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Abstract

The persistence of virtually every single species depends on both the presence of other spe-
cies and the specific environmental conditions in a given location. Because in natural set-
tings many of these conditions are unknown, research has been centered on finding the
fraction of possible conditions (probability) leading to species coexistence. The focus has
been on the persistence probability of an entire multispecies community (formed of either
two or more species). However, the methodological and philosophical question has always
been whether we can observe the entire community and, if not, what the conditions are
under which an observed subset of the community can persist as part of a larger multispe-
cies system. Here, we derive long-term (using analytical calculations) and short-term (using
simulations and experimental data) system-level indicators of the effect of third-party spe-
cies on the coexistence probability of a pair (or subset) of species under unknown environ-
mental conditions. We demonstrate that the fraction of conditions incompatible with the
possible coexistence of a pair of species tends to become vanishingly small within systems
of increasing numbers of species. Yet, the probability of pairwise coexistence in isolation
remains approximately the expected probability of pairwise coexistence in more diverse
assemblages. In addition, we found that when third-party species tend to reduce (resp.
increase) the coexistence probability of a pair, they tend to exhibit slower (resp. faster) rates
of competitive exclusion. Long-term and short-term effects of the remaining third-party spe-
cies on all possible specific pairs in a system are not equally distributed, but these differ-
ences can be mapped and anticipated under environmental uncertainty.

Author summary

It is debated whether the frequency with which two species coexist in isolation or within a
single environmental context is representative of their coexistence expectation within
larger multispecies systems and across different environmental conditions. Here, using
analytical calculations, simulations, and experimental data, we show why and how third-
party species can provide the opportunity for pairwise coexistence regardless of whether a
pair of species can coexist in isolation across different environmental conditions.
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However, we show that this opportunity is not homogeneously granted across all pairs
within the same system. We provide a framework to understand and map the long-term
and short-term effects that third-party species have on the coexistence of each possible
subset in a multispecies system.

Introduction

The persistence of virtually all living organisms on Earth depends to a greater or lesser extent
on the presence of other living organisms and on the environmental (abiotic and biotic) condi-
tions present in a given place and time [1, 2]. This observation has established a rich research
program in quantifying pairwise interactions and their impact on pairwise coexistence across
environmental gradients [3-8]. In this line, observational work has been focused on finding
the frequency of occurrence of multiple pairs of species across different environments either in
isolation or within different systems of multiple species [9-16]. For example, studies have long
debated whether there exists in nature pairs of species whose niches forbid their coexistence
regardless of the environment—known as the checkerboard hypothesis [11, 17]. Instead,
experimental studies have shown that pairwise coexistence strongly depends on the details of
both the system and the environment [10, 12, 18, 19]. In fact, it has been shown that the coexis-
tence expectations that may operate under controlled conditions (or unique environments)
[12, 14] do not necessarily operate under uncontrolled conditions (or diverse environments)
[5, 20]. These observational results have shown that in order to implement successful interven-
tions in ecological communities, it is essential to develop a testable theory to be able to explain
why and how emergent processes at the system level can affect the possibility that a given pair
(or community) of species will coexist under different abiotic and biotic environments.

Because the environmental conditions acting on species are typically unknown and diverse
in natural settings, the majority of theoretical work has been centered on deriving the fraction
of conditions (set of parameter values) leading to the persistence of a community (formed by
either two or more species) [8, 21-23]. Yet, species are seldom in isolation and the coexistence
of a specific combination of multiple species is expected to be rare in a random environment
[5, 24, 25]. Moreover, the methodological and philosophical question has always been whether
we can observe the entire community and, if not, what the conditions are under which an
observed subset of the community can persist as part of a larger multispecies system. The
answer to this question, however, may also be context-dependent due to the presence and
absence of third-party species, which can be acting as ecosystem engineers [26, 27]. Thus, it is
unclear how far knowledge of pairwise coexistence in isolation (or full community persistence)
can take us while investigating ecological systems, and how we should compare the effects of
third-party species on the coexistence probability of a pair (or community) of species.

In this line, ecological research has suggested that species embedded into larger multispe-
cies systems (more than two species) may experience higher-order effects, i.e., the effect of spe-
cies i on the per capita growth rate of species j might itself depend on the abundance of a third
species k due to either compensatory effects, supra-additivity, trait-mediated effects, functional
effects, meta-community effects, or indirect effects [8, 28-31]. Unfortunately, additional
research has shown that it is virtually impossible to derive those potential effects since many
parameter combinations can equally explain the observed ecological dynamics—a problem
known as structural identifiability [32, 33]. In fact, many of the interactions measured under
multispecies systems are not direct effects, as studies often believe [15, 16], but chains of direct
effects [34, 35]. Moreover, measurements of species interactions are expected to change as a
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function of the type of data (i.e., snapshot or time), experiment (e.g., long term or short term),
perturbations (e.g., pulse or press), and dimensionality, leading to inconsistencies and infer-
ence issues [32, 36, 37]. Thus, it is unclear whether the frequency with which two or more spe-
cies coexist in isolation is representative of their coexistence expectation within larger
multispecies systems and across different environments.

Here, we follow a geometric and probabilistic analysis based on nonlinear dynamics at equi-
librium to estimate the effect of third-party species (the larger multispecies system) on the
coexistence of a pair (community) of species under unknown environmental conditions using
only information from pairwise species interactions. We estimate these system-level effects
over the long term (using analytical calculations) and over the short term (using simulations
and available experimental data on gut microbiota). Building on generalized Lotka-Volterra
(gLV) dynamics [8], we provide a geometric understanding regarding whether the conditions
limiting the coexistence of a pair of species in isolation (the species pool consists only of this
pair) remain with third-party species (when the species pool increases). Next, we derive a sys-
tem-level indicator of the extent to which third-party species can affect the probability of coex-
istence of a pair relative to its probability in isolation. Then, we compare the numerical and
experimental effects to the analytical expectation in order to distinguish the role that third-
party species play in shaping pairwise coexistence under short-term and long-term behavior,
respectively. Finally, we show how our theory can be used to provide a cartographic represen-
tation [38] of the long-term and short-term effects acting on each pair within a multispecies
system under environmental uncertainty. While our focus is on pairwise coexistence (follow-
ing traditional work in ecology), our methodology and results are scalable to any subset (com-
munity) dimension.

Methods
Traditional indicators of pairwise coexistence

Our theoretical framework is based on the tractability of the gLV dynamics [33], where the
per-capita growth rate of species i € {1,---, S|} = Siswrittenasf,(N;0) = 0, — >_._.a,N,
where the vector N = (N, ..., N, S‘)T represents the density of all species in the system S. The
matrix A = (a;) € RIS corresponds to the interaction matrix dictating the internal struc-
ture of the system, i.e., the per-capita effect of species j on an individual of species i. The effec-
tive parameters 6 = (0,,.. ., 0, S‘)T € R¥ consist of the phenomenological effect of the internal
(e.g., intrinsic growth rate), abiotic (e.g., temperature, pH, nutrients), and biotic factors (e.g.,
unknown species) acting on the per-capita growth rate of each particular species. That is, we
consider that the effective growth rate 6 represents the total additional effect of all the unknown
potential factors as a function of the environmental conditions acting on each species indepen-
dently. Note that pairwise effects a;; from a given pool of species are assumed to be known.
Our essential assumptions are thus that the effective growth rates 0 are environmentally deter-
mined (i.e., change with the environment), but a pairwise interaction a; is a property only of
the species pair (i.e., invariant under change of environment or addition of further species).

Under steady-state dynamics (i.e., f = 0), the necessary (but not sufficient) condition for
species coexistence is the existence of a feasible equilibrium (i.e., N* = A™' > 0) [22]. We are
interested here in globally stable systems; feasible and globally stable systems fulfill the neces-
sary and sufficient conditions for coexistence [22]. The combinations of the effective growth
rates 6 compatible with the feasibility of a multispecies system S (known as the feasibility
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region D) can be described as:

Dy(S) = {ZNfaj tA=la a, - ag,N € R>0} e RM,

j€s

where a; is the 7™ column vector of the interaction matrix A. Additionally, assuming no a priori
information about how the environmental conditions affect the effective growth rate [39], the
feasibility region can be normalized by the volume of the entire parameter space [25] as

_ vol(D,(8) N©*)

HS) vol (@)

€ (0,0.5),

where ©°! is the (|S| — 1)-dimensional closed unit sphere in dimension |S|. Geometrically,
the feasibility region is the convex hull of the |S| spanning vectors in |S|-dimensional space,
and thus always corresponds to an |S|-dimensional solid angle that is contained within a single
hemisphere (e.g., an acute angle in the case |S| = 2). Thus, the feasibility that is normalized by
the entire |S|-dimensional space cannot be higher than 0.5. Ecologically, this normalized feasi-
bility region can be interpreted as the probability of feasibility of a system S characterized by
known pairwise interactions A under environmental uncertainty (all possible effective growth
rates are equally likely to happen). The measure F(S) can be efficiently estimated analytically
[25, 40] or using Monte Carlo methods (S4 Appendix). Moreover, F(S) is robust to gLV
dynamics with linear functional responses [25], a large family of nonlinear functional
responses [39, 41], gLV stochastic dynamics [39, 41], and as a lower bound for complex poly-
nomial models in species abundances [33].

F(S) represents the feasibility of all |S| species together. That is, if a system (i.e., a given
pool) is composed of 2 species or of 10 species, F(S) represents the probability of feasibility of
the full set of 2 or 10 species, respectively [25]. In the case where |S| = 2, F(S) corresponds to
the traditional indicator of pairwise coexistence in isolation, which is proportional to what is
typically known as niche overlap in gLV competition systems [42, 43]. It is known that F(S)
will tend to decrease as a function of the dimension of the system [23, 33]: F(S,) > F(S,)
if |S;]| < |S,|- Thus, focusing on a given pair of species Z = {i, j} within a system Z C S,
F(S) will likely underestimate the probability of feasibility for the pair, whereas using only the
feasibility of the pair in isolation F(Z) can be potentially misleading. For example, considering
a pair that has a rather small feasibility region in isolation (F(Z) ~ 0, e.g., almost identical
niches) will prompt us to conclude that the coexistence of this pair should be forbidden
across all possible environmental conditions—as suggested by the checkerboard hypothesis
[11, 14, 17]. But, can this pair of species coexist more easily with additional third-party species
[44, 45]? And will different pairs within the same system of multiple species be equally
benefited (or affected)?

Looking at traditional indicators from a systems perspective

To understand the extent to which F(Z) provides a reliable indicator of the possibility of
coexistence of a pair (or community) Z = {i, j} within a larger multispecies system S charac-
terized by a pairwise interaction matrix A, we study geometrically how the feasibility condi-
tions 6 change when a pair of species is in isolation and with third-party species. We approach
this question from several different perspectives. First, we start by asking to what extent can
third-party species act as ecosystem engineers and modify the environment into a more suit-
able habitat [26, 27]? In particular, for a given pair i, j within a fixed community containing
third-party species, we consider the range of environmental conditions associated with the two
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parameters 0;, 0; such that it is possible for the pair i, j to exist for some set of values for the
remaining 6;’s. This gives a sense of the potential environmental range of this pair in the con-
text of a fixed community. In the following subsection we explore the more precise question of
what the probability of coexistence is when we average over all possible values of all the 6;’s.
Mathematically, the projection region D, of the feasibility region D of a multispecies sys-
tem S onto the 2-dimensional parameter space of a pair of species Z can be represented by the
conical hull, i.e., the set of all conical combinations of the projection of spanning rays:
* * 2
Dy (Z,8) = {Zijj :B=1[b, b, --- by|,N € R>0} e R’
jes
where b; is the ™ column vector of B, and it contains a subset of elements corresponding to
the pair Z in the column vector a; of the interaction matrix A. In other words, B consists of the
row vectors a; of A that correspond to the pair Z (i.e., i € Z). For example, for the pair of spe-
cies 1and 3 (i.e., Z = {1, 3}), for each column vector a, = (a,;, " -, a‘SU)T,j e{1,---,|S|}in
A, wehaveb; = (a,;, agj)T in B. Then, we can obtain the normalized projection by the following

ratio of volumes:

I(D,..(Z,S)N O
PI'Oj(Z,S):VO( Pm]( ) )

vol(®%)

€ [E(2),0.5] U {1}.

Recall that F(Z) is the feasibility of pair Z in isolation (using the corresponding 2-dimensional
sub-matrix A[j, f; i, j]). This projection region captures the first ecological question raised
above: what is the range of 0;, 6; under which it is possible for species i, j to coexist for a given
matrix A and some values of the remaining parameters 6, k # i, j.

If the projection region is not the entire 2-dimensional parameter space 0 of the pair, the
projection ranges within Proj € (0, 0.5] (Fig 1A provides an illustration). Otherwise, Proj = 1,
indicating that the region (0, 6,) incompatible with the possible coexistence of the pair disap-
pears. In other words, in these cases pairwise coexistence can be possible under any combina-
tion of (6}, ). The realization of such coexistence, however, still depends on the other 8 values
associated with the third-party species in the system. In fact, per definition
Dy,(Z,8) > Dy(Z), the entire projection region D,,;(Z, S) defines equal or weaker con-
straints on the plane (6;, ;) for the coexistence of the pair. Thus, the amount of projection con-
tribution increasing the feasibility region on the plane (6;, ;) can be defined as

Proj(Z,S)

PC(Z.8) == 5

(1)
Because the combination of spanning vectors increases as the dimension of the system |S]

grows, the projection Proj(Z, S) is expected to approach 1 in large multispecies systems
(Fig 1D, S3, S4, and S5 Figs).

Analytical system-level effects

While the projection contribution, which measures the possibility of pairwise coexistence,

is always beneficial to the likelihood of pairwise coexistence, it is measured in the two-
dimensional (6}, ) plane of the pair {i, j} in question. The actual probability of pairwise coexis-
tence, however, depends on the 6 values of the rest of the species in the community. To find
long-term analytical indicators of the effect of third-party species on pairwise coexistence, first
we propose to do a geometric partition of the parameter space of 8 (a closed unit sphere) into
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Fig 1. Geometric perspective of the effect of third-party species on pairwise coexistence. For a fictitious system of three species, Panel A shows the geometrical
representation of the feasibility region D, (S) (i.e., pink cone spanned by a;, a,, a3) of an illustrative three-species system S characterized by the interaction matrix A €
R¥* in the three-dimensional space of effective growth rates (6, 65, 65). The panel also shows the projection Dy,;(2,S) of the spanning rays onto the two-dimensional
plane (6, 6,) of the pair Z = {1, 2} (i.e,, light pink and dark pink disk spanned by b,, bs). The feasibility of pair {1, 2} in isolation (i.e., a 2-species pool) D,.(Z) is given by
b,, b, (i.e., dark pink disk), and becomes a fraction of the projection corresponding to the possible coexistence of species 1 and 2 only. Panel B illustrates the geometric
partition of the analytical feasibility regions of all possible compositions in the previous three-species system. For the same system, the points in Panel C show the
resulting species composition (species with final abundances N < 107° are considered statistically extinct) from 10,000 simulations over a short finite time interval (total
time = 200, stepsize = 0.01) conducted by the Runge-Kutta method. Note that these results are a function of the time span of simulations (see S7 Fig), although the
qualitative effects are similar for other choices of time span. The black lines correspond to the borders of the analytical feasibility regions in Panel B. Panel D shows the
distribution of system-level effects calculated on a fixed hypothetical pair of symmetrically competing species Z = {1,2} when assembled with different random third
species. The distributions are generated using 50 random third species (see text for details). Each point in the distributions corresponds to the same pair with a different
set of third-party species. For reference, the dashed line shows the value of one: the relative feasibility in isolation. Panels E-F show the positive and negative association of
the long-term effect with the short-term and buffering effects, respectively (Panel E: Pearson’s product-moment correlation = 0.995, p- value < 0.001; Panel F: Pearson’s
product-moment correlation = —0.707, p- value < 0.001). These results are complemented by a perturbative analysis for weakly interacting systems in S5 Appendix.

https://doi.org/10.1371/journal.pchi.1010630.9001

non-invadable feasibility regions of all possible species compositions within a multispecies sys-
tem. These regions are disjoint when there is a global stable equilibrium. Formally, in a multi-
species system S with an interaction matrix A and a stable global equilibrium, the feasibility
region of a composition C (a subset of species found in the system, i.e., C C S, C # 0) can be
defined as:

D(C,S) = ZNj*aj - Z Nie,:A=1a a, - a|5|]vN;k €R,, ¢ € R,

jeC keS\C
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where ey is a unit vector whose k™ entry is 1 and 0 elsewhere. In fact, for a composition C, we
only need the subset of column vectors a; of A corresponding to the composition C (i.e., j € C)
instead of the whole matrix. For example, for the species composition C = {1, 2, 3}, only the
1%, 2% and 3" column vectors of A (i.e., the sub-matrix [a, a, a3]) are needed to define its fea-
sibility region. Furthermore, we can define the normalized feasibility of a composition C by

_ vol(D,(C,S) N ®")

FES) == lgmy € (o F(C)].

F(C) is a function of the sub-matrix formed only by the interactions between the species in C
(i.e., A[C; C]); while F(C, S) is a function of this sub-matrix augmented by the system-level
effects of the composition on the third-party species in the system. In general, F(C,S) = F(C)
only when C = S. Note that when the full community S admits a globally stable equilibrium,
non-invadable equilibria of any subsystems C are also stable [46].

Following our geometric partition, we define the probability of feasibility of a pair of species
Z in alarger multispecies system S as the sum of all the feasibility regions where the pair
forms part of the species composition (Z C C C S):

P(2,8)= > F(C,S).

Zcecs
Because the proposed probability of feasibility is related to the solution of the system at equilib-

rium, we estimate analytically the long-term effect of a multispecies system S on a pair Z by

P(Z,8)
F(2) "~

LE(Z,S) = (2)
which represents the extent to which third-party species can modify the probability of pairwise
coexistence relative to the probability of the pair in isolation allowing infinite time (Fig 1B).
Note that the long-term effect given by Eq (2) describes the effect of the larger multispecies sys-
tem on the probability that the composition C arises as a community of the multispecies sys-
tem, while the projection contribution given by Eq (1) denotes the effect of the larger
multispecies system in weakening constraints on the range of parameters allowing possible
coexistence of composition C. The actual probability of pairwise coexistence depends on aver-
aging over the effective growth rates 0 of the rest of the species in the community. The long-
term effect of Eq (2) takes that into account and therefore, measures the relative probability of
a pairwise equilibrium being feasible within a specific multispecies community. Note also that
while the projection contribution always expands the possible range of coexistence for a given
pair, the long-term effect that measures the average coexistence range is often (roughly half of
all cases) decreased; these statements are completely consistent since the probability of the
additional 8;’s taking values that significantly expand the pairwise coexistence range can be
nonzero but quite small compared to the probability of contracting the coexistence range, and
the projection contribution only incorporates the former.

Numerical system-level effects

While the long-term behavior of a multispecies system provides an expectation of the effect of
third-party species on a pair of species under an ideal setting; in practice, the study of pairwise
coexistence in natural or experimental settings depends on the time scale of investigation,
extinction thresholds, and the finite number of replicates. This implies that transient dynamics
may play an additional role and observed coexistence rates may be different from the long-
term expectations [12, 47]. Thus, to provide a practical short-term perspective regarding the
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effect of third-party species on the probability of pairwise coexistence, we complement the
analytical calculations of feasibility with numerical calculations. We simulate gLV dynamics
over a given time interval across an arbitrary number of repetitions with arbitrary initial con-
ditions (picking from a uniform distribution between 0 and 1 for each species, but starting
with the same abundance for all species yields similar results) and classify species with a final
abundance N < 107° (results are robust to different thresholds) as statistically extinct (Fig 1C).
The time interval 200 is chosen for consistency with the experimental data in S1 Appendix.
That is, while correlations between short-term and experimental effects were in general good,
correlations using a total time of 200 were the strongest (S10 Fig and S11 Fig), given the spe-
cific time parameters of the experiments. Hence, for consistency, we simply set all time inter-
vals of simulations to 200. For multispecies systems, the vector of effective growth rates 6 is
sampled randomly from the closed unit sphere. Then, to control for confounding factors, we
take the two values in the sampled vector 0 that correspond to the pair as the effective growth
rates for the pair in isolation. All simulations are conducted by the Runge-Kutta method.

We quantify the short-term effect of a multispecies system S on a pair of species Z by the
ratio of the simulated frequencies of pairwise coexistence with third-party species and the sim-
ulated frequencies in isolation:

Sim(Z, S) # Zin S / # Zin Z

E(Z = =
SE(2,95) Sim(Z)  # simulations of S

# simulations of Z° 3)
The simulated coexistence frequencies are always greater than or equal to the analytical, i.e.,
there is a short-term buffering effect Sim(Z, S) > P(Z,S) and at Sim(Z) > F(Z), because we
always start with all species present in the system and the global equilibrium is assumed to be
stable. Only after a sufficiently long time do the simulated and analytical frequencies become
the same (S7 Fig).

To study whether the equilibration between short-term and long-term effects happens
more quickly with third-party species or in isolation, we quantify the buffering effect of a simu-
lated system by the ratio between the short-term and long-term effects

55(273)__snn(z,5)_(Shn62)>, (4)

BE(Z.9) =15z,8) " pizs \EZ
which represents the transient benefit (if >1) or disadvantage (if <1) to a pair of species after a
finite time simulation of the system dynamics relative to the expected long-term behavior in
the analytical calculations. For a given pair, the value of the buffering effect can change accord-
ing to the chosen criteria for the simulations (S10 Fig), particularly the time span of the simula-
tion. Yet, BE(Z,S) = 1 if the two simulated frequencies (within systems Sim(Z, S) and in
isolation Sim(Z)) are greater than their analytical counterparts (within systems P(Z, S) and in
isolation F(Z)) in equal proportion. On the other hand, if BE(Z, S) is greater (resp. less) than
1, the buffering effect is stronger with third-party species (resp. in isolation).

Comparing analytical and numerical effects for a given pair

To illustrate how the long-term (analytical) and short-term (numerical) effects act on a given
pair with different third-party species, Fig 1D shows the distribution of analytical and numeri-
cal system-level effects calculated on a hypothetical pair of symmetrically competing species
Z ={1,2} (a1, = a5, = 0.22) when assembled together with different third species. Here, the
interactions associated with the third species are chosen randomly from a normal distribution
with y = 0 and o = 1 (all diagonal values are set to a;; = 1). Note that for such multispecies sys-
tems there is generally a stable global equilibrium, and F(S) > 0. First, in this example, the
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projection contribution (first pink distribution) displays a large range of values including its
maximum 1, confirming that the necessary conditions in (6}, 6,) for pairwise coexistence in
isolation are substantially expanded with the third-party species. Second, the long-term effects
(second blue distribution) as well as the short-term effects (third orange distribution) show
that the probability of pairwise coexistence with third-party species can either decrease or
increase compared to the probability in isolation. Yet, both distributions are approximately
centered at 1, especially for the analytical case (95% confidence intervals for the mean of ana-
Iytical effects [0.956, 1.027]). In fact, Fig 1E shows that both effects are positively associated,
but not perfectly correlated, as expected due to transient behavior. We have considered a

wide variety of such systems and find that this property is similar for any pair of species

under various numbers of randomly-assembled third-party species (S3 Fig, S4 Fig, and S5 Fig).
This reveals that the probability of pairwise coexistence in isolation is very close to the
expected probability across all possible (abiotic and biotic) conditions under both short-term
and long-term behaviors. This result is confirmed and further illustrated by a perturbative
analysis for weakly interacting systems in S5 Appendix, where the center of the probability dis-
tribution of the analytical long-term effect varies from 1 only at fourth order in the
interactions.

Lastly, for this particular pair of competing species, the buffering effects (fourth green dis-
tribution in Fig 1D) are predominantly greater than 1, showing that the short-term effects tend
to be stronger (relative to the long-term effects) with third-party species than in isolation.
More generally, Fig 1F shows that negative (resp. positive) long-term effects of third-party spe-
cies on pairwise coexistence are associated with a stronger (resp. weaker) buffering effect with
third-party species than in isolation. In other words, short-term effects tend to be higher (resp.
lower) than long-term effects if these long-term effects are less (resp. greater) than one. These
results also hold for cases where the environmental effects are constrained to specific regions
of the parameter space (53 Appendix, S6 Fig). All these results are also confirmed by the per-
turbative analysis for weakly interacting systems in S5 Appendix.

Comparing analytical and numerical effects across pairs

Next, we study how the long-term (analytical) and short-term (numerical) effects act across
pairs with a given set of third-party species. Specifically, we randomly generate a five-dimen-
sional interaction matrix A, where the interspecific effects (off-diagonal values) are sampled
using a normal distribution with g = 0 and o = 0.25 (all diagonal values are set to a;; = 1), mak-
ing sure that the interaction matrix is diagonally dominant (and therefore globally stable).
These values and conditions are chosen for illustrative purposes in line with experimental data
in S1 Appendix, but results are robust to this choice (Fig 2 and S9 Fig). Additionally, to study
how patterns can change as a function of the level of competition with third-party species, we
generate a different five-dimensional interaction matrix, where the elements are the same as
the first matrix except that all the off-diagonal signs are inverted. We measure the level of com-
petition by the mean interaction strength. (We have also analyzed the association between the
fraction of negative interactions and coexistence probability, but we did not find any system-
atic relationship; the reason is that even few strong negative interactions can generate relative
negative impacts on pairwise coexistence.) Then, for each pair within the randomly-generated
matrices A, we calculate the projection contribution PC(Z, S), long-term effects LE(Z, S),
short-term effects SE(Z, S), and the buffering effects BE(Z, S). In order to calculate the
simulated frequency of coexistence of each pair in isolation Sim(Z), we run simulations at

the pair level using the corresponding two-dimensional sub-matrices A[j, j; i, j] and sub-vec-
tors O[3, j].
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Fig 2. Cartographic representation of long-term and short-term differences among pairs with the same set of third-party species. Panels A and C show the
system-level effects on 10 pairs within a randomly-generated five-species system characterized by negative-dominated and positive-dominated interactions,
respectively (see text). Rows correspond to the projection distribution (PC(Z, S)), long-term effects (LE(Z, S)), short-term effects (SE(Z, S)), and buffering effects
(BE(Z,S)), respectively. Note that each point in the distributions is a different pair within a set of third-party species. For reference, the dashed line shows the value
of 1. Recall that the x-axis corresponds to the change in probability of pairwise coexistence with third-party species. Panels B and D illustrate the cartographic
representation for all corresponding pairs based on beneficial (LE(Z, S) > 1) or detrimental (LE(Z, S) < 1) long-term effects and beneficial (BE(Z, S) > 1) or
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detrimental (BE(Z, S) < 1) short-term buffering effects. The size of points corresponds to the feasibility of pairs in isolation. The number of points in each region
is annotated in gray. See S9 Fig for a ten-species system.

https://doi.org/10.1371/journal.pcbi.1010630.9002

Results

Fig 2A, 2B, 2C and 2D summarize our results for a pair of negative-dominated (-(a;) =
—0.051) and positive-dominated (—(a;;) = 0.051) interaction matrices, respectively. Ecolog-
ically, negative-dominated interaction matrices correspond to primarily competitive systems.
Instead, positive-dominated interaction matrices correspond to primarily cooperative systems.
First, we found that the projection contribution (first pink distribution) is highly heteroge-
neous across pairs. Recall that this is a function of the combination between the pairwise inter-
actions in Z and the remaining interactions in the system S, where this combination changes
from pair to pair. Second, we found that the long-term effects (second blue distribution) and
short-term effects (third orange distribution) of third-party species can be disadvantageous
(<1) or beneficial (>1) for pairs. Importantly, these effects are not equal across all pairs within
the systems. Note that these distributions are only expected to be centered close to 1 for large
enough systems given that each point in these distributions corresponds to a different pair
with a fixed set of third-party species (not a fixed pair with different third-party species as in
Fig 1D). Third, the buffering effects (fourth green distribution) show values predominantly
greater than (resp. less than) one in Fig 2A (resp. Fig 2C), revealing that the short-term effects
tend to be stronger (resp. weaker) with third-party species than in isolation under negative-
dominated (resp. positive-dominated) interactions. These strong (resp. weak) buffering effects
are generated by the third-party species that also cause negative (resp. positive) effects over the
long term.

To differentiate how long-term and short-term behaviors operate on each pair within a
given set of third-party species, we construct a cartographic representation [38] of the relation-
ship between long-term and buffering effects. Fig 2B and 2D show that the majority of pairs
tend to be negatively (LE < 1) and positively (LE > 1) affected over the long-term within nega-
tive-dominated and positive-dominated random matrices, respectively. As a mirror image, the
majority of pairs tend to be positively (BE > 1) and negatively (BE < 1) affected over the
short-term within negative-dominated and positive-dominated random matrices, respectively.
That is, on average, negative (resp. positive) long-term effects of third-party species on pair-
wise coexistence are typically linked with a stronger (weaker) short-term buffering effects with
third-party species than in isolation, in agreement with the general results found in the previ-
ous section for a fixed pair in a variety of environments. Note that this cartographic represen-
tation can change as a function of the time span of the simulation (see S10 Fig). These effects
were not correlated with pairwise coexistence in isolation (the size of points is not associated
with the value of either axis).

Experimental data

To test our theory in a more realistic setting, we use a publicly available data set of an in vivo
gut microbial system. The data set (hereafter the fruit fly data set) was generated in Ref. [15]
and it comprises a set of ten-day experimental trials of five interacting microbes commonly
found in the fruit fly Drosophila melanogaster gut microbiota: Lactobacillus plantarum (Lp),
Lactobacillus brevis (Lb), Acetobacter pasteurianus (Ap), Acetobacter tropicalis (At), and Aceto-
bacter orientalis (Ao). This in vivo experimental study performed monoculture experiments
for each species, co-cultures experiments for each pair, and poly-culture experiments for the
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Fig 3. Illustration of experimental data, inference of pairwise interactions, and calculation of experimental
effects. We use publicly available data of an in vivo gut microbial system. The data set was generated in Ref. [15] and it
comprises ten-day experimental trials of five interacting microbes commonly found in the fruit fly Drosophila
melanogaster gut microbiota: Lactobacillus plantarum (Lp), Lactobacillus brevis (Lb), Acetobacter pasteurianus (Ap),
Acetobacter tropicalis (At), and Acetobacter orientalis (Ao). From the available experimental data, we used the results
from monoculture experiments for each species, co-cultures experiments for each pair, and poly-culture experiments
for the quintet. Each experiment was replicated across different hosts and each species’ density was measured at the
end of the observation period, providing a single record of persistence for each species in monocultures, co-cultures,
and poly-cultures per replication. The experimentally-inferred pairwise matrix A was inferred using the data of
monoculture experiments for each species (e.g., species 1) and co-cultures experiments for pairs (e.g., pair {1, 2}) by
evaluating the modified abundance of species 1 with and without species 2 at the end of the observation periods (see S2
Appendix). We define the experimental effects of the third-party species on pair {1, 2} as the difference in the
experimental frequencies of occurrence of the pair across all replicates with third-party species and the experimental
frequencies of occurrence of the pair in isolation.

https://doi.org/10.1371/journal.pcbi.1010630.9003

quintet (Fig 3 provides an illustration), as well as triplet and quartet experiments not relevant
to our analysis here. Each experiment was replicated 48 times across different hosts and each
species’ density was measured at the end of the observation period, providing one single record
of persistence per replication for each species in monocultures, co-cultures, and poly-cultures
(see S1 Appendix for details).
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Experimental system-level effects

To investigate the effects of third-party species (system-level effects) on pairwise coexistence
using the in vivo data, for each pair Z, we compute the observational frequency of coexistence
with third-party species S (i.e., within quintets) and in isolation Z (i.e., within pairs) sepa-
rately. To determine species coexistence, we classify a species statistically extinct in a trial if its
relative abundance was less than 1% at the end of the observation period. We also test different
extinction thresholds and obtain qualitatively the same results (S12 Fig). We define the experi-
mental effect of third-party species on pairwise coexistence as the ratio between the frequency
of coexistence with third-party species and the frequency in isolation (Fig 3 provides an illus-
tration):

B # Zin S # Zin Z
~ # replicates of S’ # replicates of Z’

EE(Z,S) (5)

To compare the experimental and long-term (analytical) effects, we use the experimentally-
inferred five-dimensional pairwise matrix A (see S2 Appendix for more details). This matrix
was characterized by negative-dominant interactions (—(a;;) = —0.078). Thus this experimental
system is primarily competitive. Using this experimentally-inferred matrix, we analytically cal-
culate the projected contributions PC(Z, S) and long-term effects LE(Z, S) of third-party spe-
cies with |S| = 5. We chose the quintet experiment (instead of the triplets or quartets) in order
to have more pairs (10 with fives species) to perform statistics. In line with our numerical anal-
ysis, the experimental buffering effect EBE(Z, S) is calculated by the ratio between the experi-
mental effect EE(Z, S) and long-term effect LE(Z, S). We also construct a cartographic
representation of the relationship between long-term effects and the experimental buffering
effect in order to differentiate how long-term (analytical) and short-term (experimental)
behaviors operate on each pair within the experimental system.

Comparing analytical and experimental effects across pairs

We found that the experimental effects of third-party species on pairwise coexistence were
very similar to those generated by simulations (Figs 2 and 4, and S11 Fig). Specifically, Fig 4A
shows that the experimental multispecies system generated heterogeneous effects across pairs
as illustrated by a wide distribution of projection contributions (first pink distributions), long-
term effects (second blue distributions), and experimental effects (third orange distributions).
Similar to simulations for systems with negative-dominant interactions, the in vivo experimen-
tal system shows predominately positive values of buffering effects (fourth green distributions).
This shows that despite the negative long-term effects of the third-party species on pairwise
coexistence, there is a stronger buffering effect with third-party species than in isolation.
Focusing on the cartographic representation of differences among pairs, Fig 4B shows that the
majority of pairs tend to be negatively affected over the long-term (LE < 1) and positively
affected over the short-term (EBE > 1)—consistent with the results obtained for negative-
dominant matrices (Fig 2B). This cartographic representation can also help to understand spe-
cific pairwise cases. For example, the pair (Ap, At) was observed with negative long-term
effects but with a strongly positive buffering effect over the short-term (top left region). In con-
trast, the pair (Lp, Ap) exhibited the complete opposite effects. In turn, the pair (Ap, Ao)
exhibited positive effects over both the long-term and short-term, suggesting that this pair is
substantially benefited by the third-party species. This classification can change as a function
of the experimental details. Importantly, these effects were again uncorrelated with pairwise
coexistence in isolation (the size of points in Fig 4B is not associated with the value of either
axis), confirming the importance of third-party-species dynamics on pairwise coexistence.
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Fig 4. Comparing system-level effects among pairs within a five-species in vivo experimental system. This figure shows similar information to Fig 2, but using the
experimental data and the experimentally-inferred interaction matrix. For each of the 10 pairs in the experimental fruit fly system, Panel A shows the projection
distribution PC(Z, S) (first row pink distribution), long-term effects LE(Z, S) (second row blue distribution), experimental effects EE(Z, S) (third row orange
distribution), and experimental buffering effects EBE(Z, S) (fourth row green distribution). Panel B shows the cartographic representation of how third-party species
affect the long-term and short-term behavior of each of its constituent pairs. Long-term effects can be beneficial (LE(Z, S) > 1) or detrimental (LE(Z,S) < 1). In this
experimental system, the majority of short-term effects tend to be beneficial (EBE(Z,S) < 1) in line with negative-dominated interaction matrices (Fig 2B). See text or
Fig 3 for all species names.

https://doi.org/10.1371/journal.pchi.1010630.9004

Discussion

A major challenge in ecological research has been understanding how species interactions and
diverse environments affect the opportunities for species coexistence [2, 4]. Many research
efforts have been devoted to studying the coexistence of either two species in isolation or that
of a particular set of multiple species [8]. Yet, species are seldom in isolation and the coexis-
tence of a specific combination of multiple species is expected to be rare in a random environ-
ment [5, 24, 25]. This has prompted us to better understand the extent to which the
coexistence of a particular pair or presumed community of species can change between being
in isolation to being part of a larger multispecies system. The main problem resides in the fact
that in natural settings, most of the abiotic and biotic effects acting on species are unknown. As
a response to this problem, we have introduced an analytical formula to estimate the extent to
which third-party species can affect the probability that a particular pair of species coexist
under environmental uncertainty (all possible conditions are equally likely to happen). This
formula is based on information about pairwise interactions from a given pool of species and
assumes that the total effect of all additional biotic and abiotic factors can be captured by a
phenomenological random parameter for each species (i.e., the effective growth rate parameter
0). This kind of question is also a critical focus and challenge in bio-restoration and bio-medi-
cine, where it is unclear whether a large system can have different effects on its different pairs
of species [6, 7, 48-50]. In restoration, for example, it may be that in a given ecological context
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where the species composition has been drastically modified or reduced, a given pair of species
that could coexist in the original full ecological community may no longer have a feasible equi-
librium in the modified species composition. In such a situation, better understanding the kind
of analytic effects described here could help inform restoration ecologists regarding which
other species must simultaneously be reincorporated to enable a specific pair to flourish.

Following our analytical framework, we have shown that the diversity of multispecies sys-
tems opens the opportunity for pairwise coexistence regardless of whether a given pair can
coexist or not in isolation. This phenomenon occurs since the environmental conditions limit-
ing the coexistence of a pair in isolation (parameter values acting on a plane) are replaced by a
new set of conditions acting on all species, whose projection onto the two-dimensional space
tends to cover the pair’s entire plane. Thus, the possibility of pairwise coexistence with third-
party species only depends on the new set of conditions in the multidimensional space of the
entire system. The magnitude of projection reflects the range of compatible environments for
the pair to coexist. This can be interpreted as the extent to which third-party species can act as
ecosystem engineers [26, 27] and modify the environment into more suitable habitats. Yet, the
probability of pairwise coexistence within larger systems still depends on the effective growth
rates associated with third-party species. The long-term effects measure the difference in the
probability of pairwise coexistence with and without third-party species. This can be inter-
preted as the relative benefit (or harm) of third-party species on pairwise coexistence. Impor-
tantly, under environmental uncertainty, the expected value of the distribution of probabilities
generated by all possible multispecies systems is approximately the same as the probability in
isolation. That is, we can usefully approximate the likelihood of two species coexisting in
diverse assemblages (or diverse environmental conditions) based on the understanding of
their pairwise interactions. We have shown analytically that the deviation of the mean of the
distribution from the isolated probability scales as a* for simple model systems with interac-
tions of order g, and confirmed numerically that this effect is still very small for larger systems
outside the analytic framework. This reasoning can be applied to any subset of species embed-
ded in large multispecies systems.

While analytical measures are useful for increasing our general understanding of pairwise
coexistence, the assumptions behind these measures may never be met in real-world systems.
For example, our analytical measures are based on the long-term asymptotic equilibria
achieved by systems in arbitrary environmental conditions. Yet, both simulations and experi-
ments are always restricted to or biased by short-term (finite) effects. Hence, to provide an
additional understanding of such short-term effects, we have compared our analytical expecta-
tions against numerical and experimental outcomes. As expected, we confirmed that the prob-
ability of pairwise coexistence over the short term (numerically and experimentally) is greater
than pairwise coexistence over the long term [12]. Yet, it has been unclear whether this buffer-
ing effect should be equal with third-party species and in isolation. We have found that this
increase is typically greater (resp. smaller) for pairs with third-party species than in isolation if
the third-party species affect the pairs negatively (resp. positively) in the long term. In other
words, we have found that when third-party species tend to reduce (resp. increase) the coexis-
tence probability of a pair, they tend to exhibit slower (resp. faster) rates of competitive exclu-
sion. This illustrates potential differences between what we may see in experiments and the
expected long-term dynamics of ecological systems. Moreover, these effects are not equal
across all pairs within a system. Importantly, we have shown that we can study these differ-
ences using a cartographic representation of how third-party species are expected to affect the
long-term and short-term behavior of each pair.

As a final note, it is worth mentioning that our theory assumes that environmental condi-
tions are uniformly distributed across the entire parameter space. Instead, under experimental
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settings, much stronger constraints on environmental conditions can be expected. This implies
that the probability of pairwise coexistence should be different between theoretical and experi-
mental analyses. Yet, these experimental constraints should also be expected to operate on
pairs with third-party species and in isolation. Therefore, system-level effects (ratio between
the probability in multispecies systems and in isolation) should be comparable between theo-
retical and experimental analyses. Indeed, our theoretical analysis (Fig 2) showed similar pat-
terns to the experimental analysis (Fig 4), suggesting that our phenomenological framework is
applicable to real-world settings and can be used to increase our understanding of long-term
and short-term ecological dynamics.
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S1 Fig. Illustration of long-term effects and projection contribution under constrained
environments. Panel A shows the constrained feasibility of the pair within a random 3-species
system. The spanning vectors a;, a, and a; are the three column vectors of the interaction
matrix. The parameter space is constrained by three planes 6, = 0.9, 8, = -0.9 and 6; = —-0.9.
Points M and N are the intersection points of the colored feasibility region and the plane 8; =
—0.9. Panel B shows the constrained projection in 2-dimensional space. The spanning vectors
by, b, and b; are the projections of a;, a, and a,, respectively. The parameter space is con-
strained by two lines 8; = —0.9 and 6, = —0.9. Points X and Y are two intersection points of the
unit circle and the two lines. S6 Fig shows the distributions of system-level effects for the fixed
pair {1, 2} within 50 different 3-species systems under constrained environmental conditions.
Please refer to S3 Appendix for more details.

(PDF)

S2 Fig. Long-term and short-term effects in the perturbative regime. The effect of a third
species on a pair of species {1, 2} with small interaction parameter a # 0 and other interactions
vanishing in Eq (S7) in S5 Appendix. In Panel (A), black line is the perturbative theoretical
prediction for the long-term effects (LE) Eq (S8) in S5 Appendix, and blue dots are exact ana-
lytic values of LE. Red dots are simulated short-term effects (SE), for extinction threshold 7 =
0.0001 and time T = 100, using 125,000 environmental conditions 6 uniformly distributed on
the unit sphere and initial conditions with all populations at 0.5. This example illustrates the
general trend that LE >1 (<1) is correlated with the buffering effects BE = SE/LE <1 (>1).
Panel (B) depicts the set of initial conditions where the persistence of species {1, 2} differs in
the presence or absence of the third species {3} over the finite time simulations, in the case

a = 0.01, illustrating the shape expected from the theoretical analysis. Detailed pattern of points
reflects sampling choice over sphere (grid points uniformly spaced in 0;, tan"(6,/60,));
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extinction boundary is localized near 6; ~ —0.06 ~ (In 17)/T (up to finite shift of In 1, T from
initial conditions), and expands in width roughly as 05 as predicted. Please refer to S5 Appen-
dix for more details.
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$3 Fig. Distribution of system-level effects calculated on the fixed pair in Fig 1D with dif-
ferent feasibility in isolation when embedded in 50 random systems in different dimen-
sions where the interactions associated with other species in the systems are chosen
randomly from a normal distribution with g = 0 and ¢ = 0.25. PC means projection contri-
bution; LE means long-term effects; SE means short-term effects; BE means buffering effects.
In Panels A, B, C, the 50 random systems are 3-dimensional; in Panels D, E, F, the 50 random
systems are 5-dimensional; in Panels G, H, I, the 50 random systems are 10-dimensional. In
Panels A, D, G, the feasibility of the fixed pair in isolation (iso) is 0.05; in Panels B, E, H, the
feasibility of the fixed pair in isolation is 0.25; in Panels C, F, I, the feasibility of the fixed pair
in isolation is 0.45. For reference, the dashed line shows the value of one: the relative feasibility
in isolation. The conclusions are summarized under S5 Fig where the sampling distribution of
the interactions associated with other species in the systems has a standard deviation of 1 (i.e.,
o=1).

(PDF)

$4 Fig. Distribution of system-level effects calculated on the fixed pair in Fig 1D with dif-
ferent feasibility in isolation when embedded in 50 random systems in different dimen-
sions where the interactions associated with other species in the systems are chosen
randomly from a normal distribution with g = 0 and ¢ = 0.5 (see S3 Fig). The legend and
layout of panels are the same as S3 Fig. The conclusions are summarized under S5 Fig where
the sampling distribution of the interactions associated with other species in the systems has a
standard deviation of 1 (i.e., 0= 1).

(PDF)

S5 Fig. Distribution of system-level effects calculated on the fixed pair in Fig 1D with dif-
ferent feasibility in isolation when embedded in 50 random systems in different dimen-
sions where the interactions associated with other species in the systems are chosen
randomly from a normal distribution with g =0 and ¢ = 1 (see S3 Fig and S4 Fig). The leg-
end and layout of panels are the same as S3 Fig. The following conclusions are based on S3, 54,
and S5 Figs. The distribution of projection contribution (PC) clusters at the maximum (when
projection = 1) as the dimension of systems (dim) increases. The range of PC (width of distri-
bution) decreases as the feasibility of the pair in isolation (iso) increases. The distributions of
long-term effects (LE), short-term effects (SE), and buffering effects (BE) tend to have larger
widths as either the dimension of systems (dim) or the standard deviation of the sampling dis-
tribution of interactions (o) increases, or as the feasibility of the pair in isolation (iso)
decreases. According to statistical tests at the 0.05 level of significance, the distribution of long-
term effects (LE) is centered at 1 and the mean of buffering effects (BE) is larger than 1 (except
for one case in Panel G of 54 Fig).

(PDF)

S6 Fig. The distribution of system-level effects calculated on the fixed pair in Fig 1D when
embedded in 50 different 3-species systems under constrained environmental conditions.
In the main text, we assume that the heterogeneous environments are completely unknown, so
the effective growth rates 0 of all species in the systems are uniformly distributed on the unit
sphere (Fig 1). Under environmental constraints, here we assume that the growth rate of indi-
vidual species ranges between [-0.9, 1]. Each point in the distributions corresponds to the
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same pair in a different system. As a reference, the interaction matrix of the pair in isolation is

1 022
022 1 /)
(PDF)

S7 Fig. Resulting species compositions from 10,000 simulations over different times (see
Fig 1C). The total time of simulations in Panels A, B, C, and D are 100, 200, 400, and 800,
respectively. The step size is fixed as 0.01. The simulations are conducted by the Runge-Kutta
method. The black lines correspond to the borders of the analytical feasibility regions in Fig
1B. As time increases, the points on the sphere tend to cluster in the corresponding analytical
feasibility regions. As a reference, the interaction matrix of the 3-species system is

1 022 0.56
022 1 037
0.56 037 1

(PDF)

S8 Fig. Resulting species compositions from 5,000 simulations with large interspecific
interactions. In Panel A, species 3 has strong harmful effects on species 1 and 2. In Panel B, all
three species have strong harmful effects on each other. In Panel C, species have either strong
harmful or strong beneficial effects on each other. In the numerical settings of all cases, the
total time is 200, step size is 0.01 and extinction threshold is 107°. The simulations are con-
ducted by the Runge-Kutta method. As a reference, the interaction matrices in Panels A, B,

1 0.22 1.56 1 1.22 1.56 1 1.22  1.56
and Care | 0.22 1 1.37 |, | 1.22 1 1.37 |,and | —1.22 1 1.37 |,
0.7 0.8 1 1.7 18 1 1.7 —1.8 1
respectively. Also, the three systems here are not globally stable.

(PDF)

S9 Fig. Cartographic representation of long-term and short-term differences among pair-
wise coexistence within the same 10-species system. Panels A and C show the system-level
effects on 45 pairs within a randomly-generated ten-species system characterized by negative-
dominated and positive-dominated interactions, respectively (see Fig 2). Rows correspond to
the projection distribution (PC(Z, S)), long-term effects (LE(Z, S)), short-term effects
(SE(Z,S)), and buffering effects (BE(Z, S)), respectively. Note that each point in the distribu-
tions is a different pair within a system. For reference, the dashed line shows the value of 1.
Recall that the x-axis corresponds to the change in probability of pairwise coexistence within
the system. Panels B and D illustrate the cartographic representation for all corresponding
pairs based on beneficial (LE(Z,S) > 1) or detrimental (LE(Z,S) < 1) long-term effects and
beneficial (BE(Z,S) < 1) or detrimental (BE(Z,S) < 1) short-term effects. The size of points
corresponds to the feasibility of pairs in isolation. The number of points in each region is
annotated in gray.

(PDF)

$10 Fig. Buffering effects obtained by simulating dynamics over time. As time increases,
the distribution of buffering effects (y-axis) of the system on pairwise coexistence gradually
shifts to a position centered at zero. The shift is faster and smoother as the number of simula-
tions increases (Panel A: 250 simulations; Panel B: 3000 simulations). In the numerical settings
of both cases, the size of time step (x-axis) is fixed as 0.01 and the extinction threshold is 107°.
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Here, the interaction matrix of fruit-fly experiments is inferred as shown in S2 Appendix.
(PDF)

S11 Fig. Correlation between experimental (short-term) effects and (theoretical) short-
term effects. When calculating the experimental effects (y-axis), we classify a species statisti-
cally extinct in a trial if its relative abundance was less than 1% (Panel A) and 10% (Panel B),
respectively, across all replicates. The short-term effects (x-axis) are obtained by simulating the
Lotka-Volterra dynamics using our inferred interaction matrix in S2 Appendix for 250 times
(Panel A) and 1000 times (Panel B), respectively. In the numerical settings of both cases, the
total time is 200 with step size 0.01 and the extinction threshold is 107°. The simulations are
conducted by the Runge-Kutta method. We found strong Pearson correlations (Panel A: p =
0.66, p — value = 0.039; Panel B: p = 0.64, p — value = 0.046) between the experimental effects
and the short-term effects. Thus, with suitable parameters (e.g. number of simulations, extinc-
tion threshold, simulation runtime), the numerical simulations can successfully capture the
information of pairwise coexistence within multispecies systems in the experimental settings.
(PDF)

$12 Fig. Comparing system-level effects among pairs within a five-species in vivo experi-
mental system. Compared to Fig 4 in the main text, here we classify a species statistically
extinct in a trial if its relative abundance was less than 10% across all replicates (1% in Fig 4).
(PDF)
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