we can assume that Y is E∨G-invariant. Then the Tg

define a lift of G → OutB(E � Y ). On X \ Y , we have that E is compressible,

so we are done by Theorem 3.5.

Every µ ∈ EINVE is a well-defined measure on ALGE , and there is an action

AutNULLE
(E) � EINVE given by

(ϕ · µ)(A) = µ(ϕ−1(A)),

which descends to an action of OutNULLE
(E).

Proposition 6.7: Let E be an aperiodic CBER, let g ∈ OutNULLE
(E), and

let A,B ∈ ALGE . Then the following are equivalent:

(1) µ(A) = (g · µ)(B) for every µ ∈ EINVE .

(2) There is a partial lift ϕ : A → B of g.

(3) There is a lift ϕ of g with ϕ(A) = B.

Proof. (2) ⇐⇒ (3) By definition.

(3) =⇒ (1) Immediate.

(1) =⇒ (3) Let ψ be a lift of g. Then

µ(A) = (g · µ)(B) = µ(ψ−1(B)),

so by replacing B with ψ−1(B), we can assume that g = 1. Then the result

follows from [KM04, Lemma 7.10] and the remark following it.

A family (ϕn)n of partial maps is disjoint if the family (domϕn)n is disjoint

and the family (codϕn)n is disjoint.

Proposition 6.8: Let E be an aperiodic CBER, fix a morphism

G → OutNULLE
(E), and let g ∈ G. If (ϕn)n are disjoint partial lifts of g,

then
⊔

n ϕn is a partial lift of g.
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Proof. Suppose ϕn : An → Bn. Let A = X \
⊔

n An and let B = X \
⊔

n Bn. By

Proposition 6.7, for any µ ∈ EINVE , we have µ(An) = (g · µ)(Bn), and thus

µ(A) = (g · µ)(B).

So again by Proposition 6.7, there is a partial lift ϕ : A → B of g. Then ϕ�
⊔

n ϕn

is a lift of g, and thus the restriction ϕn is a partial lift of g.

For A∈ALGE , we write µE(A)=r if for every µ∈EINVE , we have µ(A)=r.

Recall that for any standard probability space (X,µ), if A ⊆ X and r ≤ µ(A),

then there is some B ⊆ A with µ(A) = r, and this B can be found uniformly

in µ. By applying this to each E-ergodic component, we obtain the following:

Proposition 6.9: Let E be an aperiodic CBER, let A ∈ ALGE , and let

r ∈ [0, 1]. If r ≤ µE(A), then there is some B ⊆ A such that

µE(B) = r.

6.C. Quasi-tilings. Let G be a group. Let Fin(G) denote the set of finite

subsets of G, and let Fin1(G) denote the set of A ∈ Fin(G) containing 1. Given

A,B ∈ Fin(G), we say that B λ-covers A if

|A ∩B| ≥ λ|A|.

Let A be a family in Fin(G), i.e., a subset of Fin(G). We say that A is

ε-disjoint if there is a disjoint family {DA}A∈A such that each DA is a subset

of A which (1 − ε)-covers A. Note that if A is ε-disjoint, then

(1− ε)
∑

A∈A

|A| ≤

∣∣∣∣
⋃

A∈A

A

∣∣∣∣.

Given A ∈ Fin(G), we say that A λ-covers A if
⋃

B∈A B λ-covers A.

Let A be a family in Fin1(G) and let A ∈ Fin(G). An A-quasi-tiling of A is

a tuple C = (CB)B∈A of subsets of A such that Bc ⊆ A for every c ∈ CB, and

the family {BCB}B∈A is disjoint. If 1 ∈ A, we additionally demand that 1 ∈ CB

for some B ∈ A. If A = {B} is a singleton, we will write “C is a B-quasi-tiling”

as shorthand to mean that (C) is a {B}-quasi-tiling. We say that C is ε-disjoint

if for each B ∈ A, the family {Bc}c∈CB
is ε-disjoint. We say that C λ-covers A

if {BCB}B∈A λ-covers A. We say that C is an (A, ε)-quasi-tiling of A if it is

ε-disjoint and (1− ε)-covers A.
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Given A∈Fin(G) and B∈Fin1(G), let T (A,B) denote the set {a∈A :Ba⊆A}.

We say that A is (B, ε)-invariant if T (A,B) (1 − ε)-covers A. Note that if A

is (B, ε)-invariant, then |BA| ≤ (1 + ε|B|)|A|.

Lemma 6.10: Let G be a group, let δ, ε > 0, let B ∈ Fin1(G), and let

A ∈ Fin(G) be (B, δ)-invariant. Then any maximal ε-disjoint family {Bc}c∈C

of right translates of B contained in A ε(1− δ)-covers A.

Proof. If g ∈ T (A,B), then by maximality, we have |Bg ∩BC| ≥ ε|B|. Thus

ε(1− δ)|A| ≤ ε|T (A,B)| ≤
∑

g∈T (A,B)

|Bg ∩BC|

|B|
≤

∑

g∈G

|Bg ∩BC|

|B|
= |BC|,

where the last equality holds since every element of BC is contained in exactly

|B|-many right translates of B.

Let A be a finite family in Fin1(G) and let p = (pB)B∈A be a probability

distribution on A. Given an A-quasi-tiling C = (CB)B∈A of A ∈ Fin(G), we

say that C satisfies p if

|B||CB | ≤ pB|A|

for every B ∈ A. Given ε > 0, we say that the pair (A, ε) satisfies p if there

is some δ > 0 such that for every A ∈ Fin1(G) larger than 1
δ which is (B, δ)-

invariant and contains B for every B ∈ A, there is an (A, ε)-quasi-tiling of A

satisfying p.

Lemma 6.11: Let G be a group. For every ε > 0, there is a finite proba-

bility distribution p = (pi)i<k and constants ηi > 0 for i < k − 1 such that

if A = (Bi)i<k is a descending chain in Fin1(G) where each Bi for i < k − 1 is

(B−1
i+1,

ηi

|Bi+1|
)-invariant, then (A, ε) satisfies p.

Proof. By scaling, it suffices to find a subprobability distribution. Choose k

such that 2ε ≥ (1− ε)k, define pi = ε(1− ε)i, and for i < k − 1, choose ηi such

that

ηi ≤
1− 2ε

2 · 3k−i
.

Let A = (Bi)i<k be a descending chain in Fin1(G) where each Bi is

(B−1
i+1,

ηi

|Bi+1|
)-invariant, and let δ > 0 be sufficiently small, depending on (A, ε),

to be specified in the course of the proof. Suppose we have some A ∈ Fin1(G)

which is larger than 1
δ and (B, δ)-invariant for every B ∈ A.
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We define a descending sequence (Ai)i<k of subsets of A and 2ε-disjoint Bi-

quasi-tilings Ci of Ai such that

(i) A0 = A,

(ii) Ai+1 = Ai \BiCi,

(iii) Ai is (Bi,
1

3k−i )-invariant,

(iv)

ε(1− ε)i+2−2−i

≤
|BiCi|

|A|
≤ ε(1− ε)i−2+2−i

,

(v)

(1− ε)i+2−2−i+1

≤
|Ai|

|A|
≤ (1 − ε)i−2+2−i+1

.

We proceed by induction, starting with A0 = A, defining Ci from Ai, and

defining Ai+1 from Ci via (ii). Note that A0 satisfies (iii) if we require δ ≤ 1
3k
.

Suppose that Ai has been defined. We will define Ci. Let C̃i be a maximal

2ε-disjoint Bi-quasi-tiling of Ai. Since 2ε(1− 1
3k−i ) > ε, by Lemma 6.10, C̃i is

an ε-cover of Ai. Then by removing elements from C̃i, we obtain a Bi-quasi-

tiling Ci ⊆ C̃i of Ai such that

ε(1− ε)2
−i

≤
|BiCi|

|Ai|
≤ ε(1− ε)−2−i

and

(1− ε)1+2−i

≤
|Ai+1|

|Ai|
≤ (1− ε)1−2−i

,

as long as Ai is sufficiently large such that |Bi|
|Ai|

is smaller than the length of the

interval around ε given by

[ε(1− ε)2
−i

, ε(1− ε)−2−i

] ∩ [1− (1− ε)1−2−i

, 1− (1− ε)1+2−i

],

which occurs for sufficiently large A by (v). Then since |BiCi|
|A| = |BiCi|

|Ai|
|Ai|
|A| , we

get that (iv) holds. Similarly, (v) holds for Ai+1.

It remains to check (iii). Note that

T (Ai+1, Bi+1) = T (Ai, Bi+1) \B
−1
i+1BiCi.

Since
|Ai+1|

|Ai|
≥ (1− ε)1+2−i

≥ (1− ε)2 ≥
1

2
,
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where we assume that ε is small enough to satisfy the last inequality, the cardi-

nality of T (Ai, Bi+1) is at least

(
1−

1

3k−i

)
|Ai| ≥ |Ai| −

2

3k−i
|Ai+1|.

Now BiCi is (B
−1
i+1,

ηi

|Bi+1|(1−2ε) )-invariant, since

|{g ∈ BiCi : B
−1
i+1g �⊆ BiCi}| ≤

∑

c∈Ci

|{g ∈ Bic : B
−1
i+1g �⊆ BiCi}|

≤
∑

c∈Ci

|{g ∈ Bic : B
−1
i+1g �⊆ Bic}|

≤
∑

c∈Ci

ηi
|Bi+1|

|Bi|

=
ηi

|Bi+1|
|Bi||Ci|

≤
ηi

|Bi+1|

|BiCi|

1− 2ε
.

Since
|Ai+1|

|BiCi|
≥

|Ai+1|

|Ai|
≥

1

2
≥

ηi
1− 2ε

3k−i,

we have

|B−1
i+1BiCi| ≤

(
1 +

ηi
1− 2ε

)
|BiCi| ≤ |BiCi|+

1

3k−i
|Ai+1|.

Putting these together, we get

|T (Ai+1, Bi+1)| ≥
(
1−

3

3k−i

)
|Ai+1|,

so (iii) holds. This concludes the construction.

Now
|BiCi|

|A|
≥ ε(1− ε)i+2−2−i

> ε(1− ε)i+2

> ε(1− 2ε)2(1− ε)i,

so for each i < k, there is a Bi-quasi-tiling C′
i ⊆ Ci of Ai such that

ε(1− 2ε)2(1− ε)i ≤
|BiC

′
i|

|A|
≤ ε(1− 2ε)(1− ε)i,
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as long as A is large enough such that |Bi|
|A| is smaller than the length of the

interval

[ε(1− 2ε)2(1− ε)i, ε(1− 2ε)(1− ε)i].

Then (C ′
i)i<k is a 2ε-disjoint A-quasi-tiling of A which (1 − 2ε)3-covers A. We

also have

|Bi||C
′
i|

|A|
≤

1

1− 2ε

|BiC
′
i|

|A|
≤ ε(1− ε)i = pi.

So we are done by replacing ε in the above argument by any ε̄ such that ε is

greater than 2ε̄ and 1− (1− 2ε̄)3.

A countable group G is amenable if for every B ∈ Fin(G) and every ε > 0,

there is some A ∈ Fin(G) which is (B, ε)-invariant. Note that we can assume

that A contains B.

Proposition 6.12: LetG be an amenable group and let (εn)n<∞ be a sequence

of positive reals. Then there exist for each n < ∞, a finite family An in Fin1(G)

and a probability distribution pn on An such that

(i) A0 = {{1}},

(ii) if B ∈ An and A ∈ An+1, then A is (B, εn)-invariant and contains B,

(iii) every A ∈ An+1 has an (An, εn)-quasi-tiling satisfying pn,

(iv) G =
⋃

n

⋃
B∈An

B.

Proof. Fix an enumeration (gn)n of G. We inductively define An and pn sat-

isfying the given conditions such that, additionally, (An, εn) satisfies pn. For

n = 0, take A0 = {{1}}, and let p0 be the unique probability distribution on A0.

Then (A0, ε0) satisfies p
0. Now suppose that An and pn have been defined. Ap-

ply Lemma 6.11 to εn+1 to obtain a probability distribution pn = (pi)i<kn
and

constants (ηni )i<kn−1. We turn to defining An+1 = (Bn+1
i )i<kn+1

. First we

define Bn+1
kn+1−1, by choosing any Bn+1

kn+1−1 ∈ Fin1(G) which contains B and is

(B, εn)-invariant for every B ∈ An, and contains gn, and which has an (An, εn)-

quasi-tiling satisfying pn (which is possible since (An, εn) satisfies p
n). Now for

any i < kn+1 − 1, we define Bn+1
i from Bn+1

i+1 , by choosing any Bn+1
i ∈ Fin1(G)

containing Bn+1
i+1 which is ((Bn+1

i+1 )−1,
ηn
i

|Bn+1

i+1
|
)-invariant, (B, εn)-invariant for ev-

ery B ∈ An, and which has an (An, εn)-quasi-tiling satisfying pn. Then An+1

satisfies the given conditions and, additionally, (An+1, εn+1) satisfies p
n+1.
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6.D. General case.

Theorem 6.13: Every outer action of an amenable group lifts.

Proof. Let G be an amenable group, and let E be a CBER on X . By Proposi-

tion 4.6, we can assume that E is aperiodic. By Proposition 6.6, it suffices to

show that every morphism G → OutNULLE
(E) lifts to AutNULLE

(E). For the

rest of the proof, when we refer to a subset of X , we will mean its equivalence

class in ALGE .

Fix a sequence (εn)n<∞ of positive reals less than 1 such that
∑

n

(1− (1− εn)(1 − 3εn)) < ∞.

Apply Proposition 6.12 to (εn)n to obtain, for each n < ∞, a finite family An

in Fin1(G) and a probability distribution pn = (pnA)A∈An
on An. For ease of

notation, we will write pA instead of pnA.

For each n < ∞, we construct a disjoint family (XA)A∈An
⊆ ALGE , and

partial lifts ϕn
g ∈ AutNULLE

(E) of some g ∈ G such that

(i) ϕn
1 = idX ,

(ii) for A ∈ An, we have |A|µE(XA) = pA,

(iii) the family {ϕn
g (XA) : A ∈ An, g ∈ A} is disjoint,

(iv) for A ∈ An, if g, h, gh ∈ A, then ϕn
gh and ϕn

gϕ
n
h agree on XA.

We proceed by induction on n. For n = 0, take X{1} = X and ϕ0
1 = idX .

Now suppose that the construction holds for n. We will repeatedly use Propo-

sition 6.7, Proposition 6.8, and Proposition 6.9 to obtain the partial lifts ϕn+1
g .

For each A ∈ An+1, fix an (An, εn)-quasi-tiling (CA
B )B∈An

of A. By εn-

disjointness, for each B ∈ An there is a disjoint family {DA
B,cc}c∈CA

B
where

each DA
B,c is a subset of B which (1− εn)-covers B. For each A ∈ An+1, choose

XA ⊆ XB where 1 ∈ CA
B , such that |A|µE(XA) = pA; we can do this since

pA
|A|

≤
|CA

B |

|A|
≤

pB
|B|

= µE(B).

For each A ∈ An+1, each B ∈ An, and each c ∈ CA
B , define ϕn+1

c on XA so that

for every B ∈ An, the family {ϕn+1
c (XA) : A ∈ An+1, c ∈ CA

B} is disjoint and

contained in XB (see Figure 1); we can do this since for each A ∈ An+1, we

have ∑

c∈CA
B

µE(XA) = |CA
B |

pA
|A|

≤ pA
pB
|B|

= pAµE(XB).
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Now for each A ∈ An+1, each B ∈ An, each c ∈ CA
B , and each h ∈ DA

B,c,

define ϕn+1
hc on XA by setting it equal to ϕn

hϕ
n+1
c . Then for each A ∈ An+1 and

each g ∈ A, define ϕn+1
g on XA if it hasn’t been already defined, such that the

family {ϕn+1
g (XA) : A ∈ An+1, g ∈ A} partitions X ; this is possible since

∑

A∈An+1

∑

g∈A

µE(XA) =
∑

A∈An+1

|A|µE(XA) =
∑

A∈An+1

pA = 1.

Finally, for each A ∈ An+1 and g, h, gh ∈ A, define ϕn+1
g on ϕn+1

h (XA) by

setting it to be equal to ϕn+1
gh (ϕn+1

h )−1. This concludes the construction.

Figure 1. The shaded regions are XB for B ∈ An, and the

regions above each XB are its translates ϕn
b (XB) for b ∈ B.

The black disk is some XA, the other disks are its translates

ϕn+1
c (XA), and analogously for the squares for some other

A′ ∈ An+1.

We claim that for every g ∈ G, the pointwise limit ϕg := limn ϕ
n
g exists and is

a total function. Let n be large enough such that there is some C ∈ An−1 with

g ∈ C. Now for any A ∈ An+1, B ∈ An, c ∈ CA
B , and h ∈ DA

B,c with gh ∈ DA
B,c,

we have on XA

ϕn
gϕ

n+1
hc = ϕn

gϕ
n
hϕ

n+1
c = ϕn

ghϕ
n+1
c = ϕn+1

ghc = ϕn+1
g ϕn+1

hc ,
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so ϕn
g and ϕn+1

g agree on ϕn+1
hc (XA). We have

|B \ g−1DA
B,c| ≤ |B \ g−1B|+ |g−1B \ g−1DA

B,c| < 2εn|B|.

So ϕn
g and ϕn+1

g agree on a set of µE-measure at least

∑

A∈An+1

∑

B∈An

∑

c∈CA
B

∑

h∈DA
B,c

gh∈DA
B,c

µE(ϕ
n+1
hc (XA)) ≥

∑

A∈An+1

∑

B∈An

|CA
B |(1− 3εn)|B|

pA
|A|

≥
∑

A∈An+1

(1 − εn)(1 − 3εn)pA

≥ (1− εn)(1− 3εn).

So we are done by the Borel–Cantelli lemma.

Now we claim that g �→ ϕg is an action. Let g, h ∈ G. Choose n large enough

such that there is some C ∈ An−1 with g, h, gh ∈ C. Now for any B ∈ An and

k ∈ B with hk, ghk ∈ B, we have on XB

ϕn
ghϕ

n
k = ϕn

ghk = ϕn
gϕ

n
hk = ϕn

gϕ
n
hϕ

n
k ,

so ϕn
gh and ϕn

gϕ
n
h agree on ϕn

k (XB). We have

|B \ h−1B| ≤ εn|B| and |B \ (gh)−1B| ≤ εn|B|.

So ϕn
gh and ϕn

gϕ
n
h agree on a set of µE-measure at least

∑

B∈An

∑

k∈B
hk,ghk∈B

µE(ϕ
n
k (XB)) ≥

∑

B∈An

(1− 2εn)|B|µE(ϕ
n
r (XB))

≥
∑

B∈An

(1 − 2εn)pB

≥ (1− 2εn).

So we are done by the Borel–Cantelli lemma.

We can obtain class-bijective lifts for some amenable groups, including abelian

groups and amenable groups with countably many subgroups.

Corollary 6.14: Let G be an amenable group whose conjugacy equivalence

relation on its space of subgroups is smooth. Then every outer action of G has

a class-bijective lift.
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Proof. For this proof, we will work modulo E-null sets. Fix a morphism

G → OutNULLE
(E). Let (Xe)e∈EINVE

be the ergodic decomposition of E. Let C

be a transversal for the conjugacy equivalence relation on the space of subgroups,

and for each subgroup H ≤ G, fix some gH ∈ G such that gHHg−1
H ∈ C.

The action OutNULLE
(E) � EINVE induces an action G � EINVE . If

e ∈ EINVE has stabilizer H ∈ C under this action, then if NH is the kernel

of H → OutNULLE
(E � Xe), we have

StabH(x) = NH

by ergodicity, and thus H/NH → OutNULLE
(E � Xe) is a free action. Thus by

applying Theorem 6.13 to Xe, there is a class-bijective lift

H/NH → AutNULLE
(E � Xe),

and this gives a class-bijective lift H → AutNULLE
(E � Xe), and thus a link. So

for each H ∈ C, if we let XH be the union of the ergodic components with sta-

bilizer H , then there is an (E � XH , E∨H � XH)-link LH . Now for an arbitrary

subgroup H ≤ G, fix a lift ψH of gH . Then the smallest equivalence relation

containing LH and {(x, ψH(x)) : x ∈ Xe with Stab(e) = H} for every H is an

(E,E∨G)-link.

Remark 6.15: There are locally finite groups for which the conjugacy equivalence

relation on the space of subgroups is not smooth. Take, for example, a finite

group H with a non-normal subgroup H ′ and let C be the conjugacy class of H ′.

Let G =
⊕

n H be the infinite direct sum of copies of H . Consider the set X of

subgroups of G of the form
⊕

n Hn, where Hn ∈ C. Then E0 is Borel reducible

to the conjugacy equivalence relation on X , which is therefore non-smooth.

For general amenable groups, the problem is still open:

Problem 6.16: Let G be an amenable group. Does every G → OutB(E) have a

class-bijective lift?

We remark that in Problem 6.16 it suffices to consider hyperfinite E. To see

this, note that by Theorem 6.13, there is a lift G → AutB(E). Then it suffices

to find an (E ∩EX
G , EX

G )-link. So by replacing E with E ∩EX
G , we can assume

that E is amenable, in the sense of [Kec22, 9.1], and this is hyperfinite on an

E-conull set, see [Kec22, 9.4].



418 J. R. FRISCH, A. S. KECHRIS AND F. SHINKO Isr. J. Math.

7. Summary of lifting results for outer actions

Let G be the class of groups for which every outer action has a lift. Then:

• G contains all amenable groups (Theorem 6.13).

• G contains all amalgamated products of finite groups (Corollary 5.10).

• G is closed under subgroups (Proposition 4.7).

• G is closed under free products.

• Every group in G is treeable (Proposition 4.11).

Let Gcb be the class of groups for which every outer action has a class-bijective

lift. Then:

• Gcb contains all locally finite groups (Corollary 5.12).

• Gcb contains all amenable groups whose conjugacy equivalence relation

on the space of subgroups is smooth (Corollary 6.14).

• Gcb is closed under subgroups (Proposition 4.7).

• Gcb is closed under quotients (Proposition 4.8).

• Gcb is closed under extensions by a finite normal subgroup (Theorem 5.6).

Problem 7.1: Characterize the classes G and Gcb.

8. Additional topics

8.A. Algebraic properties of automorphism groups. There are several

results concerning the algebraic properties of InnB(E) (see [Mil04], [Mer93],

[MR07]), and similarly for Innµ(E) in the pmp case (see [Kec10, §§3–4] and the

references therein). In particular, it is known that for aperiodic E, the group

InnB(E) is generated by involutions and similarly for Innµ(E). However, not

much seems to be known about the groups AutB(E),Autµ(E),OutB(E), includ-

ing the question about generation by involutions. There are pmp ergodic E for

which Autµ(E) is generated by involutions, for example E0 (see [Kec10, p. 46])

and pmp ergodic E that have trivial Outµ(E) (for the existence of such, see

[Gef96]). Since E0 is uniquely ergodic, the question of whether AutB(E0) is

generated by involutions would have a positive answer if AutB(E) is generated

by involutions for any hyperfinite compressible E. So it seems natural to con-

sider first the question of generation by involutions of AutB(E), where E is a

compressible CBER.
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In the case of SymB(X/E), Miller has shown that if T ∈ SymB(X/E)

with E∨T hyperfinite, then T is a product of three involutions.

8.B. Conjugacy of outer actions. A result of Bezuglyi–Golodets [BG87],

in combination with Theorem 6.1, shows that any two morphisms

ϕ1, ϕ2 : G → Outµ(E0) are conjugate (i.e., there is θ ∈ Outµ(E0) such that

ϕ1(g)=θϕ2(g)θ
−1) iff ker(ϕ1)=ker(ϕ2). Using Theorem 6.4, one can see that the

analogous result would hold for morphisms of amenable groups into OutB(E0)

if it holds for morphisms of amenable groups into OutB(E) for E compress-

ible hyperfinite, which again leads to the question of whether an analog of

the Bezuglyi–Golodets theorem holds for morphisms of amenable groups into

OutB(E), when E is any compressible CBER.

8.C. Embeddings of quotients. For a countable group G, let F0(G) be the

CBER on GN defined by

(g0, g1, g2, . . .) F0(G) (h0, h1, h2, . . .) ⇐⇒ ∃m ∀k > m [g0 · · · gk = h0 · · ·hk].

There is an action G → AutB(F0(G)) defined by

g · (g0, g1, g2, . . .) = (g · g0, g1, g2, . . .),

inducing an action G �B GN/F0(G). Given CBERs E ⊆ F on X , we say that

F/E is ergodic if there is no Borel partition X = A0 � A1 with each Ai an

E-invariant complete F -section.

Let E be a CBER on a Polish space X , and let G �B X/E be a free action.

Then E∨G/E is ergodic iff there is a G-equivariant Borel injection

GN/F0(G) ↪→ X/E

induced by a continuous embedding GN ↪→ X (see [Mil04, Theorem 7.2]). If

E∨G is hyperfinite, then there is a G-equivariant Borel injection

X/E ↪→ GN/F0(G)

(see [Mil04, Theorem 8.1]).

Given a pair E ⊆ F of CBERs, we say that F/E is generated by a Borel

action if there is some Borel action G �B X/E such that F = E∨G. By [Pin07,

Theorem 3], this is equivalent to the existence of a sequence of Borel functions

fn : X/E → X/E such that

x F y ⇐⇒ ∃n [fn([x]E) = [y]E ].
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By [dRM21, Theorem 5], there is a countable set of obstructions for being

generated by a Borel action. Namely, there is a sequence of pairs En ⊆ Fn

of CBERs on 2N where Fn/En is not generated by a Borel action, such that

if E ⊆ F are CBERs on X where F/E is not generated by a Borel action,

then there is some n for which there is a continuous embedding 2N ↪→ X which

simultaneously reduces En to E and Fn to F .
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