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Abstract Pathways of transmission of coronavirus (COVID-19) disease in the human population are still
emerging. However, empirical observations suggest that dense human settlements are the most adversely
impacted, corroborating a broad consensus that human-to-human transmission is a key mechanism for the
rapid spread of this disease. Here, using logistic regression techniques, estimates of threshold levels of
population density were computed corresponding to the incidence (case counts) in the human population.
Regions with population densities greater than 3000 person per square mile in the United States have about
95% likelihood to report 43,380 number of average cumulative cases of COVID-19. Since case numbers

of COVID-19 dynamically changed each day until 30 November 2020, ca. 4% of US counties were at 50%
or higher probability to 38,232 number of COVID-19 cases. While threshold on population density is not
the sole indicator for predictability of coronavirus in human population, yet it is one of the key variables on
understanding and rethinking human settlement in urban landscapes.

Plain Language Summary Population density is certainly one of the key factors influencing

the transmission of infectious diseases like COVID-19. It is approximated that in continental United States,
population density of 1,192 per square mile and higher presents 50% probability of getting 38,232 number of
COVID-19 cases.

1. Introduction

Severe Acute Respiratory Syndrome caused by Coronavirus (SARS-CoV-2 thereafter) is a respiratory lung infec-
tion, and as of 28 April 2021, there have been more than 148 million (WHO COVID-19 Dashboard, 2021, https://
covid19.whouint/) confirmed human cases in the world. The SARS-CoV-2 virus remains highly infectious and
is circulating in the human population at an alarming rate with anticipated variants in near future. An emerging
disciplinary consensus is that seasonal variation may lead to cyclical outbreaks in the human population (Carlson
et al., 2020; Merow & Urban, 2020). As with all airborne respiratory infectious diseases, the transmission of
SARS-CoV-2 is high in densely populated urban regions of the world (Cruickshank, 1939; Robinson et al., 2012).
However, thresholds of population density relative to the outbreak of the disease in humans remains unknown.
The relative importance of knowledge of threshold on population density with reference to infectious disease such
as COVID-19 is important for the future of modern cities and urban landscapes in the USA, given about 71% of
the population reside in urbanized areas with an average density of 2,534 persons per square mile (https:/fwww.
census.gov/programs-survey s/ geography/guidance/geo-areas/urban-ruralfua-facts.html).

Influenza transmission dynamics, which allow parallel comparison with COVID-19 transmission, depend on
several socio-demographic factors (such as race, income level, education, and location), but population density
remains a critical variable for controlling an outbreak of seasonal influenza (Atkinson & Wein, 2008; Merler
& Ajelli, 2010). While the severity of airbome contagion cannot be attributed solely to population density (Li
et al., 2018), the knowledge of thresholds on population density can be helpful in understanding the spatial distri-
bution with respect to the risk of disease (Chandra et al., 2013; Grantz et al., 2016). Intuitively, high population
density is concluded to favor contagion and vice-versa. However, non-uniform distribution of a population can
yield inconclusive results (Li et al., 2018). While the significant association was reported between population
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density and transmissibility for the 1,918 influenza pandemic in Chicago (Grantz et al., 2016), the average influ-
enza attack rates decreased with increasing population density in Japan (Hoyle & Wickramasinghe, 1990). In the
context of COVID-19, an analysis of Brazilian data suggests the general increase in COVID- 19 cases was associ-
ated with highly populated regions (Pequeno et al., 2020). There is no study to date that provides an ex ploratory
association of population density thresholds with COVID-19 cases in the continental USA.

This study was undertaken to determine thresholds on population density that can be used to estimate the proba-
ble case load from COVID-19. Estimation of a threshold population density would allow in the differentiation of
probabilistic low and high-case regions and offer useful input for planning, designing, and targeting public health
interventions. Also, identifying specific regions where greater surveillance is required to contain the disease
would be enhanced and can be used to define the expansion of urbanized areas in the USA.

2. Methods

Daily incidence data for COVID-19 cases in the 3,107 mainland U.S. counties were obtained from the GitHub
project (“The New York Times. (2021). Coronavirus (Covid-19) Data in the United States,” 2021) (https:/github.
com/mytime sfcovid-19-data) from 15 March 2020, to 30 November 2020. The time period was selected based
on the non-availability of vaccines since vaccines will mask the limit on population densities. Data on the popu-
lation densities of each U.S. county were obtained from the U.S. Census Bureau (2019) (https:/'www.census.
govidata'datasets/time-series/demo/pope st 20105 counties-total.html). Land area in square miles was obtained
from the U.S. Census Bureau (https:/www.census.gov/library/publications/20 1 I/compendia’usa-counties- 201 1.
htmB#LND). An ordinal logistic regression model was employed to study the dependency of COVID-19 cases
(thereafter cases) on counties’ population density. It was assumed that the population densities remained constant
during the study period, implying population mobility has minimal impact on population density. Further, the
population was assumed to be uniformly distributed over the county. Since the number of cases differs widely
over the county, intuitively, it is preferable to classify cases into a number of classes where each class explicitly
implies a specific range of case load. To classify cases, we estimated the percentile of cumulative cases at an
interval of 15 days beginning 15 March 2020, to 30 November 2020. Cumulative cases data were divided into
three categories (or events): (a) low number of cases (up to 80th percentile); (b) medium number of cases (80th
to 95th percentile); and (c) high number of cases (greater than 95th percentile). The 80th percentile case on 30
November 2020 was 3,817 (Table 1), which can still be considered relatively less compared to the number of
cases in high-risk locations.

Moreover, a higher value for the log-likelihood (a statistical metric used for model selection) in Table 2, justi-
fies the choice of the 80th percentile. In fact, the log-likelihood function was found to be better with increasing
percentile, with the increase being less for the percentiles above the value of 80.

Thus, the “*reasonable’™ choice of percentiles for classification of cases will lead to overall similar model results
without altering the final interpretation. The following paragraph briefly explains the analysis approach. Relevant
theory for the application of ordinal logistic regression is detailed in the supplementary section.

The predictor used is the county population density which is the county's population per unit of the county's land
area. The response variable, which is ordinal in nature, is the cumulative case count classified into low, medium,
and high (based on percentiles). Logit link function (details in supplementary section) was used to express the
dependent variable as a linear function of the independent variables. Link function also relates the response
(ordinal cases) to linear predictor (population density ) and transforms the probabilities of ordinal response to the
continuous scale (0,1). The regression equations, thus, take the form as follows:

plhigh cases) . .
].n(l_i— M) = + f # population density (1
plmedium cases) _ . . .
In ( T~ ptmediom s}) = 2 + f # population density (2)

wheme plhigh cases) and p{medium cases) are the probabilities of high and medium cases, respectively. Constants
and coefficients in Equations (1, 2) were estimated using the maximum likelihood estimation methods. Since the
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total probabilities sum up to one, the probability of a low number of cases

Table 1
Biweskly 80th Percentile Cases af Low Cases were estimated by subtracting the probability of high and medium cases.
Date 80th percentile cases
13 March 2020 0 3. Results and Discussion
31 March 2020 15
15 April 020 & We start our analysis with results obtained from logistical regression models
) (Figure 1) showing three critical statistical metrics (Somers D, Good-
el £ man- Kruskal Gamma and Percent Concordant pairs).
15 May 2070 196
31 May 2020 71 High values of measures of association (>82%), that is, percentage of
e - concordant pairs, Somers's D and Goodman-Kruskal Gamma, signify that
the performance of ordinal logistic model is satisfactory. On average, model
— et L performance remained constant since start of collection of data on COVID-
15 July 2020 670 19 human cases. The p-values for each constant and predictor population
31 July 2020 970 density were less than 0.05 (not shown), thus establishing statistical signif-
15 August 2020 1,175 icance. The p-value for the test of all slopes is zero (Table 51 in Support-
31 August 2020 1382 ing I[n_fmmaii!:m _Sl}, which _indic:ftes Ihe predictor pﬂpulal_jm density has a
14 September 2020 1564 statistically significant relationship with the response variable (COVID-19
cases). The deviance goodness of fit result (p > 0.03), for all dates for which
Sl LI the model was run, showed adequate fit for the data, and the associated prob-
15 October 0020 2069 abilities do not deviate significantly from observed values (detailed inference
31 October 2020 2,410 of model performance indicators for 15 November 2020 is presented in Table
15 Novernber 7020 3036 51 in Supporting Information 51). The model results for any one day should
WN ber 2070 3817 sufficiently explain the behavior of event probability (cases) with population
density. The plots in Figure 2 show average probability of high, medium, and
low number of cases.
Average probabilities were defined as the mean of the probabilities obtained
from the ordinal logistic regression models for each of the eighteen bi-weekly
cases (from 15 March 2020, to 30 November 2020). The monotonic nature of Figure 2a shows that with an
increasing population density, the probability of a high number of cases increases, and vice versa. The probabil-
ity rises steeply to a nearly constant value of | at a population density of ca. 5,000 per square mile, suggesting
population densities greater than this value were remarkably associated with the corresponding high number of
COVID-19 cases. The implication is that the pronounced effect of high population density and a proportional
number of cases was sufficient to establish population density as an important factor in transmission potential of
this disease. The results suggest that in densely populated areas, it may be challenging to follow social distancing
norms, thus an increased number of COVID-19 human cases were to be expected. Figure 2c shows the proba-
bility of a low number of cases, a trend opposite to that for high number of cases. The probability continuously
decreases to a constant value close to zero, signifying that as population density increases, the chance of a low
number of cases decreases. Figure 2b illustrates the medium number of cases with population density. The maxi-
mum probability of the medium number of cases is ca. (.48, corresponding to the population density of ca. 1,190
per square mile. Thus, a decrease in population density from 1,190 per square mile decreases the probability of
a medium number of cases as the probability of low number of cases increase. On the other hand, if population
density increases beyond 1,190 per sguare mile, the probability for a medium number of cases decreases since
probability of high number of cases increase thereafter. Population density
of 1,19 people per square mile can be interpreted as a transition from low
Table 2 to high COVID-19 cases. Figure 3 illustrates changes in event probabilities
Variation in Log-Likelihood in COVID-19 Cases over time and suggests that even low-density counties are likely to be more
- - - — vulnerable as the probability of high number of COVID-19 cases for popula-
Percentile up to which cases wemr considered low Log likelihood . o .
tion density increases over time.
kX! —3,07007
P 286007 In Figure 2a, the threshold population density is shown at which a 30%
chance of a high number of cases will occur, ca. 1,622 per square mile. The
80 —1.63402 population density for getting a low number of cases at 50% chance is 762
83 —1364.49 per square mile (Figure 2c), and the arithmetic mean of these two values at
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Fignme 1. Performance of logistical regression model on a biweekly scale for the entire USA.

high and low cases gives an average of 1,192 per square mile and defined as the population density at which there
is a 0% chance of average number of cases. The average number of cases is estimated by averaging cumulative
cases in counties with population density greater than the threshold of 1,192 per square mile. Thus, 4.02% (125
of 3,107) of the counties with population density greater than 1,192 per square mile are at 50% or greater risk of
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2020, wo 30 November 2020.
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Figure 3. Changes in bi-weekly probability from 15 March 2020, to 30 November 200 of (a) high, (b) mediom, and (c) low
number of COVID-19 cases.

38,232 COVID-19 cases as on 30 November 2020. The key results discussed here are concisely summarized in
Table 3.

Table 4 provides values for population density and arithmetic average probability of high number of cases for
each state in the US, as of 30 November 2020,

This average probability is the simple arithmetic average of the respective probabilities of state counties. It is intu-
itive that the most densely populated states were also those with the highest probability of a high number of cases,
strengthening the finding that population density is critical beyond a specific threshold. The average probability
for a high number of COVID-19 cases provides a number useful for conceptualizing the overall risk of infection
in a particular state. However, except for a few densely populated states, epicenter counties are not highlighted.
For example, on 30 November 2020, Texas, California, Florida, and [llinois were States with the large st number
of COVID-19 cases. From Table 4, it was obvious that the relatively low values of average probabilities for those
four states do not reflect their epicenter status. Therefore, we defined the maximum average probability for a
state which is taken equal to the maximum value of average probabilities considering all the counties of a state.
Thus, the maximum average probability for each state as calculated. The high probability of a high number of
cases (>%0%) indicated this metric performed acceptably to rank a state as an epicenter. Exceptions were noted,
where relatively low value of maximum average probability of high cases was observed in low population density
states having high number of COVID-19 cases. This anomaly is a potential limitation of the logistical regres-
sion methods, in dealing with locations with low population densities and high cases. However, it is understood
that any regressive model considering population density as the single explanatory variable likely would fail to

Table 3

Kev Results of Population Density-Cases Analysis

Attribute Value
Population density beyond which 93% probability of high number of cases 3,000 per square mile
Population density beyond which 30% probability of high number of cases 1,622 per square mile
Average Population density beyond which 30% probability of average number of cases 1,192 per square mile
Percentage of US countics at greater than 50% probability of average number of cases 402% (125 out of 3,107)
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Table 4

Probabilities of High Number of COVIDI® Cases as of 30 November 2020

Population density ~ Awerage probability

Maximum probability ~ Minimum probability Rank of Rankof — Percent difference

State (per squar: milk:) of high cases (Ap) of high cases (map) of high cases (minp) Ap map  betwesn map and Ap
District of Columbia 11.569.7 1 | 1.000 | | 0
Mew Jemey 12078 0.404 | 0027 2 | 60
Rhode Island 1.024.5 0.28 0652 0.043 3 i | 57
Maszachusetts BE35 0.242 | 0022 4 | 76
Connecticut T36.6 0.156 0.421 0.028 7 n 63
Maryland 6129 0.165 | 0019 [ | 84
Delawane 499.6 0.144 0.368 0.030 8 9 6l
Mew York 4128 0.099 | 0.017 11 | o0
Florida 4007 0.078 0.981 0018 13 14 92
Pennsylvania 286.1 0.079 | 0018 12 | 92
Ohio 286.1 0.066 0.927 0019 14 18 93
California 2537 012 | 0.017 10 | 88
Ilinois 2782 0.047 0.999 0018 18 10 935
Hawaii 2103 0.121 0.52 0018 9 26 77
Virginia 2la.1 0232 | 0018 5 | 77
Maorth Carolina 2157 0.041 0711 0018 0 0 a4
Indiana 1879 0.038 0.857 0018 24 19 06
Georgia 134.6 0.051 0.93 0018 15 17 935
Michigan I76.7 0.048 0.944 0018 17 la 935
South Carolina 1712 0.027 0.077 0018 32 35 63
Tennessee 165.6 0.031 0346 0018 28 0 a1
Mew Hampshire 1519 0.029 0.053 0018 31 9 435
Washington 114.6 0.03 0181 0.017 0 i3 83
Kentucky 113.1 0.031 0.706 0018 28 21 06
Texas 111 0.036 0952 0.017 n 15 06
Louisiana 107 .6 0.04 0689 0018 2 2 a4
Wisconsin 1075 0.038 0.993 0018 24 12 06
Alabama 068 0.022 0071 0018 7 36 &9
Missouri £0.3 0.037 0.999 0018 26 10 06
West Virginia 746 0.023 0046 0018 35 42 50
Minnesota 70.8 0.043 0.984 0.017 19 13 06
Vermont 617 0.021 0036 0018 9 46 42
Arizona .1 0.021 0.053 0018 9 9 60
Mississippi 63.4 0.02 0042 0.017 42 A 52
Arkansas 58 0.02 0.059 0018 42 38 6ty
Oklahoma 517 0.025 0225 0.017 i3 K7 &9
Tovwa 565 0.021 0118 0018 9 k2 81
Colorado 5.6 0.049 | 0.017 la | 935
Omgon 439 0.039 0637 0.017 i 24 a4
Maine 436 0.022 0.038 0018 37 435 42
Utah 19 0.041 0414 0.017 0 28

Kansas 56 0.023 0272 0.017 35 31
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Table 4
Comtinued

Population density ~ Awerage probability  Maximum probability  Minimum probability Rank of Rank of  Percent difference
(per square mile) of high cases (Ap) of high cases (map) of high cases (minp) Ap map  between map and Ap

Mebraska
Idahao

New Mexico
South Dakota
North Dakota

Wyoming

28.1
B2
216
173
117
11
73
6

0.02 0043 0.017 42 43 33
0.025 0517 0.017 i3 5 23
0.019 0.048 0.017 46 41 60
0.02 0.069 0.017 42 37 7l
0.018 0.03 0.017 47 47 40
0.018 0022 0.017 47 48 18
0.018 0.02 0.017 47 49 10
0.018 0019 0.017 47 50 3

explain a high number of cases in less densely populated regions. Lastly, an important observation with reference
to population density and case analysis can be discerned from Table 4, namely the percentage difference between
the maximum and average probabilities of high number of cases, being very high for many states, notably those
with high maximum average probabilities. This signifies that only a few counties of the state account for a large
number of cases, and the state as a whole would not be an epicenter of COVID-19.

The analysis in our study assumes a uniform population distribution. In reality, the population is generally not
distributed evenly across the county, as most of the population clusters in and around cities. The lack of a standard
sub-county level case count, which rules out the possibility of conducting a more realistic city-level threshold
analysis, forms a limitation of our study. Furthermore, though county population density is generally considered a
reliable predictor to explain COVID-19 cases due to its high explanatory power (Riley, 2007; Wong & Li, 2020,
controlling it for other variables such as population size could bring valuable insights to determine running
thresholds on population density.

4. Condusions and Implications on Future of Urban Cities

The interrelationship of population density with the number of COVID-19 cases was analyzed, with the objective
to determine thresholds for population density above which there was a 30% or greater chances of observing
greater than average number of COVID-19 cases in humans. Population density and COVID-19 cases, when
analyzed together, suggest ca. 4% of the counties (shown in Figure 4) in the United States would be at 50% or
greater chances of observing greater than average number of COVID-19 cases and confined to a few counties.

The thresholds provide useful information as a guide for city planners. The current urbanization system is such
that many big cities form clusters (Angel & Blei, 2016), and location-wise, most of these clusters happen to coin-
cide with the counties having population density greater than the threshold. For example, New York City and San
Francisco where nationwide highest COVID-19 cases were reported, are the densest counties of the nation. This
apparent agglomeration of cities may be contributing to rapid spread of the disease since it is difficult to avoid
interaction between infected and susceptible populations. The disproportionate distribution of disease burden can
therefore be linked to the existing non-uniform concentration of urban landscapes.

This link suggests that current building stocks are vulnerable to infectious diseases and is suggestive of innovation
in redesigning of urban landscapes from the standpoint of a resilient public bealth infrastructure.

However, this observation is essentially a preliminary one at this stage to establish such a causal link. Therefore,
it is recommended to undertake relevant town planning studies concerning population redistribution, which could
bring about necessary changes to build community resilience for future epide mics/pande mics.

In combination with other governing factors, the population density threshold can provide a decisive conclu-
sion, notably for estimating cases and mitigating COVID-19 in human populace, especially for urban neighbor-
hoods that are more likely heterogenous in race, income, and infrastructure (Maantay & Maroko, 2009; Maantay
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Probability of average number of COVID-19 cases

- Greater than 50%
[ ] Lessthanso

Figure 4. US countics with greater than 30% probability of average number of cases as of 30 November 2020.

V] 425 B5D 1,700 Miles

et al., 2007). Dense populations comprise sub-populations, namely communities of color and low-income
communities that are vulnerable, for example, poor housing, high pollution, lack of access to health care, and a
higher rate of pre-existing conditions (Brulle & Pellow, 2006; Bullard, 2005; Pellow, 2000). Nevertheless, the
relationship between population density and case loads is sufficiently robust that it can be employed by policy-
makers to prepare anticipatory plans for specific communities and thereby prevent the spread of infection and
mitigate the effects of the disease.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement

Raw data sets are publicly available and can be accessed using weblinks provided. Datasets generated in this
study are available on openly accessible data servers. https://github.com/mytimes/covid- 1 9-data. https2farww.
census.gov/data'datasets/time-series’demo/popest/20 10s-counties-total.html.  https:'www.census.gov/library/
publications/201 l/compendia’usa-counties-201 1. htm# LND. While there are many other links to get the data on
COVID-19 case numbers, to the best of our knowledge, GitHub is the only concise yet comprehensive source
which provides easy to analyze chronological case count data for US at county scale. All the data analysis
was performed using the MINITAB software package, a standard package for statistical analysis available at
https:/fwww.minitab.com/en-us/products/ minitaby.
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