
1

Boundary Conditions for Linear Exit Time Gradient
Trajectories Around Saddle Points: Analysis and

Algorithm
Rishabh Dixit, Mert Gürbüzbalaban, and Waheed U. Bajwa

Abstract—Gradient-related first-order methods have become
the workhorse of large-scale numerical optimization problems.
Many of these problems involve nonconvex objective functions
with multiple saddle points, which necessitates an understanding
of the behavior of discrete trajectories of first-order methods
within the geometrical landscape of these functions. This paper
concerns convergence of first-order discrete methods to a local
minimum of nonconvex optimization problems that comprise
strict-saddle points within the geometrical landscape. To this end,
it focuses on analysis of discrete gradient trajectories around
saddle neighborhoods, derives sufficient conditions under which
these trajectories can escape strict-saddle neighborhoods in linear
time, explores the contractive and expansive dynamics of these
trajectories in neighborhoods of strict-saddle points that are
characterized by gradients of moderate magnitude, characterizes
the non-curving nature of these trajectories, and highlights the
inability of these trajectories to re-enter the neighborhoods
around strict-saddle points after exiting them. Based on these
insights and analyses, the paper then proposes a simple variant
of the vanilla gradient descent algorithm, termed Curvature
Conditioned Regularized Gradient Descent (CCRGD) algorithm,
which utilizes a check for an initial boundary condition to ensure
its trajectories can escape strict-saddle neighborhoods in linear
time. Convergence analysis of the CCRGD algorithm, which
includes its rate of convergence to a local minimum, is also
presented in the paper. Numerical experiments are then provided
on a test function as well as a low-rank matrix factorization
problem to evaluate the efficacy of the proposed algorithm.

Index Terms—Boundary conditions, gradient descent, linear-
time exit, Morse function, nonconvex optimization, saddle escape,
strict-saddle property.

I. INTRODUCTION

The gradient descent method and its (stochastic) variants
have been at the forefront of nonconvex optimization for
nearly a decade. Many of these variants stem from the
earliest works like [1]–[3], the interior-point method [4]–[6],
and their stochastic counterparts. But the highly complicated
geometrical landscape of many nonconvex functions often puts
the efficacy of these algorithms to question, which otherwise

R. Dixit (Department of Electrical and Computer Engineering), M.
Gürbüzbalaban (Departments of Electrical & Computer Engineering, Man-
agement Science and Information Systems, and Statistics), and W. U.
Bajwa (Departments of Electrical & Computer Engineering and Statis-
tics) are at Rutgers University–New Brunswick, NJ 08854, USA (Emails:
{rishabh.dixit, mg1366, waheed.bajwa}@rutgers.edu).

This work was supported in part by the National Science Foundation
under grants CCF-1453073, CCF-1907658, CCF-1814888, DMS-2053485,
and CCF-1910110, by the Army Research Office under grants W911NF-
17-1-0546 and W911NF-21-1-0301, by the Office of Naval Research under
grant N00014-21-1-2244, and by the DARPA Lagrange Program under
ONR/SPAWAR contract N660011824020.

have robust performance in convex settings. Indeed, problems
involving matrix factorization [7], neural networks [8], rank
minimization [9], etc., can be highly nonconvex, wherein
the function geometry can possess many saddle points that
create regions of very small magnitude gradients, something
which the gradient-related methods rely upon heavily. As a
consequence, travel times for trajectories generated by these
methods in such regions could be exponentially large, thereby
defeating the purpose of optimization. However, the large
travel times around saddle points for gradient-based methods is
not always the case; see, e.g., [10] that gives a linear exit-time
bound for first-order approximations of gradient trajectories
provided some necessary boundary conditions are satisfied by
the trajectories. Such analysis suggests existence of gradient-
based methods capable of ‘fast’ traversal of geometrical land-
scapes of nonconvex functions under appropriate conditions.
Development of such methods, however, necessitates a deeper
geometric analysis of the saddle neighborhoods so as to
leverage any initial boundary conditions required by the faster
gradient trajectories around saddle points in order to reduce
the total travel time on the entire function landscape.

To this end, we first study in this paper the problem of devel-
oping sufficient boundary conditions for gradient trajectories
around any saddle point x∗ of some nonconvex function f (x)
that can guarantee linear exit time, i.e., Kexit = O(log(ε−1)),
from the open saddle neighborhood Bε(x∗). This problem
focuses on a closed neighborhood B̄ε(x∗) around the saddle
point x∗, with the current iterate x0 sitting on the boundary
of this neighborhood, i.e., x0 ∈ B̄ε(x∗)\Bε(x∗). Suppose also
that the gradient trajectory starting at x0 has approximately
linear exit time from this region Bε(x∗). (Existence of such
trajectories is guaranteed because of the analysis in [10].)
Then, the question posed here is what are the sufficient
conditions on x0 such that the trajectory can escape Bε(x∗) in
almost linear time of order O(log(ε−1)). Once the sufficient
conditions have been derived, we next study the question
of whether it is possible to get linear rates of travel by
the same gradient trajectory in some bigger neighborhood
Bξ (x∗) ⊃Bε(x∗). Note that unlike the matrix perturbation-
based analysis in [10], the radius ξ of the bigger neighborhood
needs to be characterized by a fundamentally different proof
technique. This is since the eigenspace of the Hessian ∇2 f (x)
for any x ∈Bξ (x∗)\Bε(x∗) cannot be obtained by perturbing
the eigenspace of ∇2 f (x∗) since the series expansion of
∇2 f (x) about ∇2 f (x∗) may not necessarily converge from
matrix perturbation theory. Third, after such linear rates have

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

2

been obtained, we then study whether it is possible to develop
a robust algorithm that leverages the boundary conditions so as
to steer the gradient trajectory away from Bε(x∗) in almost
linear time. Finally, we seek an answer to the question of
whether the developed algorithm converges to a neighborhood
of a local minimum and, if so, what would be its rate of conver-
gence within the global landscape of the nonconvex function.

To address all these problems effectively, we engage in
a rigorous analysis of trajectories of the vanilla gradient
descent method, starting off directly where we left in [10].1

First, we utilize tools from the matrix perturbation theory
to develop sufficient conditions on x0 ∈ B̄ε(x∗)\Bε(x∗) for
which the subsequent gradient trajectory has linear exit time
from Bε(x∗). Next, we prove a rather intuitive yet extremely
powerful result, termed the sequential monotonicity of gradient
trajectories, which establishes that the gradient trajectories in
a neighborhood of the saddle point first exhibit contractive
dynamics up to some point and there onward strictly expansive
dynamics. Next, we provide an analysis of the travel time for
the gradient trajectory in the region Bξ (x∗)\Bε(x∗) using
the sequential monotonicity result. Finally, we develop a
novel gradient-based algorithm, termed Curvature Conditioned
Regularized Gradient Descent (CCRGD), around the idea of
sufficient boundary conditions with a robust check condition
guaranteeing almost linear exit time from Bε(x∗). In doing
so, we also prove certain qualitative lemmas about the local
behavior of gradient trajectories around saddle points. There-
after, the asymptotic convergence and the rate of convergence
for CCRGD to a local minimum is proved using these lemmas.
Finally, the performance of CCRGD is evaluated on two
problems: a test function for nonconvex optimization and a
low-rank matrix factorization problem.

A. Relation to Prior Work

Since this work directly extends the results in [10], we steer
away from repeating the discussion in [10, Sec. 1.1] in relation
to existing convergence guarantees for gradient-related meth-
ods in nonconvex settings. Instead, we primarily focus in this
section on presenting comparisons and highlighting key differ-
ences between our contributions and the existing literature. In
addition, given the vast interest of the optimization community
in nonconvex optimization using gradient-related methods, we
also discuss some additional relevant works in here.

Similar to [11], which focuses on the first order methods,
we prove in Theorem 5 that the trajectories generated by the
proposed CCRGD algorithm (see Algorithm 1) converge to
a local minimum. But unlike [11], which fundamentally uses
the Stable Manifold Theorem [12], we also develop in this
paper a proof of convergence of CCRGD to a local minimum
and obtain algorithmic convergence rates using the geometry
of function landscape near saddle points and in regions that
have sufficiently large gradient magnitudes. Though this idea

1Since this work is a continuation of [10], we refrain from elaborating
certain terminologies and definitions that were covered in detail in [10], though
a summary of all the required concepts is provided in Sec. III-A to make this
a self-contained paper.

of rate analysis has been well summarized in [13] for gradient-
related sequences and more recently in [14] for Newton-
type methods, yet these works do not utilize the nonconvex
geometry to its fullest extent. Specifically, we categorize the
function geometry in our work into ‘regions near’ and ‘regions
away’ from the stationary points so as to better analyze ‘escape
conditions’ from saddle neighborhoods and at the same time
generate convergence guarantees to a local minimum. Within
the regions of ‘moderate gradients’ around saddle points, i.e.,
the shell Bξ (x∗)\Bε(x∗), we show using the sequential mono-
tonicity property (detailed in Theorem 2) that the sequence
{∥xk−x∗∥} is strictly monotonic whenever the iterate {xk}
has expansive dynamics with respect to x∗, while the func-
tion value sequence { f (xk)} satisfies the Polyak–Łojasiewicz
(PL) condition [15] whenever the iterate sequence {xk} has
contractive dynamics with respect to x∗ (see Lemma 1). Con-
sequently, linear rates of contraction to a point on the boundary
B̄ε(x∗)\Bε(x∗) are derived using the PL condition and linear
rates of expansion to a point on the boundary B̄ξ (x∗)\Bξ (x∗)
are obtained using the sequential monotonicity property from
Theorem 2, both of which aid in our convergence analysis.
Note that the PL condition cannot be applied directly around
a saddle point since that would yield a trivial lower bound of 0
on the gradient norm (see Lemma 1). This particular analytical
approach of separately analyzing the contractive and expansive
dynamics locally around a saddle point and exploiting the
PL condition restricted to contractive dynamics is in contrast
to the existing works that focus on the problem of escaping
saddle points for nonconvex optimization. In addition, while
the PL condition or the more general Kurdyka–Łojasiewicz
property [16] are often used for local or even global analysis
such as in [17] and [18], they have not been used in the
context of analyzing local contractive dynamics of iterates
w.r.t. a strict saddle point. In terms of the analytical tools used,
regions near the saddle points in this work are analysed using
the matrix perturbation theory, yielding sharp bounds (’sharp’
in terms of the condition number, problem dimension, and
spectral gap) on the initial conditions, whereas regions away
from the saddle points utilize properties like the sequential
monotonicity (cf. Theorem 2). Such local analysis distinguish-
ing sufficiently small saddle neighborhoods from moderately
small saddle neighborhoods seems to be quite novel and has
not been carried out in any previous work to our knowledge.

Next, to the best of our knowledge, no other work has
provided sufficient boundary conditions for escape from saddle
neighborhoods for the case of discrete-time gradient descent-
related algorithms. Though the idea is not necessarily new and
has been explored while dealing with continuous-time dynam-
ical systems, specifically the boundary value problems, yet it
is still nascent when it comes to analyzing saddle points. The
continuous-time works such as [18]–[20] have been discussed
in detail in [10]. However even these works do not analyze
the boundary conditions for continuous trajectories. The work
[20] does take into account cascaded saddles encountered by
continuous trajectories, which gets a detailed treatment in our
work in Theorems 6 and 7 for discrete trajectories.

The Stochastic Differential Equation (SDE) setup has also
been utilized in a recent work [21] to study gradient-

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

3

based (stochastic) methods for nonconvex optimization in the
continuous-time setting. Interestingly, this work considers the
set of index-1 saddle points in the function’s geometry and
thereby obtains a stochastic rate of convergence to a global
minimum, where the rate is of the order ‘a constant term
plus a geometric term’. While the rate is linear/geometric, [21]
assumes the coercivity condition (sufficient growth condition
on the function away from the origin) and the Villani condition
(growth of gradient’s norm), whereas only the former condi-
tion of coercivity is assumed in our work. Also, the constant in
the non-geometric term of the rate is dependent on the horizon
T obtained from discretization of the SDE, which could be
large. Moreover, it is not clear how the SDE approach in [21]
would apply to the discrete-time setting of this paper.

Recently, within the class of discrete-time non-acceleration-
based methods, [22] studies saddle escape in the context
of tensor decomposition, [23], [24] provide the rates for
escaping saddles using perturbed gradient descent, [25] utilizes
the notion of variational coherence between stochastic mirror
gradient and descent direction in quasi convex and nonconvex
problems for obtaining ergodic rates of convergence to a
local/global minimum (under certain conditions), and [26] pro-
vides rates and escape guarantees under certain strong assump-
tions of high correlation between the negative curvature direc-
tion and a random perturbation vector. However, none of these
stochastic variants explore the idea of initial boundary condi-
tions near saddle points so as to obtain linear rates. It should be
noted that the work in [23] shows the time to escape cascaded
saddles scales exponentially with dimension, whereas we show
in Theorem 7 that the time to escape cascaded saddles is
not exponential in dimension. Rather, the number of cascaded
saddles encountered by the trajectory is upper bounded and
this bound scales only linearly with the inverse of the gradient
norms in regions away from the stationary points of the
objective. Further, this upper bound on the number of saddles
encountered is independent of the problem dimension.

The next set of related discrete-time gradient-based meth-
ods includes first-order methods leveraging acceleration and
momentum techniques. For instance, the work in [27] pro-
vides an extension of SGD to methods like the Stochastic
Variance Reduced Gradient (SVRG) algorithm for escaping
saddles. Recently, methods approximating the second-order
information of the function that preserve the first-order nature
of the algorithm have also been employed to escape the
saddles. Examples include [28], where the authors prove that
an acceleration step in gradient descent guarantees escape
from saddle points, and the method in [29], which utilizes the
second-order nature of the acceleration step combined with a
stochastic perturbation to guarantee escape rates. Moreover,
both [30], [31] build on the idea of utilizing acceleration as a
source of finding the negative curvature direction. Due to the
low computational cost of evaluating gradients, we also make
use of such connections between the curvature magnitude and
the gradient difference in our proposed algorithm (Algorithm
1). In the class of first-order algorithms, there also exist trust
region-based methods. The work in [32] is one such method
that presents a novel stopping criterion with a heavy ball
controlled mechanism for escaping saddles using the SGD

method. If the SGD iterate escapes some neighborhood in a
certain number of iterations, the algorithm is restarted with
the next round of SGD, else the ergodic average of the
iterate sequence is designated to be a second-order stationary
solution. In a similar vein, we formally derive in Lemma 6
the escape guarantees from a neighborhood around a saddle
point and utilize that result within the proposed Algorithm 1.

Lastly, higher-order methods are discussed in [33], [34],
which utilize either Hessian-based approaches or a second-
order step combined with first-order algorithms so as to reach
local minimum with fast speed while trading off with com-
putational costs. Going a step even further, the work in [35]
poses the escape problem with second-order saddles, thereby
motivating the use of higher-order methods. Though these
techniques optimize well over certain pathological functions
like those having ‘degenerate’ saddles or very ill-conditioned
geometries, yet they suffer heavily in terms of complexity;
e.g., the work [35] requires third-order methods to solve for a
feasible descent direction. This further motivates us to develop
a hybrid algorithm for the saddle escape problem that captures
the advantages of a Hessian-based method and at the same
time is low on computational complexity.

Table I draws comparisons between our work and other ex-
isting works within the realm of saddle escape in deterministic
nonconvex optimization problems. Though there is a plethora
of works that study the saddle escape problem, only those
works are listed here that address the simple unconstrained op-
timization problem of minimizing a smooth nonconvex func-
tion f (·) and propose perturbation of deterministic gradient-
based methods for saddle escape. Many of the other related
works discussed in this section tackle stochastic optimization
problems and are therefore not included in the table.

B. Our Contributions

This work starts off directly from the point where we left off
in [10], where we obtained exit time bounds for ε-precision
gradient descent trajectories around saddle points and derived a
necessary condition on the initial unstable subspace projection
value for linear exit time. The first novel result in this work is
the development of a bound on the initial unstable subspace
projection value in Theorem 1 that approximately guarantees
the linear exit time bound from [10, Theorem 3.2]. Our second
contribution is Theorem 2, in which we analyze the behavior of
gradient descent trajectories in some region Bξ (x∗)⊃Bε(x∗)
where the approximate analysis from matrix perturbation the-
ory may not necessarily hold. In such augmented neighbor-
hood of the strict saddle point x∗, we prove that the gradient
descent trajectories have a sequential monotonic behavior, i.e.,
there exists some ξ such that the trajectory inside Bξ (x∗)
first exhibits contractive dynamics moving towards x∗ and
then has expansive dynamics for the remainder of the time
as long as it stays inside Bξ (x∗). Though this property may
appear to be trivial for trajectories around saddle points, yet
it is extremely important in developing improved rates/travel
times of the gradient descent trajectories inside Bξ (x∗), which
follows from our next contribution. Our third contribution is
Theorem 3, in which we obtain upper bounds on the travel

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

4

TABLE I
SUMMARY OF THE SIMILARITIES AND DIFFERENCES BETWEEN THIS WORK AND SOME RELATED PRIOR WORKS.

References Method of saddle escape Base algorithm Explicit dependence on Convergence rate Type of convergence ratenumber of saddles

[24] One-step noise Gradient descent method ✗ O

(
1

ε2 log4
(

1
ε2

))
probabilistic

[28] One-step noise with Accelerated gradient method ✗ O

(
1

ε7/4 log6
(

1
ε

))
probabilistic

negative curvature search

[33] One-step noise with Second-order Newton method ✓ O

(
T log

(
1
ε

)
+T log log

(
1
ε

))
; probabilistic

negative curvature search T is the number of saddles encountered

[36] Multi-step noise with Accelerated gradient method ✗ O

(
1

ε7/4 log
(

1
ε

))
probabilistic

negative curvature search

[37] Multi-step noise with Adaptive negative curvature descent ✗ O

(
1

ε2

)
probabilistic

negative curvature search

[38] One-step noise followed by Accelerated gradient method ✗ O

(
1

ε7/4 log
(

1
ε

))
probabilistic

multi-step negative curvature search

This work One second-order step only Gradient descent method ✓ O

(
T log

(
1
ε

))
+O

(
T log

(
ξ

ε

))
+O

(
1

ε2υ

)
; deterministic

when curvature condition fails for locally analytic, coercive Morse functions;

T = O

(
1

ευ

)
is the number of saddles and 1υ ∈ [0,1)

1The parameter υ is defined in Proposition 5 and it controls the function geometry in regions away from its critical points.

time of gradient trajectory inside the shell Bξ (x∗)\Bε(x∗)
that we denote by Kshell . This particular region is specifically
of great importance since we can categorize it as a region
of “moderate” gradients (gradient magnitude not too small)
that still inherits certain geometric properties such as the
minimum curvature from the smaller saddle neighborhood
Bε(x∗). Without taking such properties into consideration, the
journey time in this shell could only be naively upper bounded
as Kshell = O(ε−2) using the gradient Lipschitz condition.
Hence, it is imperative to separately analyze the journey time
inside the shell Bξ (x∗)\Bε(x∗) so as to improve upon the
standard nonconvex rate of O(ε−2).

Our next set of contributions corresponds to Lemmas 2–6,
in which we provide insights into certain qualitative properties
of the gradient descent trajectories around saddle points.
Lemma 2 talks about the approximate hyperbolic nature of the
gradient trajectories near saddle points, while Lemma 3 proves
that trajectories with linear exit time approximately never
curve around saddle points. Lemma 4 shows that the gradient
trajectory can only exit Bε(x∗) at those points where the
function value is strictly less than f (x∗). Lemma 5 establishes
that the gradient trajectory, once it exits the neighborhood
Bε(x∗), can never re-enter it, while Lemma 6 extends the
same result to the bigger neighborhood Bξ (x∗) under certain
stricter conditions. Our next contribution is the development
of the Curvature Conditioned Regularized Gradient Descent
(CCRGD) algorithm (cf. Algorithm 1) that provably escapes
saddle neighborhoods and gives second-order stationary solu-
tions. The asymptotic convergence of the proposed algorithm
is established from Theorem 5, which is proved using Lemmas
9, 10, 11 and the Global Convergence Theorem (Theorem 4)
from [39]. The algorithm checks for a curvature condition near
the saddle neighborhood and makes the decision of whether
to perform a second-order iteration for one step or continue
using the vanilla gradient descent method. The curvature
condition (Step 15 in Algorithm 1) is derived from our proof
of convergence of the algorithm; in addition, Algorithm 1 is

tested for its efficacy on a modified Rastrigin function (a test
function for nonconvex optimization) and the matrix factoriza-
tion problem as part of numerical experiments. Last, but not
the least, the final contribution of this work is derivation of
the rate of convergence of an iterate sequence generated from
Algorithm 1 to a local minimum. The rates are obtained for
a more general setting of cascaded saddles where the number
of saddles encountered and the total time of convergence are
bounded from Theorems 6 and 7, respectively. Finally, the
convergence guarantees in Theorems 5 and 7 are extended
to functions which are not globally gradient and Hessian
Lipschitz continuous based on Theorems 8 and 9.

C. Notation

All vectors in the paper are in bold lower-case letters, all
matrices are in bold upper-case letters, 0 is the n-dimensional
null vector, I represents the n× n identity matrix, and ⟨·, ·⟩
represents the inner product of two vectors. In addition,
unless otherwise stated, all vector norms ∥·∥ are ℓ2 norms,
while the matrix norm ∥ · ∥2 denotes the operator norm.
Further, the symbol (·)T is the transpose operator, the
symbol O represents the Big-O notation and sometimes we
use a≪ b ⇐⇒ a = O(b), the symbol Ω is the Big-Omega
notation and Θ represents the Big-Theta notation, ⊗ represents
the kronecker product, i.o. means infinitely often, id represents
the identity map, and W (·) is the Lambert W function [40].
Throughout the paper, k and K are used for the discrete time.

Next, ⪆ and ⪅ represent the ‘approximately greater than’
and ‘approximately less than’ symbols, respectively, where a⪅
b implies a ≤ b+ g(ε) and a ⪆ b implies a+ g(ε) ≥ b for
some absolutely continuous function g(·) of ε where g(·)≥ 0
and g(ε)→ 0 as ε → 0. Also, for any matrix expressed as
Z+O(c) with c being a scalar, the matrix-valued perturbation
term O(c) is with respect to the Frobenius norm. Finally, the
operator dist(·, ·) gives the distance between two sets whereas
diam(·) gives the diameter of a set.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

5

II. PROBLEM FORMULATION

Consider a nonconvex smooth function f (·) that has strict
first-order saddle points in its geometry. By strict first-order
saddle points, we mean that the Hessian of function f (·) at
these points has at least one negative eigenvalue, i.e., the
function has negative curvature. Next, consider some (open)
neighborhood Bε(x∗) around a given saddle point x∗, where
the neighborhood radius ε is bounded above by Θ(LM−1)
(see [10, Theorem 3.2] for the exact form) with L and M
being the gradient and Hessian Lipschitz constants of f (·).
Also, it is given that the initial iterate x0 of the gradient
trajectory sits on the boundary of the neighborhood, i.e.,
x0 ∈ B̄ε(x∗)\Bε(x∗), and the gradient trajectory exits Bε(x∗)
in linear time bounded by [10, Theorem 3.2]. With this
information, we are first interested in finding the sufficient
conditions on x0 that guarantee the linear exit time. In addition,
we need to analyze the gradient trajectories in some larger
neighborhood Bξ (x∗)⊃Bε(x∗) such that the trajectories first
contract towards the saddle point and then expand away from
it. More importantly, we are interested in finding such ξ > ε

for which the gradient trajectory has linear travel time in the
shell Bξ (x∗)\Bε(x∗). Next, we are required to find certain
local properties of f (·) for which the gradient trajectories,
having escaped it once, can never re-enter the neighborhood
Bξ (x∗). Finally, we have to develop a robust low-complexity
algorithm that utilizes the sufficient conditions to traverse the
landscape of saddle neighborhoods in linear time and also
provide its rate of convergence to some local minimum.

Having briefly stated the problem, we now formally state
the set of assumptions that are required for this problem to be
tackled in this work.

A. Assumptions

A1. The function f :Rn→R is coercive, i.e., lim∥x∥→∞ f (x) =
∞, is globally C 2, i.e., twice continuously differentiable,
and is locally C ω in sufficiently large neighborhoods of
its saddle points, i.e., all the derivatives of this function
are continuous around saddle points and the function f (·)
also admits Taylor series expansion in these neighbor-
hoods.2

A2. The gradient of function f (·) is L−Lipschitz continuous:
∥∇ f (x)−∇ f (y)∥ ≤ L∥x−y∥.

A3. The Hessian of function f (·) is M−Lipschitz continuous:∥∥∇2 f (x)−∇2 f (y)
∥∥

2 ≤M ∥x−y∥.
A4. The function f (·) has only well-conditioned first-order

stationary points, i.e., no eigenvalue of the function’s
Hessian is close to zero around these points. Formally,
if x∗ is the first-order stationary point for f (·), then

∇ f (x∗) = 0, and

min
i
|λi(∇

2 f (x∗))|> β ,

where λi(∇
2 f (x∗)) denotes the ith eigenvalue of the

matrix ∇2 f (x∗) and β > 0. Note that such a function

2By sufficiently large neighborhoods, we mean that the diameter of such
neighborhoods is Ω(1).

is termed a Morse function. Also, there exists an open
neighborhood W of x∗ such that

∀x ∈W , min
i
|λi(∇

2 f (x))|> β .

Remark 1. The coercivity of f (·) is only required from Sec-
tion VI onward, where we prove the convergence of Algorithm
1. Also, Section IV requires f (·) to be only C 2 Hessian-
Lipschitz Morse function, unlike Section III in which the
additional assumption of local analyticity is required around
saddle points.

Note that Assumption A1 may seem too restrictive since
it requires f (·) to be locally real analytic, while the theory
of nonconvex optimization is often developed around only the
assumption that f ∈ C 2 with Lipschitz-continuous Hessian.
It is worth reminding the reader, however, that many prac-
tical nonconvex problems such as quadratic programs, low-
rank matrix completion, phase retrieval, etc., with appropriate
smooth regularizers satisfy this assumption of real analyticity
around the saddle neighborhoods; see, e.g., the formulations
discussed in [41]. Similarly, many of the loss functions in
nonconvex optimization are coercive, i.e., they grow arbitrarily
large asymptotically due to the presence of some form of
regularization. As for the other assumptions, gradient Lipschitz
continuity (Assumption A2) and Hessian Lipschitz continuity
(Assumption A3) are invoked routinely in the nonconvex
optimization literature3, while Assumption A4 implies f (·) is a
Morse function. In particular, since Morse functions are dense
in the class of C 2 functions [42], we are not giving up much
by making this assumption. We now state two propositions
that follow from our assumptions and that will be routinely
used in our analysis.

Proposition 1. Under Assumption A4, the function f (·) has
only first-order saddle points in its geometry. Moreover, these
first-order saddle points are strict saddle, i.e., for any first-
order saddle point x∗, there exists at least one eigenvalue λi
of ∇2 f (x∗) that satisfies λi(∇

2 f (x∗))<−β .

Proof. For any C m-smooth function f (·) with m ≥ 2, if
x∗ is its second- or higher-order saddle point then it must
necessarily satisfy ∇ f (x∗) = 0 and ∇2 f (x∗) ⪰ 0, where at
least one of the eigenvalues of ∇2 f (x∗) is 0. But this is not
possible in our case because of Assumption A4. The fact that
such an eigenvalue λi exists is also a direct consequence of
Assumption A4. ■

Proposition 2. Under Assumption A4, for any sufficiently
small ε where ε ≪ β , we can group the eigenvalues of the
Hessian ∇2 f (x∗) at any strict saddle point x∗ into m disjoint
sets {G1,G2, . . . ,Gm} with 2 ≤ m ≤ n based on the level of
degeneracy of eigenvalues (closeness to one another) such that
for some δ = Ω(ε1−a) where a ∈ (0,1], we have the following
conditions:

dist(Gp,Gq)≥ δ ∀ Gp,Gq s.t. p ̸= q, and (1)

max
p
{diam(Gp)}= O(ε1−a). (2)

3Note that later in this work, we will show that Assumptions A2, A3 can
be removed based on Theorems 8 and 9.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

6

Proof. From Assumption A4, the eigenvalues of the Hessian
∇2 f (x∗) at any strict saddle point x∗ can always be separated
into two distinct groups, one consisting of positive eigenvalues
and the other comprising negative eigenvalues. By this con-
struction, the distance between these groups will be at least
2β . Since ε≪ β , we get a δ = 2β for this construction which
satisfies the constraint δ = Ω(1). Next, we check whether the
diameter of these two groups is larger than Θ(ε1−a); if yes
then we split that particular group into two more groups at the
first eigenvalue where the consecutive eigenvalue gap within
that group exceeds Θ(ε1−a). This eigenvalue gap becomes
our new δ and by construction it will satisfy the constraint
δ =Ω(ε1−a) for some a> 0 since δ >Θ(ε1−a). Repeating this
process recursively, we would have constructed the disjoint
sets {G1,G2, ...,Gm} with 2≤m≤ n. Since n is finite, this pro-
cess will terminate in finite steps (maximum n−1 steps) and
therefore after the final splitting, we will obtain δ = Ω(ε1−a)
for some a∈ (0,1] such that maxp{diam(Gp)}=O(ε1−a). ■

Proposition 2 describes a fundamental property of any
C 2 function that arises due to the algebraic multiplicity /
(approximate) degeneracy of the eigenvalues of its Hessian
at the saddle points. Note that, as a consequence of the
strict-saddle property (Assumption A4 / Proposition 1) and
Proposition 2, we get the following necessary condition:

β ≥ δ

2
. (3)

III. BOUNDARY CONDITIONS FOR LINEAR EXIT TIME
FROM A SADDLE NEIGHBORHOOD

A. Preface

Given a saddle neighborhood Bε(x∗) for some strict saddle
point x∗ and ε > 0, the goal is selecting those gradient
trajectories in Bε(x∗) for which the exit time is of the
order Kexit = O(log(ε−1)), i.e., of linear rate. Formally, the
exit time for an iterate sequence {xk} of some trajectory in
the ball Bε(x∗) is defined as the smallest positive index K
such that ∥xK−x∗∥ ≥ ε and we are required to obtain such
sequence {xk} generated by the gradient descent method for
which the exit time from the saddle neighborhood Bε(x∗)
is linear. To conduct such analysis, certain essential concepts
and definitions need to be elaborated, most of which were
developed in a previous work (for reference see [10]).

First, due to the strict-saddle property, for any x in an ε-
neighborhood of x∗, i.e., x∈Bε(x∗), the vector x−x∗ belongs
to a vector space E = ES

⊕
EUS, where

ES = span{vi|λi > 0}, NS = {i|λi > 0},
EUS = span{vi|λi < 0}, NUS = { j|λ j < 0},

and (λi,vi) are the ith eigenvalue–eigenvector pair of the
Hessian ∇2 f (x∗).

Second, using the ‘degenerate’ matrix perturbation theory
[43], [44], the Hessian ∇2 f (x) at any point x= x∗+ pu, where
p ∈ [0,1] and ∥u∥ ≤ ε , can be given as

∇
2 f (x) = ∇

2 f (x∗)+ p∥u∥H(û)+O(ε2), (4)

where u := x−x∗ is termed the radial vector, û = u
∥u∥ is the

unit radial vector and we have that

H(û) =
n

∑
i=1

(
⟨vi,H(û)vi⟩vivT

i +λi ∑
l ̸∈Gi

⟨vl ,H(û)vi⟩
λi−λl

(
vlvT

i +vivT
l

))
(5)

with Gi = { j | λ j = λi±O(ε)}. For details, see Lemma 3.3
from [10].

The third concept can be regarded as the most important
tool for developing the proof machinery of linear exit time; see
Lemmas 3.4 and 3.5 from [10] for details. Specifically, it can
be summarized as the “Approximation Lemma” for a linear
dynamical system. Given some initialization of the radial
vector u0 and sufficiently small ε , we have for any iteration

K that uK = ∏
K−1
k=0

[
Ak + εPk

]
u0, where εPk = Bk +O(ε2),

Bk = O(ε) for xk ∈Bε(x∗), {Ak} and {Bk} are sequences of
real symmetric matrices, and Ak’s are invertible.

When Kε ≪ 1 and ε <
∥∥A−1

∥∥−1
2 ∥P∥

−1
2 , we have the

condition∥∥A−1∥∥−K
2

(
1−Kε

∥P∥2

∥A−1∥−1
2

−O
(
(Kε)2

))
≤ νn ≤ ·· · ≤ ν1 ≤

∥A∥K
2

(
1+Kε

∥P∥2
∥A∥2

+O

(
(Kε)2

))
,

where νn ≤ ·· · ≤ ν1 are absolute values of the eigenvalues

of matrix ∏
K−1
k=0

[
Ak + εPk

]
and sup0≤k≤K−1 ∥Ak∥2 = ∥A∥2,

sup0≤k≤K−1
∥∥A−1

k

∥∥
2 =

∥∥A−1
∥∥

2, sup0≤k≤K−1 ∥Pk∥2 = ∥P∥2 for

some matrices A and P. Hence, uK = ∏
K−1
k=0

[
Ak +εPk

]
u0 can

be expanded to first order in ε with the first-order approxima-
tion called ũK and the trajectory generated by the sequence
{ũK} is termed ε–precision trajectory. Thus the gradient
update xK+1 = xK−α∇ f (xK) near x∗ can be written as uK =

∏
K−1
k=0

[
Ak+εPk

]
u0 for uK = xK−x∗, AK = I−α∇2 f (x∗) and

εPK =−α∥uK∥
2 H(ûK)+O(ε2).

Fourth, from Lemma 3.6 of [10], the ‘minimal’ ε–precision
trajectory has the maximum exit time. More rigorously, let
Sε =

{
{ũτ

K}
Kτ

exit
K=1

∣∣∣u0

}
be the set of τ-parametrized ε–precision

trajectories generated by expanding uK to first order in ε ,
where τ varies with variations in the perturbation sequence
{Pk}K

k=0. Let Kτ
exit be the exit time of the τ-parametrized

trajectory {ũτ
K}

Kτ
exit

K=1 from the ball Bε(x∗), where we have

Kτ
exit = infK≥1

{
K

∣∣∣∣ ∥ũτ
K∥

2 > ε2
}
. Let Kι be defined as

Kι = inf
K≥1

{
K

∣∣∣∣ inf
τ

{
∥ũτ

K∥
2
}
> ε

2
}
. (6)

Then the following inequality holds:

Kι ≥ sup
τ

{
Kτ

exit

}
= sup

τ

inf
K≥1

{
K

∣∣∣∣ ∥ũτ
K∥

2 > ε
2
}
.

Finally, the linear exit time theorem for the ε–precision tra-
jectories (Theorem 3.2 in [10]) states that for gradient descent
with α = 1

L where ε < 2β

M , and some minimum projection

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

7

value ∑ j∈NUS
(θ us

j)2 ≥ ∆ of the initial radial vector u0 on
EUS with u0 = ε ∑i∈NS

θ s
i vi + ε ∑ j∈NUS

θ us
j v j, there exist ε–

precision trajectories {ũK}Kexit
K=1 with linear exit time. Moreover

their exit time Kexit from Bε(x∗) is approximately upper
bounded as

Kexit < Kι ⪅
log

((
2+ εM

2L

)
log

(
2+ εM

2L

1+ β

L−
εM
2L

)
2δ

εMn

)
2log

(
2+ εM

2L

1+ β

L−
εM
2L

) . (7)

In [10, Theorem 3.2], we provide a necessary initial condition
for the linear exit time bound, which is

∆ > ε
MLn

δ (L+β)
= O(ε),

where it is required that ∑ j∈NUS
(θ us

j)2 ≥ ∆. In this work we
provide the sufficient boundary conditions for linear exit time
ε–precision trajectories.

Before moving to the next section that details the sufficient
conditions, we show that the ε–precision trajectory {ũK}Kexit

K=0
generated by expanding the matrix product in the expression

uK = ∏
K−1
k=0

[
Ak + εPk

]
u0 to first order in ε has a very small

relative error compared to the exact trajectory.
1) Relative Error Margin in the ε–Precision Trajectory:

By the definition of the ε–precision trajectory, we have that

ũK =
K−1

∏
k=0

Aku0 + ε

K−1

∑
r=0

r

∏
k=0

AkPr

K−1

∏
k=r+1

Aku0, (8)

which is obtained by expanding the matrix product

∏
K−1
k=0

[
Ak + εPk

]
to first order in ε . Now using the

“Approximation Lemma” discussed above for Kε ≪ 1
and ε <

∥∥A−1
∥∥−1

2 ∥P∥
−1
2 where sup0≤k≤K−1 ∥Ak∥2 = ∥A∥2,

sup0≤k≤K−1
∥∥A−1

k

∥∥
2 =

∥∥A−1
∥∥

2, sup0≤k≤K−1 ∥Pk∥2 = ∥P∥2 for
some matrices A and P, we get that:

uK =
K−1

∏
k=0

[
Ak + εPk

]
u0 (9)

=
K−1

∏
k=0

Aku0 + ε

K−1

∑
r=0

r

∏
k=0

AkPr

K−1

∏
k=r+1

Aku0+

O

(
∥A∥K

2 (Kε)2 ∥P∥
2
2

∥A∥2
2

∥u0∥
)

(10)

= ũK +O

(
∥A∥K

2 (Kε)2
ε

)
. (11)

Next, from the proof of [10, Lemma 3.4] we recall that
Ak = ∑

i∈NS

cs
i (k)vivT

i + ∑
j∈NUS

cus
j (k)v jvT

j where cs
i (k) = 1 −

αλ s
i +O(ε), cus

j (k) = 1−αλ us
j +O(ε) and λ s

i ,vi and λ us
j ,v j

are the eigenvalue-eigenvector pairs corresponding to the sta-
ble and unstable subspaces of ∇2 f (x∗), respectively. Also,
u0 = ε ∑i∈NS

θ s
i vi + ε ∑ j∈NUS

θ us
j v j and for α = 1

L we have

the bounds 1+ β

L −
εM
2L ≤ cus

j (k)≤ 2+ εM
2L and − εM

2L ≤ cs
i (k)≤

1− β

L + εM
2L (see [10, Lemma 3.4]). Hence we have that:

∥uK∥=

∥∥∥∥∥K−1

∏
k=0

[
Ak + εPk

]
u0

∥∥∥∥∥ (12)

≥

∥∥∥∥∥K−1

∏
k=0

Aku0

∥∥∥∥∥−
∥∥∥∥∥ε

K−1

∑
r=0

r

∏
k=0

AkPr

K−1

∏
k=r+1

Aku0

∥∥∥∥∥−
O

(
∥A∥K

2 (Kε)2 ∥P∥
2
2

∥A∥2
2

∥u0∥
)

(13)

≥

∥∥∥∥∥K−1

∏
k=0

Aku0

∥∥∥∥∥−O

(
∥A∥K

2 (Kε)
∥P∥2
∥A∥2

∥u0∥
)

(14)

=

∥∥∥∥∥
(K−1

∏
k=0

cs
i (k)

)
ε ∑

i∈NS

θ
s
i vi +

(K−1

∏
k=0

cus
j (k)

)
ε ∑

j∈NUS

θ
us
j v j

∥∥∥∥∥−
O

(
∥A∥K

2 (Kε)ε

)
(15)

≥ ε

(
inf{cus

j (k)}
)K

√√√√(
inf{cs

i (k)}
inf{cus

j (k)}

)2K

∑
i∈NS

(θ s
i)

2 + ∑
j∈NUS

(θ us
j)2

−O

(
∥A∥K

2 (Kε)ε

)
(16)

≈ ε

(
1+

β

L
− εM

2L

)K√
∑

j∈NUS

(θ us
j)2−O

(
∥A∥K

2 (Kε)ε

)
,

(17)

where we used inf{cus
j (k)} =

(
1 + β

L −
εM
2L

)
, inf{cs

i (k)} =

− εM
2L and ε2K ≈ 0 (here ε≪ 1 since Kε≪ 1). Simplifying (11)

by using the substitution ∥A∥2 = sup{∥Ak∥2}= sup{cus
j (k)}=

2+ εM
2L and taking norm yields

∥uK− ũK∥= O

(
∥A∥K

2 (Kε)2
ε

)
= O

((
2+

εM
2L

)K

(Kε)2
ε

)
.

(18)

Finally, dividing (18) by (17) we get the following bound on
the relative error:

∥uK− ũK∥
∥uK∥

≤
O

((
2+ εM

2L

)K

(Kε)2ε

)
ε

(
1+ β

L −
εM
2L

)K√
∑ j∈NUS

(θ us
j)2−O

(
∥A∥K

2 (Kε)ε

)
(19)

=

O

((
2+ εM

2L

)K

(
1+ β

L−
εM
2L

)K (Kε)2
)

√
∑ j∈NUS

(θ us
j)2−O

((
2+ εM

2L

)K

(
1+ β

L−
εM
2L

)K (Kε)

) (20)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

8

≤
O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
√

∑ j∈NUS
(θ us

j)2−O

(
1√
ε

(
log

(
1
ε

)
ε

)) , (21)

where we have substituted the upper bound on Kexit from (7)

into K. Now, if
√

∑ j∈NUS
(θ us

j)2 >O

(
1√
ε

(
log

(
1
ε

)
ε

))
then

the relative error is of the order O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
, which

goes to 0 as ε → 0.

B. Sufficient Conditions for Linear Exit Time

Our first theorem states that the first order approxima-
tion of any gradient descent trajectory starting from an ε

neighborhood of any strict saddle point x∗ will escape this
neighborhood in linear time, i.e., O(log(ε−1)), provided the
projection value of its initialization on the unstable subspace
of ∇2 f (x∗) is lower bounded.

Theorem 1. The ε–precision trajectory {ũK}Kexit
K=0 generated

by the gradient descent method for step size α = 1
L on any

function satisfying Assumptions A1–A4 has linear exit time
(7) from the strict saddle neighborhood Bε(x∗) provided the
projection value of the initialization u0 onto the unstable
subspace EUS of the Hessian ∇2 f (x∗), given by ∑ j∈NUS

(θ us
j)2,

is lower bounded as:

∑
j∈NUS

(θ us
j)2

⪆

(
2+ εM

2L

)(2δ a√µ log

(
1+ β

L−
εM
2L

)
Mn

)

1
a log

(2δ

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)
log

(
2+ εM

2L
1+ β

L −
εM
2L

)
εMn log

(
2+ εM

2L

))
+1

,

(22)

where a
√

µ =

Mn log

(
2+ εM

2L

)
2δ

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)
log

(
2+ εM

2L
1+ β

L −
εM
2L

) , the pa-

rameter a =

log

(
2+ εM

2L

)
log

(
2+ εM

2L

)
−log

(
1+ β

L−
εM
2L

) and we require that:

ε < min
{

inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

,

2Lδ

M(2Ln2−δ)
+O(ε2),

2β

M

}
, (23)

where we have r j(u) =
∥∥∥∥(d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

)∥∥∥∥
2
, the vec-

tor u0 = ε ∑i∈NS
θ s

i vi+ε ∑ j∈NUS
θ us

j v j and vi,v j are the eigen-
vectors of the Hessian ∇2 f (x∗) and δ is as in Proposition 2.

In terms of order notation, we require the following lower
bound on the projection ∑ j∈NUS

(θ us
j)2:

∑
j∈NUS

(θ us
j)2 ⪆ Θ

(
1

log(ε−1)

)
. (24)

The proof of this theorem is provided in Appendix A.
Recall from (21) that for the relative error in the
ε–precision trajectory to be bounded, we require that√

∑ j∈NUS
(θ us

j)2 > O

(
1√
ε

(
log

(
1
ε

)
ε

))
. However, this con-

dition is already satisfied by the sufficient condition

∑ j∈NUS
(θ us

j)2 ⪆ Θ

(
1

log(ε−1)

)
in terms of order since

Θ

(√
1

log(ε−1)

)
> O

(
1√
ε

(
log

(
1
ε

)
ε

))
as ε → 0.

The above result can be interpreted as follows: for any
sufficiently small ε bounded from (23) if a gradient descent
trajectory at the surface of any saddle neighborhood Bε(x∗)

has a projection value of order Θ

(
1

log(ε−1)

)
on the unstable

subspace of ∇2 f (x∗), then this trajectory is guaranteed to
exit the saddle neighborhood in linear time. This result is
crucial since it furthers the findings of the state of the art
[45] where a non-zero projection value guarantees almost sure
escape from the saddle point but does not provide any insights
into whether a non-zero projection value could lead to fast
escaping trajectories, something which Theorem 1 establishes
rigorously. Moreover the projection value bound in Theorem
1 is insightful in the sense that it illustrates the dependency
to the quantities like condition number, problem dimension,
spectral gap, etc. Since this result ensures that fast escaping
gradient trajectories are indeed dense with respect to random
initialization on the surface of the ball Bε(x∗), we can safely
say that fast escaping trajectories for gradient descent method
from small saddle neighborhoods of Morse functions will be a
generic phenomenon. In case if the sufficient condition is not
satisfied, one can perform a single step perturbation to land on
a point which satisfies this condition. Then reverting back to
gradient descent update, linear exit time from the saddle neigh-
borhood will be guaranteed. This particular idea will serve as
a basis for the development of a single step perturbation based
gradient descent method for escaping saddle points faster.

Remark 2. Note that there are several key differences between
the analytical approach of this work and the one utilized in
[22]. First, Lemma 17 in [22] works with gradient trajectories
on a local quadratic approximation of the nonconvex function,
which does not require an approximation of the Hessian.
In contrast, Theorem 1 utilizes an explicit approximation of
the Hessian—as opposed to a quadratic approximation of
the function—in order to approximate the gradient trajec-
tories around the saddle point. This approach later allows
us to establish that the linear exit time guarantees for the
approximate trajectories also hold for the exact trajectories
(see equation (337) in Appendix H). Second, our analytical
approach helps develop a theory that relates the linear exit
time of a gradient trajectory from a saddle neighborhood to
the angle between the initial radial vector of the trajectory
and the unstable subspace of ∇2 f (x∗), while such geometric

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

9

connections are lacking in [22]. In fact, to the best of our
knowledge, such analysis that helps study the relationship
between fast escaping trajectories and their initial angles with
the unstable subspace of ∇2 f (x∗) has not been carried out in
any of the prior works. Additionally, while the guarantees in
our work are deterministic in nature, Lemma 17 in [22] is
probabilistic in nature. Finally, and perhaps most importantly,
our analytical approach leads to estimates of the exit time /
escape rate and boundary conditions that are sharp in the
sense that they depend on the spectral gap, condition number
and problem dimension also, something that is novel to the
existing nonconvex optimization literature.

We now move to the next section which provides a rate
analysis in regions outside the small saddle neighborhood
Bε(x∗) where the local analyticity property no longer exists
and we are only left with the class of C 2 gradient and
Hessian Lipschitz, Morse functions, i.e., functions satisfying
Assumptions A2–A4.

IV. SEQUENTIAL MONOTONICITY

The first theorem in this section establishes a monotonicity
property of the gradient descent trajectories in a strict saddle
neighborhood. This property is termed as “sequential mono-
tonicity” which implies that within some neighborhood of the
strict saddle point x∗ any gradient trajectory, which does not
converge to x∗, first continuously contracts towards x∗ up to
some point and from there onward expands continuously away
from x∗ until it escapes this neighborhood.

Theorem 2. On the class of C 2 gradient and Hessian Lip-
schitz, Morse functions, if a gradient trajectory with respect
to some stationary point x∗ has non-contractive dynamics at
any iteration k = K, then it has expansive dynamics for all
iterations k >K provided ∥xk−x∗∥ is bounded above by some
ξ > 0 where {xk} is the sequence that generates the gradient
trajectory. This property of the sequence of radial distances
{∥xk−x∗∥} can be termed as the sequential monotonicity.

Moreover, in the case of x∗ being a strict saddle point,
we have for gradient trajectories with step size α = 1

L that

ξ < 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 for some ς > 2. Specifically,

consider the tuple (x,x+,x++) that is equivalent to the tu-
ple (xk,xk+1,xk+2) for any k. Let ∥x+−x∗∥ > ∥x−x∗∥ and
∥x−x∗∥< ξ . Then the following holds:

a.
∥∥x++−x∗

∥∥≥ ρ̄(x)
∥∥x+−x∗

∥∥−σ(x), and (25)

b.
∥∥x++−x∗

∥∥>
∥∥x+−x∗

∥∥ , (26)

where σ(x) = O(∥x−x∗∥2) and ρ̄(x) > 1 +(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
12 .

The proof of this theorem is given in Appendix B.

Remark 3. The upper bound on ξ given by the quantity

1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 for ς > 2 is always positive and is

equal to 0 only when β = 0. Moreover, for Morse functions that
are well conditioned at their stationary points, i.e., 0≪ β

L < 1,
this quantity can be treated as a constant. Moreover this bound
on ξ also makes sure that there cannot be any other critical

point within a radius of 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 for ς > 2

from x∗. If another stationary point did exist within this radius
of x∗ say x∗1 then ∥∇ f (x∗1)∥ ≥ β ∥x∗−x∗1∥ > 0 from (158)
which contradicts the fact that x∗1 is a critical point of f .
This seemingly trivial result will be of utility in Proposition 3
where we define separation between critical points.

In words, Theorem 2 states that within any ξ neighborhood

of the saddle point where ξ < 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 for

some ς > 2, every gradient descent trajectory first contracts
continuously towards x∗. The first iteration after the end of
contraction phase is either marked by expansion or preserva-
tion of radial distance, i.e., no expansion or contraction. In both
cases the trajectory from here onward expands continuously till
it exits Bξ (x∗) where in the latter case it is assumed that the
trajectory didn’t already contract to x∗. Furthermore expansion
happens at an almost geometric rate as evident from part (a.)
of the theorem which can be leveraged to obtain linear rate
for the expansion phase of trajectories inside Bξ (x∗).

So far we have been able to develop a machinery that will
help us in providing linear rate of expansion inside Bξ (x∗).
It remains to develop a proof technique which can generate
linear rates of contraction inside Bξ (x∗). In order to do so we
introduce certain terms that are required for better understand-
ing the contraction and expansion dynamics of the trajectory.
In this regard, let K̂exit be the first exit time of the gradient
descent trajectory from the ball Bξ (x∗), where we assume that
the trajectory starts at the boundary of the ball Bξ (x∗), i.e.,
x0 ∈ B̄ξ (x∗)\Bξ (x∗) and ξ is bounded from Theorem 2. Next,
for any ε < ξ , let B̄ξ (x∗)\Bε(x∗) be a compact shell centered
at x∗. Let k = Kc be the last iteration for which the gradient
trajectory has contractive dynamics inside the shell and k = Ke
be the first iteration for which the gradient trajectory has
expansive dynamics inside the shell. Note that Kc and Ke are
equal iff either the trajectory starts expanding before reaching
the ball Bε(x∗) or the trajectory just touches the surface of
the ball Bε(x∗) and then expands from there onward.

The next lemma provides further insights into the behav-
ior of function sequence { f (xk)}Kc

k=0 associated with iterate
sequence {xk}Kc

k=0 where 0 ≤ k ≤ Kc are the iterations with
contraction dynamics.

Lemma 1. On the class of C 2 gradient and Hessian Lipschitz,
Morse functions, the function sequence { f (xk)}Kc

k=0 associated
with iterate sequence {xk}Kc

k=0 for ∥xKc −x∗∥< 3β 2

4ML and Kc <
Ke satisfies the Polyak–Łojasiewicz condition [15] where for
any 0≤ k ≤ Kc we have that:

0 < f (xk)− f (x∗)≤ L
2β 2 ∥∇ f (xk)∥2 .

The proof of this lemma is given in Appendix C. Using
this lemma, it can be readily checked that the function

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

10

sequence { f (xk)}Kc
k=0 is strongly monotonic in the contraction

phase of the trajectory. Formally, for 0 ≤ k ≤ Kc using
Lemma 1 and the gradient Lipschitz condition we will have

the inequality f (xk+1)− f (x∗) ≤
(

1− β 2

L2

)(
f (xk)− f (x∗)

)
.

Therefore linear rates for the contraction phase of trajectory
can be recovered using this result. It should however be
noted that the function sequence { f (xk)}K̂exit

k=Ke
associated with

the expansion phase of the trajectory does not satisfy the
Polyak–Łojasiewicz condition from Lemma 1 and therefore
we require Theorem 2 to generate linear rates of expansion
for the trajectory in its expansion phase (see discussion within
the proof of Lemma 1 for details).

Before stating the final theorem of this section we introduce
the term ‘sojourn time’. It is defined as the time the trajectory
spends inside the shell B̄ξ (x∗)\Bε(x∗) before leaving this
region. The sojourn time will be the sum of contraction
time (derived using Lemma 1) and the expansion time (de-
rived using Theorem 1) for any trajectory inside the shell
B̄ξ (x∗)\Bε(x∗). We are now ready to state the theorem.

Theorem 3. The sojourn time Kshell for a gradient trajectory
inside the compact shell B̄ξ (x∗)\Bε(x∗) for a strict saddle
point x∗ of any C 2 gradient and Hessian Lipschitz, Morse
function is bounded by

Kshell ≤
log

(
L
2 ξ 2

)
− log

(
β 2

2L ε2− 2M
3 ε3

)
log

(
1− β 2

L2

)−1 +

log(ξ)− log(ε)

log
(

inf{ρ̄(xk−2)}
1+Mξ

) +3, (27)

where the sojourn time Kshell = K̂exit + Kc − Ke with

Kc ≤
log

(
L
2 ξ 2

)
−log

(
β2
2L ε2− 2M

3 ε3

)
log

(
1− β2

L2

)−1 + 1, K̂exit − Ke ≤

log(ξ)−log(ε)

log

(
inf{ρ̄(xk−2)}

1+Mξ

) + 2, and infimum in the term inf{ρ̄(xk−2)}

is taken over the indices Ke + 2 ≤ k ≤ K̂exit . Further,
K̂exit − Ke is the time for which the gradient trajectory
has expansive dynamics inside the shell B̄ξ (x∗)\Bε(x∗),
and Kc is the time for which the gradient trajectory has
contractive dynamics inside the shell B̄ξ (x∗)\Bε(x∗). Also,

ξ ≤ 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 with ς > 2, ε < 3β 2

4ML and
inf{ρ̄(xk−2)}

1+Mξ
> 1.

In terms of order notation, Kshell has the following rate:

Kshell = O

(
log

(
ξ

ε

))
+O(1), (28)

where Kc = O

(
log

(
ξ

ε

))
and K̂exit −Ke = O

(
log

(
ξ

ε

))
+

O(1).

The proof of this theorem is given in Appendix D. The-
orem 3 provides an upper bound on the travel time of the
trajectory inside the shell B̄ξ (x∗)\Bε(x∗). The upper bound
is linear since it is the sum of rates in the contraction and
expansion phase of the trajectory and both these rates are
linear by virtue of Lemma 1 and Theorem 2 respectively. In
contrast to the linear exit time bound (7) which only holds for
very small values of ε from Theorem 1, this rate holds for
much bigger ξ neighborhoods and at the same time does not
require the function to be analytic. The power of Theorem 3
will become more apparent once we develop a fast algorithm
for escaping strict saddle points of Morse functions. This
theorem will facilitate in keeping the algorithm very close to
the gradient descent method since it proves that any escaping
gradient descent trajectory from some small ball Bε(x∗) will
leave a larger ball Bξ (x∗) at a linear rate irrespective of its
exit point on Bε(x∗). Hence any algorithm, which exits some
small ball Bε(x∗) using the gradient descent update, can keep
on performing gradient descent updates so as to have linear
rate of escape from a larger ball Bξ (x∗).

V. ADDITIONAL LEMMAS

We now discuss some additional yet important lemmas
instrumental in analysing the gradient trajectory/approximate
trajectory behavior in saddle neighborhoods of any strict sad-
dle point x∗. Briefly, the first-order perturbations are ignored
only in Lemmas 2 and 3, whereas an exact analysis is carried
out in the subsequent lemmas. Moreover, the error introduced
by the zeroth-order approximations (see (195) in Appendix E)
in Lemmas 2 and 3 is sufficiently small by virtue of the initial
conditions. Also, Lemmas 2 and 3 are qualitative in nature and
therefore not used in proving the convergence of Algorithm 1
proposed in this work. For rest of the lemmas in this section
(Lemmas 4-6), exact analysis is carried out since they will
play a crucial role in the convergence analysis of the proposed
algorithm (Algorithm 1). We also note that Assumptions A2–
A4 hold for all the lemmas in this section where Lemmas 2, 3
use the extra assumption of local analyticity around the strict
saddle point. The proofs of the lemmas in this section are
given in Appendix E.

Lemma 2. The gradient trajectories {uK}Kexit
K=0 inside the

ball Bε(x∗) with linear exit time and satisfying the initial

condition
√

∑ j∈NUS
(θ us

j)2 > O

(
1√
ε

(
log

(
1
ε

)
ε

))
approxi-

mately exhibit hyperbolic behavior in the sense that they first
move exponentially fast towards the saddle point x∗, reach
some point of minimum distance from x∗, denoted by xcritical ,
and then move exponentially fast away from x∗ for some
iterations so as to escape the saddle region. For the case
when xcritical → x∗, their first-order approximation or the ε–
precision trajectories can take very large time to exit the
ball Bε(x∗), i.e., Kι → ∞ where Kι is defined in (6). When
xcritical = x∗, we have Kexit = Kι = ∞, which implies that the
ε–precision trajectories and hence the gradient trajectory can
never escape the saddle region.

Lemma 3. In the ball Bε(x∗), gradient descent trajecto-
ries with linear exit time and satisfying the initial condi-

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

11

tion
√

∑ j∈NUS
(θ us

j)2 >O

(
1√
ε

(
log

(
1
ε

)
ε

))
approximately4

never curve around the stationary point x∗. Moreover, all the
linear exit time gradient descent trajectories lie approximately
inside some orthant of the ball Bε(x∗), i.e., the entry and exit
point approximately subtend an angle less than or equal to π

2
at the point x∗.

Lemma 4. The function value at the exit point on the ball
Bε(x∗) for any gradient descent trajectory is strictly less than
f (x∗) provided ε is sufficiently small.

Lemma 5. For any ε ≪ 2−
2

κ2 where κ = β

L , a gradient
trajectory having exited the ball Bε(x∗) can never re-enter
this ball.

Lemma 6. The gradient descent trajectories exiting the ball
Bξ (x∗), where ξ is defined in Theorem 3, can never re-enter
this ball provided the gradient magnitudes outside the ball
Bξ (x∗) are sufficiently large with ∥∇ f (x)∥ ≥ γ > 1√

2
Lξ .

Note that Lemma 4 is used in our analysis for establishing
that the function sequence { f (xk)}K̂exit

k=Ke
associated with the

expansion phase of the trajectory inside Bξ (x∗) does not
satisfy the Polyak–Łojasiewicz condition from Lemma 1.
Lemmas 5 and 6 are termed as the “no-return conditions” to
ε and ξ radius saddle neighborhoods respectively. Choosing
ε from Lemma 5 will guarantee that any gradient trajectory
can visit the saddle neighborhood Bε(x∗) at most once.
In particular, if the function satisfies the condition of large
gradient magnitudes for certain ξ from Lemma 6 then any
gradient trajectory can visit the saddle neighborhood Bξ (x∗)
at most once, and such a function is called a well-structured
function (see discussion after Proposition 5 for details).

VI. PROPOSED ALGORITHM

Since we have established the preliminaries on our unstable
projection value and the sequential monotonicity property, we
propose a method called the Curvature Conditioned Regu-
larized Gradient Descent (CCRGD) (Algorithm 1) that can
guarantee escaping saddle points in approximately linear time
for Morse functions, by virtue of Theorems 1 and 3, and that
is also guaranteed to converge to a local minimum.

We first establish that the proposed algorithm escapes any
saddle point of a function satisfying Assumptions A1–A4 at a
linear rate and the function values generated by the algorithm
decrease monotonically.

Lemma 7. The trajectory generated by the CCRGD algorithm
(Algorithm 1) in some ε neighborhood Bε(x∗) of any strict
saddle point x∗ of a function satisfying Assumptions A1–
A4, where ε is bounded by Theorem 1, exits Bε(x∗) in
approximately linear time,5 with the exit time bounded by (7).

The proof of this lemma is given in Appendix F.

4When we say this condition holds approximately, we mean that it holds
for a first-order approximation of the gradient descent trajectory (see the proof
of Lemma 3 for further details).

5The term “approximately linear time” implies Kexit ≤O(log(ε−1))+g(ε)
where g(·) is some absolutely continuous positive function such that g(ε)→ 0
as ε → 0. See the exact expression for g(·) in (340) within Appendix H.

Algorithm 1 Curvature Conditioned Regularized Gradient
Descent (CCRGD)
Initialize {x0,y0,y1} to 0, a radius ε bounded by Theo-
rem 1, constants L,M,β ,δ , minimum unstable projection value
Pmin(ε) from the lower bound in (74), condition flag Ξ = 0,
κ = β

L , and step size α = 1
L

1: for k = 0,1, . . . do
2: Get ∇ f (xk) from first-order oracle
3: if ∥∇ f (xk)∥> Lε then
4: xk+1← xk−α∇ f (xk)
5: if Ξ = 1 then
6: Ξ← 0 ▷ Update condition flag
7: else if ∥∇ f (xk)∥ ≤ Lε and Ξ = 1 then
8: xk+1← xk−α∇ f (xk)
9: else if ∥∇ f (xk)∥ ≤ Lε and Ξ = 0 then

10: Ξ← 1 ▷ Update condition flag
11: y0← xk
12: y1← y0−α∇ f (y0)
13: V1← ⟨y1−y0,y1−y0⟩
14: V2← α⟨y1−y0,∇ f (y1)−∇ f (y0)⟩
15: if 4ε2

27κ2 <V1−V2 <

(
50Pmin(ε)+4

27

)
ε2

κ2 then

▷ Curvature Check Condition
16: Get H← α∇2 f (xk) from second-order oracle

17: xk+1 ∈ argmin
∥x−xk∥=

∥∇ f (xk)∥
β

(
1
2 (x−xk)

T H(x−xk)

)
▷ Solve constrained eigenvalue problem

18: else if 0 <V1−V2 ≤ 4ε2

27κ2 then
▷ Curvature Check Condition

19: Get H← α∇2 f (xk) from second-order oracle
20: if λmin(H)< 0 then
21: xk+1 ∈ argmin

∥x−xk∥=
∥∇ f (xk)∥

β

(
1
2 (x−xk)

T H(x−xk)

)
▷ Solve constrained eigenvalue problem

22: else break from the for loop
23: else continue
Output: Second-order stationary solution xk

Lemma 8. The function value sequence { f (xk)} generated by
the CCRGD algorithm (Algorithm 1) in some ε neighborhood
Bε(x∗) of any strict saddle point x∗ of a function satisfying
Assumptions A1–A4 where ε is bounded by Theorem 1
decreases monotonically.

The proof of this lemma is given in Appendix F.

Remark 4. Note that the second-order step after the Cur-
vature Check Condition 15 of Algorithm 1 can be replaced
by Perturbed Gradient Descent (GD) type of update from
[24] since one-step noise injection is known to escape saddle
points. However there is no guarantee that such replace-
ment will provably generate trajectories that exit the saddle
neighborhood in linear time. The best one can achieve with
a Perturbed GD type of update is fast escape with high
probability. Since the focus of this work is to develop a
deterministic algorithm that generates trajectories with linear

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

12

exit time, we refrain from analyzing the class of Perturbed GD
type methods, which are designed for saddle escape but not
necessarily with a linear rate.

VII. CONVERGENCE RATES TO A MINIMUM

Now that we have developed an algorithm that escapes
saddle neighborhoods in approximately linear time, our goal
is to show that it (Algorithm 1) converges to some local
minimum and obtain its rate of convergence.

A. Asymptotic convergence

First, we show that the iterate sequence {xk} generated by
Algorithm 1 avoids strict saddle points.

Lemma 9. The iterate sequence {xk} generated by Algorithm
1 or any of its subsequence on the class of C 2 gradient and
Hessian Lipschitz, Morse functions does not converge to a
strict saddle point.

The proof of this lemma is given in Appendix G.

Remark 5. Note that in the proposed CCRGD algorithm (Al-
gorithm 1) we always implicitly assume that the initialization
x0 does not belong to the set of strict saddle points of the
function f (·). In particular since f (·) is a Morse function,
its critical points are isolated [42] and hence are countable.
Since the probability that the initialization point, when chosen
randomly from Rn, falls into this countable set is zero, our
assumption is justified.

The next two lemmas establish that the function sequence
{ f (xk)} converges to a limit within a compact set in Rn and
the trajectory of {xk} generated by Algorithm 1 encounters at
most finitely many saddle points. These lemmas will also be
instrumental in providing global rates of convergence.

Lemma 10. The sequence { f (xk)}, where {xk} is the iterate
sequence generated by Algorithm 1 on the class of C 2 gradient
and Hessian Lipschitz, coercive functions, converges to a limit
value while the iterates xk stay in a compact set in Rn.

The proof of this lemma is given in Appendix G.

Lemma 11. The iterate sequence {xk} generated by Algorithm
1 on the class of C 2 gradient and Hessian Lipschitz, coercive
Morse functions stays within a compact subset of Rn and
encounters at most finitely many saddle points.

The proof of this lemma is given in Appendix G.
It is needless to state that finite critical points imply iso-

lated critical points6. The condition of isolated critical points
however holds in general for the class of Morse functions. We
now state the Global Convergence Theorem from [39] which
is instrumental in establishing the asymptotic convergence of
Algorithm 1 to a local minimum. Its proof is detailed in section
7.7 of [39] so we do not present its proof here and directly
use this theorem.

6The condition of isolated critical points means that there is some separation
between the critical points.

Theorem 4 (Global Convergence Theorem [39]). Let A be
an algorithm on a vector space X, and suppose that, given
x0 the sequence {xk}∞

k=0 is generated satisfying xk+1 ∈A(xk).
Let a solution set S⊂ X be given, and suppose:

1) all points xk are contained in a compact set D⊂ X,
2) there is a continuous function Z on X such that:

• if x ̸∈ S, then Z(y)< Z(x) for all y ∈ A(x),
• if x ∈ S, then Z(y)≤ Z(x) for all y ∈ A(x),

3) the mapping A is closed at points outside S.
Then the limit of any convergent subsequence of {xk} is a
solution. If under the conditions of the Global Convergence
Theorem, S consists of a single point x̄, then the sequence
{xk} converges to x̄.

Using Theorem 4 and Lemmas 9–11 we now establish
the asymptotic convergence of the sequence {xk} to a local
minimum.

Theorem 5. The iterate sequence {xk} generated by Algo-
rithm 1 on the class of C 2 gradient and Hessian Lipschitz,
coercive Morse functions has a convergent subsequence that
converges to a local minimum. Since the local minimum is a
fixed point of Algorithm 1, the sequence {xk} also converges
to this local minimum.

The proof of this theorem is given in Appendix G.

B. Global Rate of Convergence

To develop rate of convergence of the sequence {xk} to
some local minimum x∗optimal of f (·) we first introduce certain
propositions.

Proposition 3. In some compact domain U , let S∗ be
the set of all critical points of a function f (·) satisfying
Assumptions A1–A4, where x∗j ∈ S∗ denotes the jth critical
point with |S∗|= l and l is finite. Then the distance between
any two critical points of the function f (·) is lower bounded

by some R > 0 where R > 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 for ς > 2,

i.e.,
∥∥∥x∗i −x∗j

∥∥∥≥ R for any x∗i and x∗j in S∗ and ξ is chosen
such that ξ ≪ R where ξ is bounded from Theorem 3.

Proof. Since a Morse function on a compact manifold has
finitely many critical points [42], the compact domain U
will have finitely many critical points. The lower bound

R > 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 for ς > 2 follows from Re-

mark 3. ■

Proposition 4. Let the sequence {xk} generated by Algorithm
1 on a function f (·) satisfying Assumptions A1–A4 converges
to the local minimum x∗optimal ∈ S∗ from Theorem 5 and

we have
∥∥∥x0−x∗optimal

∥∥∥ ≤ ζ for some ζ > 0, where x0 is
the initialization point for Algorithm 1. Also, without loss
of generality we can assume the following condition on the
initialization: ∥∥x0−x∗j

∥∥≤ ξ

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

13

for some strict saddle point x∗j .

Proof. From Theorem 5 the sequence {xk} generated by
Algorithm 1 converges to some local minimum x∗optimal and
this local minimum lies in a compact set in Rn from Lemma
11. Hence the compact set can be taken to be the compact
domain U from Proposition 3 where we have x0 ∈ U and
x∗optimal ∈S∗ ⊂ U . Finally

∥∥∥x0−x∗optimal

∥∥∥ ≤ ζ follows from
the compactness of U . ■

Proposition 5. For any Morse function, the gradient magni-
tude at any x ∈U \

⋃l
j=1 B̄ξ (x∗j) for any sufficiently small ξ

is lower bounded by some γ where we have that:

∥∇ f (x)∥ ≥ γ = Ω(ξ)

and ξ is bounded from Theorem 3. Further, for any sufficiently
small ε where ε≪ 1, we can write γ =Θ(ευ) where υ ∈ [0,1)
is a ξ dependent parameter that controls the function geometry
in regions away from its critical points7. Hence, very small
values of υ imply well-structured functions, i.e., functions
whose gradients are almost of constant order in regions away
from its critical points whereas υ ↑ 1 implies ill-structured
functions, i.e., functions whose gradients are almost of ε order
in regions away from their critical points.

Proof. For any Morse function on a compact domain
U , the region away from its critical points defined by
U \

⋃l
j=1 B̄ξ (x∗j) can be categorized into three sub-regions on

the basis of gradient magnitudes in these regions. Expressing
the gradient magnitudes as function of ε and some ξ where
ε < ξ and ε≪ 1, we can write ∥∇ f (x)∥ ≥ γ = Θ(ευ) for any
x ∈ U \

⋃l
j=1 B̄ξ (x∗j). The parameter υ ≥ 0 is a function of

ξ which controls gradient magnitudes in regions away from
the function’s critical points. Since ξ is a free variable that is
bounded above from Theorem 3, we can choose ξ such that
γ = Ω(ξ) so as to restrict υ in the interval [0,1). Then based
on the values of υ we have:
• regions with “large” gradient magnitudes when γ =Θ(ευ)

is a constant for υ ↓ 0,
• regions with “moderate to small” gradient magnitudes

when γ = Θ(ευ) is moderate or small for 0 < υ < 1,
and

• regions with sufficiently “small” gradient magnitudes
when γ = Θ(ευ) is almost of ε order for υ ↑ 1.

Since only the above three cases or their combinations are
possible in regions away from critical points, Proposition 5
captures every possible Morse function. When a function in
regions away from its critical points satisfies a combination
of two or more of these cases, then γ is automatically the
minimum of the occurring cases as ∥∇ f (x)∥ is lower bounded
by γ . ■

Note that from Proposition 5 for υ close to 0 the quantity
γ is of constant order, i.e., γ ≈ Θ(1) . Since γ = Ω(ξ) and
γ is of constant order hence we will have that γ ≫ ξ which
implies γ > 1√

2
Lξ for moderate values of ξ and therefore the

7The value of υ cannot be greater than or equal to 1 since by definition
γ = Ω(ξ) and ξ > ε which implies γ = Ω(ε).

no-return condition to such ξ−saddle neighborhood holds
from Lemma 6. For all other choices of υ we have γ = Θ(ευ)
and therefore ξ = O(ευ) where ε ≪ 1 due to which no-
return condition to a small ξ−saddle neighborhood holds
from Lemma 5.

Remark 6. The gradient Lipschitz condition gives an upper
bound on the gradient norm within the function landscape,
whereas we require a lower bound on the gradient norm. The
reason is that in order to obtain rates of convergence for our
particular problem in some compact domain U , we need rates
in the following three regions:
• Region R1, given by

⋃l
j=1 B̄ξ (x∗j)\Bε(x∗j),

• Region R2, given by
⋃l

j=1 B̄ε(x∗j), and
• Region R3, given by U \

⋃l
j=1 B̄ξ (x∗j).

While one can derive optimal rates in regions R1
and R2 using only the Lipschitz assumption, the
rate in region R3 can only by upper bounded by

O

((
infxk∈U \

⋃l
j=1 B̄ξ (x∗j)

∥∇ f (xk)∥2
)−1)

using the gradient

Lipschitz condition alone. We afterwards require a lower
bound on the gradient norm in the region R3 so as to upper
bound this Big-O term. It is clear that the gradient Lipschitz
bound cannot help us here since it gives an upper bound
on the gradient norm. Since infxk∈U \

⋃l
j=1 B̄ξ (x∗j)

∥∇ f (xk)∥
can be arbitrary small, as the function could be extremely
flat in regions away from the critical points, it becomes
imperative to introduce the parameter υ , which controls the
function geometry in region R3. Note that properties like
the Polyak–Łojasiewicz condition can also be used to lower
bound the gradient norms, but such properties only work with
specialized nonconvex functions such as the invex functions
that do not have saddle points.

Our next lemma establishes the Lipschitz continuity of f (·)
in the compact domain U .

Lemma 12. As a consequence of Proposition 4, the function
f (·) is Lipschitz continuous in the compact domain U , where
the Lipschitz constant is given by Ldiam(U).

Proof. By the gradient Lipschitz continuity of f for any x∈U
where U has atleast one critical point x∗ of f , we have the
following bound:

∥∇ f (x)∥ ≤ L∥x−x∗∥ ≤ Ldiam(U) (29)
=⇒ sup

x∈U
∥∇ f (x)∥ ≤ Ldiam(U). (30)

From the Mean value theorem, for any x,y in U we have that:

f (x)− f (y)≤ sup
x∈U
∥∇ f (x)∥∥x−y∥ ≤ Ldiam(U)∥x−y∥ .

(31)

■

The above lemma will help us in developing global rates
of convergence in terms of the iterate sequence {xk}. In
the absence of this lemma global rates of convergence can
still be obtained however such rates would be in terms of
the function value sequence { f (xk)}. Since the condition

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

14

xk → x∗optimal implies strong convergence whereas the
condition f (xk) → f (x∗optimal) implies weak convergence,
Lemma 12 becomes absolutely necessary for establishing a
stronger convergence result.

Now that we are interested in developing convergence rates
for the iterate sequence, we need a handle on the largest
distance our iterate xk can possibly travel from the initializa-
tion x0 within some compact domain U before converging
to a neighborhood of x∗optimal . Quantifying this distance is
essential since the total number of iterations or the travel time
of any trajectory depends on how much distance it travelled
before converging to some local minimum neighborhood.
In the best case the trajectory could take a bee line path
between x0 and x∗optimal whereas in the worst case a trajectory
could possibly travel much farther than x∗optimal before turning
back and eventually converging. The next theorem provides a
precise bound on the farthest distance any worst case trajectory
could travel to before returning back for good. In doing so
it also provides a handle on the number of saddle point
neighborhoods encountered in the path of such trajectory.

Theorem 6. On a function satisfying Assumptions A1–A4,
the trajectory generated from the iterate sequence {xk} by
Algorithm 1 that has escaped some ball BR0(x

∗
0) cannot

escape the ball BRω
(x∗0) ⊃BR0(x

∗
0) if it has to re-enter the

ball BR0(x
∗
0) in finite number of iterations, where we have that

x0 ∈Bξ (x∗0) and x∗0 ∈S∗ is a strict saddle point provided that
the radius Rω satisfies the condition:

Rω ≤ R0 +2Ldiam(U)
R0

γ
+N0Kexit

(
1
β
+

L
2β 2

)
L2ε2

γ
+

N0(Kexit +Kshell)ξ +
1
2
(R0 +ξ) (32)

where N0 =
2Ldiam(U)

R0
R(

γ

2−

(
1
β
+ L

2β2

)
L2ε2

R −γ(Kexit+Kshell)
ξ

R

) is an upper

bound on the number of strict saddle neighborhoods of radius
ξ encountered by the trajectory of {xk}. Note that here Kexit
is upper bounded by (7), Kshell is upper bounded by Theorem
3 and the compact domain U contains the ball BRω

(x∗0), i.e.,
U ⊃BRω

(x∗0).

The proof of this theorem is given in Appendix H.

Remark 7. In order to characterize the convergence rate for
Algorithm 1 we need to focus on the worst-case trajectories
that can be generated by it. Theorem 6 helps capture the
behavior of such worst-case trajectories by finding the radius
of the largest possible ball whose boundary can be reached
by such trajectories.

We are now ready to state the final theorem of this work
which quantifies the convergence rate of Algorithm 1 to some
ε-neighborhood of a local minimum.

Theorem 7. On a function satisfying Assumptions A1–A4,
the total time Kmax for the trajectory of {xk} generated from
Algorithm 1 to converge to a sufficiently small ε-neighborhood

of a local minimum x∗optimal is bounded by:

Kmax < T
(

Kexit +Kshell

)
+4Ldiam(U)

ζ L
γ2 +

2T
(

1
β
+

L
2β 2

)
ε2

γ2 +

log
(

ξ

ε

)
log

(
1− β

L

)−1 , (33)

where T <
2Ldiam(U) ζ

R(
γ

2−

(
1
β
+ L

2β2

)
L2ε2

R −γ(Kexit+Kshell)
ξ

R

) is the total

number of ξ radius saddle neighborhoods encountered, ε and
ξ are bounded from Theorems 1, 3 and x0 is initialized in a
ξ -neighborhood of any strict saddle point.

The proof of this theorem is given in Appendix H. In terms
of the order notation, using (7) and (28) followed by choosing
some sufficiently small ε where ε is bounded by theorem 1,
some moderately small ξ from Propositions 3, 5 and substi-
tuting γ = Θ(ευ), Kmax has the following dependency on ε:

Kmax = O

(
T log

(
1
ε

))
+O

(
T log

(
ξ

ε

))
+O

(
1

ε2υ

)
(34)

where T = O

(
1

ευ

)
is the number of saddles encountered

and υ ∈ [0,1) is a parameter of the function f (·) defined in
Proposition 5 which controls the function geometry in regions
away from its critical points. The third term on the right hand

side of (34) is O

(
1

ε2υ

)
which quantifies the travel time of

the trajectory in the region U \
⋃l

j=1 B̄ξ (x∗j) (for details, see
proof of Theorem 7 in Appendix H).

Observe that the dominant term in the expression of conver-

gence rate from (34) is O

(
1

ε2υ

)
where υ ∈ [0,1). Compared

to the state of the art8 Perturbed GD method [24] which has

a convergence rate of order O

(
1
ε2 log4

(
1
ε2

))
, there is no

poly-logarithmic dependence in our term O

(
1

ε2υ

)
and in the

worst case this term is still better than O

(
1
ε2

)
provided ε

and ξ are chosen to be sufficiently small from Proposition 5.
In particular, for well-structured functions which have large
gradient magnitudes in regions away from critical points, we
will have 1

ε2υ ≪ 1
ε2 thereby yielding a superior convergence

rate to sufficiently small neighborhood of a local minimum.

This improvement over the rate O

(
1
ε2

)
is only possible

because of Theorem 3 which gives a linear travel time within ξ

radius saddle neighborhoods. In the absence of Theorem 3, we
would not have ξ radius saddle neighborhoods within which
fast travel is possible. Then we only have a much smaller ε

8While Table I lists various state-of-the-art algorithms, all those listed works
except [24] use either accelerated gradient methods or Newton method as their
base algorithm. Hence for sake of fairness, the rate comparison is done only
with the Perturbed GD method of [24].

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

15

(a) f (x,y) = cos(x)− cos(y) (b) f (x,y) = tanh(0.8x) tanh(0.8y)+0.01x2 +0.01y2

(c) f (x,y) = tanh(x) tanh(y)+10−4(x2 + y2)

Fig. 1. Landscapes of three smooth nonconvex functions with different values of the parameter υ for ε = 10−8. The function in (a) corresponds to υ = 0,
the function in (b) has υ = 3/4, while the function in (c) corresponds to υ = 0.99. It is evident, at least from these simple examples, that the functions that
have a relatively steeper landscape in regions away from their critical points have a small υ , whereas functions with a relatively flatter landscape in regions
away from the critical points have a large υ .

radius saddle neighborhood from Theorem 1 and outside such

neighborhood, the travel time of the trajectory will be O

(
1
ε2

)
.

Existence of larger saddle neighborhoods from Theorem 3
enables us to invoke Proposition 5 using which we can choose
our ε sufficiently small and a certain ξ so that the gradient
magnitude in the region U \

⋃l
j=1 B̄ξ (x∗j) is lower bounded

by γ = Ω(ξ) = Θ(ευ) for some υ ∈ [0,1). Then we get the

improved rate of O

(
1

ε2υ

)
in the region U \

⋃l
j=1 B̄ξ (x∗j) for

our trajectory. It should however be noted that the value of
parameter υ is not known explicitly since it depends on the
function landscape in the region U \

⋃l
j=1 B̄ξ (x∗j). Specifying

certain value for υ would require more assumptions on the
function landscape which is beyond the scope of this work.
We now state a lemma with three example functions, one with
υ equal to 0 (Figure 1(a)), another for which υ is between 0
and 1 (Figure 1(b)), and the last one for which υ is close to
1 (Figure 1(c)).

Lemma 13. Suppose ξ =Cευ for some sufficiently small ε >
0, where υ ∈ [0,1), C ≫ ε , and ε ≤ ξ . Then the following
statements hold:
(a) The function f (x,y) = cos(x)−cos(y) on U =R2 admits

the constant υ = 0 for any ξ ∈ (0,0.1] and for any ε ∈
(0,0.1].

(b) The function f (x,y) = tanh(0.8x) tanh(0.8y) + 0.01x2 +
0.01y2 on U = R2 admits the constant υ = 3

4 for any
ξ ∈ (0,10−6] and for any ε ∈ (0,10−8].

(c) The function f (x,y) = tanh(x) tanh(y)+10−4(x2 + y2) on
U = R2 admits the constant υ = 0.99 for9 any ξ ∈
(0,10−8] and for any ε ∈ (0,10−8].

A proof of this lemma is deferred to the supplementary
file of this work for compactness and readability purposes.
In a nutshell, the first example above is a periodic function10

with a saddle point at the origin, where it can be seen that
the norm of the directional derivatives in the x and y variable
around zero grow like sin(|x|) and sin(|y|), which are roughly

9Note that the parameter υ in the third function can be equal to 1 for certain
ε,ξ pair by setting ε = ξ . However even with that choice our convergence rate
from Theorem 7 will be O(ε−2) which is better than the O(ε−2 log4(ε−2))
rate in the existing state of the art [24].

10It should be noted that the result of υ = 0 from Lemma 13 part (a) will
hold true for any higher dimensional sinusoids by extending the argument from
the proof of Lemma 13 part (a) for dimensions greater than 2. For instance

functions of the form f (x) =
n
∑

i=1
ai cos(bixi) will have υ = 0 provided ai,bi

are sufficiently far away from 0.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

16

proportional to |x| and |y|, respectively, for x and y around
zero. This leads to linear growth of the gradient norm. Since
the function is perfectly conditioned at its critical points, we
can choose ξ ≫ ε that then corresponds to υ = 0. The second
and third examples are coercive functions involving a quadratic
term and hyperbolic tangent functions, where we can adjust
the gradient growth around the critical points by arranging
the magnitude of the quadratic term and the scaling of the
hyperbolic tangent.

We now establish that the convergence guarantees from
Theorems 5 and 7 will hold even when the function f (·) is
not globally gradient and Hessian Lipschitz continuous. To
do so we use a theorem from nonlinear functional analysis
[46], namely, the Kirszbraun Theorem [46], [47], which is
stated below.

Theorem 8 ([47]). If U is a subset of some Hilbert space H1,
and H2 is another Hilbert space, and

g : U → H2

is a Lipschitz-continuous map, then there is a Lipschitz-
continuous map

G : H1→ H2

that extends g and has the same Lipschitz constant as G.

Using Theorem 8 we now show that the CCRGD algorithm
(Algorithm 1) converges to a local minimum and has the
same convergence rate as the one in Theorem 7 even without
the gradient and Hessian Lipschitz boundedness assumption
on the function f (·).

Theorem 9. Suppose the function f (·) satisfies only Assump-
tions A1 and A4. Then there exists a finite constant L̃ > 0
such that if α = 1

L̃ the iterate sequence {xk} generated by
the proposed CCRGD algorithm 1 always stays within the
compact set {x | f (x) ≤ f (x0)} and converges to a local
minimum in this compact set with the convergence rate given
by Theorem 7.

The proof of this theorem is given in Appendix H. This
theorem is of particular significance due to the fact that it
generalizes our theoretical developments to a larger class of
learning problems where the objective function may not be
globally gradient Lipschitz continuous, one such problem
being the low-rank matrix factorization.

C. Computational Complexity of the CCRGD Algorithm

Essentially, the Curvature Conditioned Regularized Gradient
Descent (CCRGD) algorithm follows the Gradient Descent
(GD) update and switches to a second-order step at most once
in any ε-strict saddle neighborhood and only if the curvature
check condition (15) from CCRGD is not satisfied. The GD
update can be computed in time tGD = Θ(n) and checking
the condition (15) incurs a maximum time of tmisc = Θ(n)
per iteration of the CCRGD algorithm. The second-order
step from CCRGD algorithm involves normalization of the
gradient with β , which takes Θ(n) time as well as the
computation of one of the dominant eigenvectors. The latter

can be computed easily using power iteration-type methods,
which incur a computation time of Θ(n2 logλ1/λ2

(ε−1)); here,
λ1,λ2 are the top-two dominant eigenvalues of I−α∇2 f (xk)
with λ1 > λ2 and ε is the desired accuracy for the power
iteration (see, e.g., [48]–[50]). Therefore, the second-order
constraint (SOC) step (Step 17 or 21) can incur a maximum
computation time of tSOC = Θ(n2 logλ1/λ2

(ε−1)) in any strict-
saddle neighborhood, where the maximum number of such
strict-saddle neighborhoods is bounded by

T <
2Ldiam(U) ζ

R(
γ

2 −
(

1
β
+ L

2β 2

)
L2ε2

R − γ(Kexit +Kshell)
ξ

R

)
from Theorem 7. Next, we have also Kmax = KGD +KCCRGD
from Theorem 7, where Kmax is the total iteration complexity
of the CCRGD algorithm, KCCRGD ≤ T is the number of
second-order steps and KGD is the number of the GD steps.
Then, using the bound on Kmax from Theorem 7, the total
computational complexity tCCRGD of the proposed CCRGD
algorithm is bounded by:

tCCRGD ≤ tGDKGD + tSOCKCCRGD + tmiscKmax (35)
≤ (tGD + tmisc)Kmax + tSOCT (36)

= Θ

(
nT log

(
1
ε

))
+Θ

(
nT log

(
ξ

ε

))
+Θ

(
n

ε2υ

)
+Θ

(
(n2 logλ1/λ2

(ε−1))T
)
. (37)

To summarize, we can make use of existing off-the-shelf
eigenvalue/eigenvector solvers for the constrained problems,
and our complexity benefits from the fact that we do not need
to solve these constrained problems frequently.

VIII. NUMERICAL RESULTS

To test the efficacy of the proposed method, we simulate
Algorithm 1 on two different problems, a modified Rastrigin
function and a low-rank matrix factorization problem.

A. Modified Rastrigin Function

The Rastrigin function is a nonconvex function that was
first proposed in [51] and the generalized versions appeared
in [52], [53]. The function is given by

f (x) = An+
n

∑
i=1

(x2
i − cos(2πxi)), (38)

where A = 10 and xi ∈ [−5.12,5.12], and f (·) has a global
minimum at x = 0. In this section, we use a modified version
of (38) given by:

f (x) =
n

∑
i=1

ai cos(bixi), (39)

where (39) differs from (38) in the sense that (39) does not
have a quadratic term added to it (hence possibly some local
minima are global minima). The modified formulation of the
Rastrigin function is analytic and locally Morse at its critical
point x∗ = 0 for the choice of parameters given below. It
satisfies all the listed Assumptions A1–A4 in this work except

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

17

0 50 100 150 200 250 300

Iteration K

0.1

0.2

0.3
G

ra
d

ie
n

t
m

a
g

n
it
u

d
e Hessian with dimension n, = 0.32 and /L = 0.16

GD

CCRGD

2 4 6 8 10

Dimensions

0

0.2

0.4

0.6

0.8

1

E
ig

e
n

v
a

lu
e

s

K=300 (CCRGD)

K=300 (GD)

K=0

10-5 10-4 10-3 10-2

Computation Time t
c
 (in seconds)

10-10

100

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e

 n = 10, epsilon = 0.0001

GD

CCRGD

Second order

steps for CCRGD

100 101 102

Iterations K

2

4

6

D
is

ta
n

c
e

 f
ro

m

 i
n

it
ia

liz
a

ti
o

n

GD

CCRGD

First Exit Time =2

Second order steps

for CCRGD

0 50 100 150 200 250 300

Iteration K

0.1

0.2

0.3

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e Hessian with dimension n, = 0.32 and /L = 0.16

GD

CCRGD

2 4 6 8 10

Dimensions

0

0.2

0.4

0.6

0.8

1

E
ig

e
n

v
a

lu
e

s

K=300 (CCRGD)

K=300 (GD)

K=0

10-5 10-4 10-3 10-2

Computation Time t
c
 (in seconds)

10-10

100

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e

 n = 10, epsilon = 1e-05

GD

CCRGD

Second order

steps for CCRGD

100 101 102

Iterations K

2

4

6

D
is

ta
n

c
e

 f
ro

m

 i
n

it
ia

liz
a

ti
o

n

GD

CCRGD

First Exit Time =2

Second order steps

for CCRGD

(a) (b)

0 50 100 150 200 250 300

Iteration K

0.1

0.2

0.3

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e Hessian with dimension n, = 0.32 and /L = 0.16

GD

CCRGD

5 10 15

Dimensions

0

0.2

0.4

0.6

0.8

1

E
ig

e
n

v
a

lu
e

s

K=300 (CCRGD)

K=300 (GD)

K=0

10-4 10-3

Computation Time t
c
 (in seconds)

10-15

10-10

10-5

100

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e

 n = 18, epsilon = 1e-06

GD

CCRGD

Second order

steps for CCRGD

100 101 102

Iterations K

2

4

6

D
is

ta
n

c
e

 f
ro

m

 i
n

it
ia

liz
a

ti
o

n

GD

CCRGD

First Exit Time =2

Second order steps

for CCRGD

0 50 100 150 200 250 300

Iteration K

0.1

0.2

0.3

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e Hessian with dimension n, = 0.32 and /L = 0.16

GD

CCRGD

5 10 15

Dimensions

0

0.2

0.4

0.6

0.8

1

E
ig

e
n

v
a

lu
e

s

K=300 (CCRGD)

K=300 (GD)

K=0

10-4 10-3

Computation Time t
c
 (in seconds)

10-15

10-10

10-5

100

G
ra

d
ie

n
t

m
a

g
n

it
u

d
e

 n = 18, epsilon = 1e-07

GD

CCRGD

Second order

steps for CCRGD

100 101 102

Iterations K

2

4

6

D
is

ta
n

c
e

 f
ro

m

 i
n

it
ia

liz
a

ti
o

n

GD

CCRGD

First Exit Time =2

Second order steps

for CCRGD

(c) (d)
Fig. 2. Simulation results for gradient descent (GD) and the proposed CCRGD algorithm on the modified Rastrigin function for various values of n and ε .

coercivity due to the fact that we removed the quadratic growth
term from it. In particular, for the formulation (39) we will
have L ≤ ∑i|aibi|, M ≤ ∑i|aib2

i | and β , δ are evaluated from
the simulations. This particular example highlights the fact that
convergence to a local minimum is possible even without the
coercivity assumption.

For simulations, we set ai = 1 for i = 1 and ai = −1 else-
where, bi = 1 for 1≤ i≤

⌊ n
2

⌋
and bi = 0.4 for

⌊ n
2

⌋
+1≤ i≤ n.

The point x∗ = 0 is a strict saddle point in our case and the
initialization of the proposed CCRGD algorithm (Algorithm
1) and the gradient descent (GD) method is done in an ε

neighborhood of x∗. Specifically, the iterate x0 is initialized
in an ε neighborhood of the strict saddle point x∗ with a very

small unstable subspace projection value, i.e.,

∥∥∥πEUS
(x0−x∗)

∥∥∥
∥x0−x∗∥ <

10−8 where EUS is the unstable subspace of ∇2 f (x∗) and the
initialization point is same for both methods. In addition, the
step size for both methods is set to α = 1

L , where L is the
maximum absolute eigenvalue of the Hessian we estimated in
the saddle neighborhood.

The results of our simulations are reported in Figures 2(a)–
(d), where each subfigure has a total of four plots for a different
combination of (n,ε). In each of the subfigures, the top-left
plot shows that the gradient norm of the proposed CCRGD

method first increases and then decreases while the GD method
struggles to increase its gradient norm for many iterations.
The top-right plot in each subfigure shows the initial and
final eigenvalues of the Hessian at an iterate generated by the
two methods, while the blue stem subplot in there shows the
eigenvalue spectrum at the initialization (which is the same
for both methods). It can be seen from the two plots in each
subfigure that the GD method takes much longer to converge
to a second-order stationary point in the given number of
iterations, while the CCRGD method easily converges to a
local minimum.

Finally in the bottom plots of each subfigure, the first plot
is the gradient magnitude vs computation time and the second
plot shows the evolution of distance of the iterate from the
initialization for the two methods. The first bottom plot marks
those times where the CCRGD method invoked the second-
order Step. Similarly, the second bottom plot marks the itera-
tion where the CCRGD method first exited the initial saddle
neighborhood (this iteration index is the “First Exit Time”) and
also marks those iteration indices where the CCRGD method
invoked the second-order Step 15 in Algorithm 1. From these
figures it is clear that even though the second order step of
CCRGD method is computationally more time consuming, yet
the overall performance in time of CCRGD is better with

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

18

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Simulation results for gradient descent (GD) and the proposed CCRGD algorithm on a low-rank matrix factorization problem for various values of
n1, n2, r, and ε .

respect to GD for the given cost function 39.

B. Low-Rank Matrix Factorization

The objective function for the problem in consideration is
as follows:

f (X1,X2) =
1
4

∥∥M−X1XT
2
∥∥2

F +ϖ1 ∥X1∥2
F +ϖ2 ∥X2∥2

F ,

(40)

where M ∈Rn1×n2 , X1 ∈Rn1×r and X2 ∈Rn2×r such that r ≤
min{n1,n2} is the rank of matrix M.

To simplify the problem structure so as to make (40) some
function of a single variable X, let X1 and X2 be blocks of
the variable X such that

X =

[
X1
X2

]
,

where we have X1 = B1X and X2 = B2X with B1 =[
In1×n1 | 0n1×n2

]
and B2 =

[
0n2×n1 | In2×n2

]
. Here

In1×n1 , In2×n2 represent the identity matrices and 0n1×n2 ,
0n2×n1 represent the null rectangular matrices of appropriate

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

19

dimensions. Using this change of variable, (40) can be written
as a function of X:

f (X) =
1
4

∥∥M−B1XXT BT
2
∥∥2

F +ϖ1 ∥B1X∥2
F +ϖ2 ∥B2X∥2

F .

(41)

Next, ∇ f (X) can be given as follows:

∇ f (X)

=
1
2
(BT

1 B1XXT BT
2 B2 +BT

2 B2XXT BT
1 B1)X−

1
2
(BT

2 MT B1 +BT
1 MB2)X+2ϖ1BT

1 B1X+2ϖ2BT
2 B2X. (42)

Since the gradient in (42) is a matrix, hence the corresponding
Hessian will be a tensor, whereas our analysis assumes the
Hessian to be a matrix. To circumvent this problem, we make
use of [54, Theorem 9] by vectorizing matrix X so that
∇2 f (vec(X)) is a Jacobian matrix.

The closed form expression for the Jacobian is as follows:

∇
2 f (vec(X))

=
1
2

(
((XT BT

2 B2)⊗ In×n)((X⊗ In×n)(Ir×r⊗ (BT
1 B1))+

(In×n⊗ (BT
1 B1X)))+(Ir×r⊗ (BT

1 B1XXT))(Ir×r⊗ (BT
2 B2))

)
+

1
2

(
((XT BT

1 B1)⊗ In×n)((X⊗ In×n)(Ir×r⊗ (BT
2 B2))

+(In×n⊗ (BT
2 B2X)))+(Ir×r⊗ (BT

2 B2XXT))(Ir×r⊗ (BT
1 B1))

)
− 1

2

(
Ir×r⊗ (BT

2 MT B1 +BT
1 MB2)

)
+2

(
Ir×r⊗ (ϖ1BT

1 B1 +ϖ1BT
2 B2)

)
, (43)

where n = n1 +n2. For simulations, matrix M was generated
randomly using the relation

M = U1UT
2 +ρ

2N,

where U1 ∈ Rn1×r, U2 ∈ Rn2×r and the entries of these
matrices were independently sampled from a standard normal
distribution. Matrix N∈Rn1×n2 is the additive noise generated
from a normal distribution whose variance is scaled by ρ .
The formulation (40) is coercive, analytic (so Assumption A1
gets satisfied) and the Hessian at the critical point X = 0 is
invertible (Assumption A4 gets satisfied locally at the critical
point X = 0) but the function at X = 0 has a poor condition
number which will be evident from the simulations. Since the
function in (40) is analytic and hence C ∞ smooth, it is gradient
and Hessian Lipschitz in every compact set and therefore
satisfies the Assumptions A2, A3 locally. Moreover, from
Theorem 9 the CCRGD algorithm for this particular problem
still converges with a convergence rate given by Theorem 7.
This particular example highlights the fact that the proposed
algorithm 1 can exhibit convergence to a local minimum even
when the function’s gradient and Hessian are not globally
Lipschitz. The highly ill conditioned nature of the problem
however could possibly make the function non-Morse at other
critical points. Since the closed form expression of the Hessian

in (43) is very complex, we steer away from the computation
of its eigenvalues at critical points other than X = 0.

For the experiments, we use ϖ1 = ϖ2 = 0.5, ρ = 0.5, and
step size α = 1

L where L = λmax(∇
2 f (vec(X))). Also, for the

particular selection of parameters, X = 0 is a strict saddle
point. Hence, X is initialized on the boundary of ball Bε(0)
and ε is varied in the simulations along with n1,n2,r. Finally,
the proposed method is plotted against the standard gradient
descent method where the metric is ∥Xk−Xinit∥F with Xinit
being the common initialization for the two methods.

The simulation results for Algorithm 1 are presented in Fig-
ures 3(a)–(f) and comparisons are made with the GD method.
For the sake of uniformity, the plots within each subfigure
of Figure 3 follow the same convention as the plots within
each subfigure of Figure 2. From the plots, it is evident that
the functions are not well-conditioned for different cases and
both GD and CCRGD encounter cascaded saddles. Though
CCRGD is computationally slightly more expensive than GD,
yet still it is able to match the performance of GD in terms of
convergence to a local minimum in iterations, which is evident
from the eigenvalues of the Hessian at final iterate. Also from
the first subplot of each figure, it is clear that CCRGD reduces
gradient magnitude faster than GD eventually with respect to
iterations (tail of orange CCRGD curve stays below the tail of
blue GD curve in every first subplot). Moreover in every case
CCRGD is able to escape the first saddle neighborhood much
more faster than GD in iterations due to a single second order
step which is invoked only once over all iterations.

Briefly, it can be seen from the simulations that when
the objective is the modified Rastrigin function, our method
(CCRGD) can improve upon GD in terms of the computational
time whereas when the objective is low-rank matrix factoriza-
tion, CCRGD is slower than GD when the problem dimension
n, where n = (n1+n2)× r, is large due to the computationally
expensive operation of eigenvector computations, which scales
asymptotically as n2. These results highlight the fact that the
superiority of CCRGD over GD in terms of the computational
time starts diminishing in high-dimensional problem settings.
And while faster algorithms for eigenvalue/eigenvector solvers
or a faster alternative to the second-order step in CCRGD can
lead to further computational improvements over GD, we leave
such developments for future work.

C. Simulations for Nonconvex functions with Different Values
of Parameter υ

Recall that we had provided three examples (discussed in
Lemma 13); one with υ equal to 0 (Figure 1(a)), another for
which υ is between 0 and 1 (Figure 1(b)), and the last one for
which υ is close to 1 (Figure 1(c)). Other values of υ ∈ (0,1)
can also be obtained by adjusting the constants in these
examples. Our results suggest that when υ is closer to 1, the
convergence of both GD and the proposed CCRGD method
(algorithm 1) can be slower as compared to the case when υ

is closer to 0. We have provided simulations in Figure 4 for
illustrating this point where we compared three examples with
υ = 0 (Figures 4(a) and 4(c)) and υ = 0.99 (Figure 4(b)).

In each of the subfigures in Figure 4, the top-left plot shows
the evolution of gradient norms of the proposed CCRGD

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

20

100 101 102

Iterations K

10-10

10-5

100

G
ra

d
ie

n
t

n
o

rm

 Hessian with dimension n, = 1.64 and /L = 0.64 at strict saddle point

GD

CCRGD

1 1.2 1.4 1.6 1.8 2

Dimensions

-1

-0.5

0

0.5

1

E
ig

e
n

v
a

lu
e

s

K=76 (CCRGD)

K=76 (GD)

K=0

100 101 102

Iterations K

0

1

2

3

4

D
is

ta
n

c
e

 f
ro

m
 i
n

it
ia

liz
a

ti
o

n

n = 2, epsilon = 1e-08

GD

CCRGD

First Exit Time =1

Second order iterations for CCRGD

100 101 102

Iterations K

10-10

10-5

100

G
ra

d
ie

n
t

n
o

rm

 Hessian with dimension n, = 2 and /L=0.99 at the strict saddle point

GD

CCRGD

1 1.2 1.4 1.6 1.8 2

Dimensions

-1

-0.5

0

0.5

1

1.5

E
ig

e
n

v
a

lu
e

s

K=200 (CCRGD)

K=200 (GD)

K=0

100 101 102

Iterations K

0

1

2

3

4

5

D
is

ta
n

c
e

 f
ro

m
 i
n

it
ia

liz
a

ti
o

n

n = 2, epsilon = 1e-08

GD

CCRGD

First Exit Time =1

Second order iterations for CCRGD

(a) f (x,y) = cos(x)− cos(0.8y) (b) f (x,y) = tanh(x) tanh(y)+10−4(x2 + y2)

100 101 102

Iterations K

10-10

10-5

100

G
ra

d
ie

n
t

n
o

rm

 Hessian with dimension n, = 0.36 and /L = 0.64 at the strict saddle point

GD

CCRGD

0 2 4 6 8

Dimensions

-1

-0.5

0

0.5

1

E
ig

e
n

v
a

lu
e

s

K=46 (CCRGD)

K=46 (GD)

K=0

100 101 102

Iterations K

0

1

2

3

4

D
is

ta
n

c
e

 f
ro

m
 i
n

it
ia

liz
a

ti
o

n

n = 8, epsilon = 1e-06

GD

CCRGD

First Exit Time =2

Second order iterations for CCRGD

(c) f (x) =
n
∑

i=1
ai cos(bixi)

Fig. 4. Comparison between the performance of GD and CCRGD on smooth nonconvex function landscapes with different estimated values of parameter υ

for ε = 10−8. Functions in figures (a), (c) correspond to υ = 0, while the function in figure (b) corresponds to υ = 0.99. In Figure (c), we have bi = 1 for
1≤ i≤ 4 and bi = 0.8 otherwise, ai =−1 for 1≤ i≤ 7 and ai = 1 otherwise. Figure (c) is used to show the deviation in the performance of CCRGD and GD,
which otherwise is not apparent for the lower-dimension case of n = 2 in Figure (a). Also observe that in Figure (a) when υ = 0, both algorithms converge
to ε accuracy in less than 100 iterations, whereas in Figure (b) when υ = 0.99, both algorithms cannot even converge to 103ε accuracy in 200 iterations. It
is evident at least from these simple examples that these algorithms have fast convergence on functions which have a small υ , whereas for functions with a
large υ such speedup does not happen.

method and the GD method as a function of iterations. The
top-right plot in each subfigure shows the initial and final
eigenvalues of the Hessian at an iterate generated by the
two methods, while the blue stem subplot in there shows the
eigenvalue spectrum at the initialization (which is the same
for both methods). Finally, the bottom plot in each subfigure
marks the iteration where the CCRGD method first exited the
initial saddle neighborhood (this iteration index is the “First
Exit Time”) and also marks those iteration indices where the
CCRGD method invoked the second-order step (Step 17 or
21) in Algorithm 1.

It is clear from Figure 4(c) that the claimed speedup is
indeed there when the parameter υ is equal to 0. In particular,
it can be observed from Figure 4(c) that while CCRGD is
able to first rapidly increase and then decrease its gradient
norm, thus converging to a second-order stationary point, its
counterpart GD still remains in the phase of increasing its
gradient norm within the number of iterations under consid-

eration. Note that this stark contrast between the performance
of CCRGD and GD is not observable in Figure 4(a) because
of the lower-dimensional nature of the function (n = 2) in
Figure 4(a). Indeed, both methods in this case converge
extremely fast to ε accuracy (in less than 100 iterations).
In contrast, we see from Figure 4(b)—which corresponds to
υ = 0.99—that the gradient norm for both CCRGD and GD
methods first increases rapidly, which implies fast escape from
a well-conditioned saddle neighborhood, and then decreases
very slowly due to the almost flat geometry of the function
away from the saddle point. Hence, even with a fast saddle
escape, convergence to a local minimum remains slow for both
methods when υ is close to 1.

IX. CONCLUSION

This work focuses on the global analysis of gradient trajec-
tories for a class of nonconvex functions that have strict saddle
points in their geometry. Building on top of the results from

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

21

Ψ(K)≈
([(

1−αL− αεM
2

)2K

−2K
(

1−αβ +
αεM

2

)2K−1
αεMLn

2δ

]
∑

i∈NS

(θ s
i)

2+[(
1+αβ − αεM

2

)2K

−2K
(

1+αL+
αεM

2

)2K−1
αεMLn

2δ

]
∑

j∈NUS

(θ us
j)2

− αεMLn
2δ (αL+αβ)

(
1+αL+

αεM
2

)K(
1−αβ +

αεM
2

)K(
∑

i∈NS

(θ s
i)

2 + ∑
j∈NUS

(θ us
j)2

)

− αεMLn
2δ (αL+αβ)

(
1+αL+

αεM
2

)2K)(
∑

i∈NS

(θ s
i)

2 + ∑
j∈NUS

(θ us
j)2

)
(46)

Ψ(K)⪆

([(
1−αL− αεM

2

)2K

−2K
(

1−αβ +
αεM

2

)2K−1
αεMLn

2δ

]
∑

i∈NS

(θ s
i)

2+

[(
1+αβ − αεM

2

)2K

−2K
(

1+αL+
αεM

2

)2K−1
αεMLn

2δ

]
∑

j∈NUS

(θ us
j)2− εMLn

(
1+αL+ αεM

2

)2K

δ (L+β)

)
, (47)

Ψ(K)⪆

([(
− εM

2L

)2K

−2K
(

1− β

L
+

εM
2L

)2K−1
εMn
2δ

]
∑

i∈NS

(θ s
i)

2+

[(
1+

β

L
− εM

2L

)2K

−2K
(

2+
εM
2L

)2K−1
εMn
2δ

]
∑

j∈NUS

(θ us
j)2− εMLn

(
2+ εM

2L

)2K

δ (L+β)

)
(48)

Ψ(K)⪆

([
−2K

(
1− β

L
+

εM
2L

)2K−1
εMn
2δ

]
∑

i∈NS

(θ s
i)

2+

[(
1+

β

L
− εM

2L

)2K

−2K
(

2+
εM
2L

)2K−1
εMn
2δ

]
∑

j∈NUS

(θ us
j)2− εMLn

(
2+ εM

2L

)2K

δ (L+β)

)
. (49)

our earlier work [10], sufficient boundary conditions are devel-
oped here that guarantee approximate linear exit time of gra-
dient trajectories from saddle neighborhoods. Further, the gra-
dient trajectories are analyzed in an augmented saddle neigh-
borhood and it is proved that the trajectories exhibit sequential
monotonicity. Using this result, bounds on the total travel time
are given for trajectories in this region. A robust algorithm is
also developed in this work that uses the sufficient boundary
conditions to check whether a given trajectory will exit saddle
neighborhood in linear time and invokes a second-order step
otherwise. Several intuitive yet important lemmas are proved,
characterizing the behaviour of gradient trajectories in saddle
neighborhoods and two theorems are proved that provide rate
of convergence of the algorithm to a local minimum.

APPENDIX A
In order to prove Theorem 1 we first establish 3 supporting

lemmas.

Lemma 14. The smooth extension of the lower bound on
the trajectory function Ψ(K) (Theorem 3.1, [10]) given by
the function Ψ(K) for α = 1

L slopes upward for some small
positive values of K and then it slopes downward for very

large values of K, i.e., Ψ(K) becomes a decreasing function
for large values of K (Ψ(K) → −∞ as K → ∞) provided
the initial unstable projection value satisfies the necessary
condition ∑ j∈NUS

(θ us
j)2 > ∆ where ∆ > εMLn

δ (L+β) .

Proof. From Theorem 3.1 in [10], for every value of parameter
τ , there exists a lower bound on the squared radial distance

∥ũτ
K∥

2 for all K in the range 1 ≤ K ≤ supτ

{
Kτ

exit

}
provided

Kε ≪ 1. Moreover, this lower bound can be expressed using
a function of K called the trajectory function Ψ(K). Formally,
we have that:

ε
2 ≥ inf

τ
∥ũτ

K∥
2 >ε

2
Ψ(K), (44)

where the the trajectory function Ψ(K) is given by:

Ψ(K) =

(
c2K

1 −2Kc2K−1
2 b1−b2cK

3 cK
2 −b2c2K

3

)
∑

i∈NS

(θ s
i)

2+(
c2K

4 −2Kc2K−1
3 b1−b2cK

3 cK
2 −b2c2K

3

)
∑

j∈NUS

(θ us
j)2

(45)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

22

Ψ(K) =

([
−2K

(
1− β

L
+

εM
2L

)2K−1
εMn
2δ

]
∑

i∈NS

(θ s
i)

2+

[(
1+

β

L
− εM

2L

)2K

−2K
(

2+
εM
2L

)2K−1
εMn
2δ

]
∑

j∈NUS

(θ us
j)2− εMLn

(
2+ εM

2L

)2K

δ (2β − εM)

)
(50)

dΨ(K)

dK
=

([
−4K log

(
1− β

L
+

εM
2L

)
−2

](
1− β

L
+

εM
2L

)2K−1
εMn
2δ

∑
i∈NS

(θ s
i)

2+[
2
(

1+
β

L
− εM

2L

)2K

log
(

1+
β

L
− εM

2L

)
−2

(
2+

εM
2L

)2K−1
εMn
2δ
−

4K
(

2+
εM
2L

)2K−1
εMn
2δ

log
(

2+
εM
2L

)]
∑

j∈NUS

(θ us
j)2−2εMLn

(
2+ εM

2L

)2K

δ (2β − εM)
log

(
2+

εM
2L

))
(51)

with c1 =

(
1 − αL − αεM

2 − O(ε2)

)
, c2 =

(
1 − αβ +

αεM
2 +O(ε2)

)
, c3 =

(
1+αL+ αεM

2 +O(ε2)

)
, c4 =

(
1+

αβ − αεM
2 − O(ε2)

)
, b1 =

(
αεMLn

2δ
+ O(ε2)

)
, and b2 =(

αεMLn
2δ

+O(ε2)

)(
1+O(Kε)

)
(

αL+αβ+O(ε2)

) .

Substituting these coefficients in the expression for Ψ(K)
followed by dropping order O(ε2) and O(Kε) terms (for
Kε ≪ 1) appearing on its right hand side, we get an ap-
proximate expression for Ψ(K) from (46) where in (47) we

used the relation
(

∑i∈NS
(θ s

i)
2 +∑ j∈NUS

(θ us
j)2

)
= 1 and the

inequality
(

1− αβ + αεM
2

)
<

(
1 + αL + αεM

2

)
. Now for

α = 1
L , (47) becomes the approximate inequality (48), which

can be simplified further as (49).
We next first assume that the approximate lower bound on

Ψ(K) from (49) is a continuous function of K so as to allow
differentiation of this lower bound with respect to variable K.
This continuous extension is possible since the approximate
lower bound on Ψ(K) from (49) is a well-defined function of
K. Note that we do not use the lower bound from (48) since we
are looking for values of K greater than 1 and the derivative of(
− εM

2L

)2K

is of at most order O(ε2K−1) for K > 1 with small

ε . Representing this approximate lower bound in (49) as Ψ(K)
where we have that Ψ(K)⪆ Ψ(K), followed by differentiating
it with respect to K yields the expression for dΨ(K)

dK in (51).
It can be inferred from (51) that for ε < 2β

M and
∑ j∈NUS

(θ us
j)2 > ∆ where ∆ > εMLn

δ (L+β) , the function Ψ(K)
slopes upward for some small positive values of K and
then it slopes downward for very large values of K, i.e.,
Ψ(K) becomes a decreasing function for large values of K
(Ψ(K)→−∞ as K→ ∞). ■

Lemma 15. The sufficient (though not necessary) condition
that guarantees the escape of the approximate lower bound
Ψ(K) on the trajectory function Ψ(K) from the ball Bε(x∗)
is as follows:

1≤ sup
K∈GΨ

{
Ψ(K)

}
(52)

where GΨ =

{
K
∣∣∣∣K ∈ (0,Kι], d2Ψ(K)

dK2 < 0, dΨ(K)
dK = 0

}
and Kι =

O(log(ε−1)). Moreover, there exists some K0 = O(log(ε−1))
in the set GΨ implying that the set GΨ is non empty.

Proof. Recall that from the condition (44), the exit time is
obtained by evaluating the first K where Ψ(K)> 1. From the
inequality (49), by setting the right hand side greater than
equal to 1 for some given K of order O(log(ε−1)), we will
have Ψ(K)⪆ 1. Hence the sufficient condition on the unstable
projection value ∑ j∈NUS

(θ us
j)2 for escaping saddle with linear

rate can be obtained from (49) by setting its right hand side
greater than equal to 1. Notice that for very large K, the
right hand side of (49) is always less than 1. Moreover, there
exists some Kmin ≥ 1 and Kmax > 1 such that the approximate
lower bound of (49) can become greater than 1 only in the
interval (Kmin,Kmax). Therefore we only need to find some
K0 ∈ (Kmin,Kmax) where the function Ψ(K) has zero slope and
the value Ψ(K0) is greater than or equal to 1 for guaranteeing
escape. The condition Ψ(K0) ≥ 1 would imply Ψ(K0) ⪆ 1
thereby approximately guaranteeing escape from the condition
(44) which gets reversed for K = K0.

The above condition can be achieved in many different
ways. However, to ensure that the so-called sufficient con-
ditions have minimal restrictions, we must have K0 to be
the local maximum of the function Ψ(K) on the interval
K ∈ (0,C] where C is some arbitrary positive finite value with
C ≤ Kmax. Note that K0 is a root of the equation dΨ(K)

dK = 0.
The condition that K0 is the local maximum of Ψ(K) on the
interval K ∈ (0,C] ensures existence of at least one value of
K0 such that Ψ(K0)≥ 1 and hence Ψ(K0)⪆ Ψ(K0)≥ 1.

Next, recall that from Theorem 3.2 in [10] we have the
condition of Kexit < Kι ⪅ O(log(ε−1)) for ε–precision tra-

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

23

0 =
dΨ

dK

∣∣∣∣
K=K0

=

([
−4K0 log

(
1− β

L
+

εM
2L

)
−2

](
1− β

L
+

εM
2L

)2K0−1
εMn
2δ

∑
i∈NS

(θ s
i)

2+[
2
(

1+
β

L
− εM

2L

)2K0

log
(

1+
β

L
− εM

2L

)
−2

(
2+

εM
2L

)2K0−1
εMn
2δ
−

4K0

(
2+

εM
2L

)2K0−1
εMn
2δ

log
(

2+
εM
2L

)]
∑

j∈NUS

(θ us
j)2−2εMLn

(
2+ εM

2L

)2K0

δ (2β − εM)
log

(
2+

εM
2L

))
(54)

0 =

([
−4K0 log

(
1− β

L
+

εM
2L

)
−2

](
1− β

L + εM
2L

2+ εM
2L

)2K0
(

1− β

L
+

εM
2L

)−1
εMn
2δ

∑
i∈NS

(θ s
i)

2+

[
2
(

1+ β

L −
εM
2L

2+ εM
2L

)2K0

log
(

1+
β

L
− εM

2L

)
−2

(
2+

εM
2L

)−1
εMn
2δ
−

4K0

(
2+

εM
2L

)−1
εMn
2δ

log
(

2+
εM
2L

)]
∑

j∈NUS

(θ us
j)2−2εMLn

1
δ (2β − εM)

log
(

2+
εM
2L

))
(55)

0 =

([
−4K0 log

(
1− β

L
+

εM
2L

)
−2

](
1− β

L
+

εM
2L

)−1
µηε(1+a+b)Mn

2δ
∑

i∈NS

(θ s
i)

2

︸ ︷︷ ︸
F1

+

[
2
(

1+ β

L −
εM
2L

2+ εM
2L

)2K0

log
(

1+
β

L
− εM

2L

)
−2

(
2+

εM
2L

)−1
εMn
2δ
−

4K0

(
2+

εM
2L

)−1
εMn
2δ

log
(

2+
εM
2L

)]
∑

j∈NUS

(θ us
j)2−2εMLn

1
δ (2β − εM)

log
(

2+
εM
2L

))
(56)

(
1+ β

L −
εM
2L

2+ εM
2L

)2K0

≈
(

2+
εM
2L

)−1
εMn
2δ

log
(

2+ εM
2L

)
log

(
1+ β

L −
εM
2L

)2K0 +

(
2+

εM
2L

)−1
εMn

2δ log
(

1+ β

L −
εM
2L

)+

εMLn

δ (2β − εM) log
(

1+ β

L −
εM
2L

)
∑ j∈NUS

(θ us
j)2

log
(

2+
εM
2L

)
(57)

jectories with linear exit time. Note that the linear exit time
was obtained explicitly by solving for the roots of equation
Ψ(K) = 1. Now K0 is the local maximum of the function
Ψ(K) on the interval K ∈ (0,C] and we have Ψ(K0)≥ 1 hence
we can set C = Kι which is valid since C was arbitrary with
Kexit <C ≤ Kmax. Similarly, Kmax was arbitrary hence we can

set Kmax = 2Kι . Therefore we will have
∥∥∥ũτ

K0

∥∥∥2
> ε2 for all

values of τ where {ũτ
K}

Kexit
K=0 was the ε–precision trajectory

defined in [10].
Then the sufficient (though not necessary) condition that

guarantees the escape of the approximate lower bound Ψ(K)
on the trajectory function Ψ(K) from the ball Bε(x∗) is as
follows:

1≤ sup
K∈GΨ

{
Ψ(K)

}
(53)

where GΨ =

{
K
∣∣∣∣K ∈ (0,Kι], d2Ψ(K)

dK2 < 0, dΨ(K)
dK = 0

}
.

The condition (53) can be relaxed to obtain Ψ(K0)≥ 1 for
some K0 ∈ GΨ. Note that the set GΨ is non-empty since the
function Ψ(K) slopes upwards for small positive K whereas
Ψ(K)→−∞ as K→ ∞. Simplifying the derivative condition
(51) by setting it to 0 we get (55). Observe that the roots of
(55) cannot be explicitly computed due to the transcendental
nature of this equation. However, the roots can be obtained if
the order of K0 is known with respect to ε . Since K0 ∈GΨ, we
will have K0 <Kι ⪅O(log(ε−1)). Therefore, we compute only
those values of K0 which are linear, i.e., K0 =O(log(ε−1)). For
such a K0, setting 1(

2+ εM
2L

)2K0
= µεa where µ > 0, a > 0 and

(
1− β

L + εM
2L

)2K0

= ηεb where η > 0, b > 0 provided ε < 2β

M ,

the equality (55) becomes (56), which further simplifies to
(57).

Note that in the step (57), we dropped the term F1 (since this
term F1 = O(K0ε(1+a+b)) = O(ε(1+a+b) log(ε−1))) to obtain

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

24

K0 ⪅
1
2

log(
2+ εM

2L
1+ β

L −
εM
2L

)(2δ

(
2+ εM

2L

)
log

(
1+ β

L −
εM
2L

)
log

(
2+ εM

2L

1+ β

L−
εM
2L

)
εMn log

(
2+ εM

2L

))
︸ ︷︷ ︸

K̂0

(61)

the approximate equality (57). The approximate solution for
(57) can be obtained using a transcendental equation of the
form qx = cx+ d where x = 2K0 and the coefficients are as
follows:

q =

(
1+ β

L −
εM
2L

2+ εM
2L

)
,c =

(
2+

εM
2L

)−1
εMn
2δ

log
(

2+ εM
2L

)
log

(
1+ β

L −
εM
2L

)
(58)

d =

(
2+

εM
2L

)−1
εMn

2δ log
(

1+ β

L −
εM
2L

)

+

εMLn log
(

2+ εM
2L

)
δ (2β − εM) log

(
1+ β

L −
εM
2L

)
∑ j∈NUS

(θ us
j)2

. (59)

The solution for this equation is given by the following
relation:

x =−
W (− logq

c q−
d
c)

logq
− d

c

≤
log(− logq

c q−
d
c)

logq−1 − d
c
=

log(− logq
c)

logq−1 , (60)

where W (·) is the Lambert W function and we have that
W (y) ≤ log(y) for large y. Substituting these coefficients in
(57), we obtain the approximate condition (61) where K̂0 is
the approximate upper bound on K0.

However, for the condition K0 ∈GΨ to hold, we also require
d2Ψ

dK2

∣∣∣∣
K=K0

< 0 condition to hold. It can be readily checked that

dΨ

dK

∣∣∣∣
K=K̂0

< 0 whereas dΨ

dK is positive for very small values of

K. Hence, there must exist a local maximum at some K0 < K̂0

which would imply d2Ψ

dK2

∣∣∣∣
K=K0

< 0. Hence, it is not required to

explicitly solve the condition d2Ψ

dK2

∣∣∣∣
K=K0

< 0.

It is worth mentioning that dropping the term F1 to obtain
the approximate equality (57) is justified. Observe that in
the two approximate transcendental equations (56) and (57)
with K0 as the variable, the right-hand sides will be greater
than their left-hand sides respectively at the value K0 = K̂0.
Also, for small values of K0 the respective left-hand sides
of (56) and (57) dominate, hence the approximate equality
occurs for some K0 < K̂0. Now, we are only left to prove
that the approximations (56) and (57) are almost equal at

K0 = K̂0. This can be established by proving that the term
F1 =O(K̂0ε(1+a+b))=O(ε(1+a+b) log(ε−1)) is negligible w.r.t.
other terms in (56) at K0 = K̂0. From the particular approxi-
mate upper bound in (61), it can be verified that a > 1. Using
the substitution 1(

2+ εM
2L

)2K̂0
= µεa where µ > 0, a > 0, taking

log both sides followed by substituting the approximate upper
bound K̂0 from (61) yields:

a log
(

1
a
√

µε

)
= 2K̂0 log

(
2+

εM
2L

)
(62)

a log
(

1
a
√

µε

)
=

log
(2δ

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)
log

(
2+ εM

2L
1+ β

L −
εM
2L

)
εMn log

(
2+ εM

2L

))

log
(

2+ εM
2L

1+ β

L−
εM
2L

) log
(

2+
εM
2L

)
(63)

a =

log
(

2+ εM
2L

)
log

(
2+ εM

2L

)
− log

(
1+ β

L −
εM
2L

) > 1, (64)

where in the last step we have that 1
a√µε

=

2δ

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)
log

(
2+ εM

2L
1+ β

L −
εM
2L

)
εMn log

(
2+ εM

2L

) . Now with a > 1

we have the following condition for any b > 0:

lim
ε→0+

ε(1+a+b) log(ε−1)

ε2 = 0. (65)

Hence, for sufficiently small ε , term F1 can be of at most order
O(ε2). ■

Lemma 16. There exists some K0 =O(log(ε−1)) in the set GΨ

such that Ψ(K0)≥ 1 provided the lower bound on the unstable
projection value ∑ j∈NUS

(θ us
j)2 has the following order:

∑
j∈NUS

(θ us
j)2 ⪆ Θ

(
1

log(ε−1)

)
. (66)

Proof. Recall that from the relaxation of condition (53), we
require Ψ(K0)≥ 1. Since K0 is not explicitly available and we
only have the approximate upper bound K̂0 from (61), hence
we use the substitution K0 = χK̂0 for some 0 < χ ≤ 1 and set
the value of function Ψ at this point greater than equal to 1.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

25

([(
1+ β

L −
εM
2L

2+ εM
2L

)2K0

−2K0

(
2+

εM
2L

)−1
εMn
2δ

]
∑

j∈NUS

(θ us
j)2− εMLn

δ (2β − εM)

)
⪆

1(
2+ εM

2L

)2K0
(67)

((
2+

εM
2L

)−1
εMn
2δ

log
(

2+ εM
2L

)
log

(
1+ β

L −
εM
2L

)2K0−
(

2+
εM
2L

)−1
εMn
2δ

2K0 +

(
2+

εM
2L

)−1
εMn

2δ log
(

1+ β

L −
εM
2L

))
∑

j∈NUS

(θ us
j)2 ⪆

µ
χ

ε
χa +

εMLn
δ (2β − εM)

− εMLn

δ (2β − εM) log
(

1+ β

L −
εM
2L

) log
(

2+
εM
2L

)
(68)

∑
j∈NUS

(θ us
j)2 ⪆

(
2+ εM

2L

)(
µχ εχa + εMLn

δ (2β−εM) −
εMLn

δ (2β−εM) log

(
1+ β

L−
εM
2L

) log
(

2+ εM
2L

))

(
εMn
2δ

log

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)2K0− εMn
2δ

2K0 +
εMn

2δ log

(
1+ β

L−
εM
2L

)) (69)

∑
j∈NUS

(θ us
j)2 ⪆

(
2+ εM

2L

)(
2δ µχ ε(χa−1)

Mn + 1
(β

L−
εM
2L)
−

log

(
2+ εM

2L

)
(β

L−
εM
2L) log

(
1+ β

L−
εM
2L

))

2χK̂0

(log

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

) −1
)
+ 1

log

(
1+ β

L−
εM
2L

)
. (70)

Substituting K0 = χK̂0 from (61) into the condition Ψ(K0)≥
1, dropping the first term on the right hand side of (50) (it is
of order O(χK̂0ε(1+a+b)) = O(ε(1+a+b) log(ε−1)) as before,
substituting 1(

2+ εM
2L

)2K0
= µχ εχa for µ > 0,ε > 0, using (57)

for K0 = χK̂0 we get (67) which after rearranging yields (68).

Since the term given by the expression(
εMn
2δ

log

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)2K0 − εMn
2δ

2K0 + εMn

2δ log

(
1+ β

L−
εM
2L

))
is positive, dividing both sides of (68) by this term yields
(69) or equivalently (70) which is a sufficient condition on
the unstable projection value ∑ j∈NUS

(θ us
j)2.

Now, recall that from (64) we have a > 1 and we also know
that K̂0 ⪆ K0 = χK̂0. Since K0 is not explicitly known we can
choose a surrogate for χ to obtain the sufficient condition.
Notice that χ is a quantity between 0 and 1. Choosing a
large value for χ say close to 1 will yield the following

order bound ∑
j∈NUS

(θ us
j)2 ⪆ Θ

(
εa−1

log(ε−1)

)
. Recall that from

(21) we require
√

∑ j∈NUS
(θ us

j)2 > O

(
1√
ε

(
log

(
1
ε

)
ε

))
.

However this bound may then contradict the sufficient con-

dition ∑
j∈NUS

(θ us
j)2 ⪆ Θ

(
εa−1

log(ε−1)

)
if a > 2, i.e., we have

Θ

(
1
ε

(
log

(
1
ε

)
ε

)2)
> Θ

(
εa−1

log(ε−1)

)
as ε→ 0 (for well con-

ditioned problems, i.e., β

L close to 1, it can be checked using
(64) that a becomes arbitrarily large). Next, choosing very
small values of χ say close to 0 will cause the approximation
(57) to fail since the term F1 in (56) can no longer be dropped
(this term is of order O(ε) for χ = 0).

However, the choice χ = 1
a is able to strike a balance

between both the requirements (dropping of the term F1 in (56)
and satisfying the bound on ∑

j∈NUS

(θ us
j)2 from (21)). Observe

that by setting χ = 1
a , we can get rid of the ε dependency

in the numerator of (70) which generates the order bound

∑
j∈NUS

(θ us
j)2 ⪆ Θ

(
1

log(ε−1)

)
that agrees with the condition√

∑ j∈NUS
(θ us

j)2 > O

(
1√
ε

(
log

(
1
ε

)
ε

))
from (21) for any

a > 0. Also, it can be easily checked that the term F1 from
(56) for K0 = χK̂0 = 1

a K̂0 has the order O(ε(2+b) log(ε−1))
for some b > 0 hence the term F1 can be dropped to get
the approximation (57). Substituting K̂0 from (61) and χ = 1

a
in (70) followed by further simplification gives the following

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

26

result:

∑
j∈NUS

(θ us
j)2 ⪆

(
2+ εM

2L

)(2δ a√µ log

(
1+ β

L−
εM
2L

)
Mn +

log

(
1+ β

L−
εM
2L

)
(β

L−
εM
2L)

−
log

(
2+ εM

2L

)
(β

L−
εM
2L)

)

1
a log

(2δ

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)
log

(
2+ εM

2L
1+ β

L −
εM
2L

)
εMn log

(
2+ εM

2L

))
+1

(71)

Finally, for ε < 2β

M , dropping the negative term

log

(
1+ β

L−
εM
2L

)
(β

L−
εM
2L)

−
log

(
2+ εM

2L

)
(β

L−
εM
2L)

from the numerator of (71) and

setting the condition:

∑
j∈NUS

(θ us
j)2

⪆

(
2+ εM

2L

)(2δ a√µ log

(
1+ β

L−
εM
2L

)
Mn

)

1
a log

(2δ

(
2+ εM

2L

)
log

(
1+ β

L−
εM
2L

)
log

(
2+ εM

2L
1+ β

L −
εM
2L

)
εMn log

(
2+ εM

2L

))
+1

,

(72)

the approximate lower bound in (71) is guaranteed. Now using
the upper bound on K0 from (61) in the expression µεa =

1(
2+ εM

2L

)2K̂0
, we have that:

a
√

µ =

Mn log
(

2+ εM
2L

)
2δ

(
2+ εM

2L

)
log

(
1+ β

L −
εM
2L

)
log

(
2+ εM

2L

1+ β

L−
εM
2L

) (73)

where a =

log

(
2+ εM

2L

)
log

(
2+ εM

2L

)
−log

(
1+ β

L−
εM
2L

) > 1. Hence, the ap-

proximate lower bound on the unstable projection value
∑ j∈NUS

(θ us
j)2 has the following order:

∑
j∈NUS

(θ us
j)2 ⪆ Θ

(
1

log(ε−1)

)
. (74)

It is also worth mentioning that the lower bound on the unsta-
ble projection value ∑ j∈NUS

(θ us
j)2 from (74) is an increasing

function of ε . ■

Proof of Theorem 1

Using Lemmas 14, 15 and 16 we have established that there
exists some K0 =O(log(ε−1)) in the set GΨ such that Ψ(K0)≥
1 provided the initial condition of (74) holds. Since K0 ∈ GΨ

we will have K0 ≤Kι where Kι is upper bounded by the linear
exit time bound from (7). Then using the fact that Ψ(K0) ≥

1 we get that Ψ(K0) > Ψ(K0) ≥ 1 implying infτ

∥∥∥ũτ
K0

∥∥∥2
>

ε2Ψ(K0) > ε2 from (44). Hence the approximate trajectories
{ũτ

K} exit Bε(x∗) at K < K0 < Kι under the sufficient initial
condition of (74). This completes the proof of Theorem 1.

Finally, using the fact that ε < 2β

M and Theorem 3.2 of [10],
we can upper bound ε as follows:

ε < min
{

inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

,

2Lδ

M(2Ln2−δ)
+O(ε2),

2β

M

}
(75)

where r j(u) =
∥∥∥∥(d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

)∥∥∥∥
2
. ■

APPENDIX B

We prove Theorem 2 by first proving a sequence of lemmas.

Lemma 17. For an iterative gradient mapping given by
x+ = x−α∇ f (x) in some neighborhood of x∗, if ∥x+−x∗∥>
∥x−x∗∥ then the following holds:

a.
∥∥x++−x∗

∥∥≥ ρ̄(x)
∥∥x+−x∗

∥∥−σ(x) (76)

b.
∥∥x++−x∗

∥∥>
∥∥x+−x∗

∥∥ (77)

where σ(x) = O(∥x−x∗∥2), ρ̄(x) > 1 and (77) is termed as
the sequential monotonicity property.

Proof. For an iterative gradient mapping given by x+ = x−
α∇ f (x) in any neighborhood of x∗, we have:

∇ f (x) =
(

∇ f (x∗)+
∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))(x−x∗)d p
)
.

(78)

provided function f (·) is twice continuously differentiable.
Using this substitution in the iterative gradient mapping, we
have the following result:∥∥x+−x∗

∥∥= ∥x−α∇ f (x)−x∗∥ (79)

=

∥∥∥∥(x−x∗)−α

(
∇ f (x∗)+

∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))(x−x∗)d p
)∥∥∥∥

(80)

=

∥∥∥∥(x−x∗)−α

∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p(x−x∗)
∥∥∥∥

(81)

=

∥∥∥∥(I−α

∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p
)
(x−x∗)

∥∥∥∥ (82)

=

√(
∑

j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2

)
∥x−x∗∥ (83)

where u = x−x∗, û = u
∥u∥ , x−x∗ = ∥u∥

(
∑ j∈IUS

⟨û,eus
j ⟩eus

j +

∑i∈IS
⟨û,es

i ⟩es
i

)
and (eus

j ,ν
us
j), (es

j,ν
s
j) are the eigenvector-

eigenvalue pair of the matrix D(x) where D(x) =

(
I −

α
∫ p=1

p=0 ∇2 f (x∗+ p(x− x∗))d p
)

with νs
i < 1 for all i ∈ IS,

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

27

∥∥x++−x∗
∥∥=

∥∥x+−α∇ f (x+)−x∗
∥∥ (86)

=

∥∥∥∥(x+−x∗)−α

(
∇ f (x∗)+

∫ p=1

p=0
∇

2 f (x∗+ p(x+−x∗))(x+−x∗)d p
)∥∥∥∥ (87)

=

∥∥∥∥(x+−x∗)−α

∫ p=1

p=0
∇

2 f (x∗+ p(x+−x∗))d p(x+−x∗)
∥∥∥∥ (88)

=

∥∥∥∥(I−α

∫ p=1

p=0
∇

2 f (x∗+ p(x+−x∗))d p
)
(x+−x∗)

∥∥∥∥ (89)

=

∥∥∥∥(I−α

∫ p=1

p=0
∇

2 f (x∗+ p(x+−x∗))d p
)(

I−α

∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p
)
(x−x∗)

∥∥∥∥ (90)

=

∥∥∥∥(I−α

∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p−αP(x)
)(

I−α

∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p
)
(x−x∗)

∥∥∥∥ (91)

νus
j ≥ 1 for all j ∈ IUS and IUS,IS are the index sets

associated respectively with these subspaces respectively.
We consider the case of strict expansive dynamics in the

current iteration. Given: ∥x+−x∗∥> ∥x−x∗∥ or equivalently

∥∥x+−x∗
∥∥=

√(
∑

j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2

)
∥u∥

> ∥u∥ . (84)

This implies:

√(
∑

j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2

)
> 1. (85)

We now show that the claim in (76) holds.
Since x++ = x+−α∇ f (x+), we have the equations (86)–

(91), where in the last step (91) we used the following result:

∫ p=1

p=0
∇

2 f (x∗+ p(x+−x∗))d p =
∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p

+P(x). (92)

and we have that ∥P(x)∥=O(∥∇ f (x)∥) which can be verified
from Assumption A3. Rearranging (92) and taking norm both
sides we get:

∥P(x)∥2

=

∥∥∥∥∫ p=1

p=0

(
∇

2 f (x∗+ p(x+−x∗))−∇
2 f (x∗+ p(x−x∗))

)
d p

∥∥∥∥
2

(93)

≤
∫ p=1

p=0

∥∥∥∥(∇
2 f (x∗+ p(x+−x∗))−∇

2 f (x∗+ p(x−x∗))
)∥∥∥∥

2
d p

(94)

≤
∫ p=1

p=0
M
∥∥p(x+−x)

∥∥d p (95)

= M
∥∥x+−x

∥∥∫ p=1

p=0
pd p =

Mα ∥∇ f (x)∥
2

. (96)

Now recall that D(x) =
(

I−α
∫ p=1

p=0 ∇2 f (x∗+ p(x−x∗))d p
)

hence further simplifying (91) yields the following:∥∥x++−x∗
∥∥=

∥∥∥∥∥
(

D(x)
)2

(x−x∗)−α

(
D(x)P(x)(x−x∗)

)∥∥∥∥∥
(97)

≥
√(

∑
j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
∥x−x∗∥

−α ∥D(x)∥2 ∥P(x)∥2 ∥x−x∗∥ (98)

≥
√(

∑
j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
∥x−x∗∥

−
sup j{νus

j }Mα ∥∇ f (x)∥∥x−x∗∥
2

(99)

≥
√(

∑
j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
∥x−x∗∥

−
sup j{νus

j }MLα ∥x−x∗∥2

2
(100)

where we used the fact that ∥∇ f (x)∥≤ L∥x−x∗∥ by Lipschitz

continuity of ∇ f (x). Now with σ(x) =
sup j{νus

j }MLα∥x−x∗∥2

2 =

O(∥x−x∗∥2) we are left to prove:√(
∑

j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
∥x−x∗∥

>
∥∥x+−x∗

∥∥ (101)

or equivalently the following result:√(
∑

j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
∥u∥>√(

∑
j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2

)
∥u∥ (102)√(

∑
j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
>√(

∑
j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2

)
. (103)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

28

This will hold true if:√(
∑

j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2

)
> 1. (104)

Recall that (eus
j ,ν

us
j), (es

j,ν
s
j) are respectively

the eigenvector-eigenvalue pair of the matrix

D(x) =
(

I−α
∫ p=1

p=0 ∇2 f (x∗+ p(x−x∗))d p
)

with νs
i < 1 for

all i ∈IS, νus
j ≥ 1 for all j ∈IUS. Then the condition (103)

can be written as:√
⟨û,(D(x))4û⟩>

√
⟨û,(D(x))2û⟩ (105)

=⇒ ⟨û,(D(x))4û⟩> ⟨û,(D(x))2û⟩ (106)

where û is a unit vector. Also we are given (85) that can be
written as: √

⟨û,(D(x))2û⟩> 1 =
√
⟨û, û⟩ (107)

=⇒ ⟨û,((D(x))2− I)û⟩> 0. (108)

Now consider the following difference:

⟨û,(D(x))4û⟩−⟨û,(D(x))2û⟩= ⟨û,((D(x))2− I)2û⟩︸ ︷︷ ︸
≥0

+

⟨û,((D(x))2− I)û⟩︸ ︷︷ ︸
>0

> 0

(109)

=⇒ ⟨û,(D(x))4û⟩> ⟨û,(D(x))2û⟩ (110)

which completes the proof for (103). We are now ready to
prove the result ∥x++−x∗∥ ≥ ρ̄(x)∥x+−x∗∥−σ(x). Recall
that from (83) we have that:∥∥x+−x∗

∥∥=

√(
∑

j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2

)
∥x−x∗∥

(111)

=
√
⟨û,(D(x))2û⟩∥x−x∗∥ (112)

Now from (100) we have the following:∥∥x++−x∗
∥∥≥√(

∑
j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
∥x−x∗∥

−O(∥x−x∗∥2) (113)

=
√
⟨û,(D(x))4û⟩∥x−x∗∥−σ(x) (114)

=

√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

√
⟨û,(D(x))2û⟩∥x−x∗∥−σ(x) (115)

=

√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

∥∥x+−x∗
∥∥−σ(x) (116)

where in the last step we used the substitution from (112).
Next, note that ⟨û,(D(x))4û⟩ > ⟨û,(D(x))2û⟩ > 1 and hence

we can set ρ̄(x) =
√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

> 1 to complete the proof.

Next, we show that the claim in (77) holds, i.e.,
∥x++−x∗∥> ∥x+−x∗∥ provided ∥x−x∗∥ is bounded above.

It can be done using (76) of the result where we lower bound
the right hand side of (76) with ∥x+−x∗∥ to get:∥∥x++−x∗

∥∥≥ ρ̄(x)
∥∥x+−x∗

∥∥−σ(x)>
∥∥x+−x∗

∥∥ (117)

=⇒ (ρ̄(x)−1)
∥∥x+−x∗

∥∥> σ(x). (118)

Since σ(x) = O(∥x−x∗∥2), hence ∥x−x∗∥ should be suffi-
ciently small for (118) to hold. Now, if (118) condition holds
true, then we will have the condition∥∥x++−x∗

∥∥≥ ρ̄(x)
∥∥x+−x∗

∥∥−σ(x)>
∥∥x+−x∗

∥∥
or equivalently ∥x++−x∗∥ > ∥x+−x∗∥. Next, for some
k = K let x = xK , x+ = xK+1, x++ = xK+2 and we have
∥xK+1−x∗∥ > ∥xK−x∗∥ with the condition (118) satisfied,
then we also have ∥xK+2−x∗∥ > ∥xK+1−x∗∥. Using induc-
tion, we then get ∥xk+1−x∗∥ > ∥xk−x∗∥ for all k ≥ K + 1
provided (118) holds true with x = xk.

■

Hence, the claim of sequential monotonicity has been
proved partially, i.e., if a gradient trajectory has expansive
dynamics w.r.t. stationary point x∗ at some k = K, then it has
expansive dynamics for all iterations k >K provided ∥xk−x∗∥
remains bounded above.11 Now, we are only left with proving
the complete claim, i.e., sequential monotonicity holds even
if the gradient trajectory has non-contraction dynamics w.r.t.
stationary point x∗ at some k =K. Before completing the proof
of this claim, we need to do provide a bound on the expansion
factor ρ̄(x).

Lemma 18. The expansion factor ρ̄(x) in (76) is bounded as

ρ̄(x)> 1+

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
12 .

Proof. From the condition (118), we require σ(x) to be upper
bounded. Notice that the upper bound on σ(x) goes to 0 as
ρ̄(x) approaches 1. Then, the particular theorem cannot be
applied recursively since σ(x) is a positive quantity that comes
from (100) and (118) would then fail to hold. Hence, in order
to exploit the property (118), we require ρ̄(x) to be bounded
away from 1. Using (112) in (118) and simplifying ρ̄(x), we
get that:

(ρ̄(x)−1)
∥∥x+−x∗

∥∥> σ(x)

(119)

=⇒
(√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

−1
)√
⟨û,(D(x))2û⟩∥x−x∗∥> σ(x)

(120)

=⇒
(√
⟨û,(D(x))4û⟩−

√
⟨û,(D(x))2û⟩

)
∥x−x∗∥> σ(x)

(121)

11Notice that x∗ can be any stationary point and not just the strict saddle
point. Since the stationary points of the function are non-degenerate from our
assumptions, the extension of this proof to other types of stationary points is
left as an easy exercise to the reader.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

29

where we require the term
(√
⟨û,(D(x))4û⟩ −√

⟨û,(D(x))2û⟩
)

to be bounded away from 0. This

will hold true due to the following fact:

√
⟨û,(D(x))4û⟩=

√(
∑

j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i)

4(⟨û,es
i ⟩)2

)
(122)

≥
(

∑
j∈IUS

√
(νus

j)4(⟨û,eus
j ⟩)2 + ∑

i∈IS

√
(νs

i)
4(⟨û,es

i ⟩)2
)

(123)

= ⟨û,(D(x))2û⟩>
√
⟨û,(D(x))2û⟩ (124)

where we used Jensen’s inequality for square root function
followed by the fact that ⟨û,(D(x))2û⟩ > 1. But in order to
develop a bound on the radius of ball inside which sequential
monotonicity holds, we require something more. Notice that
if we plug in the naive lower bound just obtained into (121),
all we can get is a projection dependent term which does
not generalize to the class of functions being studied. The
goal here is to obtain some bound that is independent of û
and solely depends on the function parameters like condition
number, etc. The next steps develop a generalized lower bound

for
(√
⟨û,(D(x))4û⟩−

√
⟨û,(D(x))2û⟩

)
independent of û.

Since we have
√
⟨û,(D(x))2û⟩> 1, we can write:(√

⟨û,(D(x))4û⟩−
√
⟨û,(D(x))2û⟩

)
=

⟨û,(D(x))4û⟩−⟨û,(D(x))2û⟩√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

(125)

where we require ⟨û,(D(x))4û⟩ > ⟨û,(D(x))2û⟩. Next,

substituting ⟨û,(D(x))4û⟩ =

(
∑ j∈IUS

(νus
j)4(⟨û,eus

j ⟩)2 +

∑i∈IS
(νs

i)
4(⟨û,es

i ⟩)2
)

and ⟨û,(D(x))2û⟩ =(
∑ j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑i∈IS
(νs

i ⟨û,es
i ⟩)2

)
in the left-

hand side of (125) followed by simplification yields:

⟨û,(D(x))4û⟩−⟨û,(D(x))2û⟩√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

=

∑ j∈IUS

(
(νus

j)4− (νus
j)2

)
(⟨û,eus

j ⟩)2√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

+

∑i∈IS

(
(νs

i)
4− (νs

i)
2
)
(⟨û,es

i ⟩)2√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

. (126)

Recall that D(x) =

(
I − α

∫ p=1
p=0 ∇2 f (x∗ + p(x − x∗))d p

)
,

hence for any eigenvalue νl of the matrix D(x) where νl = 1−
αλl(

∫ p=1
p=0 ∇2 f (x∗+ p(x− x∗))d p) and 1 ≤ l ≤ n with νl ≥ 0

and λl is the corresponding eigenvalue of
∫ p=1

p=0 ∇2 f (x∗+ p(x−
x∗))d p, we have that:∥∥∥∥∥

(∫ p=1

p=0

(
I−α∇

2 f (x∗+ p(x−x∗))
)

d p
)−1

∥∥∥∥∥
−1

2

≤ νl ≤∥∥∥∥∫ p=1

p=0

(
I−α∇

2 f (x∗+ p(x−x∗))
)

d p
∥∥∥∥

2
(127)

∫ p=1

p=0

∥∥∥∥∥
(

I−α∇
2 f (x∗+ p(x−x∗))

)−1
∥∥∥∥∥
−1

2

d p≤ νl ≤∫ p=1

p=0

∥∥∥∥(I−α∇
2 f (x∗+ p(x−x∗))

)∥∥∥∥
2

d p (128)

1−α

∫ p=1

p=0
sup

l
λl(∇

2 f (x∗+ p(x−x∗)))d p≤ νl ≤

1−α

∫ p=1

p=0
inf

l
λl(∇

2 f (x∗+ p(x−x∗)))d p. (129)

Therefore, the bounds on νs
i and νus

j for α = 1
L can be given

by:

1−α

∫ p=1

p=0
sup
λl>0

λl(∇
2 f (x∗+ p(x−x∗)))d p≤ ν

s
i ≤

1−α

∫ p=1

p=0
inf

λl>0
λl(∇

2 f (x∗+ p(x−x∗)))d p (130)

1−α

∫ p=1

p=0
Ld p≤ ν

s
i ≤ 1−α

∫ p=1

p=0
βd p (131)

0≤ ν
s
i ≤ 1− β

L
(132)

1−α

∫ p=1

p=0
sup
λl<0

λl(∇
2 f (x∗+ p(x−x∗)))d p≤ ν

us
j ≤

1−α

∫ p=1

p=0
inf

λl<0
λl(∇

2 f (x∗+ p(x−x∗)))d p (133)

1−α

∫ p=1

p=0
−βd p≤ ν

us
j ≤ 1−α

∫ p=1

p=0
−Ld p (134)

1+
β

L
≤ ν

us
j ≤ 2 (135)

where we used the fact that infl |λl(∇
2 f (x∗+ p(x−x∗)))|> β ,

i.e., the minimum absolute eigenvalue of the function f (·)
in a neighborhood of x∗ is greater than β from Assumption
A4. Also, we used supl |λl(∇

2 f (x∗+ p(x− x∗)))| ≤ L, from
Assumption A2.

Hence, the right-hand-side (R.H.S.) in (126) can be lower
bounded as:

⟨û,(D(x))4û⟩−⟨û,(D(x))2û⟩√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

=

∑ j∈IUS

(
(νus

j)4− (νus
j)2

)
(⟨û,eus

j ⟩)2√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

+

∑i∈IS

(
(νs

i)
4− (νs

i)
2
)
(⟨û,es

i ⟩)2√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

≥ (136)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

30

(
∑ j∈IUS

(
(1+ β

L)
4− (1+ β

L)
2
)
(⟨û,eus

j ⟩)2− 1
4 ∑i∈IS

(⟨û,es
i ⟩)2

)
√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

(137)

where we used the fact that νus
j ≥ (1+ β

L) and
(
(νs

i)
4 −

(νs
i)

2
)
≥ − 1

4 for νs
i < 1 (minimum of h(y) = y4 − y2 for

0≤ y < 1 is − 1
4).

Next we minimize the numerator of the R.H.S. in (137) in
a way so as to get rid of the dependency on û. Recall that the

minimization of
(

∑ j∈IUS

(
(1+ β

L)
4− (1+ β

L)
2
)
(⟨û,eus

j ⟩)2−

1
4 ∑i∈IS

(⟨û,es
i ⟩)2

)
is constrained by

∑
j∈IUS

(⟨û,eus
j ⟩)2 + ∑

i∈IS

(⟨û,es
i ⟩)2 = 1

and

∑
j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2 > 1 ⇐⇒

∑
j∈IUS

((νus
j)2−1)(⟨û,eus

j ⟩)2 + ∑
i∈IS

((νs
i)

2−1)(⟨û,es
i ⟩)2 > 0

(138)

where the second constraint comes from (104). Relaxing the
second constraint by using the bounds νs

i ≥ 0, νus
j ≥ (1+ β

L)
we get:

((1+β/L)2−1) ∑
j∈IUS

(⟨û,eus
j ⟩)2− ∑

i∈IS

(⟨û,es
i ⟩)2 > 0.

Let a = ∑ j∈IUS
(⟨û,eus

j ⟩)2,b = ∑i∈IS
(⟨û,es

i ⟩)2 then from the
two constraints we have the following minimization problem
for the numerator term in (137):

min
a,b≥0

((
(1+

β

L
)4− (1+

β

L
)2
)

a− 1
4

b
)

such that

a+b = 1, and

((1+β/L)2−1)a−b > 0.

Solving this geometrically we obtain that the minimum is
attained at the intersection of lines a+b= 1 and ((1+β/L)2−
1)a− b = 0 which gives a = 1

(1+β/L)2 and b = 1− 1
(1+β/L)2 .

Substituting a,b in our function
((

(1+ β

L)
4− (1+ β

L)
2
)

a−

1
4 b
)

yields the following lower bound in (137):(
∑ j∈IUS

(
(1+ β

L)
4− (1+ β

L)
2
)
(⟨û,eus

j ⟩)2− 1
4 ∑i∈IS

(⟨û,es
i ⟩)2

)
√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

>(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
√
⟨û,(D(x))4û⟩+

√
⟨û,(D(x))2û⟩

(139)

>

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
6

(140)

where in the last step we used the fact that the maximum
eigenvalue of (D(x))2 is 4 which implies

√
⟨û,(D(x))2û⟩< 2

and
√
⟨û,(D(x))4û⟩< 4.

Now, it can be verified that for values of β

L > 0, the right-
hand side of (140) is bounded away from 0. Since ρ̄(x) =√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

, then using (140) and
√
⟨û,(D(x))2û⟩ < 2 we

can write

ρ̄(x) =1+

√
⟨û,(D(x))4û⟩−

√
⟨û,(D(x))2û⟩√

⟨û,(D(x))2û⟩
>

1+

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
12

(141)

which is an expansion factor for any β

L > 0. ■

We now extend the claim of Lemma 17 to the case of non-
contraction, i.e., ∥x+−x∗∥ = ∥x−x∗∥. In words, we show
that sequential monotonicity property from (77) holds even
if the gradient trajectory has non-contraction dynamics w.r.t.
stationary point x∗ at some k = K.

Lemma 19. For an iterative gradient mapping given by
x+ = x−α∇ f (x) in some neighborhood of x∗, if ∥x+−x∗∥=
∥x−x∗∥ then the following holds:

a.
∥∥x++−x∗

∥∥≥ ρ̄(x)
∥∥x+−x∗

∥∥−σ(x) (142)

b.
∥∥x++−x∗

∥∥>
∥∥x+−x∗

∥∥ (143)

where σ(x) = O(∥x−x∗∥2) and ρ̄(x)> 1.

Proof. Notice that while obtaining (140) from (137), we
utilized the given condition of (104) according to which we
have:

∑
j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2 > 1.

This condition implies that we have ∥x+−x∗∥ > ∥x−x∗∥.
However, it could be the case that we have ∥x+−x∗∥ =
∥x−x∗∥ which would imply

⟨û,(D(x))2û⟩= ∑
j∈IUS

(νus
j ⟨û,eus

j ⟩)2 + ∑
i∈IS

(νs
i ⟨û,es

i ⟩)2 = 1.

Using this condition, it can be readily checked that (140) will
still hold but only with a non-strict inequality, i.e., we will
have:

(√
⟨û,(D(x))4û⟩−

√
⟨û,(D(x))2û⟩

)
≥

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
6

.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

31

Now since ρ̄(x) =
√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

=
√
⟨û,(D(x))4û⟩, we will

have that:

ρ̄(x)≥
√
⟨û,(D(x))2û⟩+

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
6

(144)

= 1+

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
6

> 1+

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
12

. (145)

Now if σ(x) satisfies the condition (118) for this ρ̄(x) then
we are guaranteed to have ∥x++−x∗∥> ∥x+−x∗∥ even when
∥x+−x∗∥= ∥x−x∗∥. This completes the proof of the claim.

■

Now that we have established the result that if ∥x+−x∗∥ ≥
∥x−x∗∥, then we are guaranteed to have ∥x++−x∗∥ >
∥x+−x∗∥ provided σ(x) satisfies the condition (118), we
can apply this result recursively for any gradient trajectory
generated by the sequence {xk} in some neighborhood of
x∗. The next lemma provides a handle on the radius of
this neighborhood inside which the sequential monotonicity
property holds.

Lemma 20. The sequential monotonicity property from
Lemma 17 and 19 holds for the tuple {x,x+,x++} whenever

∥x−x∗∥ ≤ 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 for some ς > 2.

Proof. To identify the radius of this neighborhood, we use
(118) where we substitute σ(x) from (100) and ρ̄(x) =√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

to get the condition:

(ρ̄(x)−1)
∥∥x+−x∗

∥∥> σ(x)

=
sup j{νus

j }MLα ∥x−x∗∥2

2
(146)

=⇒
(√
⟨û,(D(x))4û⟩−

√
⟨û,(D(x))2û⟩

)
∥x−x∗∥> σ(x)

=
sup j{νus

j }MLα ∥x−x∗∥2

2
. (147)

Now, in order to guarantee the condition (147), for some ς > 2,

we set
(√
⟨û,(D(x))4û⟩−

√
⟨û,(D(x))2û⟩

)
equal to 1

ς
times

its lower bound from (140) and set σ(x) to its upper bound
in (147) to get the condition:

1
ς

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
6

∥x−x∗∥ ≥ 2MLα ∥x−x∗∥2

2

≥
sup j{νus

j }MLα ∥x−x∗∥2

2
= σ(x)

(148)

1
ςM

(
(1+ β

L)
2 + 1

4(1+ β

L)
2
− 5

4

)
6

≥ ∥x−x∗∥ (149)

where we used α = 1
L and the bound sup j{νus

j }= 1+αL≤ 2.
Now for β

L > 0, if (149) is satisfied then the condition (147)
will hold true. Hence any gradient descent trajectory with
α = 1

L inside the ball Bξ (x∗) will exhibit strictly monotonic
expansive dynamics once it has a non-contractive dynamics at
any instant. ■

Finally combining Lemmas 17, 18, 19 and 20, Theorem 2
is established.

APPENDIX C
PROOF OF LEMMA 1

Before starting the proof of Lemma 1 we first show that
unlike the expansion phase of the trajectory where the iterates
satisfy strong monotonicity property from (76), the iterates
belonging to the contraction phase of the trajectory may not
necessarily satisfy such property. From theorem 2 it was
established that a gradient trajectory {xk} with xk ∈Bξ (x∗)
has expansive dynamics for all k > K if at k = K, the gradient
trajectory has non-contraction dynamics12. Let there be some
k = Kτ such that the sequence {∥xk−x∗∥} is strictly decreas-
ing for all k ≤ Kτ and is non-decreasing for k = Kτ . Then
from Theorem 2 we have that {∥xk−x∗∥} is strictly increasing
for all k > Kτ provided xk ∈Bξ (x∗). Since ∥xKτ

−x∗∥ is the
minimum of the sequence {∥xk−x∗∥} with xk ∈Bξ (x∗), let
k = Kc and k = Ke be the indices with Kc ≤ Kτ ≤ Ke defined
as follows:

Kc = sup
{

k ≤ Kτ

∣∣∣∣xk ∈ B̄ξ (x∗)\Bε(x∗)
}

(150)

Ke = inf
{

k ≥ Kτ

∣∣∣∣xk ∈ B̄ξ (x∗)\Bε(x∗)
}
. (151)

Let the gradient trajectory exit the ball Bξ (x∗) at some
iteration K̂exit . Then the total sojourn time for the gradi-
ent trajectory inside the compact shell B̄ξ (x∗)\Bε(x∗) is
Kc +(K̂exit −Ke).

Since Kc ≤ Kτ , we have the condition that ∥xk−x∗∥ is
monotonically decreasing for all 0 < k ≤ Kc. However, even
with the monotonically decreasing sequence, it cannot be
guaranteed that ∥xk−x∗∥ will decrease with a geometric rate.
This can checked very easily from (109) in the proof of
theorem 2. From that condition, we are guaranteed geometric

expansion since the factor ρ̄(x) =
√
⟨û,(D(x))4û⟩√
⟨û,(D(x))2û⟩

> 1 from the

inequality:

⟨û,(D(x))4û⟩−⟨û,(D(x))2û⟩= ⟨û,((D(x))2− I)2û⟩︸ ︷︷ ︸
≥0

+

⟨û,((D(x))2− I)û⟩︸ ︷︷ ︸
>0

> 0 (152)

provided we have ∥x+−x∗∥ > ∥x−x∗∥ or equivalently
⟨û,((D(x))2 − I)û⟩ > 0. Recall that ∥x+−x∗∥ =√
⟨û,(D(x))2û⟩∥x−x∗∥ from (112). However, when we have

12Note that we assume here x0 ∈ B̄ξ (x∗)\Bξ (x∗).

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

32

∥x+−x∗∥ < ∥x−x∗∥ or equivalently ⟨û,((D(x))2− I)û⟩ < 0
then (109) becomes:

⟨û,(D(x))4û⟩−⟨û,(D(x))2û⟩= ⟨û,((D(x))2− I)2û⟩︸ ︷︷ ︸
≥0

+

⟨û,((D(x))2− I)û⟩︸ ︷︷ ︸
<0

≶ 0

(153)

and therefore it cannot be stated with certainty that ρ̄(x)< 1
when we have ∥x+−x∗∥ < ∥x−x∗∥. Hence, we work with
the function value sequence { f (xk)} instead of the iterate
sequence {xk} in order to develop best possible rate of
contraction.

We now prove Lemma 1. Taking norm on (78), using the
substitution G = ∇2 f (x∗+ p(x− x∗)) followed by taking the
lower bound yields:

∥∇ f (x)∥=
∥∥∥∥(∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p
)
(x−x∗)

∥∥∥∥
(154)

=⇒ ∥∇ f (x)∥ ≥

∥∥∥∥∥
(∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p
)−1

∥∥∥∥∥
−1

2

∥x−x∗∥

(155)

≥
(∫ p=1

p=0

∥∥∥∥∥
(

∇
2 f (x∗+ p(x−x∗))

)−1
∥∥∥∥∥
−1

2

d p
)
∥x−x∗∥

(156)

=⇒ ∥∇ f (x)∥ ≥
(∫ p=1

p=0
λmin

(√
GGT

)
d p

)
∥x−x∗∥ (157)

=⇒ ∥∇ f (x)∥ ≥ β ∥x−x∗∥ (158)

where we used the fact that λmin

(√
GGT

)
= β since

λmin

(
∇2 f (x∗+ p(x−x∗))

)
= β for any x∗+ p(x−x∗) ∈W

from Assumption A4.
Next, using gradient Lipschitz condition on f (·) for xk and

x∗ along with (158) we get:

f (xk)− f (x∗)≤ L
2
∥xk−x∗∥2 ≤ L

2β 2 ∥∇ f (xk)∥2 (159)

where (159) holds for any xk ∈W .
It is important to note that though (159) holds in general for

any xk ∈ W , yet it cannot be called the Polyak–Łojasiewicz
condition [15] when {xk} has expansive dynamics locally
w.r.t. x∗ because then f (xk)− f (x∗) may not be positive. In
particular Lemma 4 shows that f (xKexit) < f (x∗) where Kexit
is the exit time from the ball Bε(x∗) so f (xk)< f (x∗) for all
k > Kexit by monotonicity of { f (xk)}. Hence (159) becomes
trivial in the expansion phase of the trajectory inside the shell
B̄ξ (x∗)\Bε(x∗) due to the fact that f (xk)− f (x∗) < 0 for
k > Kexit .

Finally it remains to show that f (xk)− f (x∗) > 0 for the
contraction phase provided Kc < Ke so that (159) is indeed
the Polyak–Łojasiewicz condition in this case. We accom-
plish this by lower bounding the term f (xKc)− f (x∗). Then
f (xk)− f (x∗) > 0 for k < Kc will follow immediately from

the monotonicity of the sequence { f (xk)}. Observe that the
trajectory {xk} will enter the ball Bε(x∗) when Kc <Ke and to
do so it has to contract at k=Kc since Kc is the last iteration for
which the trajectory contracts inside the shell B̄ξ (x∗)\Bε(x∗).
Therefore we have that ∥xKc −x∗∥ > ∥xKc+1−x∗∥. Further
simplifying this condition we get:

∥xKc −x∗∥2 > ∥xKc+1−x∗∥2 (160)

=⇒ ∥xKc −x∗∥2 > ∥xKc −α∇ f (xKc)−x∗∥2 (161)

=⇒ ∥xKc −x∗∥2 > ∥xKc −x∗∥2 +∥α∇ f (xKc)∥
2−

2⟨α∇ f (xKc),xKc −x∗⟩ (162)

=⇒ ⟨xKc −x∗,∇ f (xKc)⟩>
α

2
∥∇ f (xKc)∥

2 (163)

=⇒
〈

xKc −x∗,
(∫ 1

p=0
∇

2 f (x∗+ p(xKc −x∗))d p
)
(xKc −x∗)

〉
>

α

2
∥∇ f (xKc)∥

2 (164)

=⇒
〈

xKc −x∗,∇2 f (x∗)(xKc −x∗)
〉
+

M
2
∥xKc −x∗∥3 >

α

2
∥∇ f (xKc)∥

2 (165)

where we used the substitution ∇ f (xKc) =

(∫ 1
p=0 ∇2 f (x∗+

p(xKc −x∗))d p
)
(xKc −x∗) and the following bound:

∥∥∥∥(∫ 1

p=0
∇

2 f (x∗+ p(xKc −x∗))d p
)
−∇

2 f (x∗)
∥∥∥∥≤∫ 1

p=0

∥∥∇
2 f (x∗+ p(xKc −x∗))d p−∇

2 f (x∗)
∥∥d p (166)

≤
∫ 1

p=0
Mp∥xKc −x∗∥d p =

M
2
∥xKc −x∗∥ (167)

in the last step. Using Hessian Lipschitz condition on xKc and
x∗ followed by substituting the bound (165) we have that:

f (xKc)≥ f (x∗)+
〈

xKc −x∗,∇2 f (x∗)(xKc −x∗)
〉
− M

6
∥xKc −x∗∥3

(168)

=⇒ f (xKc)− f (x∗)≥ α

2
∥∇ f (xKc)∥

2− M
2
∥xKc −x∗∥3

− M
6
∥xKc −x∗∥3 (169)

=⇒ f (xKc)− f (x∗)≥ β 2

2L
∥xKc −x∗∥2− 2M

3
∥xKc −x∗∥3

(170)

where in the last step we used (158) and α = 1
L . Hence for

∥xKc −x∗∥< 3β 2

4ML we will have f (xKc)− f (x∗)> 0. ■

APPENDIX D
PROOF OF THEOREM 3

We prove Theorem 3 by first upper bounding Kc and K̂exit−
Ke.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

33

Bound on Kc

Using gradient Lipschitz condition on f (·) for xk and
xk+1 where xk+1 = xk− 1

L ∇ f (xk) followed by Lemma 1 and
inducting from k = 0 to k = Kc gives:

f (xk+1)− f (xk)≤−
1

2L
∥∇ f (xk)∥2 ≤−β 2

L2 (f (xk)− f (x∗))

(171)

=⇒ f (xk+1)− f (x∗)≤
(

1− β 2

L2

)(
f (xk)− f (x∗)

)
(172)

=⇒ f (xKc)− f (x∗)≤
(

1− β 2

L2

)Kc(
f (x0)− f (x∗)

)
(173)

=⇒ Kc ≤
log(f (xKc)− f (x∗))− log(f (x0)− f (x∗))

log
(

1− β 2

L2

) . (174)

By gradient Lipschitz condition for x0 and x∗, we have the
condition:

f (x0)− f (x∗)≤ L
2
∥x0−x∗∥= L

2
ξ

2 (175)

where we used the fact that the iterate x0 sits on the boundary
of the ball Bξ (x∗). Finally substituting the bounds (175), (170)
into (174) yields the following contraction rate:

Kc ≤
log

(
L
2 ξ 2

)
− log

(
β 2

2L ∥xKc −x∗∥2− 2M
3 ∥xKc −x∗∥3

)
log

(
1− β 2

L2

)−1 .

(176)

Since ε ≤ ∥xKc −x∗∥< ξ , we can further upper bound Kc as:

Kc ≤
log

(
L
2 ξ 2

)
− log

(
β 2

2L ε2− 2M
3 ε3

)
log

(
1− β 2

L2

)−1 . (177)

Notice that while developing (177) we used Lemma 1 which
requires Kc < Ke. For the case when Kc = Ke the trajectory
never enters the ball Bε(x∗) and Lemma 1 no longer holds
true. However in that case one can repeat the argument from
(160) onward in the proof of Lemma 1 by considering Kc−1
instead of Kc and get the same upper bound (177) on Kc−1.
Therefore combining the two cases we effectively get:

Kc ≤
log

(
L
2 ξ 2

)
− log

(
β 2

2L ε2− 2M
3 ε3

)
log

(
1− β 2

L2

)−1 +1. (178)

The bound on ε given by ε < 3β 2

4ML follows from Lemma 1
and the fact that ε ≤ ∥xKc −x∗∥.

Bound on K̂exit −Ke

Recall that from (76) in theorem 2 we have ∥x++−x∗∥>
ρ̄(x)∥x+−x∗∥−σ(x) whenever ∥x+−x∗∥ ≥ ∥x−x∗∥. Now
for Ke ≤ k≤ K̂exit , the sequence {∥xk−x∗∥} is non-decreasing

from the definition of Ke. Hence, (76) holds for all such xk
which have Ke ≤ k ≤ K̂exit . Using (76) with x+ = xk−1 and
x++ = xk for Ke +1≤ k ≤ K̂exit yields:

∥xk−x∗∥> ρ̄(xk−2)∥xk−1−x∗∥−σ(xk−2) (179)

∥xk−x∗∥> ρ̄(xk−2)∥xk−1−x∗∥−M ∥xk−2−x∗∥2 (180)

∥xk−x∗∥+M ∥xk−2−x∗∥2 > ρ̄(xk−2)∥xk−1−x∗∥ (181)

∥xk−x∗∥+M ∥xk−x∗∥2 > ρ̄(xk−2)∥xk−1−x∗∥ (182)

∥xk−x∗∥> ρ̄(xk−2)

1+M ∥xk−x∗∥
∥xk−1−x∗∥> ρ̄(xk−2)

1+Mξ
∥xk−1−x∗∥

(183)

where we used the bound on σ(x) from (100) given by
σ(xk−2) = M ∥xk−2−x∗∥2 ≤M(ξ)2 followed by the condition
∥xk−x∗∥> ∥xk−2−x∗∥ arising from the fact that {∥xk−x∗∥}
is a monotonically increasing sequence for Ke +2≤ k ≤ K̂exit

and finally the substitution
∥∥∥xK̂exit

−x∗
∥∥∥ = ξ . Now applying

the bound (183) recursively for Ke +2≤ k ≤ K̂exit yields:

∥∥∥xK̂exit
−x∗

∥∥∥>
K̂exit−1

∏
k=Ke+2

ρ̄(xk−2)

1+Mξ
∥xKe+1−x∗∥ (184)

∥∥∥xK̂exit
−x∗

∥∥∥>

(infKe+2≤k≤K̂exit
{ρ̄(xk−2)}

1+Mξ

)K̂exit−Ke−2

∥xKe+1−x∗∥

(185)

K̂exit −Ke−2 <

log
(∥∥∥xK̂exit

−x∗
∥∥∥)− log

(
∥xKe+1−x∗∥

)
log

(
inf{ρ̄(xk−2)}

1+Mξ

)
<

log(ξ)− log(ε)

log
(

inf{ρ̄(xk−2)}
1+Mξ

) (186)

K̂exit −Ke <
log(ξ)− log(ε)

log
(

inf{ρ̄(xk−2)}
1+Mξ

) +2 (187)

where in the last step we used
∥∥∥xK̂exit

−x∗
∥∥∥ = ξ ,

∥xKe+1−x∗∥ ≥ ε and the range of infimum is omitted
after second step. Note that we require the condition(

inf{ρ̄(xk−2)}
1+Mξ

)
> 1, however this is trivially satisfied which

can be easily checked from (140) and (149).

For ξ ≤ 1
ςM

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6 where ς > 2, we get the

condition:

ρ̄(x)
1+Mξ

>
1+

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
12

1+

(
(1+ β

L)
2+ 1

4(1+ β

L)2
− 5

4

)
6ς

> 1. (188)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

34

Finally adding (177) and (187), we get the following bound:

Kshell ≤
log

(
L
2 ξ 2

)
− log

(
β 2

2L ε2− 2M
3 ε3

)
log

(
1− β 2

L2

)−1 +
log(ξ)− log(ε)

log
(

inf{ρ̄(xk−2)}
1+Mξ

) +2

(189)

where Kshell = Kc + K̂exit −Ke. ■

APPENDIX E
PROOF OF LEMMAS 2-6

Before proving Lemma 2 and 3 we need the relative
error bound on zero-th order approximation of the gradient

trajectory. Expanding the expression uK =∏
K−1
k=0

[
Ak+εPk

]
u0

from section III-A1 to zero-th order we get the following
bound on tail error:

uK =
K−1

∏
k=0

[
Ak + εPk

]
u0 (190)

=
K−1

∏
k=0

Aku0 +O

(
∥A∥K

2 (Kε)
∥P∥2
∥A∥2

∥u0∥
)

(191)

=⇒

∥∥∥∥∥uK−
K−1

∏
k=0

Aku0

∥∥∥∥∥= O

(
∥A∥K

2 (Kε)ε

)
(192)

where the above bound is obtained by following steps similar
to (11). Then using this tail error bound along with (17) we
get the following bound on relative error for zeroth order
approximation:∥∥uK−∏

K−1
k=0 Aku0

∥∥
∥uK∥

≤

O

((
2+ εM

2L

)K

(Kε)ε

)
ε

(
1+ β

L −
εM
2L

)K√
∑ j∈NUS

(θ us
j)2−O

(
∥A∥K

2 (Kε)ε

)
(193)

=

O

((
2+ εM

2L

)K

(
1+ β

L−
εM
2L

)K (Kε)

)

√
∑ j∈NUS

(θ us
j)2−O

((
2+ εM

2L

)K

(
1+ β

L−
εM
2L

)K (Kε)

) (194)

≤
O

(
1√
ε

(
log

(
1
ε

)
ε

))
√

∑ j∈NUS
(θ us

j)2−O

(
1√
ε

(
log

(
1
ε

)
ε

)) (195)

where we have substituted the upper bound on Kexit from (7)

into K. Hence for
√

∑ j∈NUS
(θ us

j)2 > O

(
1√
ε

(
log

(
1
ε

)
ε

))
we have that:

∥uK∥
(

1−O

(
1√
ε

(
log

(
1
ε

)
ε

)))
≤

∥∥∥∥∥K−1

∏
k=0

Aku0

∥∥∥∥∥≤
∥uK∥

(
1+O

(
1√
ε

(
log

(
1
ε

)
ε

)))
. (196)

Now Ak = ∑
i∈NS

cs
i (k)vivT

i + ∑
j∈NUS

cus
j (k)v jvT

j where vi and v j

are the eigenvectors corresponding to the stable and unstable
subspaces of ∇2 f (x∗) and for α = 1

L we have the bounds
1+ β

L −
εM
2L ≤ cus

j (k)≤ 2+ εM
2L and − εM

2L ≤ cs
i (k)≤ 1− β

L + εM
2L .

Therefore we also get the bound:

inf

∥∥∥∥∥K−1

∏
k=0

Aku0

∥∥∥∥∥≤
∥∥∥∥∥K−1

∏
k=0

(I−α∇
2 f (x∗))u0

∥∥∥∥∥≤ sup

∥∥∥∥∥K−1

∏
k=0

Aku0

∥∥∥∥∥ .
(197)

Combining this with (196) we get:

∥uK∥
(

1−O

(
1√
ε

(
log

(
1
ε

)
ε

)))
≤

∥∥∥∥∥K−1

∏
k=0

(I−α∇
2 f (x∗))u0

∥∥∥∥∥
≤ ∥uK∥

(
1+O

(
1√
ε

(
log

(
1
ε

)
ε

)))
. (198)

Proof of Lemma 2

For values of ε sufficiently small and
√

∑ j∈NUS
(θ us

j)2 >

O

(
1√
ε

(
log

(
1
ε

)
ε

))
, using (198) we have the following

approximation:∥∥∏
K−1
k=0 (I−α∇2 f (x∗))u0

∥∥(
1+O

(
1√
ε

(
log

(
1
ε

)
ε

))) ≤ ∥uK∥ ≤

∥∥∏
K−1
k=0 (I−α∇2 f (x∗))u0

∥∥(
1−O

(
1√
ε

(
log

(
1
ε

)
ε

)))
(199)

=⇒ ∥uK∥ ≈

∥∥∥∥∥K−1

∏
k=0

(I−α∇
2 f (x∗))u0

∥∥∥∥∥=
∥∥(I−α∇

2 f (x∗))Ku0
∥∥

(200)

where O

(
1√
ε

(
log

(
1
ε

)
ε

)))
term is neglected w.r.t. 1 for

sufficiently small ε and K < Kexit ⪅ O(log(ε−1)). Now, if u0
has a projection value close to 0 on the unstable subspace
of ∇2 f (x∗), then ∥uK∥ first approximately decreases expo-
nentially such that xK reaches some xcritical and from there
onward it approximately increases exponentially until saddle
region is escaped. For the case when xcritical → x∗, we will
have ∥xcritical−x∗∥→ 0. The escape time for the ε–precision
trajectories from this region Bε ′(x∗) where ε ′= ∥xcritical−x∗∥
will be upper bounded by K < O(log(ε ′−1)) from (7). This
upper bound goes to infinity when ε ′→ 0 hence ε–precision
trajectories fail to escape the saddle neighborhood when

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

35

xcritical = x∗. It should also be noted that if for some K, uK = 0
or in other words xcritical = x∗, then for all J > K we have
uJ = 0 since ∇ f (xJ) = 0 and the gradient trajectory can never
escape the saddle region. ■

Proof of Lemma 3

Let {uK} be any gradient trajectory with linear exit
time that satisfies the condition

√
∑ j∈NUS

(θ us
j)2 >

O

(
1√
ε

(
log

(
1
ε

)
ε

))
. Now if this trajectory curves around

x∗ then the vectors u0 and uK will form an obtuse angle for
some finite values of K. Therefore in order to prove the first
part, it is sufficient to show that:

⟨uK ,u0⟩ ≥ 0

for any value of K such that ∥uK∥ < ε . Now, for
sufficiently small ε where ε is upper bounded by
Theorem 1, from (195) we have uK = ∏

K−1
k=0 Aku0 +

O

(
1√
ε

(
log

(
1
ε

)
ε2
))
≈ (I−α∇2 f (x∗))Ku0 where we used

the fact that ∏
K−1
k=0 Ak = (I − α∇2 f (x∗))K + O(Kε) and

dropped the term O

(
1√
ε

(
log

(
1
ε

)
ε2
))

for sufficiently small

ε . Using this approximate uK we get:

⟨uK ,u0⟩ ≈ uT
0 (I−α∇

2 f (x∗))Ku0 ≥ 0 (201)

where the last inequality comes from the fact that (I −
α∇2 f (x∗))K will be a positive semi-definite matrix for α ≤ 1

L .
Therefore, vectors u0 and uK will form an acute angle between
them for all values of K such that ∥uK∥< ε and K ≤ Kexit =
O(log(ε−1)). Hence, the trajectory can never curve around x∗.

The proof for second part follows the same method. Let
us take any two points on the gradient trajectory denoted by
vectors uK1 and uK2 w.r.t. stationary point x∗. Then we have
the following inner product:

⟨uK1 ,uK2⟩ ≈ ⟨u0,(I−α∇
2 f (x∗))K1+K2u0⟩ ≥ 0 (202)

for K1 +K2 ≤ O(log(ε−1)). Now with ⟨uK1 ,uK2⟩⪆ 0 for any
K1,K2 where K1 + K2 ≤ O(log(ε−1)) such that ∥uK1∥ < ε

and ∥uK2∥ < ε , the angle between the vectors uK1 and uK2
can never approximately exceed π

2 . Hence the entire gradient
descent trajectory approximately lies inside some orthant of
the ball Bε(x∗). ■

Proof of Lemma 4

Let us denote the exit point on the ball Bε(x∗) by
xK+1 where ∥xK−x∗∥ ≤ ε and ∥xK+1−x∗∥ > ε . Also,
∥xK+1−x∗∥ ≤ ∥xK−x∗∥+ 1

L ∥∇ f (xk)∥ ≤ 2∥xK−x∗∥ which

implies ∥xK−x∗∥≥ ∥xK+1−x∗∥
2 ≥ ε

2 . Now applying the Hessian
Lipschitz condition around x∗ for xK , we get the following:

f (xK)≤ f (x∗)+ ⟨∇ f (x∗),xK−x∗⟩+
1
2
⟨(xK−x∗),∇2 f (x∗)(xK−x∗)⟩+ M

6
∥xK−x∗∥3 (203)

≤ f (x∗)+
⟨xK−x∗,∇ f (xK)⟩

2
+

1
2

〈
(xK−x∗),

(
∇

2 f (x∗)−∇
2 f (x∗)−O(ε)

)
(xK−x∗)

〉
+

M
6
∥xK−x∗∥3 (204)

≤ f (x∗)+
⟨xK−x∗,∇ f (xK)⟩

2
+O(ε3) (205)

where we have used ∇ f (xK) =

(
∇2 f (x∗)+O(ε)

)
(xK − x∗)

from Lemma 2 and substituted ∥xK−x∗∥ ≤ ε in the last step.
Let us first analyze the term ⟨xK−x∗,∇ f (xK)⟩

2 . Now,
∥xK−x∗∥< ∥xK+1−x∗∥ since the gradient descent trajectory
is exiting the ball Bε(x∗) at iteration K+1 and therefore it has
expansive dynamics at this iteration13. Squaring the condition
∥xK−x∗∥< ∥xK+1−x∗∥ yields:

∥xK−x∗∥2 < ∥xK+1−x∗∥2 (206)

∥xK−x∗∥2 < ∥xK−x∗∥2 +∥α∇ f (xK)∥2

−2α⟨xK−x∗,∇ f (xK)⟩ (207)

⟨xK−x∗,∇ f (xK)⟩<
α

2
∥∇ f (xK)∥2 . (208)

Next, by the gradient Lipschitz continuity for xK and xK+1,
we have that:

f (xK+1)≤ f (xK)+ ⟨∇ f (xK),xK+1−xK⟩+
L
2
∥xK+1−xK∥2

(209)

f (xK+1)≤ f (xK)−α ∥∇ f (xK)∥2 +
L
2
∥α∇ f (xK)∥2 (210)

f (xK+1)+
1

2L
∥∇ f (xK)∥2 ≤ f (xK) (211)

where we substituted α = 1
L . Combining (211) with (205)

followed by substitution of (208) yields:

f (xK+1)+
1

2L
∥∇ f (xK)∥2 ≤ f (xK)≤ f (x∗)+

⟨xK−x∗,∇ f (xK)⟩
2

+O(ε3) (212)

=⇒ f (xK+1)+
1

2L
∥∇ f (xK)∥2 ≤ f (x∗)+

α

4
∥∇ f (xK)∥2 +O(ε3)

(213)

=⇒ f (xK+1)≤ f (x∗)− 1
4L
∥∇ f (xK)∥2 +O(ε3). (214)

Next, using the bound ∥∇ f (xK)∥ ≥ β ∥xK−x∗∥ from (158) in
(214) and the fact that ∥xK−x∗∥ ≥ ε

2 we obtain:

f (xK+1)≤ f (x∗)− β 2

4L
∥xK−x∗∥2 +O(ε3)

≤ f (x∗)− β 2

16L
ε

2 +O(ε3) (215)

=⇒ f (xK+1)< f (x∗) (216)

13Exit at iteration K +1 implies ∥xK −x∗∥< ∥xK+1−x∗∥.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

36

for sufficiently small ε . ■

Proof of Lemma 5

Let us take any two points x1,x2 in the closed ball B̄ε(x∗).
Using gradient Lipschitz condition, we get the following
inequalities:

f (x1)≤ f (x∗)+ ⟨∇ f (x∗),x1−x∗⟩+ L
2
∥x1−x∗∥2 (217)

≤ f (x∗)+
L
2
∥x1−x∗∥2 (218)

and

f (x∗)≤ f (x2)−⟨∇ f (x∗),x2−x∗⟩+ L
2
∥x2−x∗∥2 (219)

≤ f (x2)+
L
2
∥x2−x∗∥2 (220)

Now adding (218) and (220) yields:

f (x1)− f (x2)≤
L
2
∥x2−x∗∥2 +

L
2
∥x1−x∗∥2 . (221)

Next, using the fact that ∥x2−x∗∥≤ ε , ∥x1−x∗∥≤ ε in (221),
we get the following upper bound:

f (x1)− f (x2)≤ Lε
2. (222)

Formally, this upper bound states that the function value gap
between any two points in the closed ball B̄ε(x∗) surface
cannot be more than Lε2. Also notice that the result in
(222) only depends on the gradient Lipschitz condition and
therefore will hold true for any ε . Next, we assume that our
gradient trajectory is currently exiting the ball Bε(x∗) at point
xK s.t. ∥xK−1−x∗∥ ≤ ε and ∥xK−x∗∥ > ε . Let us further
assume that K̂ iterations after the current iteration, the gradient
trajectory re-enters the ball Bε(x∗), i.e.,

∥∥xK+K̂−x∗
∥∥ ≤ ε

and
∥∥xK+K̂−1−x∗

∥∥ > ε . Using the update equation xk+1 =
xk−α∇ f (xk) for 0≪ α ≤ 1

L together with gradient Lipschitz
condition, we get:

f (xk+1)≤ f (xk)+ ⟨∇ f (xk),xk+1−xk⟩+
L
2
∥xk+1−xk∥2

(223)

=⇒ f (xk+1)≤ f (xk)−
αL
2

(
2
L
−α

)
∥∇ f (xk)∥2 (224)

Taking the telescopic sum for these inequalities from k = K
to k = K+ K̂−1 gives the following lower bound on f (xK)−
f (xK+K̂):

f (xK+K̂)≤ f (xK)−
αL
2

(
2
L
−α

)K+K̂−1

∑
k=K

∥∇ f (xk)∥2 (225)

αLβ 2

2

(
2
L
−α

)
K̂ε

2 <
αL
2

(
2
L
−α

)K+K̂−1

∑
k=K

∥∇ f (xk)∥2

≤ f (xK)− f (xK+K̂)≤ f (xK−1)− f (xK+K̂)
(226)

where f (xK) ≤ f (xK−1) from monotonicity of { f (xK)} and
we have substituted the lower bound

∥∇ f (xk)∥ ≥ β ∥xk−x∗∥ ≥ βε

from (158) since ∥xk−x∗∥ > ε for all K ≤ k ≤ K + K̂ − 1.
Combining (226) with (222) for xK−1,xK+K̂ ∈Bε(x∗) yields
the following condition on K̂:

αLβ 2

2

(
2
L
−α

)
K̂ε

2 < Lε
2 (227)

K̂ <
2

αβ 2

(
2
L −α

) . (228)

Now, for sake of simplicity we substitute α = 1
L

14. This yields
the following bound on K̂:

K̂ <
2

κ2 (229)

where κ = β

L . This inequality claims that if the gradient
trajectory re-enters the ball Bε(x∗), it has to do so in fewer
than 2

κ2 iterations. From here onward we will develop a proof
which contradicts this claim.

Let us first define some ξ > ε such that ξ = 2
2

κ2 ε(1+ b)
where κ = β

L , b= ∥xK−x∗∥
ε
−1 is a positive value and ξ is upper

bounded from theorem 3. Note that xK as defined earlier is the
exit point of the gradient trajectory, i.e., ∥xK−1−x∗∥ ≤ ε and
∥xK−x∗∥> ε . Now for any ε≪ 2−

2
κ2 we will have ξ =O(ε).

Therefore a gradient trajectory moving outwards from the ball
Bε(x∗) is also bound to move out from the ball Bξ (x∗) since
we have already proved this in Theorem 2 for trajectories with
expansive dynamics.

Under these conditions, let J represent the minimum number
of iterations required to exit the ball Bξ (x∗) for a trajectory
which is just exiting Bε(x∗) and is currently at the point xK
s.t. ∥xK−x∗∥> ε . To this end, we rewrite the update equation
of radial vector uk for any k ∈ {K,K +1, ...,K + J−1}:

uk+1 = uk +(xk+1−xk) = uk−α∇ f (xk) (230)

where we have that uk = xk−x∗. From the gradient Lipschitz
condition we have the following bound for any uk:

∥∇ f (xk)∥ ≤ L∥uk∥ (231)

where uk = xk − x∗. Applying norm to (230) followed by
triangle inequality and using the upper bound from (231)
yields:

∥uk+1∥= ∥uk +(xk+1−xk)∥ ≤ ∥uk∥+α ∥∇ f (xk)∥ ≤ 2∥uk∥
(232)

for α = 1
L . Applying this bound recursively from k = K to

k = K + J−1 and substituting ∥uK∥= ε(1+b), we have:

∥uK+J∥ ≤ 2J ∥uK∥= 2J
ε(1+b). (233)

Since J is the minimum number of iterations required to exit
the ξ radius ball for a trajectory which is just exiting the ε

ball, we can set 2Jε(1+b) = ξ . This yields:

2J
ε(1+b) = ξ = 2

2
κ2 ε(1+b) (234)

J =
2

κ2 . (235)

14It is to be noted that we can carry out a similar analysis for any other α

s.t. 0≪ α ≤ 1
L and still obtain the same inference.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

37

Now, the K̂ we defined as the time to re-enter the ball Bε(x∗)
should be definitely greater than J since any trajectory will
certainly take more than J iterations to traverse the shell
present in between the concentric ξ and ε radii balls.

K̂ > J =
2

κ2 . (236)

However, this inequality contradicts the claim that K̂ < 2
κ2

from (229) which completes our proof. ■

Proof of Lemma 6

Recall that from (221) and (222) in previous lemma, for
any x1,x2 ∈ B̄ξ (x∗) we have that:

f (x1)− f (x2)≤ L(ξ)2. (237)

Next, let K̂ be the minimum number of iterations in which the
gradient trajectory re-enters the ball Bξ (x∗). Then following
the same set of steps as in the previous lemma for obtaining
(225), we get:

f (xK+K̂)≤ f (xK)−
αL
2

(
2
L
−α

)K+K̂−1

∑
k=K

∥∇ f (xk)∥2

(238)

=⇒ αL3

4

(
2
L
−α

)
K̂(ξ)2 <

αL
2

(
2
L
−α

)K+K̂−1

∑
k=K

∥∇ f (xk)∥2

≤ f (xK)− f (xK+K̂)

≤ f (xK−1)− f (xK+K̂) (239)

where we substituted ∥∇ f (xk)∥ ≥ γ > 1√
2
Lξ and f (xK) ≤

f (xK−1) from monotonicity of { f (xk)}. Now if the trajectory
re-enters the ball Bξ (x∗) in K̂ iterations, then xK−1,xK+K̂ ∈
Bξ (x∗) and hence xK−1,xK+K̂ satisfy (237). Therefore com-
bining (239) with (237) yields the bound:

αL3

4

(
2
L
−α

)
K̂(ξ)2 < L(ξ)2 (240)

=⇒ K̂ <
4

αL2

(
2
L −α

) . (241)

Now for α = 1
L , we have that K̂ < 4. Therefore the gradient

trajectory has to re-enter the ball Bξ (x∗) in three or less
iterations. We now show that the gradient trajectory cannot
return in three or less iterations.

Let the current iterate for the gradient trajectory be x− such
that ∥x−−x∗∥< ξ and ∥x−x∗∥≥ ξ , i.e., the iterate x exits the
ball Bξ (x∗) where ξ is bounded from Theorem 3. Next, from
Theorem 2, the iterate x+ in the sequence {x−,x,x+} will also
have expansive dynamics, i.e., ∥x+−x∗∥> ∥x−x∗∥. Let x++

denote the next iterate in the sequence {x−,x,x+}. Now, if
the following condition:

⟨x++−x+,x+−x∗⟩ ≥ 0 (242)

is satisfied, then x++ ̸∈Bξ (x∗). To check this, let the condition
(242) be given and we have the contradiction x++ ∈Bξ (x∗),

i.e., ∥x++−x∗∥< ξ . Then we can write the following inequal-
ity:∥∥x++−x∗

∥∥2
< (ξ)2 (243)

=⇒
∥∥x++−x++x+−x∗

∥∥2
< (ξ)2 (244)

=⇒
∥∥x++−x+

∥∥2︸ ︷︷ ︸
>0

+
∥∥x+−x∗

∥∥2︸ ︷︷ ︸
≥(ξ)2

+2⟨x++−x+,x+−x∗⟩︸ ︷︷ ︸
≥0

< (ξ)2

(245)

which is not possible (left hand side is greater than right hand
side). Hence, x++ ̸∈ B̄ξ (x∗).

Now, we are left to prove (242) condition, i.e., ⟨x++ −
x+,x+ − x∗⟩ ≥ 0. Manipulating the left hand side of this
condition and using the substitutions x++−x+ =−α∇ f (x+),

x+ − x = −α∇ f (x) and ∇ f (x+) = ∇ f (x) +
(∫ 1

p=0 ∇2 f (x+

p(x+−x))d p
)
(x+−x), we obtain:

⟨x++−x+,x+−x∗⟩= ⟨−α∇ f (x+),x+−x∗⟩ (246)

=−α

〈
∇ f (x)+

(∫ 1

p=0
∇

2 f (x+ p(x+−x))d p
)
(x+−x),x+−x∗

〉
(247)

=−α

〈(
I−α

∫ 1

p=0
∇

2 f (x+ p(x+−x))d p
)

∇ f (x),x+−x∗
〉

(248)

=

〈
x+−x∗,

(
I−α

∫ 1

p=0
∇

2 f (x+ p(x+−x))d p
)
(−α∇ f (x))

〉
(249)

=

〈
x+−x∗,

(
I−α

∫ 1

p=0
∇

2 f (x+ p(x+−x))d p
)
(x+−x)

〉
(250)

where
(

I−α
∫ 1

p=0 ∇2 f (x+ p(x+−x))d p
)

is a positive semi-

definite matrix for α ≤ 1
L . Next, recall that from (183) in the

proof for theorem 3 for any tuple {x−,x,x+} generated by the
gradient descent method where x− ∈Bξ (x∗), we have that:

∥∥x+−x∗
∥∥≥ (

ρ̄(x−)
1+Mξ

)
∥x−x∗∥> ∥x−x∗∥ (251)

for ρ̄(x−)
1+Mξ

> 1.
Using this fact that ∥x+−x∗∥ > ∥x−x∗∥ followed by the

cosine identity of triangles we get:

⟨x+−x∗,x+−x⟩
∥x+−x∗∥∥x+−x∥

=
∥x+−x∥2

+∥x+−x∗∥2−∥x−x∗∥2

2∥x+−x∗∥∥x+−x∥
> 0 (252)

=⇒ ⟨x+−x∗,x+−x⟩> 0. (253)

For any vectors a and b and any positive semi-definite
matrix A, if ⟨a,b⟩ ≥ 0 then ⟨a,Ab⟩ ≥ 0. Using this property

for A =

(
I−α

∫ 1
p=0 ∇2 f (x+ p(x+−x))d p

)
, b = x+−x and

a= x+−x∗, we get that
〈

x+−x∗,
(

I−α
∫ 1

p=0 ∇2 f (x+ p(x+−

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

38

x))d p
)
(x+−x)

〉
≥ 0 since ⟨x+−x,x+−x∗⟩ ≥ 0. Hence from

(250), we have that:

⟨x++−x+,x+−x∗⟩=〈
x+−x∗,

(
I−α

∫ 1

p=0
∇

2 f (x+ p(x+−x))d p
)
(x+−x)

〉
≥ 0

(254)

which completes the proof. ■

APPENDIX F

Proof of Lemma 7

To establish the linear exit time of the proposed algorithm
from any strict saddle neighborhood it is sufficient to prove the
curvature condition (refer Step 15 from Algorithm 1). Now,
for ∥∇ f (x)∥ ≤ ε and Ξ = 0, we have that:

∇ f (x) =
(

∇ f (x∗)+
∫ p=1

p=0
∇

2 f (x∗+ p(x−x∗))d p
)
(x−x∗).

(255)

With ε very small and upper bounded by Theorem 1, us-
ing Lemma 3.3 from [10] we can approximate the Hessian
∇2 f (x∗ + p(x− x∗)) = ∇2 f (x∗) +O(ε) ≈ ∇2 f (x∗) for any
x ∈ Bε(x∗). This is a valid approximation since we are no
longer solving for rates of convergence and just need to
approximately determine the unstable projection value. In
particular our goal is to determine whether the estimated

unstable projection value is of the order Θ

(
1

log(ε−1)

)
from

Theorem 1 so that the linear exit time condition can be
checked for the given trajectory. Now Θ

(
1

log(ε−1)

)
term will

dominate all O(ε) terms for any sufficiently small ε and so
dropping these O(ε) terms now will still yield the same result.
Therefore, the equation (255) for x = xk is approximated as:

∇ f (xk) =

(
∇

2 f (x∗)+O(ε)

)
(xk−x∗)≈ ∇

2 f (x∗)(xk−x∗)

(256)

where ∇ f (x∗) is zero vector. With y0 = xk, y1 = xk+1 and the
approximation (256), we have the following terms:

y1 = xk+1 = xk−α∇ f (xk) (257)

= xk−α

(
∇

2 f (x∗)+O(ε)

)
(xk−x∗) (258)

≈ xk−α∇
2 f (x∗)(xk−x∗), (259)

∇ f (y1) = ∇ f (xk+1) =

(
∇

2 f (x∗)+O(ε)

)
(xk+1−x∗) (260)

=

(
∇

2 f (x∗)+O(ε)

)(
xk−α

(
∇

2 f (x∗)+O(ε)

)
(xk−x∗)−x∗

)
(261)

≈ ∇
2 f (x∗)

(
xk−α∇

2 f (x∗)(xk−x∗)−x∗
)
. (262)

Note that in the second last step we used the substitution from
(258). Now, we define the terms V1,V2 using y0,y1:

V1 =⟨y1−y0,y1−y0⟩ ≈ (xk−x∗)T (α∇
2 f (x∗))2(xk−x∗)

(263)
V2 =α⟨y1−y0,∇ f (y1)−∇ f (y0)⟩

≈ (xk−x∗)T (α∇
2 f (x∗))3(xk−x∗) (264)

Next we use the following substitution:

xk−x∗ = ∥xk−x∗∥
(

∑
i∈NS

θ
s
i vi(0)+ ∑

j∈NUS

θ
us
j v j(0)

)
(265)

where we have that ∥xk−x∗∥θ s
i = ⟨(xk − x∗),vi(0)⟩,

∥xk−x∗∥θ us
j = ⟨(xk − x∗),v j(0)⟩ and vi(0),v j(0) are the

eigenvectors of the scaled Hessian α∇2 f (x∗). On further
simplifying V1,V2 using (265) we get:

V1 ≈∥xk−x∗∥2
(

∑
i∈NS

(λ s
i)

2(θ s
i)

2 + ∑
j∈NUS

(λ us
j)2(θ us

j)2
)
(266)

V2 ≈∥xk−x∗∥2
(

∑
i∈NS

(λ s
i)

3(θ s
i)

2 + ∑
j∈NUS

(λ us
j)3(θ us

j)2
)
(267)

where λ s
i and λ us

j are the eigenvalues of stable subspace ES

and unstable subspace EUS of the scaled Hessian α∇2 f (x∗)
respectively. These eigenvalues are bounded by :

β

L
≤ λ

s
i ≤ 1 (268)

−1≤ λ
us
j ≤−

β

L
. (269)

Evaluating V1 − V2 and using the fact that ∥xk−x∗∥ ≤
1
β
∥∇ f (xk)∥≤ Lε

β
from (158), we get the following expression:

V1−V2 ⪅
ε2

κ2

(
∑

i∈NS

((λ s
i)

2− (λ s
i)

3)(θ s
i)

2+

∑
j∈NUS

((λ us
j)2− (λ us

j)3)(θ us
j)2

)
(270)

where κ = β

L . Now, the function h(y) = y2 − y3 attains a
maximum value of 4

27 in the interval y∈ (0,1] and a maximum
value of 2 in the interval y ∈ [−1,0). Substituting y = λ s

i in
the interval y ∈ (0,1] and y = λ us

j in the interval y ∈ [−1,0),
the upper bound for (270) becomes:

V1−V2 ⪅
ε2

κ2

(
∑

i∈NS

4
27

(θ s
i)

2 + ∑
j∈NUS

2(θ us
j)2

)
(271)

V1−V2 ⪅
ε2

κ2

(
4

27
− 4

27

(
∑

j∈NUS

(θ us
j)2

)
+2 ∑

j∈NUS

(θ us
j)2

)
(272)

V1−V2 ⪅
ε2

κ2

(
4

27
+

50
27

(
∑

j∈NUS

(θ us
j)2

))
(273)

∑
j∈NUS

(θ us
j)2 ⪆

27(V1−V2)κ
2

ε2 −4

50
. (274)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

39

The right-hand side in (274) can be considered as as the
lower bound estimate for ∑ j∈NUS

(θ us
j)2. Now, the sufficient

condition for escaping the saddle neighborhood comes from
the minimum unstable subspace projection value in (74).
Let Pmin(ε) be a function of ε equal to the lower bound

from (74) where Pmin(ε) = Θ

(
1

log(ε−1)

)
, then with the con-

dition
27(V1−V2)κ

2

ε2 −4
50 > Pmin(ε) and (274), we can guarantee

∑ j∈NUS
(θ us

j)2 ⪆ Pmin(ε) which implies that we have a suf-
ficient unstable projection value to escape saddle region in
almost linear time.

Recall that while developing the condition (274) we had
dropped O(ε) term in (256) to get approximate Hessian.
However if we had retained that O(ε) term, the condition

(274) would be ∑ j∈NUS
(θ us

j)2 >
27(V1−V2)κ

2

ε2 −4
50 +O(ε) and then

instead of checking
27(V1−V2)κ

2

ε2 −4
50 > Pmin(ε) we will have to

check the inequality
27(V1−V2)κ

2

ε2 −4
50 > Pmin(ε)+O(ε). But since

O(ε) term is insignificant w.r.t. Pmin(ε) = Θ

(
1

log(ε−1)

)
, we do

not loose anything with dropping O(ε) term in the first step.
Notice that the curvature condition from the step 15 in

Algorithm 1 checks the inequality
27(V1−V2)κ

2

ε2 −4
50 < Pmin(ε)

which if true could imply ∑ j∈NUS
(θ us

j)2 < Pmin(ε). Then the
gradient trajectory may not necessarily have linear exit time
from saddle neighborhood. Hence, we solve the eigenvector
problem given by:

xk+1 ∈ argmin
∥x−xk∥=

∥∇ f (xk)∥
β

(
1
2
(x−xk)

T H(x−xk)

)
(275)

which gives a solution with sufficient unstable projection.
Notice that a possible solution to the unconstrained problem:

xk+1 ∈ argmin
x

(
1
2
(x−xk)

T H(x−xk)

)
(276)

can be given by xk+1− xk = b∥xk−x∗∥eus
j where eus

j is any
eigenvector of the scaled Hessian H = α∇2 f (xk)≈ α∇2 f (x∗)
corresponding to its least eigenvalue and b is any scalar.
Although any vector in the subspace formed by the eigenvec-
tors corresponding to the minimum eigenvalue can be used
instead of eus

j , for sake of simplicity of the proof, we use the
direction eus

j . Hence from the unconstrained eigenvector prob-
lem (276), we can write xk+1−x∗ = xk−x∗+b∥xk−x∗∥eus

j .

Using the substitution xk− x∗ = ∥xk−x∗∥
(

∑i∈NS
θ s

i vi(0)+

∑ j∈NUS
θ us

j v j(0)
)

as before from (265) we get:

xk+1−x∗ = ∥xk−x∗∥
(

∑
i∈NS

θ
s
i vi(0)+ ∑

j∈NUS

θ
us
j v j(0)

)
+b∥xk−x∗∥eus

j (277)

= ∥xk−x∗∥
(

∑
i∈NS

θ
s
i vi(0)+ ∑

j∈NUS

θ
us
j v j(0)

)

+b∥xk−x∗∥
(

vl(0)+O(ε)

)
(278)

= ∥xk−x∗∥
√

1+b2

(
∑

i∈NS

θ s
i√

1+b2
vi(0)

+ ∑
j∈NUS

θ us
j√

1+b2
v j(0)+

b√
1+b2

vl(0)
)
+O(ε2)

(279)

= ∥xk−x∗∥
√

1+b2

(
∑

i∈NS

θ̃
s
i vi(0)+ ∑

j∈NUS

θ̃
us
j v j(0)

)
+O(ε2). (280)

where we have ∑i∈NS
(θ̃ s

i)
2 + ∑ j∈NUS

(θ̃ us
j)2 = 1 for some

positive θ̃ s
i , θ̃

us
j . Notice that we used the eigenvector pertur-

bation bound eus
j = vl(0)+O(ε) in the second step and vl(0)

corresponds to the eigenvector for the smallest eigenvalue of
α∇2 f (x∗). Notice that l ∈NUS where l is the index of vl(0)
provided xk lies within some saddle neighborhood and not in a
local minimum neighborhood. If xk were in a local minimum
neighborhood, then the unstable subspace would have been the
null space. Finally, in the second last step we normalized by
dividing with

√
1+b2 because we require the condition:

∑
i∈NS

(
θ s

i√
1+b2

)2

+ ∑
j∈NUS

(
θ us

j√
1+b2

)2

+

(
b√

1+b2

)2

︸ ︷︷ ︸
U1

= 1

(281)

where we have that ∑i∈NS
(θ s

i)
2 + ∑ j∈NUS

(θ us
j)2 = 1. From

(279) and (280) using coefficient comparison, it can be
checked that θ s

i√
1+b2

= θ̃ s
i +O(ε2) for all i ∈NS. Using this

relation in (281) we get that U1 =∑ j∈NUS
(θ̃ us

j)2+O(ε2). Next,
dropping O(ε2) term15 from the right-hand side of (280), we
have:

xk+1−x∗ ≈ ∥xk−x∗∥
√

1+b2

(
∑

i∈NS

θ̃
s
i vi(0)+ ∑

j∈NUS

θ̃
us
j v j(0)

)
(282)

where ∑ j∈NUS
(θ̃ us

j)2 can be considered as the new un-
stable projection value of (xk+1 − x∗) and ∥xk+1−x∗∥ ≈
∥xk−x∗∥

√
1+b2. Now, we require that the future gradient

trajectory that starts from the point xk+1 escapes the ball
Bε̃(x∗) in linear time where ε̃ = ∥xk−x∗∥

√
1+b2. Therefore

we get that:

U1 ≈ ∑
j∈NUS

(θ̃ us
j)2 ≥ Pmin(ε̃) (283)

=⇒ ∑
j∈NUS

(
θ us

j√
1+b2

)2

+

(
b√

1+b2

)2

⪆ Pmin(ε̃) (284)

= Pmin(∥xk−x∗∥
√

1+b2)
(285)

15The O(ε2) term will be insignificant w.r.t. Pmin(ε̃) appearing in (283)

which is of the order Θ

(
1

log(ε̃−1)

)
from Theorem 1 due to the fact that

ε̃ > ε , the function Pmin(ε) = Θ

(
1

log(ε−1)

)
monotonically increases with ε

and so Pmin(ε̃)> Pmin(ε)> O(ε2).

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

40

> Pmin

(
∥∇ f (xk)∥

√
1+b2

L

)
(286)

where in the last step we used Pmin(∥xk−x∗∥
√

1+b2) >

Pmin

(
∥∇ f (xk)∥

√
1+b2

L

)
due to the fact that the function

Pmin(ε) = Θ

(
1

log(ε−1)

)
monotonically increases with ε from

(74) along with the property that ∥∇ f (xk)∥≤ L∥xk−x∗∥. Now
(286) will hold true whenever:(

b√
1+b2

)2

> Pmin

(
∥∇ f (xk)∥

√
1+b2

L

)
(287)

b >

√
Pmin

(
∥∇ f (xk)∥

√
1+b2

L

)
√

1−Pmin

(
∥∇ f (xk)∥

√
1+b2

L

) . (288)

It can be checked that (288) will hold true for any positive
b as long as it is bounded away from ε . Finally in the
substitution xk+1−xk = b∥xk−x∗∥eus

j , we can use the lower
bound ∥∇ f (xk)∥ ≥ β ∥xk−x∗∥ from (158) and the gradient
Lipschitz bound ∥∇ f (xk)∥ ≤ L∥xk−x∗∥ to get the range
∥∇ f (xk)∥
L∥xk−x∗∥ ≤ b≤ ∥∇ f (xk)∥

β∥xk−x∗∥ . Selecting the upper bound of b gives

xk+1−xk =
∥∇ f (xk)∥

β
eus

j provided β

L ≫ 0. This particular choice
of b is less conservative though it should be selected carefully
and the selection criterion may vary from one problem to
another. For the particular case of well-conditioned saddle
neighborhood, a large b and hence a large step size can be
afforded. Notice that β

L ≤ b ≤ L
β

and any b in this range

will satisfy (288) provided β

L ≫ 0. Since xk+1 is the desired
solution, taking norm on both sides of xk+1−xk =

∥∇ f (xk)∥
β

eus
j

gives the constraint ∥xk+1−xk∥ = ∥∇ f (xk)∥
β

in the Step 17 of
Algorithm 1.

Since evaluating the eigenvector eus
j will involve Hessian in-

version operations, it will be solved in polynomial time though
this step is invoked only once in the saddle neighborhood if re-
quired and hence does not add much computational complexity
per iteration16(only Θ(n2 logλ1/λ2

(ε−1)) complexity per saddle
point).

Recall that the entire algorithmic analysis was carried out
assuming there is just one eigenvector eus

j corresponding to
the smallest eigenvalue of the Hessian ∇2 f (x∗). However,
the same analysis can be done for the case of a subspace
corresponding to the smallest eigenvalue. The bounds on b
will still be the same however the steps involved are somewhat
tedious and lengthy hence purposefully left out from the proof.

For the case of a local minimum we will have
∑ j∈NUS

(θ us
j)2 = 0 since there is no unstable subspace. Sub-

stituting it in (274) yields:

4ε2

27κ2 ⪆V1−V2. (289)

16The step 17 can be solved easily using power iteration type method which
incurs a computation time of Θ(n2 logλ1/λ2

(ε−1)) (here λ1,λ2 are the top two
dominant eigenvalues of I−α∇2 f (xk) with λ1 > λ2 and ε is the desired
accuracy for power iteration).

Hence for 4ε2

27κ2 ⪅ V1−V2 we cannot have a local minimum
neighborhood. Hence if (289) holds, then the region can be
both a saddle neighborhood or a local minimum region. There-
fore, the Step 15 in Algorithm 1 also checks if 4ε2

27κ2 <V1−V2
so as to rule out the possibility of local minimum. If however
we have the inequality 4ε2

27κ2 > V1 − V2 then a secondary
condition λmin(H)< 0 ascertains it as a saddle neighborhood.
This completes the proof. ■

Proof of Lemma 8
It can be very easily established that f (xK+1)< f (xK) where

xK+1 comes from the Step 17 in Algorithm 1.
Since xK+1 is generated from Step 17 of Algorithm 1 we can

use the particular update xK+1− xK = ∥∇ f (xK)∥
β

eus
j (the more

general update 17 is avoided for sake of simplicity) where
eus

j is an eigenvector of ∇2 f (xK) belonging to its unstable
subspace and ⟨eus

j ,xK−x∗⟩⪅ Θ(ε√
log(ε−1)

) (this approximate

bound implies xK − x∗ does not have the required unstable
subspace projection value from Theorem 1). As a conse-
quence for ∥∇ f (xK)∥ = Θ(ε) we will have ⟨∇ f (xK),xK+1−
xK⟩ ⪅ Θ(ε2√

log(ε−1)
) from the following steps where we use

the substitutions ∇ f (xK) = (∇2 f (x∗) +O(ε))(xK − x∗) and
∇2 f (xK) = (∇2 f (x∗)+O(ε)) from Hessian Lipschitz condi-
tion.

⟨∇ f (xK),xK+1−xK⟩= ⟨∇ f (xK),
∥∇ f (xK)∥

β
eus

j ⟩ (290)

=
∥∇ f (xK)∥

β
⟨eus

j ,(∇
2 f (x∗)+O(ε))(xK−x∗)⟩ (291)

=
∥∇ f (xK)∥

β
⟨eus

j ,(∇
2 f (xK)+O(ε))(xK−x∗)⟩ (292)

=
∥∇ f (xK)∥

β
⟨λ us

j eus
j ,(xK−x∗)⟩+O(ε3)⪅ Θ(

ε2√
log(ε−1)

)

(293)

where ∇2 f (xK)eus
j = λ us

j eus
j and Θ(ε2√

log(ε−1)
)> O(ε3).

Finally using Hessian Lipschitz condition for xK+1 about
xK along with (293) we get:

f (xK+1)≤ f (xK)+ ⟨∇ f (xK),xK+1−xK⟩+
1
2
⟨(xK+1−xK),∇

2 f (xK)(xK+1−xK)⟩︸ ︷︷ ︸
<0

+
M
6
∥xK+1−xK∥3︸ ︷︷ ︸

Θ(ε3)

(294)

≤ f (xK)+Θ(
ε2√

log(ε−1)
)+
∥∇ f (xK)∥2

2β 2 ⟨eus
j ,∇

2 f (xK)eus
j ⟩︸ ︷︷ ︸

<−β

+Θ(ε3) (295)

≤ f (xK)+Θ(
ε2√

log(ε−1)
)−Θ(∥∇ f (x)∥2)+Θ(ε3)

(296)

≤ f (xK)+Θ(
ε2√

log(ε−1)
)−Θ(ε2)+Θ(ε3)

= f (xK)+Θ(
ε2√

log(ε−1)
)−Θ(ε2) (297)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

41

where we used the facts that ∥xK+1−xK∥ = Θ(ε),
∥∇ f (xK)∥ = Θ(ε), ⟨eus

j ,∇
2 f (xK)eus

j ⟩ = λ us
j < −β and

1
2 ⟨(xK+1 − xK),∇

2 f (xK)(xK+1 − xK)⟩ < 0 from the Step 17
of Algorithm 1. Now for sufficiently small ε , the term

ε2√
log(ε−1)

→ 0 much faster than ε2 goes to 0. Hence for

sufficiently small ε we will have f (xK+1) < f (xK). For all
other iterations when gradient descent update is used, the
sequence { f (xk)} decreases monotonically. ■

APPENDIX G
ASYMPTOTIC CONVERGENCE

Proof of Lemma 9

Let {xk} be the sequence generated by Algorithm 1. Then
by Lemma 7 this sequence exits the ε neighborhood of any
strict saddle point x∗ of a locally analytic Morse function in
approximately linear time where ε is bounded from Theorem
1. Further, ε can be chosen in a way such that if the iterate
xk exits the ball Bε(x∗) at some k = K then the trajectory of
{xk} cannot return to this neighborhood Bε(x∗) for any k >K.
Such a choice of ε is guaranteed from Lemma 5. Hence the
sequence {xk} cannot converge to the strict saddle point x∗
which completes the proof of the first part of the lemma.

For the second part notice that if any subsequence {xmk}
of the sequence {xk} converges to x∗ then x∗ ∈ {xmk} i.o. or
equivalently x∗ ∈{xk} i.o. which implies x∗ is an accumulation
point of the sequence {xk}. Since the mapping id− α∇ f
is continuous where id is the identity (matrix) map, the
set of accumulation points for the sequence generated by
the gradient descent update xk+1 = xk − α∇ f (xk) will be
connected (Lemma 21). Next, the set of accumulation points
of the sequence {xk} generated by the gradient descent update
xk+1 = xk−α∇ f (xk) will be the critical points of f (·) since the
critical points of f (·) are the only fixed points of the mapping
id− α∇ f . Since the second order step 17 in Algorithm 1
cannot generate fixed points of the sequence {xk}, it suffices
to only consider the gradient descent step. Since f (·) is Morse,
it has isolated critical points and so the accumulation points
of the sequence {xk} generated by the gradient descent update
xk+1 = xk − α∇ f (xk) will be disconnected. Therefore the
sequence generated by the update xk+1 = xk−α∇ f (xk) can
have only a single isolated accumulation point since the only
connected subsets of a set with isolated points are singletons.
Next any sequence converges if and only if it has a unique
limit/ accumulation point. Since x∗ is an accumulation point
of the sequence {xk} and also a critical point of f (·), it
will be the only isolated accumulation point of the sequence
{xk} due to the fact that in the sequence {xk} second order
step in invoked only once in ε neighborhood of x∗ and from
there onward gradient descent is used for all k. Hence we get
xk→ x∗, a contradiction to first part of this lemma. Therefore
no subsequence {xmk} of the sequence {xk} can converge to
the strict saddle point x∗ which completes the proof. ■

Proof of Lemma 10

The sequence { f (xk)} decreases monotonically from
Lemma 8. Since f is coercive i.e. lim∥x∥→∞ f (x) = ∞ and f is

continuous (and hence lower semi-continuous), we will have
f (x)≥ infx f (x)>−∞ i.e. the infimum of the function values
exists [55]. Then by the monotone convergence theorem,
limk→∞ f (xk) exists and is finite. Since f is coercive and
continuous, its sublevel sets given by {x | f (x) ≤ b} for any
b < ∞ are compact. Since limk→∞ f (xk) exists and is finite,
by the monotonicity of { f (xk)} it will belong to the compact
sublevel set {x | f (x)≤ f (x0)}, which completes the proof. ■

Proof of Lemma 11

Let x0 be the initialization of Algorithm 1, then by the
previous lemma the sequence { f (xk)} converges over the
compact sublevel set {x | f (x)≤ f (x0)}. Combining this fact
and the monotonicity of the sequence { f (xk)} we have that
xk ∈ {x | f (x)≤ f (x0)} for all k. Since a Morse function on a
compact manifold has finitely many critical points [42], the
compact sublevel set {x | f (x) ≤ f (x0)} can have at most
finitely many saddle points. ■

Proof of Theorem 5

In order to prove asymptotic convergence of the sequence
{xk} generated by Algorithm 1 to a critical point we only need
to show that the sequence {xk} satisfies all the conditions
from Theorem 4. First, from Lemma 11 all points of the
sequence {xk} are contained in a compact set D ⊂ X where
D = {x | f (x) ≤ f (x0)} and X = Rn. Next, the continuous
function Z = f satisfies the strict monotonicity property where
{ f (xk)} is a strictly decreasing sequence provided xk ̸∈ S and
the solution set S ⊂ D is the set of critical points of f with
f (xk) = f (xk+1) for xk ∈ S.

Finally we are left to show that the mapping A where xk+1 =
A(xk) is closed outside S. It is easy to check that the mapping
A from Algorithm 1 is compact when A := id−α∇ f . Notice
that for the gradient descent update, the map A := id−α∇ f is
continuous due to f ∈ C 2. Since xk ∈D = {x | f (x)≤ f (x0)}
for all k, the map A := id−α∇ f takes D to itself, i.e. A : D 7→
D where D is compact and Hausdorff 17. Then by the closed
map lemma (Lemma A.52 in [56]), A := id−α∇ f is a closed
map in D and hence closed in D\S.

From the second-order step in Algorithm 1, xk+1 ∈
argmin

∥x−xk∥=
∥∇ f (xk)∥

β

(
1
2 (x− xk)

T ∇2 f (xk)(x− xk)

)
= A(xk)

and it remains to show that this mapping is continuous.
The second-order step can be simplified as xk+1 ∈ xk −
∥∇ f (xk)∥

β
argmin∥x∥>0

xT ∇2 f (xk)x
∥x∥2

. Since f is Hessian Lipschitz,

the eigenvectors of ∇2 f (x) will vary continuously with x;
hence argmin∥x∥>0

xT ∇2 f (·)x
∥x∥2

is a continuous function and
∥∇ f (·)∥ is a continuous function by continuity of ∇ f (·) and
norm. Product of continuous functions is continuous therefore
the map A associated with the second order step is continuous.
As before the map A takes D to itself where D is compact and
Hausdorff. Then by the closed map lemma, for the second
order step, A is closed in D\S. Since {xk} ⊂ D, which is
compact, there exists a convergent subsequence {xmk} of {xk}

17A Hausdorff space is a topological space with a separation property: any
two distinct points can be separated by disjoint open sets.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

42

and from Theorem 4 we have limk→∞ xmk ∈ S⊂D where S is
the set of critical points of f .

Finally from Lemma 9, since {xmk} does not converge to
any strict saddle point, we have xmk → x∗, where x∗ is a
local minimum. The fact that f (·) has a local minimum holds
because f (·) is coercive, continuous and so has a global min-
imum and therefore has atleast one local minimum. Next, the
local minima of f (·) belong to the set of critical points of f (·)
because f (·) is C 2 smooth and hence C 1 smooth and we have
that local minima of any C 1 smooth function are its critical
points. Since x∗ ∈{xmk} i.o. hence x∗ ∈{xk} i.o. which implies
x∗ is an accumulation point of the sequence {xk}. Since the
mapping id− α∇ f is continuous, the set of accumulation
points for the sequence generated by the gradient descent
update xk+1 = xk−α∇ f (xk) will be connected (Lemma 21).
Next, the set of accumulation points of the sequence {xk}
generated by the gradient descent update xk+1 = xk−α∇ f (xk)
will be the critical points of f (·) since the critical points
of f (·) are the only fixed points of the mapping id−α∇ f .
Since the second order step 17 in Algorithm 1 cannot generate
fixed points of the sequence {xk}, it suffices to only consider
the gradient descent step. Moreover the sequence {xk} can
encounter at most finitely many saddle point neighborhoods
from Lemma 11 where each such ε saddle neighborhood is
visited only once by Lemma 5. Since the second order step 17
in Algorithm 1 is only invoked once at worst in every ε saddle
neighborhood, these second order steps can be at most finite
in number implying that the sequence {xk} eventually follows
the gradient descent update. Therefore working only with the
set of accumulation points for the sequence generated by the
gradient descent update xk+1 = xk−α∇ f (xk) is justified.

Since f (·) is Morse, it has isolated critical points and so
the accumulation points of the sequence {xk} generated by
the gradient descent update xk+1 = xk − α∇ f (xk) will be
disconnected. Therefore the sequence {xk} can have only a
single isolated accumulation point since the only connected
subsets of a set with isolated points are singletons. Next,
any sequence converges if and only if it has a unique limit/
accumulation point. Since x∗ is an accumulation point of the
sequence {xk} and also a critical point of f (·), it will be the
only isolated accumulation point of the sequence {xk} due to
the fact that in the sequence {xk} second order step in invoked
only once in ε neighborhood of x∗ and from there onward
gradient descent is used for all k. Hence we get xk→ x∗ which
completes the proof. ■

Lemma 21. The set of accumulation points of any sequence
{xk} in some compact metric space X generated from the
relation xk+1 = N(xk) is connected, provided the mapping N
is continuous in X.

Proof. Let A be the set of accumulation points of {xk} and
suppose A is not connected. We know that the set of all
subsequential limits of a sequence in a metric space is closed
[57]. Hence A is disconnected and closed and so is separated
by closed compact sets C and D. Hence there exits an ε > 0
such that for all x ∈C and y ∈D we have d(x,y)> 2ε where
d(·, ·) is the metric.
Let WC be the union of all the open ε-balls about elements of

C and define WD similarly. By the definition of accumulation
point, {xk} is frequently in WC and frequently in WD. Suppose
for the sake of contradiction that there exists x ∈WC ∩WD.
Then there must be p ∈ C and q ∈ D such that d(x,p) < ε

and d(x,q) < ε . By the triangle inequality, d(q,p) < 2ε , a
contradiction. Thus we conclude that WC ∩WD = φ .
Since X is compact and N is continuous, N is uniformly
continuous by the Heine-Cantor theorem. Also for any x,y
in X and any ε > 0 we have that d(N(x),N(y))< ε whenever
d(x,y)< δ .
Thus there is a δ such that 0 < δ < ε such that for all x,y∈ X ,
d(x,y)< δ implies d(N(x),N(y))< ε .
Let U be the union of all the open δ -balls about elements
of A. Then {xk} is eventually in U : if not, then there is a
subsequence in X\U , which is closed, hence compact, so there
is an accumulation point in X\U , a contradiction.
Let K0 > K, where K is sufficiently large, be such that k≥ K0
implies xk ∈U . Let k > K0. Since δ < ε , xk ∈U ⊆WC ∪WD.
Assume without loss of generality that xk ∈ U ∩WC. By
the definition of U , there is an element a ∈ A such that
d(xk,a) < δ < ε . Since WC and WD are disjoint, xk /∈WD, so
a /∈D, so a∈C. By the choice of δ , we get d(N(xk),N(a))< ε

thus d(xk+1,a) < ε , so xk+1 ∈ WC. Here we used the fact
that N(a) = a since a ∈ A, A is the accumulation set for the
sequence {xk} and hence A is also the fixed point set for the
mapping N where xk+1 = N(xk).
Thusm we have shown that {xk} is eventually in WC and thus
is not infinitely often in WD, contradicting the fact that WD
is an open set containing elements of A. As this contradiction
arose from the assumption that A is disconnected, we conclude
that A is connected. ■

APPENDIX H
CONVERGENCE RATE TO A LOCAL MINIMUM (THEOREM 6

AND 7)
Proof of Theorem 6

For any x,y in B̄R0(x
∗
0) using (31) we have the following

condition:

f (x)− f (y)≤ Ldiam(U)∥x−y∥ ≤ 2Ldiam(U)R0. (298)

Next, let the trajectory re-enter the ball BR0(x
∗
0) after J

iterations and the current iteration index be K where we have
that xK ,xK+J belong to B̄R0(x

∗
0) whereas xK+J−1 ̸∈ B̄R0(x

∗
0).

Using gradient Lipschitz continuity on xk and xk+1 we get:

f (xk+1)− f (xk)≤ ⟨∇ f (xk),xk+1−xk⟩+
L
2
∥xk+1−xk∥2

(299)
K+J−1

∑
k=K

(
⟨∇ f (xk),xk−xk+1⟩−

L
2
∥xk+1−xk∥2

)
≤

K+J−1

∑
k=K

(
f (xk)− f (xk+1)

)
(300)

K+J−1

∑
k=K

(
⟨∇ f (xk),xk−xk+1⟩−

L
2
∥xk+1−xk∥2

)
≤

f (xK)− f (xK+J)≤ 2Ldiam(U)R0
(301)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

43

where in the last step we used (298). Now from Algorithm 1
let {kl} be the subsequence of I where I = {K, . . . ,K+J−
1} for which we have the update xk+1 = xk−α∇ f (xk) and
I \{kl} be the subsequence for which we have xk+1− xk =
∥∇ f (xk)∥

β
eus

j (this update is a particular case of the Step 17
from Algorithm 1)18. Further let {kl j} be the subsequence of
{kl} where ∥∇ f (xk)∥ > γ and let rk = ⟨∇ f (xk),xk− xk+1⟩−
L
2 ∥xk+1−xk∥2. Now the left-hand side of (301) can be written
as:

∑
k∈I

rk = ∑
k∈{kl j }

rk + ∑
k∈{kl}\{kl j }

rk + ∑
k∈I \{kl}

rk (302)

∑
k∈I

rk = ∑
k∈{kl j }

(
1
α
⟨xk−xk+1,xk−xk+1⟩−

L
2
∥xk+1−xk∥2

)

+ ∑
k∈{kl}\{kl j }

1
2L
∥∇ f (xk)∥2

+ ∑
k∈I \{kl}

(
⟨∇ f (xk),

∥∇ f (xk)∥
β

eus
j ⟩−

L
2

∥∥∥∥∥∇ f (xk)∥
β

eus
j

∥∥∥∥2)
(303)

∑
k∈I

rk = ∑
k∈{kl j }

1
2
∥∇ f (xk)∥∥xk+1−xk∥

+ ∑
k∈{kl}\{kl j }

1
2L
∥∇ f (xk)∥2

+ ∑
k∈I \{kl}

(
⟨∇ f (xk),

∥∇ f (xk)∥
β

eus
j ⟩−

L
2β 2 ∥∇ f (xk)∥2

)
(304)

∑
k∈I

rk >
γ

2 ∑
k∈{kl j }

∥xk+1−xk∥+ ∑
k∈{kl}\{kl j }

1
2L
∥∇ f (xk)∥2

− ∑
k∈I \{kl}

(
1
β
+

L
2β 2

)
∥∇ f (xk)∥2 .

(305)

Substituting (305) into (301) yields:

γ

2 ∑
k∈{kl j }

∥xk+1−xk∥+ ∑
k∈{kl}\{kl j }

1
2L
∥∇ f (xk)∥2

− ∑
k∈I \{kl}

(
1
β
+

L
2β 2

)
∥∇ f (xk)∥2 ≤ 2Ldiam(U)R0

(306)
γ

2 ∑
k∈{kl j }

∥xk+1−xk∥− ∑
k∈I \{kl}

(
1
β
+

L
2β 2

)
∥∇ f (xk)∥2 ≤

2Ldiam(U)R0
(307)

γ

2 ∑
k∈{kl j }

∥xk+1−xk∥− ∑
k∈I \{kl}

(
1
β
+

L
2β 2

)
L2

ε
2 ≤

2Ldiam(U)R0
(308)

18The more general update Step 17 from Algorithm 1 will also yield the
same bound after taking norm but is not used here in the interest of simplifying
analysis

where in the last step we used the fact that ∥∇ f (xk)∥ ≤ Lε

for k ∈ I \{kl}. Also note that for all k ∈ I \{kl} we will
have xk ∈

⋃
x∗i ∈S∗Bε(x∗i). Similarly for all k ∈ I \{kl j} we

will have xk,xk+1 in the region
⋃

x∗i ∈S∗Bξ (x∗i) along with
Bξ (x∗r)∩Bξ (x∗s) = φ for any x∗r ,x∗s in S∗.
Now adding γ

2 ∑k∈I \{kl j }
∥xk+1−xk∥ to both sides of (308)

we get:
γ

2 ∑
k∈I \{kl j }

∥xk+1−xk∥+
γ

2 ∑
k∈{kl j }

∥xk+1−xk∥ ≤ 2Ldiam(U)R0

+ ∑
k∈I \{kl}

(
1
β
+

L
2β 2

)
L2

ε
2 +

γ

2 ∑
k∈I \{kl j }

∥xk+1−xk∥ (309)

γ

2 ∑
k∈I
∥xk+1−xk∥ ≤ 2Ldiam(U)R0 + ∑

k∈I \{kl}

(
1
β
+

L
2β 2

)
L2

ε
2

+
γ

2 ∑
k∈I \{kl j }

∥xk+1−xk∥ (310)

γ

2 ∑
k∈I
∥xk+1−xk∥ ≤ 2Ldiam(U)R0 + ∑

k∈I \{kl}

(
1
β
+

L
2β 2

)
L2

ε
2

+ γ ∑
k∈I \{kl j }

ξ (311)

where in the last step we used the fact that ∥(xk+1−xk)∥≤ 2ξ

since xk,xk+1 lie inside some ball Bξ (x∗i) for k ∈I \{kl j}. If
the trajectory {xk} encounters N such Bξ (x∗i) balls then (311)
can be further simplified as:

γ

2 ∑
k∈I
∥xk+1−xk∥ ≤ 2Ldiam(U)R0

+N
(

1
β
+

L
2β 2

)
L2

ε
2 + γN(Kexit +Kshell)ξ

(312)

where exit time from Bε(x∗) ball is Kexit from Theorem 3.2 of
[10], exit time from Bξ (x∗) ball is Kexit +Kshell after adding
results from Theorem 3 and Theorem 3.2 of [10], and we have
that ∑k∈I \{kl} ≤ N, ∑k∈I \{kl j }

≤ N(Kexit +Kshell).
Next we set K = 0 in the subsequence I where I =
{K, . . . ,K + J − 1} so that x0 ∈ Bξ (x∗0). In that case
∑k∈I ∥xk+1−xk∥ is the total path length of the trajec-
tory inside the ball BRω

(x∗0) where we have that Rω =
maxk∈I

∥∥xk−x∗0
∥∥ and

∥∥xJ−x∗0
∥∥≤R0. Hence, for some Kω =

argmaxk∈I
∥∥xk−x∗0

∥∥ we will have the condition:

∑
k∈I
∥xk+1−xk∥=

Kω−1

∑
k=0
∥xk+1−xk∥+

J

∑
k=Kω

∥xk+1−xk∥

(313)

≥

∥∥∥∥∥Kω−1

∑
k=0

(xk+1−xk)

∥∥∥∥∥+
∥∥∥∥∥ J

∑
k=Kω

(xk+1−xk)

∥∥∥∥∥
(314)

≥ ∥xKω
−x0∥+∥xJ−xKω

∥ (315)
≥ ∥xKω

−x∗0∥︸ ︷︷ ︸
=Rω

−∥x0−x∗0∥+∥xKω
−x∗0∥−∥xJ−x∗0∥

(316)
≥ 2Rω −R0−ξ . (317)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

44

Substituting (317) into (312) yields:

γ

2
(2Rω −R0−ξ)≤γ

2 ∑
k∈I
∥xk+1−xk∥ ≤ 2Ldiam(U)R0

+N
(

1
β
+

L
2β 2

)
L2

ε
2 + γN(Kexit +Kshell)ξ .

(318)

Next, recall that the distance between any two stationary
points is greater than R. Hence, between two points x,y with
∥x−y∥≤D, there can be at most D

R stationary points along the
straight line joining x,y. Now if the points x,y are connected
by a path formed from the sequence of points {vk}P

k=1 then

there can be at most

P−1
∑

p=1
∥vk+1−vk∥

R stationary points on the path
connecting x,y. Using this result in (318) yields the following
bound on N:

γ

2
N ≤ γ ∑k∈I ∥xk+1−xk∥

2R

≤ 2Ldiam(U)
R0

R
+N

(
1
β
+

L
2β 2

)
L2ε2

R
+ γN(Kexit +Kshell)

ξ

R
(319)

N
(

γ

2
−
(

1
β
+

L
2β 2

)
L2ε2

R
− γ(Kexit +Kshell)

ξ

R

)
≤ 2Ldiam(U)

R0

R
(320)

N ≤
2Ldiam(U)R0

R(
γ

2 −
(

1
β
+ L

2β 2

)
L2ε2

R − γ(Kexit +Kshell)
ξ

R

) (321)

provided
(

γ

2 −
(

1
β
+ L

2β 2

)
L2ε2

R − γ(Kexit + Kshell)
ξ

R

)
> 0

which will hold true for ξ ≪ R.
Finally, combining (318) and (321) yields the result:

Rω ≤ R0 +2Ldiam(U)
R0

γ
+N0Kexit

(
1
β
+

L
2β 2

)
L2ε2

γ

+N0(Kexit +Kshell)ξ +
1
2
(R0 +ξ) (322)

where N0 =
2Ldiam(U)

R0
R(

γ

2−

(
1
β
+ L

2β2

)
L2ε2

R −γ(Kexit+Kshell)
ξ

R

) is the upper

bound on the number of stationary point neighborhoods en-
countered by the trajectory of {xk}. ■

Proof of Theorem 7

To obtain the total number of iterations in which the
sequence {xk} converges to some ε neighborhood of a local
minimum which is within a ζ neighborhood of x0, we first
obtain the number of iterations the sequence {xk} spends in
the region U \

⋃l
j=1 B̄ξ (x∗j), i.e., the region with ∥∇ f (x)∥> γ .

Let K1 be the number of such iterations and T be the number
of saddle neighborhoods encountered by the trajectory of {xk}.

In order to obtain K1 we make use of (308) by setting R0 = ζ

and K = 0 in the subsequence I where I = {K, . . . ,K+J−
1} so that x0 ∈Bξ (x∗0) to get:

γ

2 ∑
k∈{kl j }

∥xk+1−xk∥− ∑
k∈I \{kl}

(
1
β
+

L
2β 2

)
L2

ε
2 ≤

2Ldiam(U)ζ (323)

=⇒ γ

2 ∑
k∈{kl j }

∥α∇ f (xk)∥−T
(

1
β
+

L
2β 2

)
L2

ε
2 ≤

2Ldiam(U)ζ (324)

=⇒ K1 ≤ 4Ldiam(U)
ζ L
γ2 +2T

(
1
β
+

L
2β 2

)
ε2

γ2 (325)

where we used the fact that ∑k∈{kl j }
∥∇ f (xk)∥ > γK1 by

definition of the subsequence {kl j} in (308) and ∑k∈I \{kl} =

T < N0 =
2Ldiam(U) ζ

R(
γ

2−

(
1
β
+ L

2β2

)
L2ε2

R −γ(Kexit+Kshell)
ξ

R

) by Theorem 6

for R0 = ζ where T is the number of saddle neighborhoods
encountered by the trajectory of {xk}. Since we have a
bound on the number of saddle neighborhoods T and we also
know the travel time within each saddle neighborhood we are
only left to find the rate within the neighborhood of a local
minimum.

Local minimum neighborhood

When the trajectory {xk} is within a ξ neighborhood of
local minimum x∗optimal for some k = K, we have linear rate
of convergence to the neighborhood Bε(x∗optimal) from the
following steps:

xk+1−x∗optimal =(
I−α

∫ p=1

p=0
∇

2 f (x∗optimal + p(xk−x∗optimal))d p
)
(xk−x∗optimal)

(326)

=⇒
∥∥xk+1−x∗optimal

∥∥≤∥∥∥∥I−α

(∫ p=1

p=0
∇

2 f (x∗optimal + p(xk−x∗optimal))d p
)∥∥∥∥

2︸ ︷︷ ︸
=1− β

L

∥∥xk−x∗optimal

∥∥
(327)

=⇒
∥∥xK+Kconvex −x∗optimal

∥∥≤ (
1− β

L

)Kconvex ∥∥xK−x∗optimal

∥∥
(328)

=⇒ Kconvex ≤
log(

∥∥∥xK−x∗optimal

∥∥∥)− log(
∥∥∥xK+Kconvex −x∗optimal

∥∥∥)
log

(
1− β

L

)−1

≤
log

(
ξ

ε

)
log

(
1− β

L

)−1 (329)

where xK ∈ Bξ (x∗optimal) and
∥∥∥xK+Kconvex −x∗optimal

∥∥∥ = ε .
Note that in the second step we used the facts that α =

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

45

1
L , λmin(

∫
(.)) ≥

∫
λmin(.) and λmin

(
∇2 f (x∗optimal + p(xk −

x∗optimal))

)
= β for any x∗optimal + p(xk−x∗optimal) in the convex

neighborhood Bξ (x∗optimal) from Assumption A4.
Finally putting everything together and using Theorem

3.2 from [10], Theorem 3, travel time from (325) and the
convergence rate within a convex neighborhood from (329),
the total time for the trajectory of {xk} to converge to an ε

neighborhood of x∗optimal is bounded by:

Kmax ≤ T
(

Kexit +Kshell

)
+K1 +Kconvex (330)

< T
(

Kexit +Kshell

)
+4Ldiam(U)

ζ L
γ2

+2T
(

1
β
+

L
2β 2

)
ε2

γ2 +

log
(

ξ

ε

)
log

(
1− β

L

)−1 (331)

where T <
2Ldiam(U) ζ

R(
γ

2−

(
1
β
+ L

2β2

)
L2ε2

R −γ(Kexit+Kshell)
ξ

R

) is the total

number of saddle neighborhoods encountered.
We complete the proof of Theorem 7 by proving one last

claim. Recall that Kexit was the exit time of the ε–precision
trajectory from the ball Bε(x∗) while we proved Theorem 7
for the exact gradient trajectory. Hence, we need to justify the
use of the upper bound on Kexit from (7) in Theorem 7.

Let Ko
exit be the actual exit time of the gradient trajectory

{uK} from the ball Bε(x∗), i.e., Ko
exit = infK>0

{
K
∣∣∣∣∥uK∥≥ ε

}
where uK = xK −x∗ is the radial vector and ∥u0∥ = ε . Since
Kexit is the exit time of the ε–precision trajectory {ũK} from

the ball Bε(x∗), i.e., Kexit = infK>0

{
K
∣∣∣∣∥ũK∥ ≥ ε

}
, by the

definition of exit time we have that ∥ũKexit∥ ≥ ε .
Now if the initial unstable subspace projection value

∑ j∈NUS
(θ us

j)2 satisfies the condition of Theorem 1 then from
the relative error bound (21) we have that:

∥uK− ũK∥
∥uK∥

≤ O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
(332)

=⇒ 1−O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
≤ ∥ũK∥
∥uK∥

≤

1+O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
(333)

=⇒ ∥ũK∥

1+O

(
1√
ε

(
log

(
1
ε

)
ε

)2) ≤ ∥uK∥ ≤

∥ũK∥

1−O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
(334)

=⇒ ε

1+O

(
1√
ε

(
log

(
1
ε

)
ε

)2) ≤ ∥uKexit∥ ≤

(1+d)ε

1−O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
(335)

where we substituted K = Kexit and used the bound (1+d)ε ≥
∥ũKexit∥ ≥ ε for some d > 0 in the last step. Next, from the
definition of Ko

exit we have that
∥∥∥uKo

exit

∥∥∥≥ ε . Hence, unless we
have ∥uKexit∥ ≥ ε (which implies Ko

exit ≤ Kexit), the gradient
trajectory {uK} will take not more than Ko

exit−Kexit iterations
to travel the shell Bε(x∗)\B∥uKexit∥(x

∗). Next, Ko
exit −Kexit

can be upper bounded by Theorem 3 provided the gradient
trajectory has expansive dynamics at Kexit (from Theorem 2).

Now for sufficiently small ε and Kexit ≥ 2 (the minimal
condition that ensures the gradient trajectory at-least enters
the ball Bε(x∗)), there exists some K = Kυ with Kυ < Kexit
such that:

∥ũKυ ∥

1−O

(
1√
ε

(
log

(
1
ε

)
ε

)2) ≤ ∥ũKexit∥

1+O

(
1√
ε

(
log

(
1
ε

)
ε

)2) .

(336)

Combining (336) with (334) for K = Kexit and K = Kυ we get:

∥uKυ ∥ ≤ ∥ũKυ ∥

1−O

(
1√
ε

(
log

(
1
ε

)
ε

)2) ≤ ∥ũKexit∥

1+O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
≤ ∥uKexit∥ (337)

=⇒ ∥uKυ ∥ ≤ ∥uKexit∥ . (338)

which implies that the gradient trajectory has expansive dy-
namics at K = Kexit from Theorem 2. Hence, the gradient
trajectory will also have expansive dynamics from K =Kexit to
K = Ko

exit . Using Theorem 3 for ξ =
∥∥∥uKo

exit−1

∥∥∥, ε = ∥uKexit∥,
K̂exit = Ko

exit −1 and Ke = Kexit we get:

Ko
exit −1−Kexit = K̂exit −Ke ≤

log(
∥∥∥uKo

exit−1

∥∥∥)− log(∥uKexit∥)

log
(

inf{ρ̄(xk−2)}
1+Mξ

) +2

(339)

<

log(1+O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
)

log
(

inf{ρ̄(xk−2)}
1+Mξ

) +2

⪅ 2 (340)

where we used the bound
∥∥∥uKo

exit−1

∥∥∥ < ε from the definition
of Ko

exit , the lower bound on ∥uKexit∥ from (335) in the second

last step and dropped the term log(1+O

(
1√
ε

(
log

(
1
ε

)
ε

)2)
)

for sufficiently small ε . Hence we have the condition Ko
exit ⪅

Kexit + 3 where the constant 3 can be dropped w.r.t. order
O(log(ε−1)) term after substituting the upper bound on Kexit
from (7). This completes the proof. ■

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

46

Proof of Theorem 9

Since f (·) satisfies Assumption A1, it is locally gradient
Lipschitz continuous in every compact set. Hence f (·) is
gradient Lipschitz continuous in some compact set K ⊃
{x | f (x)≤ f (x0)} where the compact set K will be specified
later. Suppose L is the gradient Lipschitz constant of f (·)
in this compact set or equivalently L is the local Lipschitz
constant of the function ∇ f : Rn→Rn when restricted to K .
Next, by the Kirszbraun Theorem (Theorem 8), there exists
an extension G : Rn → Rn of the function g ≡ ∇ f on the
entire Euclidean space Rn such that G ≡ ∇ f on the compact
set K ⊃ {x | f (x) ≤ f (x0)} and G is globally Lipschitz
continuous with a Lipschitz constant of L. Next suppose
F : Rn → R is the primitive of G given by the line integral
F(x) =

∫
γ0
⟨G(v),dv⟩ where γ0 is any smooth curve from 0 to

x. Then taking directional derivative of F with respect to v
we get ∂F(x)

∂v = ⟨G(x),v⟩ and so G(x) = ∇F(x) for all x ∈Rn.
Now ∇F ≡ G ≡ ∇ f on the compact set K so F ≡ f + c on
this set for any constant c. Without loss of generality we can
take c = 0 so that F ≡ f on the set K ⊃ {x | f (x)≤ f (x0)}.
Since G is L Lipschitz continuous and so is ∇F , we can write:

F(x)−F(y)≥ ⟨∇F(y),x−y⟩− L
2
∥x−y∥2

(341)

=⇒ F(x)+
L+ ε

2
∥x−y∥2 ≥ ⟨∇F(y),x−y⟩+ ε

2
∥x−y∥2 .

(342)

Next recall that since f is coercive and continuous it has
a global minimum [55] which will belong to the compact
sublevel set {x | f (x) ≤ f (x0)} ⊂K . Since f (·) ∈ C 2, this
global minimum, say x∗, will be a critical point of f and
therefore a critical point of F because F ≡ f on the set
{x | f (x) ≤ f (x0)} ⊂ K . Then setting y = x∗ in (342) we
get the following for ε > 0:

F(x)+
L+ ε

2
∥x−x∗∥2 ≥ ⟨∇F(x∗),x−x∗⟩+ ε

2
∥x−x∗∥2

=⇒ F(x)+
L+ ε

2
∥x−x∗∥2 ≥ ε

2
∥x−x∗∥2≥ε

4
∥x∥2− ε

2
∥x∗∥2

where in the last step we used the inequality
∥x−x∗∥2≥ 1

2 ∥x∥
2 − ∥x∗∥2. Since x∗ belongs to a compact

set, ∥x∗∥ is bounded and so the function F(x)+ L+ε

2 ∥x−x∗∥2

is coercive by the following argument:

limsup
∥x∥→∞

(
F(x)+

L+ ε

2
∥x−x∗∥2

)
≥

liminf
∥x∥→∞

(
F(x)+

L+ ε

2
∥x−x∗∥2

)
≥

liminf
∥x∥→∞

(
ε

4
∥x∥2− ε

2
∥x∗∥2

)
(343)

=⇒ lim
∥x∥→∞

(
F(x)+

L+ ε

2
∥x−x∗∥2

)
= ∞. (344)

Since F(x) + L+ε

2 ∥x−x∗∥2 is coercive, infx∈Rn

(
F(x) +

L+ε

2 ∥x−x∗∥2
)
>−∞.

Next, consider the function F̃ : Rn→ R given by:

F̃(x) = F(x)+
L+ ε

2
∥x−x∗∥2

+(1−ΦK (x))
(

f (x0)− inf
x∈Rn

(
F(x)+

L+ ε

2
∥x−x∗∥2

))
− L+ ε

2
∥x−x∗∥2

ΦK (x) (345)

where ΦK is a C ∞ smooth bump function, where we
choose the compact set K to satisfy the condition
K ⊃{x | f (x)≤ f (x0)}+Bε(0) 19and we have 0≤ΦK ≤ 1,
ΦK ≡ 1 on the open set {x | f (x) ≤ f (x0)}+Bε(0) and
ΦK ≡ 0 on Rn\K . Such a smooth bump function
exists by Proposition 2.25 in [56]. Clearly F̃ ≡ f on
the compact set {x | f (x) ≤ f (x0)} and F̃(x) = F(x) +
L+ε

2 ∥x−x∗∥2 + f (x0)− infx∈Rn

(
F(x) + L+ε

2 ∥x−x∗∥2
)

for

x ∈ Rn\K and so F̃ is coercive by (344). Moreover
we have that F̃(x) ≥ f (x0) for x ∈ Rn\K . Since
x∗ ∈ {x | f (x)≤ f (x0)} ⊂K and F ≡ f on K we will have

infx∈Rn

(
F(x) + L+ε

2 ∥x−x∗∥2
)
≤ F(x∗) = f (x∗) ≤ f (x0)

which implies f (x0)− infx∈Rn

(
F(x) + L+ε

2 ∥x−x∗∥2
)
≥ 0.

Therefore from (345) and the facts that F ≡ f on
K , 0 ≤ ΦK ≤ 1 we also have that F̃(x) ≥ f (x)
for x ∈ K \{x | f (x) ≤ f (x0)}. Now f (x) > f (x0)
on the complement of the set {x | f (x) ≤ f (x0)} so
F̃(x) > F̃(x0) = f (x0) on the set Rn\{x | f (x) ≤ f (x0)}
where we used the fact that f is coercive. Therefore we have
{x | f (x)≤ f (x0)}= {x | F̃(x)≤ F̃(x0)}.

Since F̃ is C 2 smooth, it will be gradient Lipschitz continuous
on the compact set K ⊃ {x | f (x) ≤ f (x0)}+Bε(0) with
some gradient Lipschitz constant L̃ > L > 0, where L̃ is
also the global gradient Lipschitz constant for F̃ . Next,
iterating CCRGD algorithm 1 on the function F̃ with
initialization x0 and step size α = 1

L̃ we will have that
F̃(xk+1) ≤ F̃(xk) ≤ F̃(x0) for all k ≥ 0 by20 Lemmas 8 and
10. Therefore xk ∈ {x | f (x) ≤ f (x0)} = {x | F̃(x) ≤ F̃(x0)}
for all k, xk will converge to a local minimum in this
compact set from Theorem 5 with a convergence rate given
by Theorem 7. In particular, since the sequence {xk} stays
within the compact set {x | f (x)≤ f (x0)} and F̃ ≡ f on this
set, the CCRGD algorithm 1 for α = 1

L̃ will generate the
same iterate sequence it would have generated while iterating
on the function f (·). This completes the proof. ■

19Here the operator + defines the Minkowski sum operation between sets.
The openness of the set {x | f (x) ≤ f (x0)}+Bε (0) follows from the fact
that for two sets A,B their Minkowski sum A+B is open even if only one of
the sets (say, B) is open [57].

20Since F̃ ≡ f on K , F̃ will be Hessian Lipschitz continuous in Ω(ε)
neighborhoods of strict saddle points in the set {x | f (x) ≤ f (x0)} ⊂
{x | f (x) ≤ f (x0)}+Bε (0) ⊂K by Assumption A1. Now if for some k,
xk ∈Bε (x∗) where x∗ ∈ {x | f (x)≤ f (x0)} is some strict saddle point of f ,
the second order step from algorithm 1 will decrease F̃ by Lemma 8 because
Bε (x∗)⊂K .

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

47

REFERENCES

[1] H. B. Curry, “The method of steepest descent for non-linear minimiza-
tion problems,” Quarterly of Applied Mathematics, vol. 2, no. 3, pp.
258–261, 1944.

[2] M. R. Hestenes et al., “Methods of conjugate gradients for solving
linear systems,” Journal of research of the National Bureau of Standards,
vol. 49, no. 6, pp. 409–436, 1952.

[3] H. Rosenbrock, “An automatic method for finding the greatest or least
value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–184,
1960.

[4] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on
Theory of computing. ACM, 1984, pp. 302–311.

[5] S. Mehrotra, “On the implementation of a primal-dual interior point
method,” SIAM Journal on optimization, vol. 2, no. 4, pp. 575–601,
1992.

[6] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms
in convex programming. Siam, 1994, vol. 13.

[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in neural information processing systems,
2001, pp. 556–562.

[8] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedforward neural network,” Neural networks, vol. 2, no. 6, pp. 459–
473, 1989.

[9] C. G. Broyden, “The convergence of a class of double-rank minimization
algorithms 1. general considerations,” IMA Journal of Applied Mathe-
matics, vol. 6, no. 1, pp. 76–90, 1970.

[10] R. Dixit, M. Gurbuzbalaban, and W. U. Bajwa, “Exit time analysis for
approximations of gradient descent trajectories around saddle points,”
arXiv preprint arXiv:2006.01106, 2022.

[11] J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and
B. Recht, “First-order methods almost always avoid strict saddle points,”
Mathematical programming, vol. 176, no. 1, pp. 311–337, 2019.

[12] A. Kelley, “The stable, center-stable, center, center-unstable, unstable
manifolds,” Journal of Differential Equations, 1966.

[13] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[14] Y. Nesterov and B. T. Polyak, “Cubic regularization of newton method
and its global performance,” Mathematical Programming, vol. 108,
no. 1, pp. 177–205, 2006.

[15] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2016, pp. 795–811.

[16] S. Łojasiewicz, “Sur le problème de la division,” Studia Mathematica,
vol. 18, pp. 87–136, 1959.

[17] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward–
backward splitting, and regularized gauss–seidel methods,” Mathemati-
cal Programming, vol. 137, no. 1-2, pp. 91–129, 2013.

[18] J. Bolte, A. Daniilidis, and A. Lewis, “The łojasiewicz inequality
for nonsmooth subanalytic functions with applications to subgradient
dynamical systems,” SIAM Journal on Optimization, vol. 17, no. 4, pp.
1205–1223, 2007.

[19] Y. Kifer, “The exit problem for small random perturbations of dynamical
systems with a hyperbolic fixed point,” Israel Journal of Mathematics,
vol. 40, no. 1, pp. 74–96, 1981.

[20] J. Yang, W. Hu, and C. J. Li, “On the fast convergence of random
perturbations of the gradient flow,” Asymptotic Analysis, vol. 122, no.
3-4, pp. 371–393, 2021.

[21] B. Shi, W. J. Su, and M. I. Jordan, “On learning rates and
Schrödinger operators,” arXiv preprint, 2020. [Online]. Available:
https://arxiv.org/abs/2004.06977

[22] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle
points—online stochastic gradient for tensor decomposition,” in Con-
ference on learning theory. PMLR, 2015, pp. 797–842.

[23] S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, A. Singh, and B. Poczos,
“Gradient descent can take exponential time to escape saddle points,”
in Advances in neural information processing systems, 2017, pp. 1067–
1077.

[24] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to
escape saddle points efficiently,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
1724–1732.

[25] Z. Zhou, P. Mertikopoulos, N. Bambos, S. Boyd, and P. W. Glynn,
“Stochastic mirror descent in variationally coherent optimization prob-
lems,” in Advances in Neural Information Processing Systems, 2017, pp.
7040–7049.

[26] H. Daneshmand, J. Kohler, A. Lucchi, and T. Hofmann, “Escaping sad-
dles with stochastic gradients,” in International Conference on Machine
Learning. PMLR, 2018, pp. 1155–1164.

[27] S. Reddi, M. Zaheer, S. Sra, B. Poczos, F. Bach, R. Salakhutdinov,
and A. Smola, “A generic approach for escaping saddle points,” in
International conference on artificial intelligence and statistics. PMLR,
2018, pp. 1233–1242.

[28] C. Jin, P. Netrapalli, and M. I. Jordan, “Accelerated gradient descent
escapes saddle points faster than gradient descent,” in Conference On
Learning Theory. PMLR, 2018, pp. 1042–1085.

[29] Y. Xu, J. Rong, and T. Yang, “First-order stochastic algorithms for
escaping from saddle points in almost linear time,” in Advances in
Neural Information Processing Systems, 2018, pp. 5530–5540.

[30] Z. Allen-Zhu, “Natasha 2: Faster non-convex optimization than sgd,” in
Advances in Neural Information Processing Systems, 2018, pp. 2675–
2686.

[31] Z. Allen-Zhu and Y. Li, “Neon2: Finding local minima via first-order
oracles,” in Advances in Neural Information Processing Systems, 2018,
pp. 3716–3726.

[32] C. Fang, Z. Lin, and T. Zhang, “Sharp analysis for nonconvex sgd
escaping from saddle points,” in Conference on Learning Theory.
PMLR, 2019, pp. 1192–1234.

[33] S. Paternain, A. Mokhtari, and A. Ribeiro, “A newton-based method
for nonconvex optimization with fast evasion of saddle points,” SIAM
Journal on Optimization, vol. 29, no. 1, pp. 343–368, 2019.

[34] A. Mokhtari, A. Ozdaglar, and A. Jadbabaie, “Escaping saddle points in
constrained optimization,” in Advances in Neural Information Process-
ing Systems, 2018, pp. 3629–3639.

[35] A. Anandkumar and R. Ge, “Efficient approaches for escaping higher
order saddle points in non-convex optimization,” in Conference on
learning theory, 2016, pp. 81–102.

[36] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Accelerated
methods for nonconvex optimization,” SIAM Journal on Optimization,
vol. 28, no. 2, pp. 1751–1772, 2018.

[37] M. Liu, Z. Li, X. Wang, J. Yi, and T. Yang, “Adaptive negative curvature
descent with applications in non-convex optimization,” Advances in
Neural Information Processing Systems, vol. 31, pp. 4853–4862, 2018.

[38] C. Zhang and T. Li, “Escape saddle points by a simple gradient-descent
based algorithm,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[39] D. G. Luenberger, Y. Ye et al., Linear and nonlinear programming.
Springer, 1984, vol. 2.

[40] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth,
“On the lambertw function,” Advances in Computational mathematics,
vol. 5, no. 1, pp. 329–359, 1996.

[41] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in noncon-
vex statistical estimation: Gradient descent converges linearly for phase
retrieval, matrix completion, and blind deconvolution.” Foundations of
Computational Mathematics, vol. 20, no. 3, 2020.

[42] Y. Matsumoto, An introduction to Morse theory. American Mathemat-
ical Soc., 2002, vol. 208.

[43] “Degenerate perturbation theory,” http://farside.ph.utexas.edu/teaching/
qmech/Quantum/node105.html#e12.89, accessed: 2019-08-19.

[44] “Matrix perturbation theory,” https://
ocw.mit.edu/courses/nuclear-engineering/
22-51-quantum-theory-of-radiation-interactions-fall-2012/
lecture-notes/MIT22 51F12 Ch11.pdf, accessed: 2019-08-19.

[45] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient
descent only converges to minimizers,” in Conference on learning
theory. PMLR, 2016, pp. 1246–1257.

[46] J. T. Schwartz, Nonlinear functional analysis. CRC Press, 1969, vol. 4.
[47] M. Kirszbraun, “Über die zusammenziehende und lipschitzsche trans-

formationen,” Fundamenta Mathematicae, vol. 22, no. 1, pp. 77–108,
1934.

[48] R. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der gle-
ichungsauflösung.” ZAMM-Journal of Applied Mathematics and Me-
chanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 9,
no. 1, pp. 58–77, 1929.

[49] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized
power method for sparse principal component analysis.” Journal of
Machine Learning Research, vol. 11, no. 2, 2010.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2004.06977
http://farside.ph.utexas.edu/teaching/qmech/Quantum/node105.html#e12.89
http://farside.ph.utexas.edu/teaching/qmech/Quantum/node105.html#e12.89
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Ch11.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Ch11.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Ch11.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Ch11.pdf

48

[50] X.-T. Yuan and T. Zhang, “Truncated power method for sparse eigen-
value problems.” Journal of Machine Learning Research, vol. 14, no. 4,
2013.

[51] L. A. Rastrigin, “Systems of extremal control,” Nauka, 1974.
[52] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic

algorithm as function optimizer,” Parallel computing, vol. 17, no. 6-7,
pp. 619–632, 1991.

[53] F. Hoffmeister and T. Bäck, “Genetic algorithms and evolution strategies:
Similarities and differences,” in International Conference on Parallel
Problem Solving from Nature. Springer, 1990, pp. 455–469.

[54] J. R. Magnus and H. Neudecker, “Matrix differential calculus with
applications to simple, hadamard, and kronecker products,” Journal of
Mathematical Psychology, vol. 29, no. 4, pp. 474–492, 1985.

[55] D. Kinderlehrer and G. Stampacchia, An introduction to variational
inequalities and their applications. SIAM, 2000.

[56] J. M. Lee, “Smooth manifolds,” in Introduction to Smooth Manifolds.
Springer, 2013, pp. 1–31.

[57] W. Rudin et al., Principles of mathematical analysis. McGraw-hill
New York, 1976, vol. 3.

Rishabh Dixit received the B. Tech. degree in electrical engineering from
the Indian Institute of Technology, Kanpur, India, in 2015. He is currently
working toward a Ph.D. degree in the Department of Electrical and Computer
Engineering, Rutgers University–New Brunswick, NJ, USA. His research
interests include algorithms development for convex and nonconvex optimiza-
tion, dynamic optimization, and machine learning.

Mert Gürbüzbalaban is an associate professor at Rutgers University. Previ-
ously, he was an assistant professor at Rutgers University and a postdoctoral
associate at the Laboratory for Information and Decision Systems (LIDS)
at MIT. He is broadly interested in optimization and computational science
driven by applications in network science and data science. He received his
B.Sc. degrees in Electrical Engineering and Mathematics as a valedictorian
from Bog̃aziçi University, Istanbul, Turkey, the “Diplôme d’ingénieur” degree
from École Polytechnique, France, and the M.S. and Ph.D. degrees in
Mathematics from the Courant Institute of Mathematical Sciences, New York
University.

Dr. Gürbüzbalaban is a recipient of the Dean’s Research Award, Dean’s
Young Research Award and Dean’s Summer Fellowship Award at the Rutgers
Business School and a co-recipient of the Honorable Mention for the Best
Paper Award at the International Conference in Machine Learning (ICML
2019). He also received the Kurt Friedrichs Prize (given by the Courant
Institute of New York University for an outstanding thesis) in 2013, Bronze
Medal in the École Polytechnique Scientific Project Competition in 2006, the
Nadir Orhan Bengisu Award (given by the electrical-electronics engineering
department of Bog̃aziçi University to the best graduating undergraduate
student) in 2005 and the Bülent Kerim Altay Award from the Electrical-
Electronics Engineering Department of Middle East Technical University in
2001. He served as a special issue editor for the Probability in the Engineering
and Informational Sciences journal, as a member of the Informs Nicholson
Prize Committee in 2021 and as a track chair in Operations Research for the
Institute of Industrial and Systems Engineering (IISE) Conference in 2019.

Waheed U. Bajwa (S’98–M’09–SM’13) received BE (with Honors) degree
in electrical engineering from the National University of Sciences and Tech-
nology, Pakistan in 2001, and MS and PhD degrees in electrical engineering
from the University of Wisconsin-Madison in 2005 and 2009, respectively. He
has been with Rutgers University–New Brunswick since 2011, where he is
currently a professor and graduate director in the Department of Electrical and
Computer Engineering and an associate member of the graduate faculty of the
Department of Statistics. He was also a postdoctoral research associate in the
Program in Applied and Computational Mathematics at Princeton University
from 2009 to 2010, a research scientist in the Department of Electrical
and Computer Engineering at Duke University from 2010 to 2011, and a
visiting fellow in the Center for Statistics and Machine Learning at Princeton
University from 2021 to 2022. His research interests include statistical signal
processing, high-dimensional statistics, machine learning, inverse problems,
and networked systems.

Dr. Bajwa has received several research and teaching awards including the
Army Research Office Young Investigator Award (2014), the National Science
Foundation CAREER Award (2015), Rutgers Presidential Merit Award (2016),
Rutgers Presidential Fellowship for Teaching Excellence (2017), Rutgers
Engineering Governing Council ECE Professor of the Year Award (2016,
2017, 2019), Rutgers Warren I. Susman Award for Excellence in Teaching
(2021), and Rutgers Presidential Outstanding Faculty Scholar Award (2022).
He is a co-investigator on a work that received the Cancer Institute of New
Jersey’s Gallo Award for Scientific Excellence in 2017, a co-author on papers
that received Best Student Paper Awards at IEEE IVMSP 2016 and IEEE
CAMSAP 2017 workshops, and a Member of the Class of 2015 National
Academy of Engineering Frontiers of Engineering Education Symposium.

Dr. Bajwa has also been involved in numerous professional activities. He
has served as the Lead Guest Editor for a special issue of IEEE Signal
Processing Magazine on “Distributed, Streaming Machine Learning” (2020), a
Guest Editor for a special issue of Proceedings of the IEEE on “Optimization
for Data-driven Learning and Control” (2020), an Associate Editor of IEEE
Transactions on Signal and Information Processing over Networks (2018 –
2022), an Associate Editor of IEEE Signal Processing Letters (2014 – 2017),
and a Guest Editor for a special issue of Elsevier Physical Communication
Journal on “Compressive Sensing in Communications” (2012). He also served
as a Technical Area Chair of Asilomar Conference on Signals, Systems,
and Computers in 2021 and 2018, the US Liaison Chair of IEEE SPAWC
2019 Workshop, a Publicity & Publications Co-Chair of IEEE DSW 2019
Workshop, a Technical Co-Chair of IEEE SPAWC 2018 Workshop, the
General Chair of 2017 DIMACS Workshop on Distributed Optimization,
Information Processing, and Learning, the Publicity and Publications Chair of
IEEE CAMSAP 2015 Workshop. and a General Co-Chair of IEEE GlobalSIP
2013 Symposium on New Sensing and Statistical Inference Methods and CP-
SWeek 2013 Workshop on Signal Processing Advances in Sensor Networks.
Additionally, he has served within the IEEE Signal Processing Society as
an elected member of the Sensor Array and Multichannel (SAM) Technical
Committee (2016 – 2021), an elected member of the Signal Processing for
Communications and Networking (SPCOM) Technical Committee (2016 –
2021), an elected member of the Machine Learning for Signal Processing
(MLSP) Technical Committee (2016 – 2018), an appointed member of the
Data Science Initiative (2019 – 2021), and an elected member of the Big
Data Special Interest Group (2019). He is currently serving as a Member of
the Senior Editorial Board of the IEEE Signal Processing Magazine, a Senior
Area Editor of IEEE Open Journal of Signal Processing and IEEE Signal
Processing Letters, the Vice Chair of the SPCOM Technical Committee of
the IEEE Signal Processing Society, and an elected member of the Signal
Processing Theory and Methods (SPTM) Technical Committee of the IEEE
Signal Processing Society.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3213607

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Rutgers University. Downloaded on March 01,2023 at 20:57:22 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Relation to Prior Work
	Our Contributions
	Notation

	Problem Formulation
	Assumptions

	Boundary Conditions for Linear Exit Time From a Saddle Neighborhood
	Preface
	Relative Error Margin in the –Precision Trajectory

	Sufficient Conditions for Linear Exit Time

	Sequential Monotonicity
	Additional Lemmas
	Proposed Algorithm
	Convergence Rates to a Minimum
	Asymptotic convergence
	Global Rate of Convergence
	Computational Complexity of the CCRGD Algorithm

	Numerical Results
	Modified Rastrigin Function
	Low-Rank Matrix Factorization
	Simulations for Nonconvex functions with Different Values of Parameter

	Conclusion
	Appendix A
	Appendix B
	Appendix C: Proof of Lemma 1
	Appendix D: Proof of Theorem 3
	Appendix E: Proof of Lemmas 2-6
	Appendix F
	Appendix G: Asymptotic convergence
	Appendix H: Convergence Rate to a Local Minimum (Theorem 6 and 7)
	References
	Biographies
	Rishabh Dixit
	Mert Gürbüzbalaban
	Waheed U. Bajwa (S'98–M'09–SM'13)

