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Abstract 

The structural transformation between Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ and the 

enhancement in electrocatalytic activity is reported. Ca2Sr2Mn2FeO10-δ has a structure where 

corner-sharing (Mn/Fe)O6 octahedra form triple-layered stacks and Ca/Sr are located in spaces 

within and between the stacks. The incorporation of cobalt results in Ca2Sr2Mn2CoO10-δ, which 

has a greater concentration of oxygen vacancies and a quazi one-dimensional structure, consisting 

of chains of CoO6–MnO6–MnO6–CoO6 polyhedra with distorted trigonal prismatic and octahedral 

geometry. Detailed investigation of the electrocatalytic activities of these materials indicates that 

these compounds are able to catalyze both half-reactions of water-splitting, namely hydrogen-

evolution reaction (HER) and oxygen-evolution reaction (OER). Ca2Sr2Mn2CoO10-δ shows 

enhanced electrocatalytic properties compared with Ca2Sr2Mn2FeO10-δ. The former material 

exhibits lower overpotential and greater electrochemically active surface area, as well as faster 

kinetics for both HER and OER processes.  
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1. Introduction 

Structural changes are often associated with variations in material properties. Even small changes 

in structure can have a significant impact on other attributes of a material. Examples of such effects 

are observed in Ruddlesden-Popper oxides (Figure 1), which are derivatives of perovskite oxides. 

They have the general formula An+1BnO3n+1 (n = 1, 2, 3), where A is usually a rare earth or alkaline 

earth metal, B is often a transition metal, and n represents the number of perovskite-type layers in 

each stack, consisting of corner-sharing BO6 octahedra. When n = 1, the formula is simplified into 

A2BO4, which resembles the crystal structure of the fluoride K2NiF4.[1] Increasing the number of 

perovskite layers to n = 2 results in A3B2O7, while n = 3 gives A4B3O10, etc. Ultimately, when n 

approaches infinity, the structure transforms into a typical perovskite structure. Changes in 

properties of these materials can be achieved upon varying the A or B cations. For example, the 

structure of the Ruddlesden-Popper oxide Ca4Mn3O10 changes significantly if calcium is replaced 

by strontium on the A site.[2] The crystal structure of Ca4Mn3O10 is a typical Ruddlesden-Popper 

structure and consists of trilayer stacks of corner-sharing MnO6 octahedra, with Ca residing in 

intra- and inter-stack spaces.[3] However, Sr4Mn3O10 shows a Cs4Ni3F10-type structure,[2] where 

there are Mn3O12 units consisting of trimers of face sharing octahedra.[4] These trimeric Mn3O12 

units share apices to form two-dimensional layers. Ca4Mn3O10 shows antiferromagnetic order 

below 122 K,[2] whereas Sr4Mn3O10 undergoes a transition into long range antiferromagnetic 

order below 67 K.[5,6] On the other hand, a  compound containing both calcium and strontium on 

A sites, Sr1.15Ca2.85Mn3O10-δ, is a semiconductor and exhibits spin-glass like transition at low 

temperature.[7] Similarly, the incorporation of  lanthanum results in La3−3xSr1+3xMn3O10 with 

significantly different magnetic properties.[5]  
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Another example of the effect of the A-site cations is the variation in properties between 

La4Co3O10 and its Nd-analogue. La4Co3O10 has a C-centered structure with space group 

C2/m.[8] At 840 K, this compound undergoes a structural phase transition from monoclinic to 

tetragonal. It also shows long-range antiferromagnetic order below TN ≈ 13 K.[8]  The Nd-

analogue, Nd4Co3O10, on the other hand, has a crystal structure with space group P21/a and shows 

long-range antiferromagnetic order below 15 K.[9] 

Changes to the B-site cation can also result in variation of properties in Ruddlesden–Popper 

oxides An+1BnO3n+1. For example, replacing some of the manganese by niobium in Ca4Mn3O10, 

results in Ca4Mn3-xNbxO10 (x = 0 – 0.2) phases, which show an increase in both unit cell volume 

and octahedral distortion.[10] The doped samples display ferromagnetism-like behavior. A 

significant magnetoresistance effect is observed for the doped samples in comparison with the 

undoped material. Another example of the effect of B-site cation is the variation in symmetry when 

manganese in Ca4Mn3O10 is partially replaced by iron, changing the Pbca space group into 

I4/mmm.[11]  

Among various properties of oxide materials, their electrocatalytic properties are very 

attractive and there is a great potential for their application in areas such as water-splitting. The 

electrocatalytic water-splitting consists of two half-reactions, namely oxygen-evolution reaction 

(OER) and hydrogen-evolution reaction (HER). Some Ruddlesden–Popper oxides have been 

studied as water-splitting electrocatalysts. While some members of this family have good 

electrocatalytic performance,[12] many others show only modest activity. For example, the OER 

overpotential is 522 mV for LaSr3Fe3O10−δ and 0.475 mV for LaSr3Co2FeO10−δ in 0.1 M KOH.[13] 

There are also examples of HER electrocatalysts, such as Sr2LaCoMnO7 with overpotential of 612 

mV in 0.5 M H2SO4,[14] and SrLaCoO4-δ with overpotential of 541 mV in 1 M KOH.[15] Various 
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strategies have been used to enhance the electrocatalytic activity, most commonly by composite 

preparations. For example, a composite catalyst containing S-adsorbed Ruddlesden-Popper oxide 

(Nd0.6Sr0.4)3((Co,Fe)0.85Nb0.15)2O7, metal sulfides, and hollow S-doped carbon fibers has been 

prepared,[16] giving OER overpotential of ~420 mV and HER overpotential of ~470 mV in 1 M 

KOH.[16] In the present study, we have shown the enhancement of electrocatalytic activity for 

both OER and HER through replacing iron in the Ruddlesden-Popper oxide Ca2Sr2Mn2FeO10-δ by 

cobalt to form  Ca2Sr2Mn2CoO10-δ, which has a 1-dimensional structure, consisting of infinite 

chains of face-sharing octahedra and trigonal prisms. While the magnetic properties of the latter 

material have been studied,[17] the electrocatalytic properties for water-splitting and the major 

impact of compositional and structural transformation on electrocatalytic activity of these 

materials have not been investigated.  

 

2. Experimental 

Ca2Sr2Mn2CoO10-δ and Ca2Sr2Mn2FeO10-δ were synthesized by solid state synthesis method using 

stoichiometric amounts of CaCO3 (Alfa Aesar, 99.95%), SrCO3 (Alfa Aesar, 99.95%), Mn2O3 

(Alfa Aesar, 99.95%), Co3O4 (Alfa Aesar, 99.95%), and Fe2O3 (Alfa Aesar, 99.95%). Pellets of 

both samples were first calcined at 1200 ºC for 24 hours in air. After grinding and re-pelletizing, 

samples of Ca2Sr2Mn2CoO10-δ and Ca2Sr2Mn2FeO10-δ were sintered for 24 hours at 1300 and 1350 

ºC, respectively. This step can also be done at 1300 °C for both materials, but the latter material 

would require additional refiring at 1300 °C. The heating and cooling rates were 100 °C/h. Powder 

X-ray diffraction with Cu Kα1 radiation (λ = 1.54056 Å) was employed for investigation of the 

structures of polycrystalline samples. The GSAS software[18] and EXPEGUI interface[19] were 

used for Rietveld refinements. High resolution field-emission scanning electron microscopy 
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(SEM) was utilized to examine the microstructure of the materials. Iodometric titration was 

performed for oxygen content determination[20-22] by dissolving 50 mg of the sample and excess 

KI (∼2 g) in 100 mL of 1M HCl. 5 mL of the solution was then pipetted out, and iodine that had 

formed in the solution was titrated by 0.025 M Na2S2O3. Near the end point of the titration, 0.2mL 

of a starch solution was added as an indicator. All steps were performed under an argon 

atmosphere. The solution was purged with argon for at least 3 hours to remove any dissolved 

oxygen. X-ray photoelectron spectroscopy (XPS) was done at room temperature using Al K 

radiation (1486.7 eV) to study the valence states of B site cations. 

Electrocatalytic properties were measured in a three-electrode glass cell system.  Catalyst electrode 

was prepared by dropcast method using a mixture of sample, nafion and carbon black.  35 mg of 

the sample and 7 mg of carbon powder were added to 20 µL of nafion and stirred for few minutes. 

7 mL of THF was then added and stirred for few more minutes, followed by sonication for 5 

minutes. 40 µL of the catalyst ink (in 10 µL increments) was loaded onto a glassy carbon (GC) 

electrode of 5 mm diameter (area 0.196 cm2), and was dried in air overnight.  Before starting each 

measurement, the electrolyte solution was bubbled with argon gas for at least 30 minutes. The 

glassy carbon (GC) electrode coated with the catalyst was used as working electrode, while an 

Ag/AgCl (in 3 M or saturated NaCl) was the reference electrode, and a carbon rod (for HER) or a 

platinum electrode (for OER) were used as counter electrode. The cyclic voltammetry (CV) 

profiles were recorded using a rotating disk electrode (RDE) at 1600 rpm with scan rate of 10 mV 

s−1 from 0 to 0.8 V vs Ag/AgCl. Resistance (R) was measured before each electrocatalytic 

experiment using potentiostatic electrochemical impedance spectroscopy (PEIS) in the frequency 

range of 100 KHz to 1 Hz. Then, the resulting potentials were converted into the reversible 

hydrogen electrode (RHE) after iR correction according to the following equation:   
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ERHE = EAg/AgCl + 0.059 pH + E⁰Ag/AgCl 

where 𝐸𝑣𝑠 𝐴𝑔/𝐴𝑔𝐶𝑙
0 = 0.21V for 3M NaCl and 0.197V for saturated NaCl for OER and HER 

measurements, respectively. Chronopotentiometry was used to study the stability of the catalysts 

in 0.1M and 1M KOH electrolytes for OER and HER, respectively, using a two-electrode method 

described in the literature.[23] The electrodes were fabricated by dropcasting 100 μL catalyst ink 

on 1 cm2 nickel foam, followed by air drying overnight to obtain a total mass loading of ~ 1 

mg/cm2. Two such electrodes were prepared, which were sandwiched between gold leads attached 

to gold wires and separated by a glass fiber filter paper to prevent short circuiting and 

crossover.[24] 

 

3. Results and Discussion 

3.1. Crystal Structure  

Ca2Sr2Mn2FeO10-δ, forms the so-called Ruddlesden-Popper type structure with tetragonal I4/mmm 

space group, resembling Ca4Mn2FeO10-δ and Sr4Mn2FeO10-δ.[11] Figure 1 shows the Rietveld 

refinement profile and crystal structure of Ca2Sr2Mn2FeO10-δ, based on the same model as 

Sr4Mn2FeO10-δ.[11] The refined structural parameters are listed in Table 1. Its structure comprises 

corner-sharing units of (Fe/Mn)O6 octahedra that form triple-layered stacks. The alkaline-earth 

metals Ca/Sr reside in spaces within and between the octahedral stacks. Considering the 

occurrence of oxygen-deficiencies in this compound, as indicated by iodometric titration and 

consistent with the presence of trivalent iron, some of the oxygen sites in the structure should be 

only partially occupied. Previous studies on similar materials using neutron diffraction[11] have 

indicated that vacancies appear on oxygen sites located within the stacks, namely O1 and O4 site 

in Figure 1b.  
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Figure 1. (a) Rietveld refinement profile for powder X-ray diffraction data of Ca2Sr2Mn2FeO10-δ. Black 
crosses, red line, vertical tick marks and lower green line represent experimental data, the model, peak 
positions, and difference plot, respectively. (b) Crystal structure of Ca2Sr2Mn2FeO10-δ, showing (Fe/Mn)O6 
octahedral units in green. Grey spheres represent Ca/Sr. Yellow lines show the unit cell. 
 
 
Table 1. Refined structural parameters for Ca2Sr2Mn2FeO10-δ using powder X-ray diffraction data. 
Space group I4/mmm, a = 3.79541(2) Å, b = 3.79541(2) Å, c = 27.3699(2) Å, V = 394.267(7) Å3, 
Rp=0.0231, wRp= 0.0304, χ2 = 1.865 

Elements x y z Multiplicity Occupancy Uiso 
Ca1/Sr1 0 0 0.5711(1) 4 0.5/0.5 0.012(1) 
Ca2/Sr2 0 0 0.7026(1) 4 0.5/0.5 0.029(2) 
Mn1/Fe1 0 0 0 2 0.6667/0.3333 0.023(4) 
Mn2/Fe2 0 0 0.1420(2) 4 0.6667/0.3333 0.020(1) 

O1 0 0 0.0696(7) 4 0.8750 0.035(1) 
O2 0 0 0.2112(4) 4 1  0.035(1) 
O3 0 0.5 0.6399(4) 8 1 0.035(1) 
O4 0 0.5 0.5 4 0.8750 0.035(1) 

Ca2Sr2Mn2CoO10-δ forms a completely different structure, featuring 1-dimensioanl chains, 

consistent with a previous report.[17] Figure 2 shows the Rietveld refinement profile and crystal 

structure of Ca2Sr2Mn2CoO10-δ, matching a previously reported model.[25] The refined structural 

parameters are listed in Table 2. The trigonal structure of Ca2Sr2Mn2CoO10-δ with space group 

P321 consists of chains of face-sharing polyhedra running along the c-axis.[17] The chains 

comprise an ordered arrangement of CoO6–MnO6–MnO6–CoO6, where two MnO6 units alternate 

with a single unit of CoO6. The MnO6 polyhedra form distorted trigonal prismatic and octahedral 



8 
 

geometry, while the CoO6 units form two types of trigonal prisms, one highly distorted and another 

close to the ideal geometry. The polyhedra in each chain are connected through face-sharing. The 

spaces between the one-dimensional chains are occupied by Ca and Sr.  

Figure 2. (a) Rietveld refinement profile for powder X-ray diffraction data of Ca2Sr2Mn2CoO10-δ. Black 
crosses, red line, vertical tick marks and lower green line represent experimental data, the model, peak 
positions, and difference plot, respectively. (b) Crystal structure of Ca2Sr2Mn2CoO10-δ, showing the 
polyhedra for Mn (turquoise) and Co (purple). Grey spheres represent Ca/Sr. Some of the polyhedral chains 
and Ca/Sr atoms are omitted for clarity. Yellow lines show the unit cell.  

 
Table 2. Refined structural parameters for Ca2Sr2Mn2CoO10-δ using powder X-ray diffraction 
data. Space group P321, a = 9.3838(4)Å, b = 9.3838(4))Å, c = 7.7138(3)Å, V = 588.25(7)Å3, 
Rp=0.0227, wRp= 0.0306, χ2 = 2.806 

Elements x y z Multiplicity Occupancy Uiso 
Ca1/Sr1 0.020(1) 0.682(1) 0.253(2) 3 0.5/0.5 0.019(3) 
Ca2/Sr2 0.341(2) 0 0.5 3 0.5/0.5 0.030(5) 
Ca3/Sr3 0.3267(3) 0 0 6 0.5/0.5 0.026(5) 

Mn1 0 0 0.176(3) 2 1 0.037(2) 
Mn2 0.3333 0.6666 0.097(2) 2 1 0.037(2) 
Mn3 0.3333 0.6666 0.356(3) 2 1 0.037(2) 
Co1 0 0 0.5 2 1 0.028(3) 
Co2 0.3333 0.6666 0.749(3) 1 1 0.028(3) 
O1 0.499(6) 0.664(8) 0.213(5) 6 1 0.048(3) 
O2 0.666(6) 0.201(4) 0.468(7) 6 1 0.048(3) 
O3 0.833(8) 0 0 3 1 0.048(3) 
O4 0.666(6) 0.173(6) 0.039(7) 6 1 0.048(3) 
O5 0.001(6) 0.158(6) 0.273(8) 6 1 0.048(3) 
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Iodometric titrations show the oxygen stoichiometry of ~9 for Ca2Sr2Mn2CoO10-δ, which implies 

δ = 1, consistent with a previous report.[17] For  Ca2Sr2Mn2FeO10-δ, the oxygen stoichiometry was 

found to be ~9.5, which is nicely consistent with the replacement of Co2+ by Fe3+. This is also 

consistent with the X-ray photoelectron spectroscopy data, shown in Figure 3.  

 

 
Figure 3. XPS spectra, consistent with iodometric titration results. (a) Mn spectrum for 
Ca2Sr2Mn2CoO10-δ, indicating tetravalent manganese.[26,27] (b) Co spectrum for 
Ca2Sr2Mn2CoO10-δ. The pronounced satellite at ~785 eV signifies divalent cobalt.[28,29] (c) Mn 
spectrum for Ca2Sr2Mn2FeO10-δ, indicating tetravalent manganese.[26,27]  (d) Fe spectrum for 
Ca2Sr2Mn2FeO10-δ. The binding energy of 2p3/2 peak and the satellite around ~717 eV indicate 
trivalent iron.[29,27]   
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The micro-structures of the two materials are studied by high resolution scanning electron 

microscopy (SEM). Figure 4 shows the SEM images of sintered pellets of Ca2Sr2Mn2CoO10-δ and 

Ca2Sr2Mn2FeO10-δ. The micrographs indicate smaller crystallites for Ca2Sr2Mn2FeO10-δ. In 

addition, there appears to be a denser packing of crystallites in Ca2Sr2Mn2FeO9.5. 

Overall, it is remarkable that the variation of transition metal from iron to cobalt transforms 

the structure from two-dimensional stacks in Ca2Sr2Mn2FeO10-δ to one-dimensional chains in 

Ca2Sr2Mn2CoO10-δ. Importantly, this change has significant impact on electrocatalytic properties, 

as discussed below. 

 

 

 

Figure 4.  Scanning electron microscopy images of (a) Ca2Sr2Mn2FeO10-δ and (b) 
Ca2Sr2Mn2CoO10-δ. 
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3.2. Electrocatalytic Activity for HER 

Figure 5a shows the HER polarization curves of Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ. Since 

electrocatalytic HER is commonly done in 1M KOH,[30-33] the same condition was used here to 

provide direct comparison to other catalysts. The electrocatalytic activity toward HER during 

heterogeneous catalysis is frequently gauged by the onset potential and the overpotential at 10 

mA/cm2.[34,35] The onset potential, where the  HER begins (indicated by a rise in current) is 

almost 0.0 V versus RHE for the benchmark Pt/C (20 wt. % Pt) catalyst.[36,37]  

The onset potential values for Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ are ~ –0.44 V 

and –0.34 V, respectively. These compounds show respective overpotential (η10) values of –0.66 

V and –0.45 V at –10 mA/cm2 (Figure 5a). HER experiments were also attempted in acidic 

condition, 0.5 M H2SO4, giving overpotential of η10 ≈ 0.48 V for Ca2Sr2Mn2CoO10-δ, while the 

current response for Ca2Sr2Mn2FeO10-δ in this condition does not even reach 10 mA/cm2. While 

oxide catalysts with better performance have been reported,[38,39]  the electrocatalytic activity of 

Ca2Sr2Mn2CoO10-δ is better than some of the previously reported catalysts with Ruddlesden-

Popper type structure, as shown in Table 3. This catalyst is also very stable, as shown by 

chronopotentiometry data in the inset of Figure 5a.  
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Figure 5.  (a) HER polarization curves in 1 M KOH. The inset shows chronopotentiometry data, 
indicating the stability of Ca2Sr2Mn2CoO10-δ. (b) Tafel plots and Tafel slopes for Ca2Sr2Mn2FeO10-

δ (black) and Ca2Sr2Mn2CoO10-δ (red).  

 

Table 3. Comparison of OER/HER overpotentials for some Ruddlesden-Popper oxides. 
 OER η10 (mV) HER η10 (mV) Reference 
Ca2Sr2Mn2CoO10-δ 400 (0.1 M KOH) -450 (1 M KOH) This work 
Ca2Sr2Mn2FeO10-δ 510 (0.1 M KOH) -660 (1 M KOH) This work 
LaSr3Fe3O10−δ 522 (0.1 M KOH) - [13] 
LaSr3Co2FeO10−δ 475 (0.1 M KOH) - [13] 
LaSr3Co1.5Fe1.5O10-δ 388 (0.1 M KOH) - [40] 
SrLaCoO4-δ 510 (0.1 M KOH) -541 (1 M KOH) [15] 
Sr2LaCoMnO7 538 (0.1 M KOH) -612 (0.5 M H2SO4) [14] 
La0.5Sr1.5Ni0.7Fe0.3O4.04 360 (0.1 M KOH) - [41] 
Sr3(Co0.8Fe0.1Nb0.1)2O7-δ 334 (0.1 M KOH) - [12] 
La1.9Ca0.1NiO4 >450 (0.1 M KOH) - [42] 
Sr2RuO4 - -61 (1 M KOH) [43] 

 
Utilizing the Tafel equation,  = a + b log j (where  is overpotential and j is current 

density), the slope of the plot of η versus log j, namely Tafel slope,[44-46] is determined to evaluate 

the kinetics of HER (Figure 5b). Faster HER process is marked by smaller value of the Tafel slope. 

As shown in Figure 5b, Tafel slopes for Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ are determined 

to be 186 mV/dec and 154 mV/dec, respectively. A smaller Tafel slope for the latter compound 

indicates faster electron transfer processes, consistent with its enhanced HER activity. 
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3.3. Electrocatalytic Activity for OER 

The electrocatalytic activity of these materials toward OER was also investigated. Figure 6a shows 

the OER polarization curves for Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ in 0.1M KOH 

electrolyte, a condition that is commonly utilized for electrocatalytic OER.[47-49] The onset 

potentials, marked by an increase in current, are 1.50 V and 1.40 V for Ca2Sr2Mn2FeO10-δ and 

Ca2Sr2Mn2CoO10-δ, respectively. The onset potential of the latter compound is better than that 

reported for the well-known perovskite oxide electrocatalyst, Ba0.5Sr0.5Co0.8Fe0.2O6-δ (BSCF), 

(⁓1.5 V). [50,51] 

The overpotential (10), beyond the ideal 1.23 V, at 10 mAcm-2 is another parameter to 

evaluate the OER performance.[52,53] The overpotential (η10) values, obtained from η10 = ERHE − 

1.23 V, are 0.51 V and 0.40 V for  Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ, respectively (Figure 

6a). For comparison, the η10 of the latter material is better than that of BSCF (⁓0.50 V) [54,37] and 

several other oxides with Ruddlesden-Popper structure, as shown in Table 3.  

The OER kinetics is again evaluated using the Tafel equation  = a + b log j,[44,55] where  is 

the overpotential and j is the current density. This provides information on electron and mass 

transport of an electrocatalyst during the OER.[56] The Tafel plot,  vs log j,[39,46] is shown in 

Figure 6b, indicating Tafel slopes of 128 mV/dec and 86 mV/dec for Ca2Sr2Mn2FeO10-δ, and 

Ca2Sr2Mn2CoO10-δ, respectively. This is consistent with the enhanced OER activity of the latter 

material. In addition, this catalyst is very stable under OER conditions, as shown by the 

chronopotentiometry data in the inset of Figure 6a. 
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Figure 6.  (a) OER polarization curves in 0.1 M KOH, for Ca2Sr2Mn2FeO10-δ (black) and 
Ca2Sr2Mn2CoO10-δ (red). The inset shows chronopotentiometry data, indicating the stability of 
Ca2Sr2Mn2CoO10-δ. (b) Tafel plots. (c-d) Cyclic voltammetry data in non-Faradaic region. (e) Plot 
of javerage versus scan rate, indicating the double layer capacitance (Cdl) as slope.   
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The electrochemically active surface area (ECSA) was also evaluated. The ECSA is commonly 

assessed through determination of the double layer capacitance (Cdl),[57,58] given the proportional 

relationship between ECSA and Cdl.[59] The Cdl is obtained from cyclic voltammograms collected 

in the non-Faradaic region (Figures 6c and 6d) based on the equation Cdl = javerage/ν,[60] where 

javerage is the average of the absolute values of janodic and jcathodic at middle potential of the CV and ν 

is the scan rate. Therefore, the Cdl value is calculated from the slope of a linear fit to javerage versus 

ν.[60] As shown in Figure 6e, Ca2Sr2Mn2CoO10-δ shows a significantly larger Cdl value (385 μF) 

as compared to Ca2Sr2Mn2FeO10-δ (140 μF), consistent with the improved electrocatalytic activity 

of the former material.  

From the above discussion on electrocatalytic activity toward HER and OER, it is evident 

that oxygen-vacancies and structural changes play an important role in electrocatalytic properties. 

As mentioned before, the δ values of ⁓0.5 and ⁓1 are confirmed from iodometric titration for 

Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ, respectively. This is accompanied by a structural 

transformation from 3D in Ca2Sr2Mn2FeO10-δ to 1D in Ca2Sr2Mn2CoO10-δ. The structure-property 

relationships have been observed in some perovskite-based oxides before.[49,61,55,62] For 

examples, the transformation of the crystal structure between Sr2Mn2O6  and CaSrMn2O6 resulted 

in an improved OER activity for CaSrMn2O6.[61] Another study revealed the systematic trends in 

OER activity as a function of structure and the degree of oxygen-deficiency between SrMnO2.5, 

SrMnO2.6 and  SrMnO3.[49] The transformation of crystal structure between the two compounds 

studied in this work, Ca2Sr2Mn2FeO10-δ and Ca2Sr2Mn2CoO10-δ, has a clear impact on the 

electrocatalytic activity. In addition, the presence of Co2+, a d7 ion, as opposed to Fe3+, a d5 ion, 

can have an important effect on electrocatalytic properties. It is noted that in the well-known BSCF 

oxide,[63] the electrocatalytic activity is primarily explained in terms of the electronic 
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configuration of cobalt, rather than iron. Therefore, a combination of factors, namely the type of 

transition metal, the oxygen stoichiometry, and the transformation of the crystal structure all lead 

to the enhanced properties of Ca2Sr2Mn2CoO10-δ. 

 

Conclusions 

Changes in composition, oxygen stoichiometry, and crystal structure can all have an impact on 

functional properties, in particular electrocatalytic activity for water-splitting. These changes result 

in a significant improvement of electrocatalytic performance of Ca2Sr2Mn2CoO10-δ over 

Ca2Sr2Mn2FeO10-δ. The latter compound exhibits superior activity toward both half-reactions of 

water splitting, HER and OER, as indicated by enhanced overpotential and reaction kinetics. In 

addition, this catalyst shows greater electrochemically active surface area and high stability in 

HER and OER conditions, further indicating the important impact of structural changes on 

functional properties.  
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Ca2Sr2Mn2CoO10-δ. The latter shows significant enhancement of electrocatalytic properties for 

both half reactions of water-splitting, namely oxygen-evolution and hydrogen-evolution reactions.   

 

 

 


