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As the drone becomes widespread in numerous crucial applications with many powerful functionalities (e.g., reconnaissance
and mechanical trigger), there are increasing cases related to misused drones for unethical even criminal activities. Therefore, it
is of paramount importance to identify these malicious drones and track their origins using digital forensics. Traditional drone
identification techniques for forensics (e.g., RF communication, ID landmarks using a camera, etc.) require high compliance of
drones. However, malicious drones will not cooperate or even spoof these identification techniques. Therefore, we present
an exploration for a reliable and passive identification approach based on unique hardware traits in drones directly (e.g.,
analogous to the fingerprint and iris in humans) for forensics purposes. Specifically, we investigate and model the behavior of
the parasitic electronic elements under RF interrogation, a particular passive parasitic response modulated by an electronic
system on drones, which is distinctive and unlikely to counterfeit. Based on this theory, we design and implement DroneTrace,
an end-to-end reliable and passive identification system toward digital drone forensics. DroneTrace comprises a cost-effective
millimeter-wave (mmWave) probe, a software framework to extract and process parasitic responses, and a customized deep
neural network (DNN)-based algorithm to analyze and identify drones. We evaluate the performance of DroneTrace with
36 commodity drones. Results show that DroneTrace can identify drones with the accuracy of over 99% and an equal error
rate (EER) of 0.009, under a 0.1-second sensing time budget. Moreover, we test the reliability, robustness, and performance
variation under a set of real-world circumstances, where DroneTrace maintains accuracy of over 98%. DroneTrace is resilient
to various attacks and maintains functionality. At its best, DroneTrace has the capacity to identify individual drones at the
scale of 10* with less than 5% error.
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1 INTRODUCTION

In past decades, drones have been developed in many critical areas, from law enforcement, and commerce, to
education and recreation. By 2026, the market for drones is estimated to exceed $63.6 billion [1]. Over time,
drones have developed advanced recording, mechanical triggering, and carriage load functionalities at a low cost.
Unfortunately, such technology also led to new forms of cyber-crime (e.g., weaponized drone robbery, voyeurism,
trespassing, etc.). Even worse, drone forensic technologies are largely insufficient to match criminal drones even
when captured [38].

Meanwhile, the traditional physical investigation may be impractical for inventory drone forensics and cause
a set of law issues [19]. The U.S. Federal Aviation Administration (FAA) does not have criminal enforcement
authority and cannot force drone registration. In addition, local and state authorities are limited by federal law
from intercepting drones in flight, potentially even when a crime is in progress. Moreover, the current digital
forensics based on the broadcast is infeasible for the inventory drone [4] (see Section 10 for details), and the
flight log-based methods are not reliable that can be fake or altered [81]. Furthermore, existing advanced digital
forensics such as camera- and lidar-based techniques are also not reliable, limited by significant ambiguities
caused by ambient noise, illumination, and the similar exterior appearance [80].

To this end, we propose our digital drone forensics system (hereafter, DroneTrace), featuring the following
characteristic: (1) Reliable: the fingerprint of each drone is clung to its intrinsic hardware characteristics that
is unique and unclonable. (2) Secure: each drone can be accurately recognized without any drone’s voluntary
operation or compliance under the following premises (e.g., passively - without drone compliance/cooperation,
remotely - without contact, and in-situ - without interfering with drone’s operation). (3) Robust: it is strenuous to
design a robust forensic tool resilient to the ambient noise, working location, and environmental conditions; (4)
Universality: the digital fingerprinting technique should be cost-effective and pervasive and work on all drones
without additional software/hardware adjustment. We first validate the existence of such fingerprints and discover
a new fingerprint for forensics that is based on the parasitic elements of the drone due to the inevitable variations
during the manufacturing process in electronic circuitry (see Section 3.2). Subsequently, we set out to investigate
a non-contact electronics fingerprinting system as shown in Figure 6, for digital drone forensics. Specifically,
we address the following two technical challenges in DroneTrace. (a) How to sense and analyze parasitic element
parameters from each drone in a non-contact and passive manner? We discover and utilize the ‘interference’ of
parasitic elements to the radio frequency (RF) stimuli. Parasitic elements on each drone modulate the RF stimuli
signals and generate unique non-linear distortions to the RF wave reflection (hereafter parasitic response). In
DroneTrace, we propose to utilize a cost-efficient millimeter-wave (mmWave) probe to passively illuminate the
drone and capture the corresponding parasitic response from a distance as the fingerprint for identification. ()
How to develop a robust forensic protocol and software framework for drone identification? First, we design and
implement an infinite impulse response (IIR) filter to remove diverse artifacts in RF reflection signals and extract
the critical parasitic response. Next, we perform the joint tempo-spectral analysis (e.g., piece-wise spectrograms)
and augment the subtle traits in the parasitic response. Finally, we develop a fine-tuned DroneTraceNet for drone
identification, including a customized DNN model through training-aware neural architecture search (NAS) and
compound scaling method.
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Fig. 1. he DroneTrace system can narrow down the scope of the investigation and provide important digital evidence to
identify the adversary drone when its enroute or on crime scenes of dangerous/criminal activities [21, 43, 46, 60]. After the
forensics team collected exhibits (e.g., drones) and testimonials from witnesses and suspects, the final decision is drawn from
a combination of DroneTrace drone fingerprinting as well as exhibits/testimonials from traditional forensic methods.

To the best of our knowledge, DroneTrace is one of the first few works to investigate the possibility of non-
contact electronics fingerprinting based on parasitic parameters, with applications to achieve secure and passive
drone identification for forensics. Moreover, DroneTrace can be conveniently integrated with existing drone
infrastructures (e.g., radar-based drone detection [12, 64] and tracking [24, 57] and defense [84]) and promising
in real-world applications.

Our contributions can be summarized three-fold:

e We investigated a novel digital forensic approach based on RF-electronic parasitic effect in drones due to
inevitable manufacturing variations in electronics.

o We design and implement the digital forensic system, DroneTrace, that can remotely and passively identify
drones using a cost-effective mmWave probe, without any hardware addition or modification to drones,
nor requiring drone compliance. In theory, the system will succeed identification of over 10* drones with
less than 5% error.

e We carry out comprehensive evaluations to examine the performance of DroneTrace under different
distances, interference, disguise, and occlusion conditions. The overall identification accuracy achieves
up to 99.02% with 0.1s sensing time. Moreover, we conduct an in-depth study of capacity analysis and
vulnerability analysis with real-world scenarios.

2 THREAT MODEL AND DIGITAL FORENSICS

2.1 Threat Model

We consider a team of drone forensic experts (i.e., Alice) are trying to solve a crime scene where an adversary,
hereafter Bob, used a drone for criminal activities (e.g., voyeurism). Unwilling to leave any trace, the adversary
(denoted as Bob) decides to use a malicious drone without compliance with any drone remote identification system
(e.g., wireless broadcasting/visible label [3]). Meanwhile, the victim senses the drone approach during the attack
at the crime scene. Rather than working in a physical way, such as intercepting the drone flight or hitting it down
by the ultrasound gun (due to the law constricts or drone mobility), Alice can use a portable/handhold/station-
deployed device to capture the distinct characteristics (i.e., the fingerprint) of the malicious drone swiftly. After
the crime is conducted, Bob may leave the crime scene without leaving any personal marks such as body hair or
fingerprint. But a list of prominent suspected drones related to this criminal activity is prepared from other pieces
of evidence (e.g., reports from witnesses, suspicion from nearby people’s presence/actions/testimonial) acquired
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by the forensic team. However, the forensic team encounters difficulties narrowing down the investigation scope
on a collection of suspected drones, assuming Bob’s malicious drone is among these. Unlike software-based
approaches, DroneTrace utilizes the drone’s intrinsic hardware characteristics and extracts the associated drone’s
fingerprint contained inside, which acts as a traceable identifier for the drone. With the fingerprint of the malicious
drone collected at the crime scene, the forensic team can match it with these suspected drones’ fingerprints to
reveal the malicious drone utilized by Bob as the criminal tool. In that way, DroneTrace can also provide an
important digital evidence to identify the malicious drone to aid the forensic team and identify the drone and the
adversary.

2.2 Digital Drone Forensics

Digital forensics primarily consists of three phases, the preparation (i.e., pre-investigation) phase that plans
on what to identify or collect, the investigation phase that executes the plan (e.g., obtains evidence for trace
matching), and the analysis (i.e., post-investigation) phase that reports the case with comprehensive results and
evidence [102]. In the preparation phase, DroneTrace enables the feasibility of passively and conveniently record
malicious drone fingerprints for later matching process. Once a collection of all suspect drones are confiscated by
the forensic team, the analysis phase will indicate the suspect drone that committed crimes. DroneTrace aims at
providing a reliable and deterministic solution to identifying a malicious drone among a collection of suspected
drones based on suspect drones’ intrinsic physical properties that are unique and unclonable.

3 DRONETRACE FUNDAMENTALS
3.1 Electronic Systems in Drones

For a drone to perform basic three-dimensional controlled motion actuation, it must carry at least a commu-
nication device, a control board, one or more actuators, and a power supply. These electronic components are
interconnected to make up the drone’s electronic system and define the drone’s electronic system [5]. Although
commercial drones are often mass-produced, each drone’s electronic component will vary during manufacturing’s
imperfect fabrication process. As shown in Figure 2, the parasitic elements (i.e., resistance R, inductance L,
or capacitance Cp) on the control board are the circuit elements undesirably produced during the manufacture,
which can cause different system responses compared to the original circuitry design [83]. In detail, the chassis
for most drones are usually made of plastic or carbon fiber, therefore, mmWave signal can sense through-the-case
and make the electronic system exhibit responses to mmWave excitations [18]. Such wireless sensing relations
are expressed as in Equation 1 and 2 [36].

D(w) = &(£0 + /wzee(t)ejmdt) - E(w), (1)
0

———
Parasitic Response

B(w) = po (oo +/ Zmm (t)e?“'dt) - H(w), (2)
0
————————

Parasitic Response
where w is the angular frequency variable, E is the macroscopic electric field, and H is the macroscopic magnetic
field in space and time with mmWave sources. D is the electric flux density, and B the magnetic flux density. &
and yy are the electrical permittivity and permeability of vacuum, respectively. e, and pi, are the dimensionless
dyadics corresponding to the reflection signal of an object to an input field. j is the imaginary unit, z., and z,;,
are dimensionless dyadics called susceptibility functions that constitute the convolution kernels specifying the
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Fig. 2. The practical circuitry on the drone includes designated components and inevitable parasitic elements formed during
the manufacture.

drone electronics’ response to an input field, which are related to drone electronics’ physical properties (e.g.,
parasitic elements) (see Section 3.3).

3.2 Hardware Variation-Based Fingerprint

3.2.1 Variation of Parasitic Elements. Variation caused by parasitic elements in electronic devices is inevitable,
given electric components produced in mass-assembly with high-density circuits wiring introduce a significant
impact on circuit behavior. Parasitic resistance, parasitic inductance, and parasitic capacitance are the three
representative parasitic parameters, ranging from hundreds to thousands of electronics or sub-circuits in a control
board with moderate complexity. Besides, all parasitic elements are subject to random intrinsic manufacturing
process variations, such as an unanticipated shift in the size of metal trace beyond the accuracy of the controller
or simple variance in the physio-chemical process of electronic components such as capacitors, diodes, and
transistors. These variations reflect the unique characteristic frequency responses when circuits are probed by
broadband radio frequency (RF) signals [51]. In other words, no two circuitry implementations have exactly the
same parasitic equivalent circuits and parameters.

3.2.2  Parasitic Response. When the fundamental tone of a wireless signal is passed through the drone, the
parasitic elements on the drone modulate the response signal and generate additional frequency tones besides
the fundamental one [44]. The parasitic response is generated when these sub-carrier frequencies are generated
due to the parasitic properties of the drone (e.g., material reflection efficiency, equivalent microstrip transmission
lines, and inter-modulation) [69].

Hypothesis: The parasitic response contains the unique characteristics of the drone (i.e., parasitic elements), that
can be treated as the intrinsic and highly secure non-contact electronics fingerprinting for digital drone forensics.

3.3 Forensics Feasibility Study

Electronic Circuit Characterization: The first uncertainty is if parasitic effects are sensitive enough to the
parasitic elements of the electronics such that even circuits with the same design will produce different parasitic
responses. To settle this skepticism, we employ the two most basic circuits with the same circuitry design, as
shown in Figure 3. It is not hard to find that two circuits with the same element design have completely different
parasitic elements. Due to the parasitic effects, the simulation system responses (i.e., transfer function model [31])
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Fig. 3. An example of parasitic effects caused by parasitic elements of the most basic electronics. Devices 1 and 2 are with the
same design, but generate different parasitic responses (under Bode plot [39]).

: #ﬁm, while the response
of Device 2 is sys; = Zi;fss:’s , where s is a complex variable. From the simulation analysis results in the parasitic
response, we observe their parasitic responses are significantly distinct owing to their uncontrollable parasitic
elements during the circuit manufacture, which can be utilized to differentiate them. Moreover, there are dozens
of such circuits on a single control board (see Figure 2), and these response differences will accumulate together
to amplify the response differences further. As a result, our proposed parasitic response successfully distinguishes
two circuits with identical designs from parasitic elements in electronics.

A Closer Look at Parasitic Response: In this part, we further explore the parasitic response on real electronics.
First, one of the significant concerns is whether the parasitic response comes from electronics rather than artifacts
(e.g., geometric shape). To address this doubt, we employ two off-the-shelf control boards and a counterfeit by 3D
printing. As shown in Figure 4, these three objects share a similar geometric shape and the layout, all around
5.0%3.6X0.4 cm (i.e., 1.97x1.42x0.16 inches). These three objects are set at one meter (i.e., 39.37 inches) away,
right over the mmWave probe. In Figure 4, the x-axis is the frequency of the received signal after the modulation,
and the y-axis is the amplitude of the received signal after the demodulation. The parasitic responses (varied
sub-carrier frequencies and amplitude) of the two control boards can be observed. Compared with the two control

of the two circuits are different. In this example, the response of Device 1 is sys; =

1 1 1

® Control g o Control o 3D Printed
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Fig. 4. The spectrums of the parasitic response from three different boards are distinct. (a) and (b) are two off-the-shelf
circuitry control boards, and (c) is the 3D printed counterfeit of (a), which indicates parasitic responses come from the
electronics.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 63. Publication date: June 2022.



Reliable Digital Forensics in the Air: Exploring an RF-based Drone Identification System + 63:7

board response spectrums, we notice the parasitic responses of the counterfeit are relatively negligible, which
indicates the parasitic response comes from the electronics.

Proof-of-concept: Four different drones with different make and models are stimulated with the mmWave probe
at one-meter distance. As shown in the periodogram (see Figure 5), the x-axis is the frequency of the received
signal, and the y-axis is the power spectral density (PSD) of the received signal after the demodulation. The
image of each corresponding drone is shown in the upper right corner. Their electronic systems vary in terms of
size, components, and layout. The various sub-carrier frequencies can be observed such that separated from the
signals of the artifacts, their parasitic responses varied from electronics are distinct at the frequency and PSD.
Moreover, the results are promising, implying that given the massive amount of electronics on the drone, parasitic
responses have sufficient space to be served as a powerful identity for drone forensics (See Section 7.2 for details).

4 DRONETRACE OVERVIEW

As shown in Figure 6, we propose DroneTrace, a system for secure and passive drone identification.

Parasitic Response Stimulation and Modeling: We introduce the RF hardware in DroneTrace to stimulate
and acquire the parasitic response from electronics. Compared to other traditional radar technologies (e.g., Pulse-
Doppler radar), the frequency modulated continuous wave (FMCW) radar continuously emits periodic chirp
signals and has a superior performance to catch the distinguishable parasitic responses after the stimuli signals
hit the target drone. Therefore, DroneTrace selects an FMCW radar with a narrow passband filter [68]. When
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Fig. 5. Periodogram [94] analysis depicts distinct demodulated parasitic responses from four drones.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 63. Publication date: June 2022.



63:8 « Liand Chen, et al.

: ) Signal Pre- } Drone Intrinsic } : DroneID | Digital
| Processing Fingerprint Extraction| | Derivation Forensics
|
: Drone Motion Signal Processing for | : Drone Identity
1| Noise Reduction
|
|
I J
|

|

|

|

|

|

Parasitic Response | | Match

|

Trace : :
Segmentation | |

I
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confiscated suspected drones, the malicious drone, and attacker that appeared around forensic scenes can be precisely
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an incident signal passes through the drone, electronics on the drones with their parasitic elements act as a
passive convolutional processor (see Figure 1), and generate non-linear distortions to the original signal. After
the manipulated signal radiates from the drone, the parasitic response will be captured by the RF probe receiver
antenna (Rx). The process can be formulated as E(t) = m(z(t), 7(t)) ® hy(t), where E(t) is the reflected signal,
m(+) is the non-linear modulation function of the parasitic elements, z(t) is the parasitic response signal, 7(#) is
the admittance and impedance matrix descriptions for the non-linear system, ® stands for convolution computing
and hy(t) is the ideal bandpass filter function for the carrier bandwidth [30].

DroneTrace Forensic Processing: Once parasitic response signals are received, DroneTrace will first remove
the ambient noise and extract the effective non-contact electronics fingerprints from the parasitic response. After
that, a deep learning-based identification model is developed to verify the drone’s identity.

5 RELIABLE DRONE FINGERPRINTING
5.1 Signal Pre-processing

5.1.1 Ambient Noise Reduction. Motion noise reduction is to reduce the noise level in the received signal and
simultaneously prevent the waveform from distortion. Thereby, before we extract the fingerprint from the
parasitic response, we employ a filter to remove these components as depicted in Figure 6. However, filtering the
parasitic response is complicated, which requires smoothing the noise and preserving the frequency response at
the same time. Consequently, we apply an IIR filter, xyra 12-order low pass Butterworth filter [72]. Compared
with the Finite Impulse Response (FIR) filter, the IIR filter is composed of a few optical sources and a recursive
delay line, so it can be implemented with a simple structure. Moreover, IIR filters with a large number of optical
taps can provide high-Q band-pass filtering [45]. Also, compared to other IIR filters, the Butterworth filter has a
better linear phase and flatter response within the bandwidth, thereby making this approximation suitable for
motion noise cancellation. The Butterworth filter is a type of signal processing filter as |H(jw)| = \/ﬁT)m ,
wp

where n represents the filter order, w is the natural frequency (27f), and € is the maximum passband gain.

5.1.2  Trace Segmentation. After the noise cancellation process, we treat each probe sensing measurement as
the sample, which is a one-dimension time sequence signal. In DroneTrace, it usually lasts 10s. To extract the
fingerprint more effectively and decrease the computation overhead, we introduce a concept, trace noted as y,
which is defined as a sub-segment of a sample. We empirically select 0.1s as its length (evaluated in Section 8.3).
Finally, we obtain the effective parasitic response signal, a trace, for the fingerprint extraction.
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Fig. 7. DroneTrace feature representation in spectrogram form. Different electronic components complement different
parasitic features in the response signals, which uniquely characterizes each drone. The x-axis is frequency, the y-axis is
sample count, and the color represents power density.

5.2 Drone Intrinsic Feature Extraction

5.2.1 Parasitic Response Analysis. The response analysis is the function that demodulates the response, reflects
the drone’s parasitic characteristics, obtains the integration of content features, and outputs a feature vector. We
use Variational Mode Decomposition (VMD) as P() to represent the parasitic response analysis function, which is
an effective multi-resolution analysis tool for signal decomposition [26]. This approach P() decomposes the input
signal into different amplitude and frequency modulated waves, which has superior performance in keeping all
inner characteristics of the signal and efficiently eliminating the noises [59].

By using VMD, a multi-component signal can be non-recursively decomposed into a series of quasi-orthogonal
intrinsic element signals. Subsequently, the resulting constrained variational problem analysis is achieved as Eq.

(3):

2

Lmin | Dl + Ly s ueyeson

k

2 } 3)

s.t. Z ur = f,

k

where {u} := {uy,...,ur} and {wr} := {0y, ..., wx } are shorthand notations for the set of all modes and their
center frequencies, respectively. f is the input signal, j2 = -1, and }; := Zle for summation operation. Thus,
we can get s(t) = T'(Py, Py, P, P3) , where s(t) is the effective parasitic response, n is the part number, P, is the
approximation, P; is the Level 1 detail part, P, is the Level 2 detail part, P5 is the Level 3 detail part, Fy (ao, b),
Fw(ay, b), Fy(az, b) and Fy (as, b) are the coefficients [91]. T'(+) is a function to construct an initial feature vector
by combining the approximation, Level 1, Level 2, Level 3 parts in order (See Section 7.1). As a result, we exploit
the inherent traits in the parasitic response by exploring the frequency band.

5.2.2 Features Augmentation for Fingerprinting. Previous studies have found that the discrete cosine transform
(DCT) can provide more fine-grained information in learning signal models [76], and less information is being
lost at the beginning phase [25]. Therefore, to better augment and visualize the features, we utilize the joint
tempo-spectral analysis to represent the parasitic response into a set of spectral sub-bands, where literally a
high-dimensional image-alike representation is formed.
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Let W(k) be the function to generate the spectral image from the input signal x of length N, which is defined
in as follows:

N
2 1
W(k) = =— _
() N—l;X(H)*Vl+5n1+5nN
1

*

4)
VT 0+ O
7
e (n =1k = 1),

where the X-axis presents the time dimension, and the y-axis represents the frequency dimension. The third
dimension shows the amplitude of a particular frequency at a specific time represented by the color. Finally,
the converted DCT inputs to drone identification model. As shown in Figure 7, the resulting parasitic features
in spectrogram image shows unique patterns in spectral temporal domain. The high amplitude response from
actuation units with high coil density as well as high current flow. The sparse response from control unit resulted
from high density of electric components each contributing their parasitic response. The nearly plain response
from power unit’s simple circuitry design and stable current flow. All these signifies parasitic response from the
drone’s electronic system uniquely labeling the drone under mmWave interrogation.

% cos|(

5.3 Drone ldentification

5.3.1 Passive Identification Method. The drone identification problem can be formulated as a multi-class classifi-
cation problem, as shown in Algorithm 1. A traditional approach to address this problem is first to extract a set of
invariant statistical features from the fingerprint forming a feature vector, and then feed this feature vector into a
classifier (e.g., SVM, KNN). However, suffering from a considerable variation in amplitudes as well as frequencies
among different working conditions, it is an intractable task. Thus, rather than manually design filters or rules
to decode features from the parasitic response signals, we employ a customized Deep Neural Network (DNN),
namely DroneTraceNet (see Section 5.3.2), inspired by other work investigating identification systems [82]. With
the feature descriptors accurately capturing the parasitic response from the previous step, DroneTraceNet’s
goal is to link these features to their corresponding ID as accurately as possible. Moreover, this identification
framework can be applied to new scenarios without retraining every domain knowledge. Given the received
parasitic responses, we analyze MDCT (Modified Discrete Cosine Transform) [16] to identify the drone fingerprint
in the form of the time-frequency graph. The response augmentation visualization will be further employed as
the input of the model.

To detect alien drones which are not registered in the database, we define the maximum probability as the
classification score. If the classification score is less than the threshold, the trace will be declared as an alien
device with a second manual check; if not, the predicted type with the maximum probability will be regarded
as the identification result. To effectively eliminate false positives, we empirically select the threshold value of
0.85. In practice, this guarantees DroneTrace’s model to return matched drone fingerprints at least 85 % alike,
similar to human fingerprinting’s 70 % confidence level in legal uses [74]. Finally, the majority vote algorithm is
employed to make the final identification decision from these DroneTraceNet results.

5.3.2  DroneTraceNet: A DNN-based Model for Drone Identification. The DroneTraceNet is based on EfficientNet-
B3 [88]. It combines a training-aware neural architecture search (NAS) and compound scaling method. Compared
to other representative DNN models (e.g., ResNet and DenseNet), it can achieve higher accuracy and higher
parameter efficiency, making it compact for portable devices. DroneTraceNet mainly consists of a stack of
convolutional operations (MBConv, Fused-MBConv), adaptive average poolings, and identity activation function
for passive drone identification. The number of layers, kernel size, and expansion ratio is decided by Neural
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Algorithm 1 DroneTrace Identification

Input: 0: parasitic response traces from a drone
Output: R: The identification result

1: R Eg « 0 > Initialize parameters
2: Initialize T ; > Classification score threshold
3: for 01' = 91, 92, ey QL do

4 o = Feature(0;); > Feature extraction
5: E = Cls(p); > Drone identity profiling
6 if Score(E) < T then > Generate identity match score
7 E < Reject!

8 end if

9 Ey.append(E);
10: end for
11: R = Res(Ep) > Decide the identity result

12: return R

Architecture Search (NAS) with the optimization goal of ACC(m) x [FLOPS(m)/T]" and the constrain of
a- B?-y? =~ 2[88, 89], where ACC(m) denotes the accuracy, FLOPS(m) means the floating-point operations
per second, and FLOPS represents the number of operations required to run a single instance of the model. T is
the target FLOP, w is the trade-off between accuracy and FLOPS. a, §, y denotes the network width, depth, and
resolution. In our implementation, we train the DroneTraceNet with the cross-entropy loss, and we choose a
lightweight stochastic gradient descent optimizer to fine-tune the parameters.

5.4 Drone Forensics

In terms of drone forensics in real life, DroneTrace will serve three purposes, 1) identifying the criminal drone,
2) leading clue to the criminal, 3) deterrent for potential criminals. First, the DroneTrace system can accurately
identify the malicious drone from collected suspect drones through the signature captured from the crime scene
in a digital way. Second, DroneTrace system provides the additional clues to information collected from other
forensic methods (e.g., location, drone appearance, drone behavior, fly path, timing, etc.) to confirm the malicious
drone presence and aid to trace the attacker. Lastly, the ability for DroneTrace system to securely and accurately
recognize the criminal drone, which leads to the finding of criminals, can also deter potential criminals that plan
to use drones as a malicious tools.

6 SYSTEM PROTOTYPE & EVALUATION

Experimental Setup: We conducted experiments in several environments simulating potential drone crime
scenes, e.g., a parking lot around a detached house, a large meadow within the university campus (voyeurism on
dorm rooms), and an open square in the downtown area, as depicted in Figure &(a). The drones are programmed
to take off, hover, or maneuver the probe to mimic different stages of the crime (e.g., approach victim, extorting
victim, and retreat) as demonstrated in Figure 9. At each stage of experiments, the drone’s signature data is
collected with different robustness parameters from our receiver. After data collection is complete, DroneTrace’s
model training is completed on a workstation equipped with an Intel Xeon CPU and one Nvidia Titan Xp 12
GB GPU. Finally, the forensic identification system is implemented on a laptop with Intel i7-6700HQ mobile
processor for real-time testing.

Data Collection: The experiments were conducted on 36 drones and labeled into 36 different classes, unless
specified otherwise. Notably, among these collected drones, there were 13 identical Crazyflie 2.0, two Cheerwing
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Fig. 8. DroneTrace experimentation areas: (a) Different sites: (i) around a house, (ii) an open square near downtown area, (iii)
a large meadow, and (iv) outdoor sport area. (b) Examples of drones in experiments.

Syma X5SW, two Holy Stone HS110D, and two AERO (some examples are shown in Figure 8(b)). These drones are
made of typical anisotropic materials and are commercially available. The drone sizes range from 10.16X7.62X2.54
cm (4%x3x%1 inches) to 63.50%63.50%x15.24 cm (25X25%6 inches). In every evaluation experiment trial, the drone
signature is acquired while hovering/charging through the mmWave probe at a fixed distance (two meters away
for default). In this work, the maximum drone speed for signature acquisition determined to be 6.3m/s, which is
larger than most drone moving speeds in actual tasks [57]. The speed of the drone is controlled by the program
or calibrated by the velocity speed gun [86]. Unless specified, we collect 1,000 traces for each drone in each of the
5 experimentation areas (1 indoor lab environment, 4 outdoor field environments), partitioning 700 traces for
training and 300 traces for testing. As a result, there are entirely 126,000 traces for training and 54,000 for testing
in total. A 10-fold cross-validation method is employed to ensure model robustness.

mmWave Probe: DroneTrace employs a FMCW mmWave probe, whose carrier frequency is set up as 24GHz
with 450 MHz bandwidth [51, 67]. A pair of four-by-four patch antenna arrays is designed, offering an antenna
directionality of 19.8 dBi. The weight of the probe is 45.5 g, and the cost for the probe is less than $100. The

Fig. 9. The experimental implementation for drone authentication in an indoor environment.
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transmitting power of this probe is typically 8 dBm with a 5.5 V supply voltage under 1.2 W DC power consumption.
Using rough approximation of a drone with radar cross section (RCS) of 0.5 m? for drone response, single pulse
duration of 6.45 ms, acceptable signal to noise ratio (SNR) of -21 dB, total gain of 24 dB, the maximum sensing
distance calculated is 8.2 m [78].

Performance Metrics: To evaluate the system performance, we adopted Equal Error Rate (EER) and Receiver
Operating Characteristic (ROC), in addition to typical techniques such as accuracy, precision, and recall [15].

7 PERFORMANCE EVALUATION
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Fig. 10. The overall performance of DroneTrace with different schemes.

7.1 Drone ldentification Accuracy
We evaluate the ability of DroneTrace to identify different drones’ identities in a lab environment. Performance

analysis is based on the dataset gathered from Data Collection process. First, we exploit the overall identification
performance of DroneTrace with different schemes (see Section 5). Then, we apply the sensing data without
the noise cancellation module (denoted as Alternative 1). Further, to study whether the signal processing is
effective, we reconstruct the parasitic response with the combination of (Py, P, P;) and (Py, P;), respectively
(denoted as Alternative 2 and Alternative 3). The identification performance (ROC curve) is shown in Figure 10 in
which the drone fingerprints are corresponding to the fingerprint explored in Section 5. The performance results
achieve the EER of 0.009, 0.062, 0.062, and 0.121, respectively in four schemes. The comparatively low EER in this
approach indicates that our solution does not have the over-fitting issue and can adapt to various usage scenarios.
Additionally, the accuracy of the overall system (i.e., DroneTrace) is 99.02%. This result proves the effectiveness
of DroneTrace’s fingerprint well-representing the uniqueness of various drones in different environments.

7.2 DroneTrace Capacity Analysis
Similar to other biometric fingerprints (e.g., fingerprint and Face ID), DroneTrace will first interrogate Drone o

and obtain its parasitic response samples f for k times. And then DroneTrace utilizes the fingerprint extraction
algorithm py to process these k samples and build the identity profile I,. To comprehensively and systematically
analyze the drone fingerprint, we evaluate it in the following three dimensions: uniformity, reliability, and

uniqueness with the data in the Data Collection [58].
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7.2.1  Uniformity. This dimension is concerned with value variations with respect to the locations of the values
in a trace, which shows how uniform values are in a fingerprint. The ideal value for this metric is less than 10%
[65]. Uniformity of the fingerprints from total y = L traces among S-th sample on the a-th drone is calculated as
follows:

L m n
U(@f) = | —— D3 3 1y (6,8) - 2 5)

BN ES
g\ mx*n Ly:19:1:

where p is the average of I,4,, m and n are the length and width of I, respectively. We achieve the average
uniformity of all fingerprints from collected drones as 9.01%, proving the values in the fingerprint is even.

7.2.2  Reliability. Aiming to illustrate how consistent fingerprints are reproduced by the same drone, this
dimension evaluates the overall intra-drone fingerprint persistence of within multiple traces. The ideal value
for this metric is around 1 [95]. Reliability of the fingerprints from a total f = T samples on the a-th drone is
calculated as follows:

T-1
R(a) = T(T oD ;ﬁzﬁ: 1c1>(10(ﬁ1, Lup,)
1 2=P1 (6)

(zllaﬁl Hap, + Cl)(zaaﬁlaﬁz +¢2)

D(Lap,. Iap,) = ,
apu>“apy (e, * Hop, ¥ €1) (0, + 0, +C2)

where ®(-) is the function for the structural similarity index, Ig,, Iop, are the feature element of two fingerprints
that belong to different samples on the a-th drone. pi,p, and p4p, are the mean of the fingerprints from that two
samples respectively. 0,5, and o4, are the standard deviation of those two respectively. 044,44, is the covariance
of Ipp, and I,p,. ¢; and c; are two variables to stabilize the division with weak denominator. Specially, T = 36
in this evaluation. The average reliability of all drones is 0.8094, which implies the fingerprint is steady among
different traces.

7.2.3  Uniqueness. The purpose of this dimension is to evaluate DroneTrace’s inter-drone fingerprint uniqueness,
represented with the ability to distinguish a potential innocent drone from a group of suspect drones. We employ
the data from in the Data Collection and specifically use the Pearson’s correlation coefficient, U, which is defined
by the following Equation (7) [55]. We first suppress the feature trend by normalizing each fingerprint with the

mean of all fingerprints.
(e, = o) U, = ﬂaz)
7
) o g

a; ax=a;—1 Oay

where I, I, are the feature elements of two fingerprints that belong to different drones. y,, and p,, are the
mean of the fingerprints from the two drones, respectively. o,, and o,, are the standard deviation of those two
respectively.

As shown in Figure 11(a), the Gaussian curve of the results centers at zero, which indicates that drone
fingerprints are highly independent. Its mean, p = 5.8E — 16, is in its 95% significance level [-0.0122, 0.0122] with
a high accuracy. In addition to the frequency distribution histogram, Figure 11(b) shows the normal probability
plot to identify any substantive departure from normality. The dotted line in red provides the reference for
perfect normality. The upper end of the plot bends below the diagonal line while the lower end bends above that
line, forming an S shaped-curve, which indicates the distribution is similar to the normal. Lastly, we conduct a
t-test. The test decision A is 1.0, and p value is 0.01, significantly lower than a = 0.05, which indicates that the
result distribution is intensely akin to the normal distribution. Thereby, we prove the independence between two
fingerprints and ensure that the forensic team can accurately determine the malicious drone.
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7.3 Fingerprint Capacity

For drone forensics, the fingerprinting capacity is a significant concern for practical system designers and can also
be a key metric to evaluate identification performance. Thus, an information-theoretic approach, based on Fano’s
Inequality and the mutual information between drone fingerprint and identity, is established to comprehend the
drone capacity of DroneTrace [93]:

log(Ny) —I1(X;Y) — H(4)
log(Ny — 1) <, ®

where N is the identity capacity, Ny is the set of all possible drone numbers, Y is the user identity, I(X;Y) is the
mutual information between drone fingerprint and identification, A is the performance threshold for classification
error rate, and H(A) is the entropy of the performance threshold. By far, the theoretical tool to derive the user
capacity of the drone fingerprint is given in Equation (8). Given the 5% identification performance error, the
fingerprinting capacity in DroneTrace is 14 bits, which allows more than ten thousand drones to be reliably
identifiable at a given time. Thus, DroneTrace contains a sufficient fingerprint capacity for most drone forensic
applications.

N¢ = max(Ny|

7.4 Impact of Innocent Drones

As discussed in Section 5.3.1, in the real-world application, DroneTrace may face innocent drones, and it would
be ideal if DroneTrace could reject the innocent drones, for which they are not trained in advance. We design an
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experiment to explore the performance of the innocent drones. Out of 36 drones, only 19 drones are randomly
selected for training and the remaining untrained 17 drones are used for testing. We gradually increase the
number of innocent devices from 5 to 17 (increment of 4) and verify whether our specifically designed Algorithm 1
can successfully reject them. As shown in Figure 12, the results remain stable in detection accuracy (99.0%-99.5%),
showing no tendency to decrease in performance. In this way, we prove the effectiveness of innocent device
rejection and the excellent scalability of DroneTrace when used in real practice. Under these circumstances, after
discovering the innocent device, the inspector can use the second check (e.g., manual inspection) for further
security verification.

8 PRACTICABILITY STUDY

In this section, we evaluate the reliability and robustness of DroneTrace identification performance under various
real-world forensic circumstances. We select the 20 most representative drones including both intra- and inter-
drone evaluation settings. For each time setting, we follow the same preparation described in Section 6. The
training data will consist a group of suspect drones collected from forensics, and the testing data will be collected
from crime scene.

8.1 Impact of Flying Patterns

It is highly likely that the drones in a motion when being identified, thus, we examine DroneTrace’s resilence
against drone motion. To stabilize and maneuver drones, typical drone movements can be categorized into four
categories, i.e., roll, pitch, yaw, and altitude [79]. Thus, we study the authentication accuracy under each flying
pattern. The violin plot [37] illustrates the probability density of the results at different conditions. As shown in
Figure 13, the accuracy of identification maintains the stable accuracy ranging from 98.3% to 99.0% with a high
probability in different flying patterns, which implies DroneTrace can work robustly when drones cannot fly
smoothly.

8.2 Impact of Sensing Distance

To validate the usability and effectiveness of DroneTrace in the non-contact forensic scenario as mentioned in
Section 6, we set up the device to stimulate the operation distance from 0.3m to 8m considering the mmWave
coverage of the majority of commercial drones in relation to their non-linear response magnitude. Figure 14 shows
that their performances can achieve up to 99.04% precision, 99.02% recall and 99.05% accuracy, with 0.008 EER.
Besides, the identification performance precision, recall, accuracy, and EER still keep at 92.11%, 92.15%, 92.12%,
and 0.078, respectively, when the sensing distance increases to eight meters. The results indicate DroneTrace
can fully prevent a user from attacks from 8 m range, and surpassed the (>7.01m [90]) distance requirement in
practice. Therefore, DroneTrace can facilitate passive and convenient forensic identification in real practice.

8.3 Impact of Sensing Time

In drone forensics, evidence acquisition is often difficulty due to criminal drone’s agility (e.g., short presence
timespan, high moving speed, physically threatening to victims). Thus, we are interested in analyzing the
performance of DroneTrace with regard to different time budgets. Specifically, we manually select four different
time settings between 0.02s to 0.2s. Figure 15 shows the performance results. For the lowest time budget of 0.02s,
DroneTrace only obtains 87.68% accuracy with 0.118 EER. This is due to the contained information in traces with
0.02s cannot comprehensively represent the characteristics of DroneTrace. After increasing the time budget, the
performance gradually increases. Finally, we find a sweet-spot at 0.1s, where the performance saturates afterward
(reaching 99.16% accuracy and 0.008 EER). This observation can guide us to the proper identification time setting
to guarantee authentication accuracy without sacrificing identification efficiency.
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mance accuracy maintains well even at the peak 99% accuracy with a fingerprint trace of only 0.1s.

sensing range of the mmWave radar.

8.4 Impact of Drone Carriage Load

Some malicious drones can be deployed for cargo transportation, it is important to investigate if the loaded
materials will occlude the drone. Thus, we also investigate if loaded objects on the drone surface will influence the
performance of DroneTrace. In experiments, we select four types of material (paper, plastic, wood, and leather)
and evaluate the identification accuracy with each of them occluding the drone. Each occlusion object is designed
to completely cover the drone from radar line of sight, and the thickness is 1 inch, using everyday objects. The
performance is shown in Figure 16, where we can see that the overall precision, recall, accuracy, and EER for
each are above 98.2%, 98.4%, 98.2% and 0.015, respectively. Specific loads slightly affect the performance to some
extent. This is because DroneTrace utilizes the parasitic response and, therefore, has a small wavelength and
limited penetration ability. In addition, metal blockage didn’t fully block signature acquisition, DroneTrace can
also withstand aluminum foil covering one side of the drone circuitry as shown in Shield Attack, Sec. 9. As a
result, it is prone to scattering reflection upon some specific load. But in general, DroneTrace still provides reliable
performance in drone identification.

8.5 Robustness with Ambient Obstacles

When identifying drones in real world environment, there are usually a lot of static obstacles (e.g., buildings, trees,
and flashlights) or moving obstacles (e.g., birds and cars) around the probe. It is critical to examine robustness with
ambient obstacles. In this evaluation, we consider these obstacles within different complex scenarios involving
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ferent material loads. ing various interference.
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various obstacles to examine the performance. Four representative interferences are employed here. We first
test drones when flying near the tree and flashlight (both around one meter away) smoothly over the probe.
Then we continue to check if our system is robust when remote birds and cars are moving around (both around
two meters away). As shown in Figure 17, the accuracy performances keep over 99.01% and can achieve up to
99.02% precision, 99.01% recall, 99.05% accuracy, and 0.008 EER. Due to the high directional beam-forming of
mmWave, these surrounding obstacles have little impact on system performance. Generally, DroneTrace still
provides reliable performance in drone identification.
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Fig. 18. Performance is stably maintained over a 30-day longitudinal study.

8.6 Longitudinal Study

It is possible that a criminal case is open for weeks before settlement, thus, proving the permanence of DroneTrace
for that period is crucial. Our generated dataset includes multiple sessions as part of a longitudinal approach to
establishing a baseline comparison of long-term persistence. Ten drones participated in the longitudinal study
lasting 30 days, as shown in Figure 18. At the beginning of the study, 36 drones’ fingerprints are extracted
and stored for later inference. Over the period of 30 days, 100 samples from each of the 36 drone’s fingerprint
is extracted every three days, and the identification accuracy is calculated based on the average inference
accuracy. The accuracy measurement is depicted in Figure 18. Over the 30-day duration, mean values of accuracy
measurement are between 98% and 99%, and standard deviations are between 0.72 and 1.71. Thus, we concluded
the accuracy has no significant performance decreasing or ascending tendency, which demonstrates DroneTrace
is robust against time change (or aging effect).

9 VULNERABILITY ANALYSIS

We examine the DroneTrace’s security in following scenarios.

Zero-Informed Attack: In this attack scenario, we assume the attacker has little knowledge or consciousness
about the anti-forensic technology. The most straightforward way for the naive attacker is to purchase multiply
drones with the same model aiming to bewilder or disturb the investigation. As proven in Section 7.1, we test 13
identical drones, and DroneTrace can precisely identify each drone, which shows such an attack will not succeed.
Disguise and Shield Attack: Assuming the attacker is trying to hide from traditional forensic matching based
on testimonies, the attacker will likely change the appearance (e.g., color, cover, propeller length, etc.) of the
drone for disguise. However, DroneTrace’s signature extraction is based on the intrinsic hardware fingerprinting
of the drone, rather than the external geometric shape of the shell, such disguise will serve a null effect with
common material, as illustrated in Section 8.4. Furthermore, if the attacker applies a layer of metallic paint or
aluminum foil (shown in Figure 19(a)) on the surface of the malicious drone for electromagnetic shielding, the
electronic board can be withdrawn from the drone to be separately inspected for true signature, making forensic
identification highly accurate regardless of disguise.

Jamming Attack: Considering that attacker is aware about the working range of DroneTrace, it is intuitive to
prevent signature extraction (e.g., drone carrying a mmWave jammer shown in Figure 19(b)). However, jamming
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device with high amplitude broadband signals are easily recognizable and can be located using RF localization
methods [66], which can lead law enforcement agencies for defensive measures [84].

Forgery/Replay Attack: It is also possible that the attacker attempts to forge an innocent drone’s signature
in order to evade forensic investigation. The most intuitive forgery method is to steal other drones and return
drones after the attack. However, such method leaves the attackers’ print in the process of burglary and will
likely expose attacker’s location if the drone uploads its fly path record to the cloud [62]. The next option is to
forge a drone’s parasitic response captured from innocent drone’s signature. One major threat is for the attacker
to generate a circuit with equal parasitic values as the innocent drone’s circuitry through either hardware or
software forgery. It is possible to spoof DroneTrace through forgery by utilizing an advanced reverse engineering
manufacturing machine [34], however, millions of dollars of cost make such method infeasible. The attacker may
replay imitation signal synthesizing from an innocent drone’s parasitic response. To minimize the attack success
rate, DroneTrace can implement a randomized binary chirp modulation algorithm, which randomly switches the
transmission chirp on or off to serve as the spatial-temporal signature of the probe. Therefore, it is impossible
for the attacker to crack the system without knowing the mute chirp information in advance, which implies
DroneTrace will not be compromised by such replay attack.

10 DISCUSSION AND LIMITATION

Voluntary Registration Vulnerabilities: The remote ID regulation proposed by FAA has been effective since
April 2021 [3], but it is still considered problematic to resist drone threats. (i) Though the remote ID requires
drones to be registered, it depends on voluntary action. A criminal will not obey and register drones. (ii) The
remote ID does not restrict drones that weigh .55 pounds or less (less than 250 grams) or for recreational flyers
[2]. However, various commercial and homemade drones that can be potentially employed weigh .55 pounds or
less or can be disguised for recreation [70]. Moreover, similar vulnerabilities can be discovered among the drone
regulation of other counties (e.g., Singapore and the UK). Therefore, it is hard for the remote ID to resist these
drone threats and aid the forensic investigation as expected.

Malicious Drone Hardware Operations: Drones are often susceptible to physical damages due to operational
error that lead to replacement of hardware (e.g., propeller blades, battery, motherboard). Thus, criminals can
purposefully alter the hardwares (e.g., damage, replace, reconstruct, hide) after conducting a crime, which may
evade DroneTrace’s fingerprint matching after forensic team’s confiscation. Similar to criminals hiding weapons,
drugs, and other illegal physical objects, the forensics team can legally, and reasonably acquire a search warrant

Variable Parameters

Jamming Device *

Fixed Parameters

(b) (©

Fig. 19. The experimental setup for (a) a shield attack with aluminum foil, (b) a denial-of-service attack with a jamming
device, and (c) a forgery attack to physical circuitry functions.
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for the missing parts as long as there is a probable cause [32]. In such cases, the forensics team can also utilize
the suspects’ actions, words, and behavior for further investigation leveraging traditional forensic methods.
Drone Swarm: Nowadays, drone swarms are often deployed to conduct highly complex tasks, which may
challenge drone identification system. Such multiple-drone identification can be solved by employing the existing
angle of arrival parsing, source separation, and independent component analysis approaches with the tunable
non-linear radar [47, 48].

Probe Cost and Design Analysis: The price of the mmWave radar chip and sensor module is less than $3
and $10 respectively on a large scale [6], and will be increasingly scalable. Existing mmWave probes can be
effortlessly mounted on hand-held devices, patrol vehicles, and security drones in real-world applications [97],
and can be adopted into 5G wireless base stations/hotspots for massive coverage [9]. As a feasibility proof, Soli
[52], which is a mini mmWave radar, have been integrated to smartphone devices in commercial devices. In future
developments, DroneTrace can be expected to be scale into smart devices (e.g., smart door bell, smart phone,
police car, etc.) for massive coverage. With sensing time being only 0.2 s, malicious drones can be fingerprinted
very quickly, faster than having to focus with a camera device. A reasonable sensing distance is 100-200 meters
based on mmWave’s attenuation pattern over air using commercial devices [100].

Model Confidence Level: The model confidence level mentioned in Section 5.3.1 is a flexible threshold parameter
in DroneTrace that allows law enforcement teams to quickly filter out the suspects. When the threshold is set to
higher, the model is more confident that the current suspect drone has the same RF fingerprint compared to the
drone on crime scene. However, not every fingerprint sample contain every bit of information regarding a drone
similar to human fingerprint samples being blurry or incomplete. Thus, we empirically set the threshold to 85%
match as a baseline which can be further adjusted to better aid forensics team’s decision making process.
DroneTrace for Future Applications: We foresee that digital drone forensics will also supplement solutions
toward security and privacy problems brought by autonomous smart mobile devices (e.g., drone, delivery robots,
autonomous vehicles). Using a non-contact method for digital forensic will become a necessity in the near future.

Table 1. A Comparison of DroneTrace with existing drone forensic systems. Distance and accuracy is abbreviated.

System Sensor Fingerprint| Compliance Drone Hardware Dist. | Accu. | Drone#
[Drone Camera Software Active Drone ﬁame (lelted by LOS 92% 3
[80] weather + lighting/clonable)
GyrosFinger On-board Software Active Gyroscope log (Limited by Contact| 78% 0
[85] memory memory erasing/formatting)
S Microphone| Hardware Passive Motor(s) (le.1ted n < 1m 99% 11
[75] loud/noisy environments)
RF Fingerprint RF . RF Controller RF
[10] receiver Hardware Passive (Not unique for each drone) LOS 99% ?
mmWave . Electronic Circuit System RF
DroneTrace radar Hardware Passive (st e d mrd ) LOS 99% 36

11 RELATED WORK

Digital Drone Forensics: There are two types of identification for digital drone forensics in today’s practice,
voluntary and passive (i.e. involuntary). Voluntary identification methods include broadcasting an encrypted
ID [13, 27, 77, 85], or using camera to examine specific motion sequences [80]. These methods will be avoided
by a malicious drone pilot to evade identification, which makes them infeasible for forensic use. On the other
hand, passive identifications using cameras and computer vision techniques [28, 87] are limited by weather,
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lighting condition, as well as distance with the target drone. In addition, they fail to distinguish drones with
physical appearance (e.g., drones with same make/model). Afterwards, the flight log-based methods are believed
not reliable that can be fake or altered [8, 81]. Lastly, some work also adopt passive and through side-channel
measures, such as electromagnetic interference and acoustic emission [10, 11, 49, 63, 75, 98]). However, these
existing measuring solutions either require a contact measure or fail in complex scenarios (e.g., noisy or dark
areas) due to the nature of side channels. Therefore, DroneTrace is one of the first few to explore reliable drone
identification toward digital drone forensics with our unique and unclonable fingerprinting advantages shown in
Table 1.

Hardware Electronics Fingerprinting for Devices: Investigating a hardware trait (e.g., process variation) as a
fingerprint has been a historical topic in the security. Many works explored physical properties in integrated
chips and electro-mechanical devices for identification applications [7, 29, 50, 92]. However, most require contact
access, which is not applicable in drone identification scenarios. Besides, radio frequency (RF) fingerprinting is
also explored for physical-layer identification [17, 22, 23, 33]. However, these solutions rely on the broadcasting
network and are dependent on specific commercial communication media (e.g., antenna), which still require
active cooperation.

mmWave Object Sensing: mmWave has been utilized for various sensing purposes. There are two main
mmWave sensing schemes. First, mmWave radars have been studied in a variety of domains (e.g., cardio-
respiratory measurements and gesture sensing [42, 53, 54, 61]) based on the detection of a target’s motion.
These mmWave sensing works mainly rely on analyzing the Doppler effect of moving objects. Second, there
are some object detection and imaging applications to explore object inner properties, even “through-wall”
[35, 56, 71, 73, 96, 99, 101]. These techniques focus on target’s external mmWave modulation properties (e.g.,
geometric reflection or scattering coefficient). [51] explored the possibility of identifying the presence of electronics
through-wall, yet incapable of distinguishing identical electronics circuitry. However, both schemes cannot sense
the intrinsic passive fingerprint of the toward forensic use. Therefore, DroneTrace is the first to propose mmWave
sensing technology to explore the parasitic response for digital drone forensics.

12 CONCLUSION

With the increasing availability and usability of commodity drones, there is an exponential rise in drone threats.
In this paper, we proposed a reliable digital forensics system DroneTrace for passive drone identification. We first
investigated drones’ parasitic response from parasitic elements in drones’ electronic systems using RF stimulation.
Then, we employed a portable mmWave probe to acquire the parasitic response and proposed a robust protocol
and framework for drone identification. Furthermore, extensive experiments imply that DroneTrace can achieve
99.02% accuracy in 0.1s sensing time. These research findings are essential for understanding this new digital
forensic approach and raising attention to security and privacy issues caused by drones.
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