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ABSTRACT

Given a countable Borel equivalence relation E and a countable group G,
we study the problem of when a Borel action of G on X/FE can be lifted
to a Borel action of G on X.

1. Introduction

1.A. AUTOMORPHISMS OF EQUIVALENCE RELATIONS. A countable Borel
equivalence relation (CBER) is an equivalence relation F on a standard
Borel space X such that E is Borel when considered as a subset of XZ2.
Let g : X — X/E denote the quotient map.

Let E be a CBER on X. The automorphism group of E, denoted Autg(FE)
(or Np[E)), is the group of Borel automorphisms of E, that is, Borel automor-
phisms T : X — X suchthatz Ey <= T(z) E T(y), under composition. The
inner automorphism group of E (or the full group of E), denoted Inng(E)
(or [E]pB), is the normal subgroup of Autp(FE) consisting of the T' € Autp(F)
such that z E T'(z). The normalizer of Inng(FE) in the group of Borel automor-
phisms of X is Autp(E). By a result of Miller and Rosendal [MR07, Proposition
2.1], if E is aperiodic, then the natural map Autg(E) — Aut(Inng(F)) is an
isomorphism. The outer automorphism group of E, denoted Outp(FE), is
the quotient group Autg(E)/Inng(FE).

Received March 23, 2021 and in revised form December 1, 2021

379



380 J. R. FRISCH, A. S. KECHRIS AND F. SHINKO Isr. J. Math.

Let E and F be CBERs on X and Y respectively. A function f : X/E — Y/F
is Borel if the set {(z,y) € X xY : f([zr]g) = [y]r]} is Borel, or equivalently
by the Lusin—Novikov theorem [Kec95, Theorem 18.10], if there exists a Borel
map T : X — Y such that f([z]g) = [T(x)]r. The Borel symmetric group
of X/E, denoted Symp(X/E), is the set of Borel permutations of X/FE under
composition. There is a natural map Autg(F) — Sympg(X/E), defined by
sending T' € Autp(F) to the permutation [z]g — [T'(z)]g. This morphism has
kernel Inng(F), so there is a factorization

Autp(E) 225 Outp(E) —£ Symy(X/E).

A Borel permutation of X/F in the image of this morphism is called an outer
permutation. In other words, f €Symg(X/FE) is outer if there is T € Autp(E)
such that f([z]g) = [T(2)]E-

1.B. LIFTS OF BOREL ACTIONS ON QUOTIENT SPACES. Let E be a CBER
on X and let G be a countable group. We write G ~p (X, E) to denote
an action of G on X by Borel automorphisms of E, which is equivalent to a
morphism G — Autp(E). An action G ~p (X, E) is class-bijective if mp
is class-bijective, that is, the restriction of mg to every G-orbit is an injection,
ie,g-x Fx = g-x =xz. A Borel action of G on X/E, denoted G ~p X/E,
is an action of G on X/E by Borel permutations, which is equivalent to a
morphism G — Sympg(X/E). An action G ~np X/E is outer if G acts by
outer permutations, or equivalently, if the morphism G — Symp(X/FE) factors
through ig. Every action G ~p (X, E) induces an action G ~p X/E by
composing with ig o pg, and g is G-equivariant with respect to these actions.
We initiate in this paper the study of the reverse problem: when does a Borel
action G ~p X/E have a lift to an action G ~p (X, E)? In other words, we
are interested in the lifting problem
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which we will break up into steps by going through Outg(FE).
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1.C. MAIN RESULTS. We give in Section 3 examples of CBERs FE that show
that even the first step of the lifting problem

Outp(E)

AT
. )
-7 1E

G “— Symg(X/E)

does not always have a positive solution, i.e., that there are Borel actions
G ~p X/FE which are not outer. In all these examples, F admits an invariant
Borel probability measure (i.e., it is generated by a Borel action of a countable
group that has an invariant Borel probability measure). On the other hand, we
show in Theorem 3.5 that the full lifting problem has a positive solution, in a
strong sense, when the CBER FE admits no such invariant measure or equiv-
alently (by Nadkarni’s Theorem) that it is compressible (i.e., there is a Borel
injection that sends every equivalence class to a proper subset of itself).

THEOREM 1.1: Let E be a compressible CBER. Then every Borel action
G ~p X/FE has a class-bijective lift

G ~pB (X, E)

This theorem follows from a result (see Theorem 3.6) about links (see Def-
inition 3.3) of pairs E C F of compressible CBERs that was also proved (by
a different method) independently by Ben Miller. Our proof uses some ideas
coming from [FSZ8&9].

We do not know if there are non-compressible E that satisfy Theorem 1.1.
Using this result and a variant of [KMO04, Corollary 13.3], we show, in Corol-
lary 3.11, that the full lifting problem has a positive solution generically for an
arbitrary aperiodic (i.e., having all its classes infinite) CBER E.

Below if G ~p X/E, we let EVYE D FE be the CBER defined as follows:

2 B9y <= 3g€Glg- [zl = [v]r).

COROLLARY 1.2: Let E be an aperiodic CBER on a Polish space X. Then for
any Borel action G ~p X/E, there is a comeager EYC-invariant Borel subset
Y C X such that G ~p Y/E has a class-bijective lift.
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In Sections 4-6, we study the lifting problem for outer actions. A lift of an
outer action is a solution to the following lifting problem:

Autp(E)

A
s lPE

-

G —— Outp(E)

Below we use the following terminology. If a group G acts on a set X, we
denote by Eé{ the induced equivalence relation whose classes are the G-orbits.
An action of group G on a set X is free if for any g # 1 and x € X, g - x # x.
If the set X carries a measure and the action is measure-preserving, we only
require that this holds for almost all . A Borel action of a countable group G
on a standard Borel space X is pmp if it has an invariant Borel probability
measure. A countable group G is treeable if it admits a free, pmp Borel action
on a standard Borel space X such that the induced CBER Eé( is treeable,
i.e., its classes are the connected components of an acyclic Borel graph on X.
For example, all amenable and free groups are treeable but all property (T)
groups and all products of an infinite group with a non-amenable group are not
treeable.

We now have the following results (see Corollary 6.14, Corollary 5.12 for (1),
and Corollary 5.10, Theorem 6.13 for (2)). Below a CBER is smooth if it
admits a Borel set meeting every class in exactly one point.

THEOREM 1.3:

(1) Every outer action of any abelian group, and in fact any group for which
the conjugacy equivalence relation on its space of subgroups is smooth,
and any locally finite group has a class-bijective lift.

(2) Every outer action of any amenable group and any amalgamated free
product of finite groups has a lift.

The proof of Theorem 1.3(2) for the case of amenable groups makes use of
the quasi-tiling machinery developed in the work of Ornstein and Weiss [OW80],
[OW8T] and also uses some ideas from [FSZ89]. Also the proof of Theorem 1.3(2)
for the case of amalgamated free products of finite groups also uses some ideas
from [Tsel3]. We do not know if the conclusion of (2) can be restrengthened to
having a class-bijective lift.
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On the other hand we have an upper bound for groups that have this lifting
property (see Proposition 4.11). The proof of the next result is motivated by
[CJ85] and [FSZ89].

PRrOPOSITION 1.4: If every outer action of a countable group G lifts, then G is
treeable.

We do not know a characterization of the class of countable groups all of whose
outer actions have a lift or a class-bijective lift. Section 7 contains a summary
of what we know about the classes of groups all of whose outer actions have a
lift (resp., a class-bijective lift).

ACKNOWLEDGEMENTS. We would like to thank Aristotelis Panagiotopoulos,
for getting us to think about these problems by asking whether (in our ter-
minology) every action G ~p X/FE is outer, Ben Miller for many valuable
comments and suggestions, and Adrian Ioana for helpful discussions concern-
ing Problem 3.12(1). Research was partially supported by NSF Grant DMS-
1950475.

2. Preliminaries

2.A. COUNTABLE BOREL EQUIVALENCE RELATIONS. We review here some ba-
sic notions and results that we will use in the sequel. A general reference is
the survey paper [Kec22]. Given a CBER F on X, we denote for each A C X
by [Alg = {x € X : Jy € A(z E y)} the E-saturation of A. In particular
it v € X, [{z}|g = [z]E is the equivalence class of E. Dually the E-hull of A is
the set {x € X : [x]g C A}. Finally, we let E | A = E N A? be the restriction
of Eto A. Aset AC X is E-invariant if A = [A]g. For each set S, we denote
by Ag the equality relation on S and we also let Ig = S2.

For CBERs E, F on X,Y resp., we denote by E® F the direct sum of E, F.
Formally this is the equivalence relation on the direct sum X LY of X, Y which
agrees with F on X and with F on Y. Similarly we define the direct sum @, E,
for a sequence (E,,) of CBERs. The product of E, F' is the equivalence relation
on X XY given by

(z,y) EXF (',y) <= (x E2') & (y F y).

If E,F are CBERs on X and E C F' (as sets of ordered pairs), then E is a
subequivalence relation of F' and F' is an extension of E. If every F-class
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contains only finitely many FE-classes, we say that F' has finite index over F
and if for some N every F'-class contains at most N E-classes, we say that F' has
bounded index over E. If every F-class contains exactly N E-classes we write
[F: E] = N. Finally, E V F is the smallest equivalence relation containing £
and F.

A complete section of a CBER E on X is a set S C X that meets every
E-class. A transversal of F is a subset 7' C X that meets every E-class in
exactly one point. If a Borel transversal exists, we say that E is smooth. A
CBER F is finite if every E-class is finite and it is hyperfinite if £ =, E,,
where F,, C E,;1 and E, is finite, for each n. A canonical non-smooth hyper-
finite CBER is Ep on 2V defined by

x Egy < ImV¥n > m(z, = yn).

We say that a CBER E is aperiodic if every E-class is infinite. For any CBER
E there is a unique decomposition X = A U B into E-invariant Borel sets such
that E | A is finite and E | B is aperiodic. These are, resp., the finite and
infinite parts of E. A CBER F on X is treeable if there is an acyclic Borel
graph I' € X? whose connected components are exactly the E-classes. Every
hyperfinite CBER is treeable.

A CBER F on X is compressible if there is a Borel injection T: X — X such
that T'([z]g) & [2]E, for each 2. A Borel set A C X is (E-)compressible if £/ | A
is compressible. In that case [A]g is compressible as well and there is a Borel
injection T: X — X such that T'(z) E z, for every z, and T([A]g) = A; see
[Kec22, Proposition 3.26]. Recall also from [Kec22, Proposition 3.23] that E
is compressible iff £ =~ FE x Iy (where for two CBERs Fi, F» on X3, X,
resp., F1 =p F> means that they are Borel isomorphic, i.e., there is a Borel
bijection T: X7 — X5 that takes F; to Fy) and also E is compressible iff it
contains a smooth, aperiodic subequivalence relation.

Given CBERs F, F on X,Y, resp., we say that E is Borel reducible to F,
in symbols E <p F, if there is a Borel map T: X — Y such that

rEx < T(z) FT(2).

Such a T is called a reduction of E to F. Moreover E, F are Borel bire-

ducible, in symbols E ~p F, if

(E<pF)&(F<pE).
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We have that E ~p F iff there is a Borel bijection T: X/E — Y/F; see [Kec22,
Theorem 3.32].

Given a countable group G and a Borel action of G on X, denote by EX
the CBER induced by this action, i.e., the equivalence relation whose classes
are exactly the orbits of this action. The Feldman—-Moore Theorem (see, e.g.,
[Kec22, Theorem 3.3]) asserts that for every CBER E on X there is a countable
group G and a Borel action of G on X such that E = EZ.

By a partial subequivalence relation of a CBER F on X, we mean an
equivalence relation F' on a subset A C X such that FF C E. A Borel finite
partial subequivalence relation is abbreviated as fsr.

Let now X be a standard Borel space and denote by [X]<* the standard
Borel space of finite subsets of X. If F is a CBER on X, we denote by [E]<>
the subset of [X]<°° consisting of all finite sets that are contained in a single
E-class. Then [E]<* is Borel. For each set ® C [E]<°°, an fsr F of E defined
on the set A C X is ®-maximal, if every F-class is in ® and every finite set .S
disjoint from A is not in ®. We now have the following result; see [KMO04,
Lemma 7.3]: If £ is a CBER and ® C [E]> is Borel, then there is a Borel
®-maximal fsr of E. The intersection graph of F is the graph on [E]<%°,
where S,T are connected by an edge iff there are distinct and have nonempty
intersection. The proof of [KM04, Lemma 7.3] uses the fact that this graph has
a countable Borel coloring, i.e., a Borel map c: [E]<* — N, which is a coloring
of this graph.

For each CBER FE on X, denote by INV g the standard Borel space of invari-
ant Borel probability measures on X, i.e., the Borel probability measures on X
for which there is a Borel, measure-preserving action of a countable group G
on X with EY = E. We also let EINV g be the Borel subset of INV g consisting
of all ergodic measures in INVg. Nadkarni’s Theorem (see [Kec22, Theorem
5.6]) states that F is compressible iff INV g is empty. The Ergodic Decompo-
sition Theorem of Farrell and Varadarajan (see [Kec22, Theorem 5.12]) asserts
that if INVg # @, then there is a Borel surjection 7: X — EINV g such that

(i) = is E-invariant;
(ii) if X, = 7~ 1({e}), for e € EINV, then e¢(X.) = 1 and e is the unique
FE-invariant probability measure concentrating on X¢;
(iii) if p € INVg, then p = [7(z)dpu(z) = [edm.pu(e).
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Moreover, this map is unique in the following sense: If m, 7’ satisfy (i)—(iii),
then the set {x : w(x) # 7'(z)} is compressible.

The sets X, are the ergodic components of F.

We say that F is uniquely ergodic (resp., finitely ergodic, countably
ergodic) if EINVy is a singleton (resp., finite, countable).

The Classification Theorem for hyperfinite CBERs (see [Kec22, Theorem 8.4])
states that for aperiodic, non-smooth, hyperfinite F, F', we have that £ =g F
iff EINVg and EINV g have the same cardinality.

2.B. CARDINAL ALGEBRAS. A cardinal algebra is a tuple (4,0, +, "), where
(A,0,+) is a commutative monoid, and Y : AN — A is an infinitary operation
satisfying the following axioms:
(i) >, ai=a0+ >, aiq1.
(i) >oi(ai +bi) =32 ai + 32, bi.
(ili) The refinement axiom: If a+b =), ¢;, then there are (a;); and (b;);
such that a = >, a;, b =), b; and a; + b; = ¢;.
(iv) The remainder axiom: If (a;); and (b;); satisfy a; = b; + a;41, then
there is some ¢ such that a; = ¢+ Zj biyj.
We will need two consequences of these axioms. For 0 < n < oo, let na denote
the sum of n copies of a (in particular, let coa denote ), a).
(1) For any a,b,
a=a+b = a=a+ oob.
To see this, use the remainder axiom with a; = a and b; = b. This gives
some ¢ such that a = ¢+ ocob. Then

a 4 0ob = ¢ + 0ob 4 0ob = ¢ + oob = a.
(2) The cancellation law: For any a,b and 0 < n < oo,
na=nb = a=2"b;
see [Tar49, Theorem 2.34].

We will need the following cardinal algebras:

(1) The collection of all CBERs up to Borel isomorphism is a cardinal
algebra under direct sum; see [KM16, 3.C].

(2) Let E be a CBER on X. We say that A, B C X are F-equidecompos-
able, denoted A ~p B, if there is some Borel bijection T: A — B whose
graph is contained in F. This is an equivalence relation, and we denote
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the class of A by A. Let K(FE) denote the set of E-equidecomposability
classes.

Assume now that E is compressible. Then for any countable sequence
1?0, ;1:, ..., we can assume that the A,, are pairwise disjoint, and we can
define the infinitary operation as follows:

S A= A

(We define 4+ analogously, and we define 0 to be the class of the empty
set.) Then IC(E) with these operations is a cardinal algebra; see [Che21,
Proposition 4.1].

There is an action Autp(E) ~ K(E) (i.e., a group action preserving
(0,+,")) defined by

T-A=T(A),

and this descends to an action Outg(E) ~ K(E).

2.C. ACTIONS ON PROBABILITY SPACES. Let (X, i) be a standard probability
space, i.e., a standard Borel space with a non-atomic Borel probability measure.
Let Aut,(X) denote the group of Borel automorphisms 7' : X — X such
that T,p = p, where T and T are identified if they agree on a conull set.

Let F be a pmp CBER on X, i.e., a CBER which is generated by a measure-
preserving action of a countable group. Then Aut,(E) denotes the set of
T € Aut,(X) such that « F y <= T(x) E T(y), for all z,y in a conull
subset of X. Let Inn,(F) denote the normal subgroup of T' € Aut,(E) such
that  E T(x) for almost every z € X. Then Out,(E) denotes the quotient
Aut,(E)/Inn,(E).

All of the proofs below in the Borel setting go through mutatis mutandis in
the pmp setting.

3. Borel actions on quotient spaces

3.A. OUTER AND NON-OUTER ACTIONS. Not every Borel action G ~p X/FE is
outer. For example, let 2¥ = AL B, where A and B are complete Borel sections
for Ey with p(A) # u(B), where p is Lebesgue measure. Let

E=(Ey [ A)® (Eo | B).
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Then the involution on X/F sending [z]g, N A to [z]g, N B is not outer, since
otherwise we would have p(A) = u(B).
Note that the following are equivalent:

(1) every Borel action on X/F is outer;
(2) ig is a bijection.

This condition is quite strong:

PropoSITION 3.1: Let G be a countable group and let E be a CBER. Suppose
that every action G ~p X/E is outer.
(1) Whenever E g EBgeG E,, with the E, pairwise Borel bireducible, then
the E, are pairwise Borel isomorphic.

(2) If G is nontrivial and E =2 E @ (E X ly), then E is compressible.

Proof. For (1), suppose E4 lives on X,, and let F be a CBER on Y such
that F' ~p E, for every g € G, and for each g € G, fix a Borel bijection
fq:Y/F — X ,/E,. Define G ~ng X/E for [z]g € X4/E, by

hlalp = fag(f5 " ([2]R))-
By assumption, this action is induced by some G — Outp(F), which induces
isomorphisms between the E,,.
For (2), since E 25 E @ (E x Iy), by working in the cardinal algebra of
(Borel isomorphism classes of) CBERSs, we have £ =p E® D cq\ (1) (E % In).
So by (1), we have E =p E x Iy. |

So if E is non-compressible and satisfiess E 5 E @ (E x Iy), then every
nontrivial countable group admits a non-outer action on X/FE. There are many
such examples:

Example 3.2:

(1) (Miller) We have Ey = Ey @ (Eo x Iy), since they are both uniquely
ergodic and hyperfinite. More generally £ 25 E & (E x Iy), for any
aperiodic hyperfinite CBER FE.

(2) A countable group G is dynamically compressible if every aperiodic
orbit equivalence relation of G is Borel reducible to a compressible or-
bit equivalence relation of G. Examples include amenable groups, and
groups containing a non-abelian free group. If G is dynamically com-
pressible, then

E*(G,R) 25 E**(G,R) & (E**(G,R) x Iy),
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where E?P(G,R) denotes the aperiodic part of the shift action of G
on RY; see [FKSV21, 5(B)].

3.B. LirTs OF COMPRESSIBLE CBERS. Every action G ~p X/F induces a
CBER EVY€ D F defined as follows:

2 EYYy < 39€Glg [x]le =[yle).

Every action G ~p (X, E) induces an action G ~p X/E, and we write EV¢
for the CBER induced by the latter. Note that

EVY = Ev EX.

If G is a subgroup of Autg(E) or Outg(E), we write EVE for the CBER given
by the (outer) action induced by the inclusion map, and if T € Autg(F), we
write EVT for EV(T),

In [dRM21], it is shown that there is a countable basis of pairs E C F of
CBERs such that there is no Borel action G ~p X/E with F = EVY (see
Section 8.C for a precise statement).

Given f € Symg(X/E), a lift of f is a map T € Autp(F) such that

[T(x)]e = f(l]e)

for every x € X. Given an action G ~pg X/E, a lift of g € G is a lift of its
image in Symg(X/FE).
The following notion is from [Tsel3]:

Definition 3.3: Let E C F' be CBERs. An (E, F')-link is a CBER L C F such
that for every F-class C, every E | C-class meets every L | C-class exactly

once.
The connection to lifts is the following:

PROPOSITION 3.4: Let G ~p X/E. Then the following are equivalent:
(1) There is an (E, EV)-link.
(2) There is a class-bijective lift G ~p (X, E).
Proof. (2) = (1) EJ is a link.
(1) = (2) Let g - = be the unique element in [x]z N (g - [z]E)- n

Proposition 3.1 perhaps suggests that if F is compressible, then every Borel
action on X/FE is outer. It turns out that something much stronger is true:
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THEOREM 3.5: Let E be a compressible CBER. Then every Borel action on
X/E has a class-bijective lift.

By Proposition 3.4, it suffices to prove the following, independently estab-
lished using a different method by Ben Miller (see comments following Corol-
lary 3.8 below for his approach):

THEOREM 3.6: Let E C F be compressible CBERs. Then there is a smooth
(E, F)-link.

We will repeatedly use the following, where we identify a positive integer N
with {0,1,...,N — 1}.

LEMMA 3.7: Let E C F be compressible CBERs and let N € {1,2,...,N}.
Then (E, F) is Borel isomorphic to (E x In,F x Iy), in symbols

(E,F) =p (E X IN,F X IN),
i.e., there is a Borel isomorphism that takes E to E x Iy and F' to F x Iy.

Proof. Since E is compressible, F =5 E x Iy. So (E, F) is Borel isomorphic
to (F x Iy, R), for some R, which then must be of the form F’ x Iy. Thus
(E,F)=p (FE x Iy, F' x Iy), and therefore

(ExIn,FxIy)2p (ExIyx Iy, F' xIyxIyn)
~p (E x Iy, F' x Iy) =g (E, F),

since Iy Zp Iy X Iy. |

Proof of Theorem 3.6. We can assume that every F-class contains exactly N
E-classes, where N € {1,2,...,N}. Below, i < N means i € N.

Fix a Borel action of a countable group I' generating F'.

Fix a choice sequence for (E, F), that is, a sequence (f;);<n of Borel maps
X — X such that for every z € X, the function ¢ — [f;(z)]g is a bijection from
N to [z]p/E. For instance, define f; inductively by setting

fo(x) =z and fi(z) =7 =,

where + is least (in some enumeration of G) such that «y - z is not E-related to
any f;(x) for j <.

We can assume that each f; is injective. By Lemma 3.7, it suffices to de-
fine an injective choice sequence for (E x Iy, F' X Iy). Fix a pairing function
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(—,—) : NxTI'— N. Then we take the choice sequence for (E x Iy, F x Iy) de-
fined by (x,n) — (fi(z), (n,7)), where f; is a choice sequence for (E, F') and ~
is least such that v -z = f;(x).

We can further assume that each im f; is a complete E-section. To see

this, endow N with some group operation *, and take the choice sequence for
(E x Iy, F x Iy) defined by

(:C, k) = (fi*k(z)a k)v

where (f;) is a choice sequence for (E, F') with each f; injective.

Moreover, we can assume that each im f; is E-compressible. To see this, take
the choice sequence for (E x Iy, F x Iy) defined by (z,n) — (fi(x),n), where
(f:) is a choice sequence for (E, F'), with each f; injective and im f; a complete
E-section.

Finally, we can assume that each f; is bijective. To see this, since im f; is
an F-compressible complete section for F, there is some Borel injection T; such
that T(z) E z for every x, and T;(X) = im f;. Then (T, ' o f;) is a choice
sequence for (E, F') with each Ti_1 o f; bijective.

Now we can define a smooth (E x Iy, F x Iy)-link L as follows:

(2,49) L (y,5) <= [ (x)=f;'(y)
and we are done again by Lemma 3.7. |

COROLLARY 3.8: Let E be an aperiodic CBER satisfying E ~p E®(ExIy) (for
instance, any aperiodic hyperfinite CBER). Then the following are equivalent:

(1) Every Borel action on X/E has a class-bijective lift.
(2) Every Borel action on X/E has a lift.

(3) Every Borel action on X/E is outer.

(4) There is a nontrivial countable group G such that every action
G ~p X/FE is outer.

(5) E is compressible.

Immediate.

(3)

(4)

(5) Follows from Proposition 3.1.
(1) Follows from Theorem 3.5. |
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Concerning Theorem 3.6, Ben Miller derives this from the following more
general result whose proof uses Proposition 4.1 and 4.2 from [Mill8].

THEOREM 3.9 (Miller): Let E and F' be compressible CBERs on X and Y re-
spectively, and let f: X/E — Y/F be Borel. Then the following are equivalent:

(1) f is smooth-to-one, i.e., for every y € Y, the restriction of E to
{zr e X : f(lx]g) = [y]r} is smooth.

(2) There is a Borel function T: X — Y such that for every x € X, the
restriction T | [z|g is a bijection from [z]g to f([z]g)-

However, one only needs the special case where f is countable-to-one. Ap-
plying this to the case where E C F and f([x]g) = [z]F, we find a Borel map
T: X — X such that T [ [z]g is a bijection from [z]g to [z]r. Then we can
define the link L by

x Ly < T(z)=T(y).

To show generic lifting, we need a strengthening of generic compressibility,
whose proof is a simple modification of the proof of [KM04, Corollary 13.3]. A
more general version appears in [Mill7, Theorem 11.1]. We include a proof for
the reader’s convenience.

THEOREM 3.10: Let E C F be aperiodic CBERs on a Polish space X. Then
there is a comeager F-invariant, E-compressible Borel subset of X .

Proof. Fix a Borel coloring c: [E]<> — N of the intersection graph. Write
X = | ],en An, where each A, is a Borel set meeting every E-class infinitely
often; for instance, write
X= || Bum
(n,m)€EN2
where each B,, ,,, is a complete E-section (see [CM17, 1.2.6]), and take

A = Bnm-

Let N<N denote the set of finite strings in N. For s € N<N, let len(s) denote
the length of s. For s,t € N<N we write s < t to mean that s is a prefix of ¢.
We define fst’s { E;s}sen<n of E such that
(i) if s < ¢, then Es C E,
(ii) Ag is a transversal for E,
(ili) every Es-class is contained in | | <1, s) Ak-
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We proceed by induction on the length of s. Let Fg be the equality relation
on Ag. Now for each a € Ay, let [a]g.., be the unique set, if it exists, of the
form [a]g, U S, where S € [E]<* is contained in Ajen(s)41 and c([a]g, US) = i,

and otherwise set [a]g.., = [a]g,. This defines an fsr Ey with the desired

properties.

For every o € NN, let E, = U,, Eatn- We claim that for every a € Ay, we
have
V*a ([a] g, is infinite),

where V*a ®(a) means that the set {a € NV : ®(a)} is comeager (see [Kec95,
8.J]). It suffices to show that for every n, we have

Va (|[a]g,| > n).

Since the set {a € NV : |[a]g, | > n} is open, it suffices to show that it is dense.
Fix some s € NN, Let S € [E]<* be a subset of Ajey(s)41 with [S| > n. Then
if ¢([a)g, US) = i, then for every a > s”¢, we have |[a]g, | > |[a]E.-;| > n, so we
are done.

Thus for every x € X, we have

Va € Ag N [z]r Vi ([a]g, is infinite),

or equivalently

V*aVa € Ao N [z]F ([a] g, is infinite),

o

so by the Kuratowksi-Ulam theorem [Kec95, 8.K], we have
V'aV*'xVa € Ay N [x]F ([a]g, is infinite),
so in particular, there is some o € N such that the F-invariant set

C:={z € X :Vae Ay N|[z]r ([a]g, is infinite)}

a

is comeager. Note that C' is E-compressible, since dom(E,) NC is an (E | C)-
compressible, complete (E [ C)-section, so we are done. |

COROLLARY 3.11: Let E be an aperiodic CBER on a Polish space X. Then for
any Borel action G ~p X/E, there is a comeager EVC_invariant Borel subset
Y C X such that G ~p Y/FE has a class-bijective lift.

Proof. Apply Theorem 3.10 with F' = EVY®. Then the result follows from
Theorem 3.5. 1
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In conclusion, let us say that an aperiodic CBER FE is outer if every
G ~p X/FE is outer, or equivalently ig is a bijection. We have seen that every
compressible CBER is outer, while there are non-outer CBER. However we have
the following problems:

Problem 3.12:

(1) Are there outer, non-compressible CBER?
(2) Characterize the outer CBERs.

Concerning the first part of this problem, we note the following possible
approach to finding such an example:

Assume that there is a free, pmp action of a countable group G on a standard
probability space (X, u) with the following properties:

(i) G is co-Hopfian (i.e., injective morphisms of G into itself are surjective)
and G has no non-trivial finite normal subgroups (e.g., SL3(Z)),

(ii) the action is totally ergodic (i.e., every infinite subgroup acts ergodi-
cally) and satisfies cocycle superrigidity (i.e., every cocycle of the action
to a countable group is cohomologous to a homomorphism),

(iii) Out,(EX) is trivial.

There are many examples that satisfy (ii) and others that satisfy (iii) but
it does not seem to be known whether there are examples that satisfy both.
Assuming that such an action exists, one can see that the first part of the above
problem has a positive answer.

By going to a G-invariant Borel set, we can assume that p is the unique
invariant measure for this action. Then if Z C X is Borel and G-invariant of
measure 1, we have that Y = X \ Z is compressible. Put F = Eé( Let now
f € Symp(X/FE) and let T: X — X be Borel such that f([z]g) = [T(2)]E.
Then T is a reduction of E to E and so it gives rise to a cocycle a of this action
into G, which is therefore cohomologous to a homomorphism ¢: G — G. Thus
we can find another Borel map S with S(z) E T'(z) and S(g - x) = ¢(g) - S(x)
a.e. Let N = ker(y). If it is not trivial, it must be infinite. Then for g € N,

S(g-z)=S(z) ae.,

so by the ergodicity of the N-action, S is constant a.e., which is a contradiction.
So N is trivial and thus ¢ is injective, therefore an automorphism. It follows
that S is in Aut,(E) and thus in Inn,(E). Therefore there is an E-invariant
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Borel set Z C X of measure 1 with f | (Z/F) the identity. Then f [ (Z/E)
can be lifted to the identity of Z. Moreover Y = X \ Z is compressible, so, by
Theorem 3.5, f [ (Y/FE) can be lifted to some Borel automorphism of E | Y.
Thus f is an outer permutation.

Concerning the second part of the problem, note that by Corollary 3.8, an
aperiodic hyperfinite CBER is outer iff it is compressible.

The following problem about the algebraic structure of these groups is also
open:

Problem 3.13: When is Outp(FE) a normal subgroup of Symg(X/E)?

4. Outer actions
A lift of an outer action is a solution to the following lifting problem:

AutB(E)

R
s PE
.
-

G — Outp(E)
Many outer actions arise from the following construction:

Example 4.1: Given a Borel action G ~ X of a countable group G and a normal
subgroup N < G, there is a morphism G — Outp(E~x) defined by

and this descends to a morphism G/N — Outp(ER).

4.A. NORMAL SUBEQUIVALENCE RELATIONS. The concept of normality is cen-
tral to the study of outer actions:

Definition 4.2: Let E C F be CBERs. We say that E is normal in F', denoted
E < F, if any of the following equivalent conditions hold:

(1) There is an action G ~p (X, E) of a countable group G such that
F=EYY

(2) There is a morphism G — Outp(FE) from a countable group G such
that F = EVC.

(3) There is a countable subgroup G' < Autg(E) such that F = EVE.

(4) There is a countable subgroup G < Outg(FE) such that F = EVC.
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To see the equivalence, note that (3) = (1) = (2) is immediate, (2) = (4)
holds by taking the image of G in Outp(E), and (4) = (3) holds by fixing a
lift Ty € Autp(E) of each g € G and taking the subgroup of Autg(E) generated
by the Tj.

For CBERs E C F, it is possible that F is not normal in F', but that there
is still a Borel action G ~p X/E such that F = EVY, as witnessed by the
example at the beginning of Section 3.A. For more discussion concerning the
weaker notion, see Section 8.C.

PROPOSITION 4.3: Let E < F be CBERs on X.

(1) If F' is a CBER with E C F' C F, then E < F.
(2) For any E-invariant subset Y C X, we have E [ Y < F | Y.

Proof. Note that (2) follows immediately from (1) by taking
F'=(F1Y)e (F T (X\Y)),

so it suffices to prove (1).

We first assume that ' = EVT for some T € Autp(F). We will show
that F' = EYT" for some T" € Aut(E).

For each = € X, let <, be the preorder on [z]p:/E defined by [y|p <, [#]g iff
there exists some n > 0 such that T"(y) E z. If <, is isomorphic to Z or not an-
tisymmetric, then set 77(z) = T"(x), where n > 0 is least such that T"(z) F' .
Otherwise, there is a unique isomorphism from <, to either the negative in-
tegers ({---,—3,—2,—1},<) or to an initial segment of (N, <). So by fixing
a transitive Z-action on each of these linear orders, we obtain a transitive Z-
action on [x]p//E, and we set T'(x) = T"(x), where n is unique such that
T"(z) €1 [z]g.

Now suppose that F'=EVY for some G < Autg(FE). By above, for each T €G,
we can fix some 7" € Autp(E) such that EVT = F' 0 EVT. Then F' = EVH,
where H = (T") - |

We next make some remarks about smooth links. Let £ < F be CBERs.
Suppose that F is aperiodic and [F : E] = oo, since the finite parts have
smooth links via the forthcoming Theorem 5.1 and Proposition 4.6. If F is
compressible, then there is a smooth link by Theorem 3.6. On the other hand,
if there is a smooth link L, then F' must be compressible, since it contains the

aperiodic smooth L.
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Thus the existence of a link does not imply the existence of a smooth link.
For instance, fix a free pmp Borel action Z? ~ X, and consider E = E%X {0}
and F = E35. Then there is a link given by the action of {0} x Z, but there
is no smooth link, since F is not compressible. If X is the circle and the Z2-
action is by two linearly independent irrational rotations, then £ and F' are both
uniquely ergodic, and by taking copies of these, one can obtain an example with
any number of ergodic measures.

If E <« F with E finitely ergodic, then F is not compressible, since if
EINVg = (ei)i<n, then

1
E(eo +--+ep_1) € EINVp.

Thus there is no smooth link. If EINVg is infinite, it is still possible for a
smooth link to exist. For instance, consider £ = Fy X Ay and F' = Eg x Iy. In
general, the following is open:

Problem 4.4: Let E < F be CBERs with F' is compressible. Is there a smooth
(E, F)-link?

Another open question, related to Theorem 3.6, is as follows:

Problem 4.5: Let E <« F < F’ be compressible CBERs. Can every (E, F))-link
be extended to an (F, F’)-link?

If this were true, then assuming the Continuum Hypothesis, for any com-
pressible CBER FE, the epimorphism pg: Autg(E) — Outp(E) would split,
i.e., there would exist a morphism s: Outg(F) — Autp(F) with pg o s equal
Ga
of countable subgroups. It suffices to obtain class-bijective lifts G, — Autp(E)
such that if o < 3, then the G lift extends the G, lift. For A limit, take the
union of the corresponding links for the G, with @ < A\, and for 8 =a + 1 a

to the identity. To see this, write Outp(F) as an increasing union |J,, .,

successor, use a positive answer to Problem 4.5.

4.B. BASIC RESULTS.

PROPOSITION 4.6: Let E be a smooth CBER.

(1) If F is a CBER with E <« F, then there is an (E, F)-link.
(2) Every outer action on X/E has a class-bijective lift.
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Proof. By Proposition 3.4, it suffices to show (1).

By normality, any two E-classes contained in the same F'-class have the same
cardinality, so by partitioning the space into F-invariant Borel sets, we can
assume that there is some n € {1,2,...,N} such that every E-class has car-
dinality n. Then there is a partition X = |_|k<n Sk such that each Sy is a
transversal for E. Thus the CBER L defined by

xLy < (z Fy)& (Fk <nlz,y € Sk])
is an (F, F)-link. |

It is clear that if G is a free group, then every outer action of G has a lift.
There are also some basic closure properties for the class of groups for which
every outer action admits a (class-bijective) lift.

PROPOSITION 4.7: Let H < G. If every outer action of G has a (class-bijective)
lift, then the same holds for H.

Proof. Let E be a CBER, and fix a morphism H — Outp(E). Let F=@g ;4 E.
Then there is a morphism G — Outp(F'), induced by the action of G on G/H,
so we get a lift G — Autp(F). Restricting to H and F gives the desired
lift. |

ProprosITION 4.8: Let G — H be an epimorphism. If every outer action of G
has a class-bijective lift, then the same holds for H.

Proof. Fix a morphism H — Outp(E). This gives a morphism G — Outp(E).
Since by surjectivity EVY = EVH | we are done by Proposition 3.4. |

At this point, it is good to show that not every outer action has a lift.

Definition 4.9: A countable group G is treeable if it admits a free pmp Borel
action whose induced equivalence relation is treeable.

Example 4.10: There are many examples of groups which are not treeable (see
[KMO04, 30], [Kec22, 10.8]):

e Infinite property (T) groups.

e (G x H, where G is infinite and H is non-amenable.

e More generally, lattices in products of locally compact Polish groups
G x H, where G is non-compact and H is non-amenable.
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The proof of the next result is motivated by [CJ85, Theorem 5] and the
remark following the proof of [FSZ89, Theorem 3.4].

PropPOSITION 4.11: Suppose that every outer action of G lifts. Then G is
treeable.

Proof. We can assume that G = F, /N for some N < F,, where F, is the free
group on infinitely many generators. Fix a free pmp Borel action Fio.o ~p (X, 1)
(for instance, the Bernoulli shift on 2¥>=), and consider the induced free outer

action
G— OutB (Ej)é)

(see Example 4.1). By assumption, there is a lift G — Autp(ER ), which is also
a free action. Then Eé is treeable and preserves p, since Ez)r(x satisfies these
properties and contains Eé( . |

Note that we have no control over the treeable CBER in the proof of Propo-
sition 4.11. In particular, the following is open:

Problem 4.12: Does every outer action on X/Fy lift?

5. Outer actions of finite groups
The following is a strengthening of [Tsel3, Proposition 7.1]:

THEOREM 5.1: Let ' < F be a finite index extension of CBERs. Then there is
n (E, F)-link.

Proof. Let ® be the set of elements of [F]<>° which are a transversal for E | C
for some F-class C. By [KMO04, Lemma 7.3], there is a ®-maximal fsr R. Let
Y = (dom(R))g be the E-hull of dom(R).

Let G < Autp(FE) be a countable subgroup such that ' = EV¢. TFor
every x € X \Y, let g, € G be least (in some enumeration of G) such
that g, - € Y; this exists by ®-maximality of R. Then the equivalence re-
lation generated by R [ Y and {(z,¢,-2) :x € X \ Y} is an (E, F)-link. |

COROLLARY 5.2: Every outer action of a finite group has a class-bijective lift.
Proof. Follows from Proposition 3.4 and Theorem 5.1. ]

The following is a special case of Corollary 6.14, whose proof is much harder.
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COROLLARY 5.3: Every outer action of Z has a class-bijective lift.

Proof. On the finite Z-orbits, apply Corollary 5.2. On the infinite Z-orbits
of X/E, just lift uniquely. |

We next introduce lifts of morphisms:

Definition 5.4: Let H — G be a morphism of countable groups. Then H — G
has the class-bijective lifting property if for any CBER E and any diagram
of the form

H— AutB(E)

| Iz

G —— OutB(E)

with H — Autp(E) class-bijective, there is a class-bijective lift G — Autp(E).

PROPOSITION 5.5: Let H be a countable group, let (G.,), be a countable family
of countable groups, let H — G,, be morphisms, and let G be the amalgamated
free product of the G,, over H. If every outer action of H has a class-bijective
lift, and each H — (G, has the class-bijective lifting property, then every outer
action of G lifts.

Proof. Let E be a CBER, and fix G — Outg(E). By assumption, there is a
class-bijective lift of H — Outp(F). Then for each n, there is a class-bijective
lift G,, = Autp(E) such that the following diagram commutes:

H—— AutB

|

G *>OutBE

Thus by the universal property of amalgamated products, there is a lift
G — AutB(E). [ |

THEOREM 5.6: Let G be a countable group and let N < G be a finite normal
subgroup such that every outer action of H = G/N has a class-bijective lift.

(1) The inclusion N < G has the class-bijective lifting property.
(2) Every outer action of G has a class-bijective lift.
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Proof. (1) implies (2) by Corollary 5.2, so it suffices to show (1).
Let E be a CBER on X, and suppose we have

N —— AutB(E)

[T

G —— Outp(FE)

with N — Autp(E) class-bijective, and let ' = EVY. Note that L = Ex is an
(E, F)-link. There is an induced outer action H — Outp(F). We can assume
that [F : E] = n < co. Let S be a transversal for L, and fix a Borel action
Z/nZ ~ X generating L.

Define an injection Autg(F [ .S)— Autp(F') as follows: given T € Autp(F [S),
let 7" € Autp(F) be the unique morphism satisfying

T'(k-z)=k-T(z) foreveryxe S andkeZ/nZ

This descends to an injection Outp(F' | S) < Outp(F') satisfying the following
commutative diagram:

OutB(F FS) —> OutB(F)

\[iFrs \[iF

Sympg(F | §) —— Symp(F)

We claim that this injection is a bijection. To see this, let T' € Autg(F’). Since
X =rez/nz k- S, we have nS = X in the cardinal algebra K(F x Iy). Thus

nT(S) = T(X) = X,

so by the cancellation law, we have § = T(S), i.e., there is some 7" € Innp(F)
with
T(T(S)) = 8S.

Then (T'T) | S € Autp(F | S) is the desired map.

Thus we obtain an outer action H — Outg(F [ S) and by assumption, there
is an (F | S,EVY | S)-link L’. Then the equivalence relation generated by L
and L' is an (E, F')-link. n

We will prove next a generalization of Corollary 5.2 to morphisms. For that,
we need the following result.
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PROPOSITION 5.7: Let E C F be a bounded index extension of CBERs. Then
the following are equivalent:

(1) E<F.
(2) There is a finite subgroup G < Outg(E) such that F = EVC.

Proof. (2) = (1) Immediate.
(1) = (2) Let H = (hy)n < Autp(E) be a countable subgroup such that
F = EVH. We define inductively a sequence

(9a)n € Innp(F) N Autp(E)
as follows: for every F-class C, if there is i such that

peic(hi | C) # peic(g; 1 C)
for all j < n, then for the least i with this property, set
gn [ C=hi | C;
otherwise set
gn [ C =1id | C.

Note that the sequence (g, ), is eventually equal to id x, since F is of bounded
index in F'. Thus the group

G = (gn)pcoo < Innp(F)N Autp(E)
is finitely generated. Note also that
F=EVG,

Now the image of Inng(F) N Autp(E) in Outp(FE) is locally finite, since it is a
subgroup of (S,,)X/¥ for some finite symmetric group S,,. So the image G of G
in Outp(F) is finite, and we are done. W

We have a generalization of Theorem 5.1:

THEOREM 5.8: Let E C ' C I’ be CBERs such that E has finite index in F’
and E < F'. Then every (E, F)-link is contained in an (E, F')-link.

Proof. By partitioning the underlying standard Borel space X, we can assume
that there is some n < oo such that every F’-class contains at most n F-classes.
We proceed by induction on n. The case n =1 is trivial.
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Let L be an (F, F)-link and let S be a transversal for L. Let ® be the set
of A € [F’ | §]<* which are a transversal for F' | C for some F’-class C. By
[KM04, Lemma 7.3], there is a ®-maximal fsr R. Let Y C X be the set of
x € X such that [z]p C [dom(R)]r and let Z = X \'Y. We can assume that
no F’-class is contained in Y, since the equivalence relation generated by R
and L is an (F, F')-link on such a class. By ®-maximality of R, no F’-class is
contained in Z either. By (2) of Proposition 4.3, we have E [ Y < F’ | Y, so by
the induction hypothesis, there is an (E | Y, F’ [ Y)-link Ly containing L | Y.
Similarly, there is an (E | Z, F' | Z)-link Lz containing L | Z.

Let Sy and Sz be transversals for Ly and Lyz respectively. It suffices to
show that there is some T' € Inng(F’) such that T(Sy) = Sz, since then the
smallest equivalence relation containing Ly and Lz and {(z T( )):x € Sy}is
an (E, F')-link. In other words, we need to show that Sy = Sy in the cardinal
algebra IC(F’ x Iy). By Proposition 5.7, there is a finite subgroup G < Outp(E)
such that F' = EVC. By partitioning X, we can assume that

[F'1Y:E|Y]=ny and [F'|Z:E|Z=ng

for some ny,nz < co. Then

Y:nyg\;/ and Z:nzg\z/

Let
|G|

k= ——.
ny +ngz

Then for every x € X, we have

HgeG:ilaleCg- Y= > HoeG:lalz=g-[yu} =kny,

WleCY
and thus |G|Y = kny X. Similarly, |G|Z = knzX. Thus
IGlnynzSy = |GnzY = knynz X = |Glny Z = |G|nynz Sz,
which yields
Sy = Sz

by the cancellation law. |
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COROLLARY 5.9: Every morphism of finite groups has the class-bijective lifting
property.

Proof. Suppose we have

H—— AutB(E)

l v

G — Outp(E)

with H and G finite, and H — Autp(F) class-bijective. Then Ep is an
(E, EVH)-link, so by Theorem 5.8, there is an (E, EV®)-link Lg containing Ej.
This lets us define an action of G by setting g -  to be the unique element in
both [z]r, and ¢ - [2]g. |

COROLLARY 5.10: Every outer action of an amalgamated free product of finite
groups has a lift.

Proof. Let H be a finite group, let (G, )n<oo be finite groups, let H — G,, be
morphisms, and let G be the amalgamated free product of the G,, over H. By
Corollary 5.2, every outer action of H has a class-bijective lift. By Corollary 5.9,
the morphisms H — G, have the class-bijective lifting property. Thus by
Proposition 5.5, every outer action of G lifts. |

Given CBERs F C F', we say that F'/E is hyperfinite if there is an increasing
sequence (F,),, of finite index extensions of F such that

F=|]JF.
COROLLARY 5.11: Let E <« F' be CBERs with F/E hyperfinite. Then there is
n (E, F)-link.
Proof. Apply Theorem 5.8 countably many times. |

COROLLARY 5.12: Every outer action of a locally finite group has a class-
bijective lift.

Proof. Immediate from Corollary 5.11. ]
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6. Outer actions of amenable groups

Our goal in this section is to show that every outer action of an amenable group
lifts. We will prove in 6.A some special cases of this result, using (as a black
box) [FSZ89, Theorem 3.4] (stated in Theorem 6.1 below). The general case,
which is based on some ideas from the proof of Theorem 6.1 in combination
with Theorem 3.5, will be proved in 6.D.

6.A. SPECIAL CASES. We will use the following result from the pmp setting:

THEOREM 6.1 ([FSZ89, Theorem 3.4]): Let G be an amenable group and let E
be a pmp ergodic CBER. Then any morphism G — Out,(FE) has a lift.

Remark 6.2: In [FSZ89] this result is stated for free outer actions, i.e., outer
actions ¢: G — Out,(E) that have the following additional property: if g € G
is not the identity and T; € Aut,(E) maps by the canonical projection to ¢(g),
then Ty(x) ¢ [z]g a.e. Using the ergodicity of E, this is equivalent to the kernel
of ¢ being trivial. Thus for an arbitrary outer action ¢: G — Out,(E), if H is
the kernel of , this gives a free outer action of G/H, which by the special case
lifts to an action of G/H which, composed with the projection of G to G/H,
gives a lifting of .

Remark 6.3: Note that (the measurable version of) Corollary 5.10 gives exam-
ples of non-amenable groups that satisfy Theorem 6.1.

Now Theorem 6.1 together with Theorem 3.5 implies the following Borel
result:

THEOREM 6.4: Let G be an amenable group and let E be a uniquely ergodic
CBER. Then every morphism G — Outg(E) lifts.

Proof. Let p be the ergodic invariant measure for E. Note that any element
of Autp(F) preserves pu by unique ergodicity. Thus by Theorem 6.1, there is
a lift G — Aut,(E), so there is a conull E-invariant Borel set ¥ C X such
that G — Outp(E [ Y) lifts to Autp(E [ Y). But since the complement is
compressible, we are done here by Theorem 3.5. |

In fact the following stronger result holds.
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THEOREM 6.5: Let G be an amenable group and let E be a countably ergodic
CBER. Then every morphism G — Outp(FE) lifts.

Proof. Note that G acts on the ergodic components modulo compressible sets,
which we can ignore by Theorem 3.5. We can assume that this action is transi-
tive. Fix an ergodic component Y, and let

H={geG:g- Y=Y}

By the uniquely ergodic case, there is a lift H — Autp(E [ Y). Let S C G be
a transversal for the left cosets of H in G, with 1 € S. For every s € S, choose
a lift Ty, € Autp(F), with 77 = idx. Now fix g € G and s € S. We define the
action of g on sY. We have gsY = tY for some t € S, so we have t lgs € H.
Thus we can define

g-(Tey) =Ty ((t "gs)-y). W

6.B. E-NULL SETS. Let E be an aperiodic CBER on X, so that every u€ EINV g
is non-atomic. A Borel subset A C X is F-null if either of the following equiv-
alent conditions holds:

(1) u(A) =0 for every p € EINVg.

(2) E | [A]g is compressible.
An E-conull set is the complement of an E-null set.

Let
NULLg C B(X)

be the o-ideal of E-null Borel sets, and let ALGEg be the quotient o-algebra
B(X)/NULLg. A Borel map T: X — X is NULLg-preserving if the preimage
under T of every E-null set is F-null. Let EndnurL,(F) be the monoid of
NULLg-preserving Borel maps X — X such that

rEy = ¢(r) Ep(y)

for all z,y in an F-conull set, where two such maps are identified if they agree
on an E-conull set. Let Autyurr, (E) be the group of invertible elements of
EndNurL, (F). There is a natural action of AutyurL,(E) on ALGg. Denote
by InnnurL, (F) the normal subgroup of AutyurL, (F) of ¢ such that

p(z) Ex

for an E-conull set of x, and denote by Outnurn,(E) the quotient group
AUtNULLE (E)/ InnNuLL, (E)
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Lifts of elements of OutyurL, (F) are defined analogously as in the case of
Outp(E), as well as lifts of morphisms G—=OutyuLL, (E). Let G=AutzuLL, (E)
be a morphism. Let G — OutnurL, (E). There is an action on X/E given by

9-7]p =[T)E

where T is a lift of g, which is well-defined for an E-conull set of x. Then
Stabg([x]g) is well-defined for an E-conull set of z. We say that this is a free
action if

Stabg([z]p) =1

for an E-conull set of z. A morphism G — AutxurL, (F) is class-bijective if
for every g € G, there is an F-conull set of x such that

Stabg(z) = Stabg([z]g)

(note that Stabg(x) is also well-defined for an FE-conull set of x). Links are
defined as before, except that everything only needs to hold on an E-conull set.

Given g € OutnuLL, (F), a partial lift ¢ of g is the restriction of a lift ¢
of g to some A € ALGg. In this case, we write ¢»: A — B, where

B = ¢(A).
There is a commutative diagram

1 — Inp(E) —— Autp(E) —— Outp(E) —— 1

| | |

1] —— InnNULLE (E) e AutNULLE (E) e OutNULLE (E) — 1

In particular, any morphism G — Outg(F) induces a morphism

G — OutNULLE (E)
PROPOSITION 6.6: Let E be an aperiodic CBER on X, let G be a countable
group and fix a morphism G — Outg(FE). Then the following are equivalent:

(1) G — Outp(E) lifts.
(2) G — OutNULLE (E) lifts.
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Proof. (1) = (2) Immediate.

(2) = (1) Denote the lift by ¢ : G — AutnurL,(F), and denote by
g € AutnurL, (E) the image of g under . For each g € G, pick a repre-
sentative Ty : X — X of 4. There is an FE-conull subset Y C X such that

(i) s By < Ty(x) ETy(y) for every g € Gand z,y € Y,
(i) Ty (x) =z for every x € Y,
(iii) Ty(Th(z)) = Tyn(x) for every g,h € Gand z € Y,
(iv) [Ty(z)]g =g - [z]g for every g € Gand z € Y.
By taking the EV&-hull, we can assume that Y is EY%-invariant. Then the T}
define a lift of G — Outp(E [ Y). On X \ 'Y, we have that F is compressible,
so we are done by Theorem 3.5. |

Every u € EINV g is a well-defined measure on ALGg, and there is an action
AUtNULLE (E) % EINVE given by

(¢ m)(A) = (e~ (A)),
which descends to an action of OutnurL, (E)-

PROPOSITION 6.7: Let E be an aperiodic CBER, let g € OutnuLL, (F), and
let A, B € ALGg. Then the following are equivalent:

(1) u(A) = (g-p)(B) for every p € EINV .

(2) There is a partial lift ¢ : A — B of g.

(3) There is a lift ¢ of g with p(A) = B.

Proof. (2) <= (3) By definition.

(3) = (1) Immediate.
(1) = (3) Let ¢ be a lift of g. Then

u(A) = (g-p)(B) = u(y~'(B)),

so by replacing B with ~!(B), we can assume that g = 1. Then the result
follows from [KMO04, Lemma 7.10] and the remark following it. |

A family (¢, ), of partial maps is disjoint if the family (dom ¢,,),, is disjoint
and the family (cod ¢y, ), is disjoint.

PROPOSITION 6.8: Let E be an aperiodic CBER, fix a morphism
G — Outnurng (F), and let g € G. If (pn)n are disjoint partial lifts of g,
then | |, pn is a partial lift of g.
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Proof. Suppose ¢, : A, = B,. Let A= X\| |, A, and let B= X \| |, Bn. By
Proposition 6.7, for any p € EINV g, we have u(A4,) = (g 1)(By), and thus

1(A) = (g p)(B).

So again by Proposition 6.7, there is a partial lift ¢: A — B of g. Then U |, ¢n
is a lift of g, and thus the restriction ¢, is a partial lift of g. |

For A€ ALGg, we write ug(A)=r if for every p € EINV g, we have u(A)=r.
Recall that for any standard probability space (X, u), if A C X and r < u(A),
then there is some B C A with pu(A) = r, and this B can be found uniformly
in p. By applying this to each E-ergodic component, we obtain the following:

PROPOSITION 6.9: Let E be an aperiodic CBER, let A € ALGg, and let
r€0,1]. If r < ugp(A), then there is some B C A such that

pe(B) =1

6.C. QUASI-TILINGS. Let G be a group. Let Fin(G) denote the set of finite
subsets of G, and let Fin; (G) denote the set of A € Fin(G) containing 1. Given
A, B € Fin(G), we say that B A-covers A if

|AN B| > MA|.

Let A be a family in Fin(G), i.e., a subset of Fin(G). We say that A is
e-disjoint if there is a disjoint family {D 4} ac.4 such that each D4 is a subset
of A which (1 — €)-covers A. Note that if A is e-disjoint, then

(1-e) 3 14l < UA]-

AcA AcA

Given A € Fin(G), we say that A M-covers A if (Jz. 4 B M-covers A.

Let A be a family in Fin; (G) and let A € Fin(G). An A-quasi-tiling of A is
a tuple C = (Cp)pea of subsets of A such that Be C A for every ¢ € Cp, and
the family { BCg}pe.a is disjoint. If 1 € A, we additionally demand that 1 € Cpg
for some B € A. If A= {B} is a singleton, we will write “C' is a B-quasi-tiling”
as shorthand to mean that (C) is a { B}-quasi-tiling. We say that C is e-disjoint
if for each B € A, the family { Bc}.cc,, is e-disjoint. We say that C A-covers A
if {BCp}peca A-covers A. We say that C is an (A, £)-quasi-tiling of A if it is
e-disjoint and (1 — &)-covers A.
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Given A€Fin(G) and B€Fin;(G), let T(A, B) denote the set {a€A: BaC A}.
We say that A is (B, ¢e)-invariant if T(A, B) (1 — €)-covers A. Note that if A
is (B, e)-invariant, then |BA| < (1 + ¢|B])|A4|.

LEMMA 6.10: Let G be a group, let §,e > 0, let B € Fin1(G), and let
A € Fin(G) be (B, d)-invariant. Then any maximal e-disjoint family {Bc}c.cc
of right translates of B contained in A £(1 — §)-covers A.

Proof. If g € T(A, B), then by maximality, we have |[Bg N BC| > ¢|B|. Thus

- <eranc Yy BB s BInBC
QET(A,B) | | gGG | |

where the last equality holds since every element of BC' is contained in exactly
| Bl-many right translates of B. |

Let A be a finite family in Fin;(G) and let p = (pp)pea be a probability
distribution on A. Given an A-quasi-tiling C = (Cp)pea of A € Fin(G), we
say that C satisfies p if

|B||CB| < pBl|A|

for every B € A. Given € > 0, we say that the pair (A, ¢) satisfies p if there
is some § > 0 such that for every A € Finy(G) larger than § which is (B, d)-
invariant and contains B for every B € A, there is an (A4, £)-quasi-tiling of A
satisfying p.

LEMMA 6.11: Let G be a group. For every € > 0, there is a finite proba-
bility distribution p = (p;)i<x and constants n; > 0 for i < k — 1 such that
if A = (B;)i<k is a descending chain in Fin;(G) where each B; for i < k — 1 is

(B;rll, I—é?ﬁ)—invarjant, then (A, ¢€) satisfies p.

Proof. By scaling, it suffices to find a subprobability distribution. Choose k
such that 2 > (1 — g)k, define p; = e(1—¢)!, and for i < k — 1, choose n; such
that
0 < 1—2¢
= 9.gk—i’

Let A = (B;)i<r be a descending chain in Fin;(G) where each B; is
(Bijrll, %)—inv&rian‘c, and let 6 > 0 be sufficiently small, depending on (A, ¢),
to be specified in the course of the proof. Suppose we have some A € Fin; (G)
which is larger than } and (B, §)-invariant for every B € A.
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We define a descending sequence (A;);<y of subsets of A and 2e-disjoint B;-
quasi-tilings C; of A; such that
(i) Ao = A,
(i) A;41 = A; \ B;C;,
(i) A; is (B l,%)-mvariant,
(iv)

< |A| <
(v)

(1—e) 22" < ||ff|| <(1-e)

We proceed by induction, starting with Ay = A, defining C; from A;, and

defining A; 41 from C; via (ii). Note that Ay satisfies (iii) if we require § < 3%

Suppose that A; has been defined. We will define C;. Let C; be a maximal
2e-disjoint B;-quasi-tiling of A;. Since 2e(1 — 3k—1ﬂ) > ¢, by Lemma 6.10, C; is
an e-cover of A;. Then by removing elements from C;, we obtain a B;-quasi-
tiling C; C C; of A; such that

—1 |BrLCrL| 271
e(1—¢)? < <e(l-¢)
A <
and
(1 75)1+2’i < |"|41:r|1| < (1 5)1 2 17

as long as A; is sufficiently large such that Iff} is smaller than the length of the

interval around e given by

El—e)% e(l—e) 2 JN[l—(1—-e)l2 1 (1-e)2 ],

1BiCi| _ |BiCi] |Asl

which occurs for sufficiently large A by (v). Then since T A Al We
get that (iv) holds. Similarly, (v) holds for A; ;.
It remains to check (iii). Note that
T(Aiy1,Biy1) = T(Ai, Biya) \ By BiC;.

Since
|Aiya]
|Ail

>(1—e) > 1-2)2>

)

N | =
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where we assume that € is small enough to satisfy the last inequality, the cardi-
nality of T(A;, Bi+1) is at least

(1= 5o ) 1Al > 14— 5| Asial.

3kz

i -1 i K . .
Now B;C; is (B}, —TI—|BH1\(1—2E)> invariant, since

{g € BiCi: Bihg € BiCi}| < Y {g € Bic: Bihg € BiCi}|

ceC;
< Z {g € Bic: B;_llg Z B;c}|
ceC;
<L B
771
= |Bil|Ci
| Bit1]
< i |BzCz|
= 1B 1 2¢
Since
|Ait1] > |Ait1] Sl m ghi.
we have
i
BIABO] < (14 12 )IBCH < B+ il Acal.

Putting these together, we get

3
T (Ai+1, Biy1)| = (1 - W)|Ai+1|’

so (iii) holds. This concludes the construction.
Now

|?A? i >e(l— E)i+2—2’i >e(l— E)i+2

>e(1—2¢)%(1 —¢),

so for each i < k, there is a B;-quasi-tiling C] C C; of A; such that

(1 - 20°(1—e)i < "Tj" <e(l-20)(1- o),
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as long as A is large enough such that ‘I%I‘ is smaller than the length of the

interval
[e(1 —2e)%(1 —¢)%,e(1 —2¢)(1 — )]

Then (C!);<y is a 2e-disjoint A-quasi-tiling of A which (1 — 2¢)3-covers A. We
also have

|Bz'||C{|< 1 |B;Cj

<e(l—e) =p;.
A STo2 jap ScUme=e

So we are done by replacing € in the above argument by any & such that ¢ is
greater than 22 and 1 — (1 —28)%. &

A countable group G is amenable if for every B € Fin(G) and every € > 0,
there is some A € Fin(G) which is (B, e)-invariant. Note that we can assume
that A contains B.

PROPOSITION 6.12: Let G be an amenable group and let (¢,,)n<oo be a sequence
of positive reals. Then there exist for each n < 0o, a finite family A,, in Fin; (G)
and a probability distribution p™ on A,, such that

() Ao = {{1}},
(ii) if B€ A, and A € Ay41, then A is (B, ey,)-invariant and contains B,
(iii) every A € Ap41 has an (A, €,)-quasi-tiling satisfying p”,

(1V) G = Un UBEAn, B.

Proof. Fix an enumeration (g,), of G. We inductively define A, and p™ sat-
isfying the given conditions such that, additionally, (A,,e,) satisfies p™. For
n =0, take Ag = {{1}}, and let p° be the unique probability distribution on Aj.
Then (Ag, €0) satisfies p°. Now suppose that A,, and p™ have been defined. Ap-
ply Lemma 6.11 to &,41 to obtain a probability distribution p™ = (p;)i<k, and
constants (n?)i<k,—1. We turn to defining A,+1 = (B!

define BZ:TI_U by choosing any BZ;L+11_1 € Finy(G) which contains B and is

(B, e, )-invariant for every B € A,,, and contains g, and which has an (A,,, e, )-

i<kn.,- First we

quasi-tiling satisfying p™ (which is possible since (A, €,,) satisfies p”). Now for
any i < k41 — 1, we define B! from B;fll, by choosing any B! € Fin; (G)

containing BJ}" which is ((B]}7") 7, | B?}le )-invariant, (B, e,,)-invariant for ev-
i+1

ery B € A, and which has an (A,, €, )-quasi-tiling satisfying p”. Then A, 41

satisfies the given conditions and, additionally, (A, 1,n41) satisfies p"*1. ]



414 J. R. FRISCH, A. S. KECHRIS AND F. SHINKO Isr. J. Math.

6.D. GENERAL CASE.
THEOREM 6.13: Every outer action of an amenable group lifts.

Proof. Let G be an amenable group, and let £ be a CBER on X. By Proposi-
tion 4.6, we can assume that E is aperiodic. By Proposition 6.6, it suffices to
show that every morphism G — Outnurr, (E) lifts to AutnurL, (E). For the
rest of the proof, when we refer to a subset of X, we will mean its equivalence
class in ALGEg.
Fix a sequence (€, )n<co Of positive reals less than 1 such that
> (1= (1=en)(1 —3e,)) < o0.
n
Apply Proposition 6.12 to (e,,), to obtain, for each n < oo, a finite family A,
in Fin;(G) and a probability distribution p™ = (p})ac4, on A,. For ease of
notation, we will write p4 instead of p}.
For each n < oo, we construct a disjoint family (Xa)aca, € ALGg, and

partial lifts 7 € AutnuLLy, (E) of some g € G such that

(i) »1 =idx,

(i) for A € A, we have |A|pg(Xa) =pa,

(iii) the family {py(Xa): A € A,,g € A} is disjoint,

(iv) for A€ A, if g,h,gh € A, then @y, and gl agree on X 4.
We proceed by induction on n. For n = 0, take X33 = X and o) = idx.
Now suppose that the construction holds for n. We will repeatedly use Propo-
sition 6.7, Proposition 6.8, and Proposition 6.9 to obtain the partial lifts <pg+1.
For each A € A,;1, fix an (A,,e,)-quasi-tiling (C5)pea, of A. By &,-
disjointness, for each B € A, there is a disjoint family {Dgcc}cecg where
each Dg,a is a subset of B which (1 —¢,,)-covers B. For each A € A,,11, choose
X4 C Xp where 1 € C3, such that |A|ug(Xa) = pa; we can do this since

Y20 |C§| PB
A =g = qpy e

For each A € A, 11, each B € A, and each ¢ € Cﬁ, define ¢+ on X 4 so that

for every B € A, the family {p"*1(X4) : A € Ayy1,c € C4} is disjoint and

contained in Xp (see Figure 1); we can do this since for each A € A, 1, we

have

Y2\ p
Z pe(Xa)=1Ch ] < PAﬁ =pape(Xsp).
ceCh
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Now for each A € Api1, each B € A, each ¢ € C4, and each h € DB o
define )" on X 4 by setting it equal to @72+, Then for each A € A, 41 and
each g € A, define @ZH on X4 if it hasn’t been already defined, such that the
family {¢"!(X4): A € Anq1,9 € A} partitions X; this is possible since

S OSueXa) = Y MAks(Xa) = > pa=1.

AcA, 11 9€A A€A, 41 AcAna

Finally, for each A € A,41 and g, h,gh € A, define ¢}*! on et (X a) by

n—i-l( 77,+1)

setting it to be equal to ¢ o L. This concludes the construction.

Figure 1. The shaded regions are Xp for B € A,, and the
regions above each Xp are its translates ¢} (Xg) for b € B.
The black disk is some X 4, the other disks are its translates

e (X 4), and analogously for the squares for some other
A€ Apta.

We claim that for every g € G, the pointwise limit ¢, := lim, py exists and is
a total function. Let n be large enough such that there is some C € A,,_; with
g € C. Now for any A € Ap41, B € A,, c€ C4, and h € D4 _ with gh € DB o
we have on X4

n, n+tl __ n+1l n+l _  n+l _  nt+l n+l
<Pg Phe sag QDhQOC - @ghsoc - @ghc - sag Phe >
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so py and 907;"’1 agree on @Zjl(XA). We have
1B\ g™ "D | <IB\g 'Bl+|g7'B\g ' D5 | < 24| B|.

n+1
g

Yoo > D et Xanz= Y Y |C§|(1_3€n)|3|%

A€Ant1 BEAn ceCh heDp A€A, 41 BEA,
ghEDgC

So <p’; and ¢ agree on a set of ug-measure at least

> Z (1 —e,)(1 —3en)pa

A€A, 41
>(1—e,)(1—3e,).

So we are done by the Borel-Cantelli lemma.

Now we claim that g — ¢, is an action. Let g, h € G. Choose n large enough
such that there is some C € A,,_1 with g, h,gh € C. Now for any B € A, and
k € B with hk,ghk € B, we have on Xp

PgrPl = Pohk = PgPhr = Pg PrPk
so @y, and pg e} agree on i (Xp). We have
|IB\ h™'B| <en|B| and |B\ (gh) 'B| <e,|B|.

So @y, and g, agree on a set of pp-measure at least

DY we(eR(Xe) = > (1—22,)|Blus(e}(Xs))

BeA, keB BeA,
hk,ghkeB
> Z (1 - 25n)pB
BeA,
> (1-2e,).
So we are done by the Borel-Cantelli lemma. ]

We can obtain class-bijective lifts for some amenable groups, including abelian

groups and amenable groups with countably many subgroups.

COROLLARY 6.14: Let G be an amenable group whose conjugacy equivalence
relation on its space of subgroups is smooth. Then every outer action of G has
a class-bijective lift.
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Proof. For this proof, we will work modulo E-null sets. Fix a morphism
G — OutnurL (F). Let (Xe)eeriny g be the ergodic decomposition of E. Let C
be a transversal for the conjugacy equivalence relation on the space of subgroups,
and for each subgroup H < G, fix some gy € G such that gHHg]fI1 e C.
The action Outyurn,(E) ~ EINVp induces an action G ~ EINVg. If
e € EINVE has stabilizer H € C under this action, then if Ny is the kernel
of H — OutyuLLg (E | X.), we have

StabH(z) = NH

by ergodicity, and thus H/Ng — OutnurL, (E | Xe) is a free action. Thus by
applying Theorem 6.13 to X, there is a class-bijective lift

H/NH — AUtNULLE (E I Xe)a

and this gives a class-bijective lift H — AutnuLL, (E | Xe), and thus a link. So
for each H € C, if we let X be the union of the ergodic components with sta-
bilizer H, then there is an (E | Xy, EV¥ | Xg)-link Ly. Now for an arbitrary
subgroup H < G, fix a lift ¥y of gg. Then the smallest equivalence relation
containing Ly and {(z,¢¥n(z)) : € X, with Stab(e) = H} for every H is an
(E,EVC)-link. &

Remark 6.15: There are locally finite groups for which the conjugacy equivalence
relation on the space of subgroups is not smooth. Take, for example, a finite
group H with a non-normal subgroup H’ and let C be the conjugacy class of H'.
Let G = @,, H be the infinite direct sum of copies of H. Consider the set X of
subgroups of G of the form ,, H,,, where H,, € C. Then Ej is Borel reducible
to the conjugacy equivalence relation on X, which is therefore non-smooth.

For general amenable groups, the problem is still open:

Problem 6.16: Let G be an amenable group. Does every G — Outp(FE) have a
class-bijective lift?

We remark that in Problem 6.16 it suffices to consider hyperfinite E. To see
this, note that by Theorem 6.13, there is a lift G — Autp(FE). Then it suffices
to find an (E N EY, EX)-link. So by replacing E with EN EZ, we can assume
that E is amenable, in the sense of [Kec22, 9.1], and this is hyperfinite on an
E-conull set, see [Kec22, 9.4].
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7. Summary of lifting results for outer actions
Let G be the class of groups for which every outer action has a lift. Then:

e G contains all amenable groups (Theorem 6.13).

e G contains all amalgamated products of finite groups (Corollary 5.10).
e G is closed under subgroups (Proposition 4.7).

e (G is closed under free products.

e Every group in G is treeable (Proposition 4.11).

Let Gc1, be the class of groups for which every outer action has a class-bijective
lift. Then:

e G contains all locally finite groups (Corollary 5.12).

e G, contains all amenable groups whose conjugacy equivalence relation
on the space of subgroups is smooth (Corollary 6.14).

e G is closed under subgroups (Proposition 4.7).

e G is closed under quotients (Proposition 4.8).

e G is closed under extensions by a finite normal subgroup (Theorem 5.6).

Problem 7.1: Characterize the classes G and Ggp,.

8. Additional topics

8.A. ALGEBRAIC PROPERTIES OF AUTOMORPHISM GROUPS. There are several
results concerning the algebraic properties of Inng(F) (see [Mil04], [Mer93],
[MRO7]), and similarly for Inn, (£) in the pmp case (see [Kec10, §§3-4] and the
references therein). In particular, it is known that for aperiodic F, the group
Inng(F) is generated by involutions and similarly for Inn,(E). However, not
much seems to be known about the groups Autg(E), Aut,(E), Outg(E), includ-
ing the question about generation by involutions. There are pmp ergodic E for
which Aut,(E) is generated by involutions, for example Ej (see [Kecl0, p. 46])
and pmp ergodic E that have trivial Out,(E) (for the existence of such, see
[Gef96]). Since Ey is uniquely ergodic, the question of whether Autp(Ey) is
generated by involutions would have a positive answer if Autg(F) is generated
by involutions for any hyperfinite compressible E. So it seems natural to con-
sider first the question of generation by involutions of Autp(FE), where FE is a
compressible CBER.
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In the case of Symg(X/E), Miller has shown that if T € Sympg(X/E)
with EVT hyperfinite, then T is a product of three involutions.

8.B. CONJUGACY OF OUTER ACTIONS. A result of Bezuglyi-Golodets [BG87],
in combination with Theorem 6.1, shows that any two morphisms
1,2 : G — Out,(Ey) are conjugate (i.e., there is § € Out,(Ep) such that
©01(9)=0p2(g)07 ") iff ker(p1 )=ker(p2). Using Theorem 6.4, one can see that the
analogous result would hold for morphisms of amenable groups into Outp(Ep)
if it holds for morphisms of amenable groups into Outg(E) for E compress-
ible hyperfinite, which again leads to the question of whether an analog of
the Bezuglyi—-Golodets theorem holds for morphisms of amenable groups into
Outp(F), when E is any compressible CBER.

8.C. EMBEDDINGS OF QUOTIENTS. For a countable group G, let Fy(G) be the
CBER on G defined by

(go,gl,gg, .. ) Fo(G) (ho,hl,hg, .. ) <~ dmVk>m [90 coogr =ho--- hk]
There is an action G — Autp(Fo(G)) defined by

g- (90,91,92,---) = (9'90,91,927---)7

inducing an action G ~p GV/Fy(G). Given CBERs E C F on X, we say that
F/E is ergodic if there is no Borel partition X = Ag U A; with each A; an
FE-invariant complete F-section.

Let E be a CBER on a Polish space X, and let G ~p X/FE be a free action.
Then EVC/E is ergodic iff there is a G-equivariant Borel injection

GN/Fy(G) — X/E

induced by a continuous embedding G — X (see [Mil04, Theorem 7.2]). If
EVG is hyperfinite, then there is a G-equivariant Borel injection

X/E < GY/Fy(G)

(see [Mil04, Theorem 8.1]).

Given a pair E C F of CBERs, we say that F/E is generated by a Borel
action if there is some Borel action G ~p X/E such that F = EVY. By [Pin07,
Theorem 3], this is equivalent to the existence of a sequence of Borel functions
fn: X/E — X/FE such that

v Fy < Inlfu(lzle) = [yls]
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By [dRM21, Theorem 5], there is a countable set of obstructions for being

generated by a Borel action. Namely, there is a sequence of pairs F, C F,
of CBERs on 2V where F,/E, is not generated by a Borel action, such that
if E C F are CBERs on X where F/E is not generated by a Borel action,
then there is some n for which there is a continuous embedding 2% <+ X which

simultaneously reduces F,, to E and F,, to F.
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