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A B S T R A C T   

In the United States, high-resolution, century-long, hydroclimate projection datasets have been developed for 
water resources planning, focusing on the contiguous United States (CONUS) domain. However, there are few 
statewide hydroclimate projection datasets available for Alaska and Hawaiʻi. The limited information on 
hydroclimatic change motivates developing hydrologic scenarios from 1950 to 2099 using climate-hydrology 
impact modeling chains consisting of multiple statistically downscaled climate projections as input to hydro
logic model simulations for both states. We adopt an approach similar to the previous CONUS hydrologic as
sessments where: 1) we select the outputs from ten global climate models (GCM) from the Coupled Model 
Intercomparison Project Phase 5 with Representative Concentration Pathways 4.5 and 8.5; 2) we perform sta
tistical downscaling to generate climate input data for hydrologic models (12-km grid-spacing for Alaska and 1- 
km for Hawaiʻi); and 3) we perform process-based hydrologic model simulations. For Alaska, we have advanced 
the hydrologic model configuration from CONUS by using the full water-energy balance computation, frozen 
soils and a simple glacier model. The simulations show that robust warming and increases in precipitation 
produce runoff increases for most of Alaska, with runoff reductions in the currently glacierized areas in Southeast 
Alaska. For Hawaiʻi, we produce the projections at high resolution (1 km) which highlight high spatial variability 
of climate variables across the state, and a large spread of runoff across the GCMs is driven by a large precipi
tation spread across the GCMs. Our new ensemble datasets assist with state-wide climate adaptation and other 
water planning.   

Introduction 

Hydroclimate projection assessments are typically motivated by the 
need to evaluate potential societal impacts of climate change, including 
security of local/regional water resources. In the United States, federal 
and non-federal institutions, including the Bureau of Reclamation, US 
Army Corps of Engineers, and research institutes, have performed 
several hydroclimate projection studies for the contiguous United States 

(CONUS) domain. That work has produced a large archive of high- 
resolution (~10-km or less), century long, CONUS-domain, hydro-cli
matologic projection products using off-line process-based hydrologic 
models forced by downscaled Global Climate Model (GCM) outputs 
(Maurer et al. 2013; Reclamation 2011, 2013, 2014, 2020; Kao et al. 
2016). The deliberate attention to the main sources of uncertainty in 
climate projections (i.e., using multiple emission scenarios, and multiple 
GCMs; Hawkins and Sutton, 2009) enabled simulating a wide range of 
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hydrologic projection outcomes, which can be used by local, regional, 
and national stakeholders in water resources adaptation planning 
structured around risk framing (e.g., Terando et al. 2020). 

While a few studies have performed hydrologic projection simula
tions using sub-regional or basin-specific modeling within Alaska (Hay 
and McCabe 2010) and Hawaiʻi (Safeeq and Fares 2012; Mair, 2019), no 
domain-wide hydroclimate projections similar to the CONUS domain 
products existed for Alaska and Hawaiʻi. Lacking such products, stake
holders in both states often rely on any studies available that derive 
simple water balance simulations (e.g., Abatzoglou et al. 2018), but do 
not incorporate dynamic hydrologic simulations tailored to their re
gions. Both states have unique landscapes and hydroclimatic regimes 
that require scientifically motivated and specialized modeling consid
erations. For example, in Alaska, hydrologic processes are influenced by 
cryospheric processes such as permafrost, glaciers, as well as seasonal 
snowpack (Hinzman et al. 2005), while Hawaiʻi exhibits highly spatially 
varying meteorological fields, influenced by the trade wind pattern and 
islands’ orography (Giambelluca et al. 2013; Xue et al., 2020). 

Here we generate an ensemble of century-long hydroclimate pro
jections for Alaska and Hawaiʻi that expands on Variable Infiltration 
Capacity (VIC; Liang et al. 1994) model-based hydrologic projections for 
CONUS by representing additional hydrologic processes (in our Alaska 
application) or by representing the domain at high spatial resolution (in 
our Hawaiʻi application). In doing so, we address a need for climate and 
hydrology projection datasets for Alaska and Hawaiʻi. Our approach uses 
a consistent methodology. For both regions, we compiled ten GCM 
climate outputs from phase 5 of the Coupled Model Intercomparison 
Project (CMIP5) for two emission scenario pathways (RCP 4.5 and RCP 
8.5). These GCM outputs were then spatially downscaled using the Bias 
Corrected Spatial Disaggregation statistical downscaling method (BCSD; 
Wood et al. 2004). Finally, we produce hydrologic outputs using the VIC 
model forced by each downscaled climate scenario. 

While we use the same VIC hydrologic model for both regions, we 
configure the VIC model to incorporate the modeled representations of 
several land surface processes unique to the arctic environment in 
Alaska. These include: 1) freeze–thaw of soil moisture based on the full 
energy balance; 2) organic soil content that affects subsurface hydraulic 
and thermal conductivity; and 3) a simple glacier model (Hamman, 
2015; see section 3.2.1). We also adapt a glacier spin-up methodology to 
the VIC glacier model in an effort to provide realistic initial glacier states 
for the VIC simulations. The results of the Alaska simulations highlight 
some of the important hydrologic model components that will be 
required in order to properly simulate the dominant hydrological pro
cesses and their future changes in arctic environments around the world. 
For Hawaiʻi, we use the same VIC model physics configuration as the 
CMIP5 CONUS domain studies (Reclamation 2014, 2020). Because of 

high spatial variability of precipitation within each island, however, we 
use 1 km for the model spatial resolution. 

In this paper, we detail the modeling approaches, the results on 
hydroclimatic change for both regions, and information on dataset 
availability. The remainder of the paper is structured as follows. In 
Section 2 we describe the methods used, including GCM selection, 
downscaling, and hydrologic model configurations specific to each 
domain. In Section 3 we describe the downscaled climatology and hy
drologic projections focused on the middle and end of the 21st century. 
In Section 4 we describe known limitations to these outputs by region. 
Finally, in Section 5, we provide our conclusions. 

Methods 

GCM selection 

Fig. 1 shows plots of the percent change in annual precipitation 
against change in temperature at the end of this century under RCP8.5, 
projected by 40 CMIP5 GCMs used in previous hydroclimate projection 
studies over CONUS (Reclamation, 2013, 2020). The GCM selection 
process considers several factors that affect variation in simulated 
climate futures primarily focused on capturing the spread of the CMIP5 
projections while selecting a diverse set of GCMs to account for model 
structural diversity. The 10 GCM simulations, sub-selected from these 40 
are from different models and modeling centers, are highlighted in red in 
Fig. 1 and listed in Table 1. They generally capture the domain-wide 
average spread of the entire 40 ensemble members for both domains, 
but not necessarily all the diverse responses across small subregions 
(Section 3.1). The specific ensemble member selected for each GCM 
(Table 1) follows previous CONUS hydroclimate projection work 
(Reclamation, 2013, 2020). We use two future concentration pathways 

Fig. 1. a) Alaska and b) Hawaiʻi annual precipitation change (%) versus temperature (◦C) change for the late-century period (2070–2099) under RCP8.5. Dots 
represent 40 CMIP5 GCMs. GCMs selected for downscaling are highlighted in red and listed in Table 1. 

Table 1 
List of the 10 GCMs selected from the CMIP5 archive including the specific 
ensemble member and model resolution.  

GCM Name Ensemble Member GCM Resolution 

ACCESS1-3 r1i1p1 1.875 × 1.25◦

CCSM4 r6i1p1 0.942 × 1.25◦

CSIRO-Mk3-6–0 r1i1p1 1.865 × 1.875◦

CanESM2 r1i1p1 2.791 × 2.813◦

GFDL-ESM2M r1i1p1 2.023 × 2.5◦

HadGEM2-ES r1i1p1 1.25 × 1.875◦

INM-CM4 r1i1p1 1.5 × 2◦

MIROC5 r1i1p1 1.401 × 1.406◦

MPI-ESM-MR r1i1p1 1.865 × 1.875◦

MRI-CGCM3 r1i1p1 1.121 × 1.125◦
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for our projections: RCP4.5 and RCP8.5. All models show Alaska to be 
warmer and wetter in the future over nearly the entire domain for both 
RCPs (Figs. S6-AK to S9-AK). For Hawaiʻi, absolute changes are warming 
over the entire state for both RCPs, with an ensemble mean statewide 
drying for RCP4.5 and an ensemble mean wetting for RCP8.5 (Figs. S6- 
HI to S9-HI). While most models project wetting over Hawaiʻi, some 
project drying and we include both possibilities within our projections 
(Fig. 1b). GCM evaluation and selection is a topic of active research and 
discussion across the climate modeling and impact analysis communities 
with a wide array of methods available. In particular, the newest ideas 
are focusing on the need for application specific evaluation methodol
ogies while still including scientifically justifiable evaluation metrics 
(Baumberger et al. 2017; Parker, 2020), which could include emergent 
constraints (e.g., Simpson et al. 2021; Williamson et al., 2021), global 
and regional scale change metrics (e.g., global temperature trends) 
(Tokarska et al. 2020), process-oriented metrics, and extremes (e.g. 
Newman et al. 2022). 

Downscaling method 

We use one statistical downscaling (SD) method—BCSD (Wood et al. 
2004)— to generate daily downscaled precipitation and air temperature 
(daily minimum and maximum). BCSD is a computationally inexpensive 
method that can be applied to a large ensemble of GCM outputs over a 
large domain for improved characterization of uncertainty, while 
reproducing observed precipitation characteristics (such as wet-day 
frequency, extreme event) with better or similar fidelity compared to 
several other SD methods (Gutmann et al. 2014; Reclamation 2020). 

BCSD has been widely used in the water resources climate impacts 
modeling community. For example, BCSD was used in the past two 
Bureau of Reclamation sponsored CONUS CMIP-based hydrologic pro
jection studies (Reclamation 2011, 2013, 2014). With downscaled daily 
precipitation and air temperature, other meteorological variables (i.e., 
shortwave radiation, longwave radiation and humidity) are estimated at 
the high-resolution using Mountain Microclimate Simulation Model 
(MTCLIM; Thornton and Running 1999) algorithm. Such high- 
resolution radiation and humidity variables are consistent with precip
itation and temperature as the MTCLIM algorithm accounts for cloudi
ness based on the occurrence of precipitation to estimate incoming 
radiation and for diurnal temperature range to estimate humidity. 

We apply BCSD as it was initially designed in Wood et al. (2004). 
BCSD begins with bias correcting monthly mean GCM output at its 
original resolution based on a spatially aggregated, gridded observa
tional dataset (coarsened observational grid to match the GCM grid). 
The bias correction in BCSD uses an empirical quantile mapping method 
(Panofsky and Brier, 1968) which corrects quantiles in the GCM cu
mulative distribution to the observational distribution. BCSD then per
forms a bi-linear interpolation to spatially disaggregate both the bias- 
corrected GCM output and the coarsened observational data to the 
original high-resolution observational grid. Differences between the 
original observational dataset and the spatially disaggregated coarsened 
observational dataset are used to impose high resolution spatial vari
ability on the spatially disaggregated GCM output. Finally, temporal 
disaggregation of the monthly downscaled GCM data is performed by 
first randomly selecting a daily sequence of a given month from the 
historical period (e.g., a future July monthly precipitation would be 

Fig. 2. 12-km VIC model grid over Alaska. Glacierized grid boxes are indicated by green color. Three basins (Colville River, Copper River and Teslin River) are used 
for Fig. 8. 
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disaggregated using a randomly selected historical July daily sequence), 
then scaling (precipitation) or shifting (for temperature) the selected 
daily sequence so that monthly means of the adjusted daily series match 
the downscaled monthly GCM values. The BCSD technique has been 
extensively used and tested so that its characteristics are generally well 
known and not recreated here. Downscaled climate data using BCSD 
represent historical monthly values and seasonality very well, have 
better spatial scaling and representation of interannual variability than 
other methods, and maintain features of ENSO spatial correlation pat
terns in the original large-scale model (e.g. Gutmann et al. 2014; Sun 
et al. 2020). 

A key decision when applying BCSD (or any other statistical down
scaling method) is selecting the high-resolution observational product 
which is used to train the downscaling method. For Alaska, we use a 12- 
km gridded dataset for the period 1980–2017, which is aggregated from 
the 1-km Daymet dataset version 3 (Thornton et al. 2016). For Hawaiʻi 
we use a 1-km gridded dataset for the period 1990–2013, which is 
aggregated from the 250-m dataset recently developed by the University 
of Hawaiʻi (Longman et al. 2019). The length of observed data is 
different between the two regions (37 years for Hawaiʻi and 23 years for 
Hawaiʻi), and is shorter than the 50-year record used for CONUS 
hydroclimate projection work (Reclamation 2013). With a shorter 
length observational dataset, the uncertainty in extreme events in the 
downscaled product may become greater because the short observation 
record length increases the uncertainty in the tails (extreme events) of 
the observed cumulative distribution used for quantile mapping based 
bias correction (Wood et al., 2004). 

Hydrologic modeling 

As was done in the CMIP5-based CONUS hydroclimate projection 
studies (Reclamation 2014, 2020), we use the VIC hydrologic model for 
both Alaska and Hawaiʻi to produce daily hydrologic variables from 
1950 through 2099. In this study we used version 4.2.glacier, versus 
version 4.1.2 (Reclamation 2014) and version 4.2.c (Reclamation 2020). 
For both regions, we estimated VIC soil parameters based on publicly 
available global geophysical datasets: Soil textural data from SoilGrids 
(250 m resolution; Hengl et al. 2016) and topography data from the 
Advanced SpaceBorne Thermal Emission Radiometer-Global Digital 
Elevation Model Version 2 (30 m resolution; ASTER-GDEM2; Tachikawa 
et al. 2011), along with the transfer functions (i.e., functions to convert 
geophysical properties to model parameters) defined by Mizukami et al. 
(2017). Mizukami et al. (2017) calibrated the parameters of the transfer 
function that compute VIC soil parameters using the streamflow obser
vations at the CAMELS (Catchment Attributes and Meteorology for 
Large-sample Studies; Addor et al., 2017) basins over CONUS. VIC 
vegetation parameters, including roughness and resistance, are assigned 
to each land cover type using a vegetation library. In VIC, the other 
vegetation parameters—monthly climatological Leaf Area Index (LAI) 
and Albedo— can either be assigned to each land cover type in the li
brary or each grid box independently from land cover type. Below, we 
describe model configurations and parameters specific to each region. 

Alaska 
Fig. 2 shows the VIC simulation domain at 12-km resolution over 

Alaska. The VIC configuration includes several model specifications that 
represent the processes in the arctic environment. First, we use VIC’s 
frozen soil algorithm (Cherkauer and Lettenmaier 1999) to simulate soil 
freeze–thaw based on computed soil temperature. With the frozen soil 
mode turned on, surface energy and moisture fluxes are numerically 
solved by minimizing energy and water balance errors. The frozen soil 
mode requires a sub-daily computational time step to resolve the diurnal 
cycle of energy fluxes; here, we use a 2-hr time step. Second, Alaska, like 
other arctic regions, is rich in soil organic matter that affects soil hy
draulic and thermal properties (Lawrence and Slater 2008). Therefore, 
we use Soil Carbon Content (g/kg) data from SoilGrids to estimate the 

soil organic matter to adjust soil hydraulic conductivity and thermal 
conductivity. Lastly, we use the simple glacier model implemented in 
VIC (Hamman, 2015) to simulate separate snow and ice accumulation 
and ablation. The glacier model simulates ice accumulation, within- 
pixel ice redistribution, and ablation, but does not move glacier across 
neighboring pixels. The glacier model converts a portion of snowpack 
into ice when the predicted snowpack density becomes greater than a 
threshold value (700 kg/m3). Then, the computed ice volume is con
verted to an ice cover area using the area-volume relationship of Bahr 
(1997). During the glacier area computation, the glacier is distributed 
from the highest elevation to lower elevation bands within the single 
grid box. Here, we define sub-grid elevation bands at a grid box if the 
elevation relief within the grid box exceeds 500 m based on ASTER- 
GDEM2 elevation data. Each band is defined such that the mean 
elevation of each band is equally spaced. The number of elevation bands 
depends on the sub-grid elevation range, but is limited to five. The sub- 
grid elevation bands also account for elevational effects on temperature, 
which affect snow and ice accumulation and melt. Finally, the ice layer 
is integrated into the snowpack layer to compute the energy balance and 
the corresponding ice and snow melt. The glacier model was run for 
1,913 grid boxes (out of a total of 14,227 12-km grid boxes) as shown in 
Fig. 2. The glacier grid boxes are determined based on the Randolph 
Glacier Inventory v6.0 (RGI v6.0; Pfeffer et al. 2014). More specifically, 
any 12-kim grid boxes that overlap glacier polygons in the RGI image are 
considered as glacier grid boxes. 

VIC vegetation parameters are based on the land-cover dataset 
recently developed for the VIC model application for arctic regions 
(Gergel 2019). This land cover dataset uses 0.05-degree resolution Plant 
Functional Types (PFTs) implemented in the Community Land Model 
(CLM) 4.5, which include 17 unique plant types that distinguish optical 
properties, stomatal physiology, roughness length, displacement height, 
and so on; therefore represents unique energy and water exchanges such 
as snow interaction and evapotranspiration. Unique VIC vegetation 
parameters except for LAI and albedo are assigned to each PFT. Monthly 
LAI and surface albedo used are also based on the CLM4.5 input dataset, 
which is generated independently from the PFT. 

Model initialization is performed in two steps: first glacier initiali
zation, followed by initialization of the remaining energy and moisture 
states. For glacier initialization (performed only for glacier pixels), we 
first apply the area-volume scaling relationship of Bahr (1997) to each 
glacier extent obtained from the RGI v6.0 dataset to estimate the ice 
volume for each glacier extent. The ice volume is then distributed to 
each VIC grid box based on the grid box area fraction of the total glacier 
extent. Finally, the ice volume is converted to areal average ice thick
ness, which is used as the initial ice thickness in the VIC glacier model. 
Since the extent of almost all RGI glaciers over Alaska is based on the 
satellite images taken during the period between 2000 and 2011, the 
estimated ice volume from RGI glacier extent needs to be adjusted to 
better represent the glacier volumes in 1950. Assuming the RGI glacier 
extent represents the extent in the year of 2000, glacier ice volume 
reconstruction was made via iterative VIC simulations from 1950 to 
2000, starting with initial guess of ice thickness in 1950, which is 
updated at each iteration based on ice thickness error in the year of 2000 
from the previous VIC run. The VIC runs for the glacier initialization use 
one of the downscaled GCMs, CCSM4, instead of initialization for each 
GCM because the glacier initialization has a high computational cost and 
the downscaled historical climates from all 10 GCMs are very similar as a 
result of the bias correction applied (shown in Fig. S1-AK through S5-AK 
in supplement materials). 

Once a glacier is initialized, a 5-year (1950–1954) simulation is 
cycled five times for each downscaled GCM forcing. The visual inspec
tion confirms soil hydraulic and thermal states are stabilized after the 
VIC model spin-up. During this spin up process, the glacier ice thickness 
is initialized at each spin-up iteration to the ice thickness estimated via 
the glacier initialization process. 

N. Mizukami et al.                                                                                                                                                                                                                              



Climate Services 27 (2022) 100312

5

Hawaiʻi 
In Hawaiʻi, we use the daily step, water-balance mode, which is the 

same model configuration as the CMIP5-based CONUS hydroclimate 
projection studies (Reclamation 2014, 2020), because there is little soil 
freeze–thaw process in the islands. Because the spatial variability of 
precipitation is extremely high (Giambelluca et al. 2013) over the small 
domain (16,640 km2), we configure the model at a nominal resolution of 
1 km (~930 m in longitude and ~990 m in latitude or 0.009-degree) for 
a total of 18,008 grid boxes. The model domain and topography are 
shown in Fig. 3. Vegetation parameters in Hawaiʻi including LAI and 
albedo are taken from the same vegetation library that links land cover 
types to VIC vegetation related parameters as in the previous CONUS 
CMIP5 hydroclimate projection work (Reclamation 2014). Land cover 
data are based on the 500-meter Moderate Resolution Imaging Spec
troradiometer (MODIS) derived International Geosphere–Biosphere 
Programme IGBP classification (MCD12Q1; Friedl and Sulla-Menashe 
2019). 

Future mean changes 

This section presents changes in 30-year mean of temperature and 
moisture fluxes (precipitation, evapotranspiration and total runoff) for 
two future periods— mid-21st century (2040–2069) and late-21st cen
tury (2070–2099)— relative to the historical period (1970–1999) under 
RCP8.5. Table 2 summarizes 10 GCM ensemble mean as well as the 
spread (standard-deviation) of the VIC model domain-wide late 21st 
century changes in temperature and moisture fluxes for RCP4.5 and 
RCP8.5. Overall, Alaska exhibits smaller inter-GCM spread for moisture 
fluxes than Hawaiʻi where ensemble standard deviation exceeds 
ensemble mean. Both regions exhibit small uncertainty in temperature 
change. It should be noted that ensemble mean and spread of moisture 
fluxes vary spatially within the domains for both states. For example, the 
increase in runoff is projected over the entire Alaska, except that 
Southeast Alaska exhibits large runoff decrease due to decreased glacier 
extent (as discussed in section 3.1). Details of the simulations from in
dividual GCMs (historical mean, mid-21st century and late-21st century 
changes under RCP4.5 and RCP8.5) are provided in supplemental 

Fig. 3. 1-km VIC model grid over Hawaiʻi. The model grid boxes (excluding the oceans) are color-coded by elevation.  

Table 2 
GCM ensemble mean (μ) and standard-deviation (σ) of the VIC model domain-wide late-21st century (2070–2099) changes under RCP4.5 and RCP8.5 relative to the 
historical period (1970–1999). P: precipitation, ET: Evapotranspiration, RO: Runoff. Domain-wide value is computed with the median of all the grid cells within the 
domain.    

ΔT [◦C] ΔP [mm/yr] ΔET [mm/yr] ΔRO [mm/yr]   

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Alaska μ  3.5  6.2 130 207 26 43 92 149  
σ  1.1  1.8 25 44 12 20 19 44  

Hawaiʻi μ  1.8  3.2 −13 41 13 30 −19 19  
σ  0.6  0.9 109 142 25 32 86 115  
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material. The following subsections provide more details on climate 
change for each region. 

Alaska 

The ensemble of downscaled GCM annual mean temperature in
creases by 9 ◦C along the Arctic Ocean and by 4 ◦C along the Gulf of 
Alaska by the end of the 21st century (Table1 and also shown in Fig. S7- 
AK for individual GCMs). Fig. 4 shows the degree of warming depends 
on the season, with the strongest warming during the winter season 
along the Arctic Ocean. The same warming pattern occurs for the 
RCP4.5 scenario (Fig. S6-AK), but warming is 2–4 ◦C less than RCP8.5. 

Fig. 5 shows annual maximum snow water equivalent (SWE) and ice 
water equivalent (IWE) during the historical period and their changes 
for the mid-21st and late-21st century periods for the RCP8.5 scenario. 
Large reductions in seasonal snowpack (50–100 %) are seen along the 
Gulf of Alaska and Bering Sea in the future. However, precipitation in
creases (shown in Fig. 6) contribute to snowpack increases across the 
interior and North Slope of Alaska. Finally, glaciers still remain in the 
late 21st century even in the RCP8.5 scenario, but will have much 
smaller extents due to larger summer time ice melt. 

Fig. 6 shows the ensemble mean of annual precipitation, evapo
transpiration and total runoff during the historical period and their 
changes for the mid-21st century and late-21st century periods. Overall, 
all the moisture fluxes increase progressively during the 21st century. 
However, the increase in precipitation generally contributes to greater 
increases in total runoff than evapotranspiration across most of Alaska. 
In other words, runoff ratio increases by up to 0.1. 

For some mountainous areas in southeastern Alaska where glaciers 
exist at present (Fig. 5), model results show different evapotranspiration 
and runoff projection compared to the rest of Alaska (Fig. 6). For 
evapotranspiration, in these areas, weak negative latent heat fluxes 
(heat transfer from the atmosphere to the glacier surface) or conden
sation can occur during the summer months, which contribute to addi
tional ice melt. The small increase in condensation (i.e., negative 
evaporation flux) is projected where glaciers still exist in the future. 
Large runoff decreases occur in the lower elevations where the glaciers 
are completely depleted (See Fig. 5), due to the future loss of runoff 
contributions from glacier ice melt. 

Differences between the emissions scenarios (Fig. 7) amount to 200 
mm/yr more precipitation for RCP8.5 than RCP4.5. Despite greater in
creases in precipitation and stronger warming in RCP8.5 than RCP4.5, 
projected evapotranspiration is much less sensitive than projected runoff 
to the choice of the emissions scenario. There is a very small area of 
reduced evapotranspiration for RCP8.5 as compared to RCP4.5 over the 
mountains in Southeast Alaska where glaciers exist both under RCP8.5 
and RCP4.5. In such a case, the higher temperatures under RCP8.5 lead 
to more negative latent heat fluxes or condensation over glacier fields 
than RCP4.5. Greater increase in precipitation under RCP8.5 than 
RCP4.5 explains the difference in the runoff change between two RCPs 
over Alaska. However, RCP8.5 exhibits larger runoff reductions than 
RCP4.5 in a small part of the mountainous areas in Southeast Alaska. In 
low elevations in these areas, the runoff contribution from glaciers is lost 
in the future when glaciers disappear under RCP8.5, but glaciers may 
remain and ice melt continues producing large runoff under RCP4.5. 

Fig. 8 shows the long-term annual cycles of moisture fluxes and state 

Fig. 4. Alaska ensemble mean seasonal air temperature [◦C] during the historical (1970–1999) period (top row) and changes for the mid-century period (2040–2069; 
2nd row) and late-century period (2070–2099; 3rd row) under RCP8.5, relative to the 1970–1999 period. 
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changes at monthly scale over the three basins shown in Fig. 2: the 
Copper basin located in Southeast Alaska, where a large portion of 
runoff is driven by glacier melt; the Teslin basin, which is one of the 
headwater basins of the Yukon River; and the Colville basin located on 
the North Slope. All three basins exhibit different historical period 
precipitation seasonality. While future seasonal patterns remain similar 
to the historical period, there are differences between individual GCMs. 
Basin-wide evapotranspiration increases during the summer months 
with much less inter-model spread than precipitation and runoff. During 
the winter season, evapotranspiration remains very small because there 
is little to no downward shortwave radiation regardless of the climate 
change scenario. 

Runoff seasonality and its changes are very different from one basin 
to another. Two peaks are seen during the historical period in the 

Colville basin; the first peak due to snowmelt and the second peak driven 
by summer precipitation. These two peaks also occur in the late-century 
period with little timing shift (Fig. 8). Hydrologic changes over the 
Teslin basin are similar to the Colville basin, but with a less pronounced 
precipitation driven runoff peak during the summer months. For the 
Teslin basin, snowmelt is projected to begin earlier and increase in rate 
in the late-century, leading to earlier runoff, and melt-water contrib
uting more to surface runoff than soil moisture recharge resulting in 
higher peak runoff (Fig. 8). Finally, the Copper basin exhibits an 
intriguing reduction in total runoff and shift in runoff seasonality 
because of the large glacier coverage during the historical period and 
projected future glacial loss. There is a slight shift to more spring runoff 
due to increased spring snowmelt, and a drastic reduction in summer 
runoff due to the loss of glacier coverage and summer ice melt runoff 

Fig. 5. Alaska ensemble mean annual peak snow water equivalent (left column) and ice water equivalent (right column) during the historical (1970–1999) period 
(top row) and percentage changes relative to the historical period for the mid-century period (2040–2069: 2nd row) and late-century period (2070–2099: 3rd row) 
under RCP8.5. White pixels in percent change indicate complete glacier loss. 
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contributions (Fig. 8). 

Hawaiʻi 

Temperature increases by the late 21st century are 2 ◦C for RCP4.5 
and 3 ◦C for RCP8.5 over Hawaiʻi (See Table 2) with little spatial vari
ability. Variability in the temperature increases among the 10 GCMs is 
relatively small compared to Alaska, with Coefficient of Variations of 0.2 
and 0.3 over the domain for RCP4.5 and RCP8.5 respectively. Addi
tionally, there is little seasonality in the temperature increase (not 
shown). Unlike temperature, uncertainty in precipitation change for the 
late 21st century across the GCMs is large as shown in Fig. 9 (also 
illustrated with the native GCMs in Fig. 1). Fig. 9 also shows the future 
change in total runoff is closely linked to that in precipitation, indicating 
that the uncertainty in hydrologic projections comes largely from the 

driving GCM’s precipitation. However, evapotranspiration is likely to 
increase even with precipitation decreases in the future (except that 
GCMs producing large precipitation reduction such as MIROC5 may 
reduce evapotranspiration). 

Fig. 10 shows spatial patterns of the ensemble mean change in 
moisture fluxes for the mid- and late-21st century periods relative to the 
historical period. Focusing on the ensemble mean change, overall 
Hawaiʻi receives increased precipitation by the late 21st century, leading 
to increased total runoff. This increase is the largest on the windward 
(east) side of the islands. However, the ensemble mean precipitation 
decreases across nearly all portions of the islands in the mid-21st cen
tury, indicating the trend in climate change may not be a monotonic 
increase. 

Fig. 6. Alaska ensemble mean annual fluxes during the historical (1970–1999) period (top row) and changes for the mid-century period (2040–2069, 2nd row) and 
late-century period (2070–2099, 3rd row) under RCP8.5 relative to 1970–1999 period. 
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Discussion 

The hydrologic modeling presented in this paper is a step forward for 
climate impact assessments needing hydrologic projection information 
across Alaska and Hawai’i. However, there are many aspects of these 
projections that would benefit from additional attention and serve as 
motivation for future research. 

Relationships to previous work 

Our projected seasonal warming pattern in Alaska (Fig. 4) is 
consistent with the results from Walsh et al. (2018), who downscaled 
five CMIP5 GCMs using the monthly delta method (see Walsh et al. 2018 
for method descriptions), which is a simpler downscaling technique than 
BCSD. In colder regions e.g., high-elevations, interior, the North Slope, 
projected increases in precipitation (Fig. 6) result in projected increases 
in snowfall and snow water equivalent (Fig. 5) because the air temper
ature likely remains sub-freezing in winter even with extensive future 
warming. This agrees with previous work (Littell et al. 2018, Lader et al. 
2020; Newman et al., 2020). However, warming in spring, despite of less 
degree than winter, can impact snowmelt process as present spring 

Fig. 7. Comparison of changes in all the Alaska fluxes for the late-century period (2070–2099) between the two RCPs (RCP8.5 minus RCP4.5). GCM ensemble mean 
values are used. 

Fig. 8. Seasonal cycles of Alaska water balance variables for the three basins during the historical (1970–1999) period (gray) and during the late-21st century 
(2070–2099) period (red) under RCP-8.5. Thin lines denote individual GCMs and a thick line denotes the mean of all the GCMs. State variables (dSM: soil moisture, 
dSWE: snow water equivalent, dIWE: ice water equivalent) are monthly changes. 

Fig. 9. Hawaiʻi domain average moisture flux changes for the late 21st century 
(2070–2099) for each GCM under RCP8.5. 
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temperature is closer to 0 ◦C, resulting in earlier snowmelt runoff onset 
(Fig. 8). Additionally, our historical simulations show weak negative 
latent heat flux for some glaciated regions in southeastern Alaska (Fig. 6) 
during summer. This agrees with observations over humid, high latitude 
glaciers where incoming shortwave radiation is limited (Sicart et al. 
2008). During the future periods, the glaciers remain in some areas in 
southeastern Alaska (Fig. 5). These areas may see an increase in 
condensation because the warmer and wetter atmosphere contains the 
larger amount of moisture in near-saturated condition, causing greater 
moisture gradient between the glacier surface and atmosphere. This 
enhances ice-melt during summer. 

Across Hawai’i, Frazier and Giambelluca (2017) have shown an 
overall drying trend based on their precipitation trend analysis spanning 
1920–2012. Our projections indicate general statewide drying through 
mid-century (Fig. 10) and a more neutral (Fig. S8-HI) or wetter at the 

end of century (Fig. S9-HI) depending on RCP. Some other statistical and 
dynamical downscaling efforts over Hawaii show a more pronounced 
dipole of more precipitation on windward and less precipitation on 
leeward slopes for the 2070–2099 period using RCP8.5 (Elison Timm 
et al. 2015; Zhang et al. 2016) which differs from our results, while other 
dynamic downscaling results are more similar to the BCSD results pre
sented here (Xue et al. 2020). The attribution of these differences is an 
open research question and could be due to several factors. Some of the 
spread across different projections (and models) in Hawai’i could be due 
to differences in the representation of changes in the expansion of the 
Hadley circulation in the subtropical Pacific and how statistical and 
dynamical downscaling methodologies represent those changes. Addi
tionally, the BCSD scheme directly downscales precipitation which may 
limit the spatial flexibility of method to represent complex change pat
terns within one GCM grid cell such as one of the Hawaiian Islands, 

Fig. 10. Hawaiʻi ensemble mean annual fluxes during the historical (1970–1999) period (top row) and changes for the mid-century period (2040–2069, 2nd row) 
and late-century period (2070–2099, 3rd row) under RCP8.5 relative to 1970–1999 period. 
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while the work of Elison Timm et al. (2015) uses additional circulation 
variables (e.g. 700 hPa moisture advection) which may induce different 
future spatial patterns. Furthermore, temporal patterns in the 20th 
century streamflow in Hawaiʻi are correlated with the precipitation 
patterns and ENSO and PDO phases (Bassiouni and Oki 2013). Thus, 
uncertainty in hydroclimate projections across Hawaiʻi seen in Fig. 9 are 
likely to be affected by how each GCM captures such large-scale dy
namics. For example, it is likely some GCMs exhibit positive PDO phase 
while others are in the negative phase in the same period in the future. 

Sources of uncertainty 

Our hydrologic projections incorporate uncertainty due to the choice 
of the GCM and emission scenarios. Although many studies have indi
cated that those two components of the modeling chains are the primary 
sources of uncertainty for the evaluation of hydrologic impacts, partic
ularly the long-term runoff volume (e.g., Kay et al. 2009; Prudhomme 
and Davies 2009; Najafi et al. 2011; Bennett et al. 2012; Chegwidden 
et al., 2019; Surfleet and Tullos 2013; Addor et al., 2014; Vano et al. 
2014), other components—downscaling methods and hydrologic mod
eling—can contribute to substantial uncertainty in the hydroclimate 
projections and should not be neglected (Clark et al., 2016). 

The source of uncertainty in climate downscaling includes not only 
the choice of SD method (Gutmann et al., 2014; Mizukami et al. 2016), 
but also input training data uncertainty across both domains (Newman 
et al. 2019; Newman et al., 2020) which can also lead to different future 
projections of hydrologically relevant variables (Wootten et al., 2021). 
Two notable impacts are that different SD methods can produce 
different wet-day frequency (the number of days with precipitation; 
Gutmann et al., 2014) which, with associated cloud frequency differ
ences, affects estimates of shortwave radiation (Mizukami et al. 2016), 
and different training data can impact the representation of change of 
daily maximum precipitation. 

The implication for this work is that there may be an underestima
tion of the spread of possible future meteorological (e.g., precipitation 
and temperature) and hydrological (e.g., evapotranspiration, runoff) 
change, particularly in regions of poorly observed complex topography 
or in areas of transition from historical snow to snow-free futures (e.g., 
Southeast Alaska). In these areas the training data will have the largest 
impact on projected meteorological and hydrological change because of 
large uncertainty in local-scale climate representation such as lapse 
rates, cold-pool and so on. Furthermore, in such areas, SD methods that 
account for topographic effects on local scale climate may be advanta
geous (Fiddes and Gruber 2014). 

Work on dynamically downscaled climate simulations has been un
dertaken for Alaska (Lader et al. 2017; Newman et al., 2020) and 
Hawai’i (Zhang et al. 2016; Xue et al., 2020). Future projected changes 
in Zhang et al. (2016), Xue et al. (2020) and Newman et al. (2020) are 
from dynamically downscaled simulations based on the pseudo-global 
warming (PGW) approach (e.g., Schär et al. 1996, Rasmussen et al. 
2011), in which a regional climate model was run at high-resolutions (4 
km for Alaska, 1.5 km for Hawai’i) with historical atmospheric bound
ary conditions and perturbed boundary conditions based on an end-of- 
century (2071–2099) ensemble mean of CMIP5 GCMs for RCP8.5. For 
Alaska, both the PGW-based climate projection and the individually 
downscaled GCMs of Lader et al. (2017) show a similar magnitude and 
spatial pattern of precipitation change to our ensemble mean of BCSD 
downscaled precipitation change under RCP8.5 (Fig. 5 in Newman et al., 
2020). For Hawai’i, Xue et al., (2020) shows positive statewide pre
cipitation changes, though an increase in precipitation is seen in the 
windward side of the islands mainly during the wet season (November 
through April). Zhang et al. (2016) shows a pronounced dipole of future 
dryer leeward and wetter windward slopes for both dry and wet seasons. 
Differences between the PGW simulations and the BCSD dataset 
described here could be attributed to circulation differences in the future 
climates as well as the methodological differences (e.g., GCM choice, 

spatial resolution, bias-correction and so on) across statistical and 
dynamical downscaling methods. 

For hydrologic modeling, the VIC model parameters used here are 
essentially uncalibrated (Section 2). Mendoza et al. (2015) illustrated 
that hydrologic model calibration reduces uncertainty in climate sensi
tivity to simulated hydrologic responses arising from hydrologic model 
choices. Though hydrologic model calibration is common in previous 
basin-scale hydrologic projection studies (e.g., Bennett et al., 2012), 
large domain studies pose a significant challenge in estimating spatially 
distributed hydrologic model parameters and is an area of active 
research (Oubeidillah et al. 2014; Mizukami et al. 2017; Rakovec et al., 
2019; Yang et al. 2019). Other recent studies (Vidal et al. 2016; Cheg
widden et al. 2019) have shown that hydrologic model choices can 
contribute to greater uncertainty relative to the other modeling chain 
components, particularly for low flow. Baseflow production, which 
dominates runoff for low flow periods, particularly in dry environments, 
is largely determined by soil process representation in a hydrologic 
model. In addition, the complexity of evapotranspiration formulations 
implemented in hydrologic models varies depending on the parame
terization (e.g., PET formulation) and land cover representations. This 
affects runoff, particularly during the warm season (Vidal et al., 2016). 
Therefore, modeling that uses multiple hydrologic models with multiple 
parameter sets would better represent uncertainty due to hydrologic 
models. 

There are several implications of the use of a single uncalibrated 
model for the hydrologic model results presented here. First, the spread 
or uncertainty of our hydrologic projections will be underestimated 
because of the use of one model. Second, the reliability of the climate 
sensitivity of the hydrologic model, or the model representation of hy
drology under different climates is unknown. Third, use of the hydro
logic projections in other impact models (e.g., stream routing and 
temperature models) would likely require additional, carefully crafted 
bias correction of predicted hydrological variables such as snow water 
equivalent, evapotranspiration, and runoff. 

The land cover data used for this study are temporally static 
throughout the 150-year simulation periods, though future vegetation 
cover is likely to differ from the present time due to climate change (and 
related disturbances such as fire) as well as human interventions (agri
cultural practices, afforestation and deforestation). The future land 
cover scenario dataset such as the Land-Use Harmonization project 
dataset (Hurtt et al. 2020) based on RCPs may be a useful dataset to 
examine the impacts on hydrologic response based on both climate and 
land cover scenarios. 

Hydrologic modeling process challenges in Alaska and Hawaiʻi 

For mountainous parts of Southeast Alaska, glaciers as well as sea
sonal snow cover affect moisture fluxes i.e., runoff and evapotranspi
ration. The glacier retreat in Southeast Alaska is likely to accelerate in 
the future based on current trend (Bevington and Menounos 2022), 
likely impacting future water availability. Beamer et al. (2016) sug
gested that snow and ice melt contribute as much as 80 % of the total 
runoff over the glacierized areas in the drainage basins along the Gulf of 
Alaska. For modeling runoff production from glaciers, the initialization 
of glacier ice volumes is critical. This is because our results indicate that 
ice melt contributes a large portion of total runoff during the present 
time and initial ice volumes affect the timing of large or even complete 
glacial retreat in the future. Additionally, our results on the reduction of 
summer glacier runoff in the future are qualitatively similar to those of 
Beamer et al. (2017). However, they showed that future runoff change is 
significantly influenced by estimated future glacier extent, or ice vol
ume. Furthermore, for basins where glaciers exist at present such as 
Southeast Alaska, errors in glacier initialization affect the simulations 
for a much longer time period compared to other states such as soil 
moisture because glacier dynamics are transient throughout our simu
lation period (150 years). Thus, improving glacier initialization and 
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modeling may be one of the highest priorities for future hydrologic 
projection work in the glacier basins. 

A second challenge in Alaska is the lack of detailed mapping of soil 
properties and deep (>2m) permafrost to simulate changes in baseflow 
and infiltration below the active layer as permafrost thaws. Our VIC 
model uses three soil layers with a total depth of 3 m to simulate soil 
thermal and moisture fluxes. The presence or absence of deep contin
uous permafrost or yedoma (ice-rich soils) below the simulated active 
layer could control both energy and water balance through controls on 
both infiltration and preferential flow paths (e.g., Jin et al. 2022) but are 
poorly mapped over vast portions of Alaska. 

In Hawaiʻi, groundwater is the primary water resource for drinking 
water and agricultural use. Mair (2019) estimated groundwater 
recharge that does not reemerge at surface accounts for approximately 
10–60 % of precipitation in Island of Maui, while runoff accounts for 
10–40 % of precipitation. Hence, a substantial portion of the Hawai‘i 
water balance is not captured in a conventional watershed mass balance. 
This deep groundwater discharges via submarine pathways to the ocean, 
besides withdrawals for municipal and agricultural water use. Our 
modeled water balance excludes this ground water recharge (i.e., pre
cipitation input is partitioned into runoff, evapotranspiration and stor
age in soil). The estimated long-term water balance (Fig. 10) is closed 

water balance among precipitation, evapotranspiration and runoff. 
Therefore, it is important to note that runoff estimated in this paper 
would be more accurately termed surplus, i.e., the sum of runoff and 
groundwater recharge. Although modeling groundwater flow in Hawaiʻi 
is complicated due to the existence of volcanic rock with various 
permeability and impermeable dikes, which impede lateral ground
water, it is desirable to include the vertical percolation process at the 
model bottom layer to estimate groundwater recharge. 

Another challenge in hydrologic modeling in Hawaiʻi may be 
capturing highly heterogeneous spatial patterns in evapotranspiration. 
The spatial pattern of evapotranspiration during the historical period in 
Fig. 10 is different from Giambelluca et al., (2014), who used the 
Penman and Monteith (Monteith 1973) method with 250-meter reso
lution meteorological data as well as detailed land cover and agriculture 
information. Our estimated evapotranspiration spatial pattern re
sembles that of precipitation during the historical period (i.e., highest ET 
area corresponds to the wettest area in the islands) while Giambelluca 
et al., (2014) shows that the highest ET occurs in the highly irrigated, 
dry areas where both moisture and solar radiation is abundant. 
Capturing a more accurate evapotranspiration pattern at high resolution 
modeling needs detailed spatial information on agriculture and corre
sponding irrigation practice. 

Practical implications 

Environmental and resource assessments conducted by many municipal, tribal and federal entities (e.g., US federal agencies such as the US Fish 
and Wildlife Service Species Status Assessments or Water Resource Inventory Assessments, the US Forest Service Forest Plans and vulnerability 
assessments, US National Park Service Resource Stewardship Strategies, and tribal adaptation plans) now seek to include climate impacts on 
resources of concern. Changes in terrestrial and aquatic habitats, species’ abundance and distribution, disturbances (such as fires and insects), 
and hydrologic changes are often considered in vulnerability assessment and adaptation planning at sub-regional to local scales. Methodo
logically consistent sets of climate and hydrology projections help these agencies to plan for climate impacts in the water resources sector as well 
as other hydrologically driven resources. Moreover, as planning and adaptation practices converge toward risk-based scenario planning, 
considering a wider range of plausible outcomes is desirable. The scenarios should address major sources of climate uncertainty such as climate 
model differences, emission trajectories, and downscaling methods (Snover et al. 2013; Clark et al., 2016; Vano et al., 2014; Terando et al., 
2020). 

In the absence of resource-specific information, potential climate impacts on resources of concern are often assessed using whatever projections 
are available (e.g., Hayward et al., 2017). Resource managers in Alaska and Hawaiʻi have general resource-planning information needs similar to 
those of their counterparts in the CONUS states, but work in climatic, hydrologic, and ecological contexts with no close CONUS analogs. In 
Alaska where rates of temperature change are over twice the global average, and Hawaiʻi, where unique climates and ecosystems prevail, 
practitioners to date have been faced with a paucity of projections, and methods for assessing and using them, compared to the information 
available for the CONUS. 

Ideally, climate information is tailored to the decision contexts within which managers work (Enquist et al., 2017) to distinguish and evaluate 
the climate change impacts that may be reduced through adaptation (e.g., Thompson et al., 2021). Moreover, potential climate change 
adaptation decisions can have a stronger scientific foundation if they are supported by hydrologically-relevant scenarios consisting of climate 
models, downscaling, and hydrologic modeling tailored to the region of interest. The downscaled hydroclimate projections presented in this 
paper provide such a foundation over larger domains and for more scenarios than were previously available for Alaska and Hawaiʻi These 
scenarios can provide a path towards adaptation planning that uses a framework like Resist, Accept, Direct (RAD; Schuurman et al., 2020; 
Thompson et al., 2021). The decision whether to Resist (act to maintain desired conditions despite climate trajectories), Accept impacts of 
climate change without significant intervention, or actively Direct those changes with different management practices may depend on pro
jections that address specific impact pathways, a carefully constructed approach to uncertainty, or both. 

In Alaska, water resources planning for communities in Southeast Alaska offers an example of the need for hydrologic projections. Historically 
these communities have relied on small-scale projects for municipal water resources and hydropower generation. A 2018–2019 drought in this 
region known for its rainforests challenged many of these projects’ abilities to provide reliable water and/or power (Bathke et al., 2019), and the 
implications of future climate changes remain poorly understood. For these projects, the hydrologic impacts of climate change, such as 
watershed-scale transitions from snow to rain dominance and year-round runoff changes, are much more important than the magnitude change 
in seasonal temperature or precipitation, and these hydrologic impacts might not be readily inferable without process-based hydrologic 
modeling. These planning efforts also frequently require approaches that address major sources of uncertainty such as climate variability and 
model uncertainty. Cherry et al. (2010) noted that even planning for historical variability in these systems was challenging due to limited data 
availability. 

In Hawaiʻi, available downscaled climate projections are also relatively few in number and, prior to the results presented here, no statewide 
process-based hydrological estimates for downscaled future climate have been made. The new hydroclimatic projections for Hawaiʻi represent a 
significant milestone, providing estimates of changes in key variables affecting water resources, agriculture, terrestrial and aquatic ecosystems, 
drought, flood, and wildfire hazard, and other sectors. The finding of wide variability in future precipitation change projections derived from 
different GCMs and associated high uncertainty in projected changes in hydrological processes underscores the need to make resilient decisions 
in resource management, e.g., for sustaining potable water supply, and natural hazards, e.g., flooding, adaptation planning in Hawaiʻi.  
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Conclusions 

We have generated 21st century downscaled climate and hydrology 
projection datasets over Alaska and Hawaiʻi. The projections are based 
on 150-year continuous hydrologic model simulations forced by 10 
downscaled GCMs from the CMIP5 archive for both the RCP 4.5 and RCP 
8.5 scenarios. Prior to this work, there were only limited hydroclimate 
focused projection studies and datasets available for both regions that 
included state-wide estimates of the surface water balance. The products 
will provide information on the first-order climate and hydrologic pro
jections and their uncertainties during the rest of the 21st century suited 
in many cases for water-resource adaptation planning. Our results 
indicate increases in precipitation, evapotranspiration, and runoff over 
Alaska, but glacier retreat greatly reduces runoff over currently glaci
ated areas. In contrast to Alaska, for Hawai’i, large uncertainties in 
future moisture fluxes dominate the model results, especially runoff, 
which are driven by large uncertainty in precipitation change. 

There are needs for future improvements in both Alaska and Hawaiʻi, 
due to specific hydroclimate processes that are unique to each region, 
including transient glacier hydrology in Alaska and subsurface perco
lation to ocean connected aquifers in Hawaiʻi. There are significant local 
meteorological processes in need of further refinement as well. In 
Hawai’i, future changes in the trade-wind inversion (Xue et al., 2020) 
and its effect on orographic precipitation are not represented currently, 
and in Alaska, the high coastal orography combined with the role of sea 
ice on moisture source regions are missing in the regional climate 
assessment here. 

Data and code availability 

Daily and monthly downscaled GCM and VIC outputs, stored in 
yearly netCDF-4, are archived at https://doi.org/10.5065/c3kn-2y77. 
The total size of the daily downscaled GCM is 133 GB for Alaska and 151 
GB for Hawaiʻi, while daily VIC outputs are 723 GB for Alaska and 348 
GB for Hawaiʻi. The downscaled GCM dataset includes daily minimum 
and maximum temperatures and precipitation. The VIC outputs are split 
into water flux dataset including surface runoff, baseflow, total evapo
transpiration, snowmelt and ice melt (only for Alaska) and state dataset 
including soil moisture, snow water equivalent, and ice water equivalent 
(only for Alaska). For Alaska, energy fluxes (shortwave and longwave 
radiation, latent and sensible heat fluxes, and ground heat as well as soil 
temperature) are also archived. VIC soil and vegetation parameters in 
NetCDF format are also provided. Finally, the model codes used in this 
paper are open-source softwares. The VIC source code used in this paper 
is available at https://github.com/UW-Hydro/VIC/tree/VIC.4.2.glacier 
.01 and BCSD code is available at https://github.com/pangeo-data/sciki 
t-downscale/tree/ak-hi-round2. 
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