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ABSTRACT Microbiota studies have reported changes in the microbial composition
of the breast upon cancer development. However, results are inconsistent and limited to
the later phases of cancer development (after diagnosis). We analyzed and compared
the resident bacterial taxa of histologically normal breast tissue (healthy, H, n = 49) with
those of tissues donated prior to (prediagnostic, PD, n = 15) and after (adjacent normal,
AN, n = 49, and tumor, T, n = 46) breast cancer diagnosis (n total = 159). DNA was isolated
from tissue samples and submitted for lllumina MiSeq paired-end sequencing of the V3-V4
region of the 16S gene. To infer bacterial function in breast cancer, we predicted the func-
tional bacteriome from the 16S sequencing data using PICRUSt2. Bacterial compositional
analysis revealed an intermediary taxonomic signature in the PD tissue relative to that
of the H tissue, represented by shifts in Bacillaceae, Burkholderiaceae, Corynebacteriaceae,
Streptococcaceae, and Staphylococcaceae. This compositional signature was enhanced in the
AN and T tissues. We also identified significant metabolic reprogramming of the microbiota
of the PD, AN, and T tissue compared with the H tissue. Further, preliminary correlation
analysis between host transcriptome profiling and microbial taxa and genes in H and PD
tissues identified altered associations between the human host and mammary microbiota
in PD tissue compared with H tissue. These findings suggest that compositional shifts in
bacterial abundance and metabolic reprogramming of the breast tissue microbiota are early
events in breast cancer development that are potentially linked with cancer susceptibility.

IMPORTANCE The goal of this study was to determine the role of resident breast tis-
sue bacteria in breast cancer development. We analyzed breast tissue bacteria in
healthy breast tissue and breast tissue donated prior to (precancerous) and after
(postcancerous) breast cancer diagnosis. Compared to healthy tissue, the precancer-
ous and postcancerous breast tissues demonstrated differences in the amounts of
breast tissue bacteria. In addition, breast tissue bacteria exhibit different functions in
pre-cancerous and post-cancerous breast tissues relative to healthy tissue. These dif-
ferences in function are further emphasized by altered associations of the breast tis-
sue bacteria with gene expression in the human host prior to cancer development.
Collectively, these analyses identified shifts in bacterial abundance and metabolic
function (dysbiosis) prior to breast tumor diagnosis. This dysbiosis may serve as a
therapeutic target in breast cancer prevention.

KEYWORDS 16S, breast cancer, breast tissue, functional metagenome, microbiome,
transcriptome

pproximately 1 in 8 women are diagnosed with breast cancer in their lifetime (1).
Breast cancer is also the second leading cause of cancer-related death among
women (2). Early detection and diagnosis remain key in improving the prognosis of
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Mammary Microbiota Prior to Breast Tumor Diagnosis

breast cancer patients. Research focusing specifically on the genetic and environmen-
tal factors that influence tumor initiation continues to inform early treatment strategies
for this disease (3-5).

In recent years, researchers have begun to elucidate the role of the resident micro-
biota in the development of breast cancer (6). Specifically, the human mammary micro-
biota composition is distinguishable between cancerous and healthy breast tissue (7).
Compared with tumor tissue, the microbiota composition in tissue adjacent to malig-
nant breast tumors (normal adjacent tissue) also displays a unique bacterial signature,
suggesting oncogenic roles for specific bacterial taxa (8). Researchers have also identi-
fied variations in the microbiota across breast cancer types (e.g., Human Epidermal
Receptor Growth Factor 2-positive, triple-negative, and endocrine-receptor positive
breast cancers), and these variations extend beyond the bacterial composition of
breast tissue to other resident microbes, such as viruses and fungi (9). Regardless of
the microbial species, dysbiosis (microbial imbalance) of the mammary microbiota is
consistently correlated with breast tumor development (6). This suggests that an eubi-
otic microbiota composition is present in healthy breast tissue and plays a role in pro-
tecting the breast from tumor initiation and/or progression. To our knowledge, no
studies have addressed this question by evaluating the microbiota composition in truly
healthy breast tissue. Further, whether dysbiosis occurs at breast tumor initiation and
development remains unclear.

Previous studies of the human mammary microbiota used tissue adjacent to benign
tumors or tissue from breast reduction or enhancement surgeries as control tissue in
comparisons to tumor or adjacent normal tissues (6). However, breast tissue from
breast alteration surgeries has significant histological abnormalities compared to tissue
voluntarily donated from healthy women (10). The Susan G. Komen Tissue Bank (KTB)
at Indiana University Simon Comprehensive Cancer Center (IUSCCC) represents the
only repository of truly healthy breast tissue in the world, providing researchers with
the unique opportunity to elucidate the genetic, histological, and microbiological char-
acteristics of healthy breast tissue (11). Approximately 5% of KTB tissue donors were
later diagnosed with breast cancer (4). These prediagnostic tissues were also included
in our study, providing us with the unique opportunity to assess the microbiota in tis-
sue representative of the earliest stages of breast tumor development (4).

In this study, we compared the microbiota of healthy (H) and prediagnostic (PD)
breast tissues to that of adjacent normal (AN) and tumor (T) tissues isolated from women
diagnosed with breast cancer (n = 159). We used 16S rRNA gene sequencing to deter-
mine the composition of the bacterial microbiota in these mammary tissues. In addition,
we applied the metagenome prediction tool, PICRUSt2, in conjunction with the Kyoto
Encyclopedia of Genes and Genomes (KEGG), to predict the functional bacteriome (12,
13). Using these bioinformatic strategies, we were able to identify shifts in bacterial abun-
dance in PD tissue, suggesting that these bacterial shifts preclude the development of
breast tumors. Further, our work suggests the breast tissue microbiota is responding to
tumor development, as evidenced by the decreased functionality of the bacteriome in
PD, AN, and T tissue. Expanding on these findings, we analyzed host-microbiota associa-
tions in H and PD tissues and identified altered bacterial associations with the host tran-
scriptome between the two tissue types. Although preliminary, this finding proposes
variable interaction of the microbiota with the breast tissue microenvironment prior to
cancer diagnosis.

RESULTS

Study design and cohort characteristics. This project aimed to enhance our mech-
anistic understanding of the role of the breast tissue microbiota in the development of
breast cancer. Breast tissue cores were collected from 141 women, including 65 healthy
(H) women and 76 breast cancer patients who donated adjacent normal (AN) and/or tu-
mor (T) tissue (Fig. 1) (11). The healthy cohort included 15 women who were subse-
quently diagnosed with breast cancer. Therefore, their breast biopsy specimens are
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141 women donating 165 breast
tissues were selected for inclusion in
our study

A 4

}

Adjacent normal and tumor donor selection criteria
(Ntotal donors AN and T = 76, Niotal tissues AN and T= 100 (51 AN and 49

. No lactation or pregnancy at time of donation
. No prior breast disease

Healthy donor selection criteria (ny = 65)
. No breast surgery 3 months prior to donation
. No lactation or pregnancy at time of donation
. No history of cancer or prior breast disease
. No antibiotic use at the time of sample collection

. No antibiotic use at the time of sample collection

Adjacent normal tissue only donors (nan = 27) |

)

Healthy tissue donors (N inciuding P0 = 65, reduced to 50 due
to development of breast cancer for 15 women)

Tumor tissue only donors (nt = 25) |

|

Adjacent normal and tumor tissue donors (Nananda T = 24) |

Pre-diagnostic tissue donors (npp = 15)

. Of the 65 women who donated healthy tissue, 15 later
developed breast cancer and were therefore classified
as ‘pre-diagnostic’.

|

Microbial DNA isolation and 16S rRNA lllumina Miseq
sequencing

Overlapping paired-end reads processed with DADA2

ASVs assigned to SILVA reference database

!

Decontamination and rarefaction

» Contaminate sequences identified in negative extraction
controls (n = 9; 775,278 reads) removed from samples
using decontam

* Removal of samples with less than 10,000 reads

» Rarefaction to lowest read depth (18,441 reads)

Sample size reduced to 159 tissues (H = 49, PD = 15, AN =

49, T = 46 from 137 donors)

Human RNA isolation and sequencing
* RNA sequenced from H and PD subjects (niotai= 219, Ny =
204, npp = 15) in two separate sequencing batches.

!

Identification of Differentially Expressed (DE) Host Genes
» Deseq2 identification of 48 DE host genes, controlling for

sequencing batch.

» Spearman’s rank correlations between DE host genes and

* Spearman’s rank correlations between DE host genes and

Correlation analysis with bacterial ASVs and KOs (Tables
28&3)
(ntotal =12,Nny=6, npp= 6)

bacterial ASVs identified by MaAsLin2 or LEfSe for the PD
and H groups.

bacterial KOs for the PD and H groups.

\4
Alpha and Beta Diversity ‘L
(Figure 2) Differential ASV identification (Figures
* Beta diversity based on 2&3)
UniFrac (weighted and * Pruning of ASVs with less than 20
unweighted) distances reads
* Alpha diversity based on » Transformation to relative abundance
Shannon and Chao1 * MaAsLin2 and LEfSe differential ASV
indices, and Observed analysis between groups
ASVs I * Phyloseq relative abundance plots

Functional prediction (Figures 4 & 5)
« PICRUSt2 functional metagenome prediction
* 7,170 Kyoto Encyclopedia of Genes and Genomes
functional orthologs
* MaAsLin2 and LEfSe differential KO analysis

FIG 1 Diagram of donor and sample selection, data preprocessing, and statistical tests performed. A total of 141 female donors were
selected for inclusion in our study (76 of whom were diagnosed with breast cancer and donated adjacent normal (AN) or tumor tissue (T)
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and 65 of whom were healthy at the time of donation (50 donated healthy (H) tissue and 15 donated prediagnostic (PD) tissue). Following
the outlined preprocessing methods, the sample size was reduced to 159 tissues (H = 49, PD = 15, AN = 49, and T = 46) from 137 donors.
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TABLE 1 Cohort characteristics and regression analysis of metadata and cancer status

P value?
H vs cancer
groups
Variable n, % (AN and T) Hvs PD
Age
27-45 41,299 0.66 0.36
46-56 45,328 0.49 0.26
57-82 51,37.2 — —
Race
African-American 28,204 0.87 0.98
White 107,78.1 — —
NA 2,15 NA NA
Menopausal status
Uterine ablation 1,07 NA 0.99
Postmenopausal 53,38.6 — —
Premenopausal 32,234 0.048* 0.72
NA 51,37.2 NA NA
BMI category
Normal wt 24,17.5 — —
Obese 59,43.1 0.21 0.79
Overweight 28,20.4 0.16 0.66
Underweight 2,15 0.99 0.60
NA 24,17.5 NA NA
History of cancer
Yes 1,0.7 NA 0.99
No 63,46.0 NA —
NA 73,533 NA NA
Status at time of donation
H 49 (35.46) NA NA
PD (tissue collected 15(10.64) NA NA
prior to cancer diagnosis)
Diagnosed (has developed 73 (53.7) NA NA

breast cancer and donated AN or T tissue)

a—, Reference group. NA, not applicable. *, Significant (P < 0.05). This analysis only includes individuals in the
cohort with available clinical data.

classified as prediagnostic (PD) tissue (Fig. 1). The tumor-bearing cohort included 24
women who donated both tumor and adjacent normal tissue and an additional 52
women who donated either AN or T tissue. (Fig. 1). After microbiome sequencing was
conducted on all samples from this cohort, sequencing data were pruned according to
the parameters outlined in Materials and Methods and the legend to Fig. 1. This step
reduced our total cohort size from 141 women (linked with 165 breast tissues) to 137
women, matched with 159 tissues (Fig. 1). A summary of the characteristics of the 137
women included in all microbiome analyses can be found in Table 1.

Compositional overview of the breast tissue microbiota between tissue types.
Principal coordinate analysis (PCoA) of beta diversity based on weighted and unweighted
UniFrac distances showed minor global variations in the composition of the breast tissue
microbiota (Fig. 2A and B). These variations are apparent between tissue types, with some
low-abundance microbial ASVs potentially contributing to the microbial community struc-
ture of some of these tissues (Fig. 2A and B). Because unweighted UniFrac distances con-
sider only the presence or absence of the feature, some H and PD tissues on the left side
and some AN tissues on the top portion of the plot appeared to be less similar in commu-
nity structure to the rest of the tissue samples (Fig. 2A). However, the PCoA based on
weighted UniFrac distances takes the abundances of these features into account and
diminishes the contribution of low-abundance ASVs (Fig. 2B). When abundances of ASVs
were considered, the majority of the tissues (H, PD, AN, and T) overlapped on the PCoA
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FIG 2 Variations in microbial diversity between H breast tissue, PD breast tissue, and cancerous breast tissues (AN and T). (A and B) Unweighted
unique fraction metric (UniFrac) (A) and weighted UniFrac principal coordinates analysis (PCoA) (B) of the mammary microbiota across the four
tissue types. (C) Alpha diversity (observed, Chaol, and Shannon diversity index) of the mammary microbiota across the four tissue types. (D)
Phylum relative abundance based on all ASVs. (E) Family relative abundances for the top 100 ASVs across the four tissue types. H = 49, PD = 15,

AN = 49, T = 46. *, adjusted P = 0.05.
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plot. However, segregation between tissues associated with a malignant tumor (AN and T)
and tissues collected from healthy women (H and PD) became limited. Betadisper was
used to assess community dispersion between tissue types. Although the composition of
the tissue types may be similar, there is significant variance/dispersion between tissue
communities (P, eighted = 0.05 for H-AN, H-T, PD-AN, and PD-T; P,¢ighed = 0.05 for H-AN
and H-T). Nonmetric multidimensional scaling (NMDS) plots from the weighted and
unweighted UniFrac distance measures revealed enhanced variability in the AN and T tis-
sues compared to the H and PD tissues (see Fig. S1 in the supplemental material). This
study was not designed to address differences in the breast tissue microbiota among
breast tumor types (i.e., histologic subtype, estrogen receptor positivity, etc.), but perhaps
the variability noted in the cancerous tissues (AN and T) is an artifact of the type of malig-
nant tumor diagnosed.

We compared alpha diversity among tissue types based on observed ASVs (rich-
ness) and the Chao1 and Shannon diversity indices (Fig. 2C). There were no significant
differences in alpha diversity based on observed ASVs or the Chao1 index. However,
when the distribution of ASVs is considered, we identified significant differences
between H and T and PD and T tissues (P = 0.05). This finding corroborates the PCoA
and NMDS analysis, suggesting that enhanced variability in the tumor microenviron-
ment is affecting microbiota composition.

A comparison of the aggregated ASVs at the phylum level (Fig. 2D) revealed that,
regardless of the tissue type, three phyla, Proteobacteria, Firmicutes, and Actinobacteria,
dominate the breast tissue. Analysis of aggregated ASVs in the top 100 bacterial families
(Fig. 2E) showed distinct compositional variations, which suggested a unique bacterial com-
positional signature present in tissue prior to and after tumor development. Specifically,
families such as Bacillaceae and Burkholderiaceae increased in abundance in breast tissue
isolated from women who developed breast cancer (PD, AN, and T) compared with those
from healthy women (Fig. 2E). Conversely, the family Xanthobacteraceae decreased in abun-
dance in PD, AN, and T tissues compared with H tissues. As should be expected, individual
abundance profiles at the phylum and family levels among the four tissue types (Fig. S2
and S3) highlighted interindividual variability. Phylum-level analysis indicated two common
breast tissue microbiota profiles irrespective of cancer status or tissue type. One profile was
characterized by higher Proteobacteria, whereas in the other, Firmicutes were more domi-
nant. Following this analysis, we addressed taxon-specific contributions to these global var-
iations in microbiota diversity between tissue types.

Analysis of differentially abundant taxa in PD, AN, and T tissue relative to H
tissue. We used MaAsLin2 and Linear discriminant analysis Effect Size (LEfSe) to iden-
tify differentially abundant bacterial taxa in PD, AN, and T tissue relative to the H tissue
(Fig. 3 and Fig. S4 and Table S1). MaAsLin2 identified 10 ASVs as differentially abundant
in the PD, AN, or T tissues relative to H tissue (g = 0.25) (Fig. 3A). Among these, four
ASVs were associated with PD tissue (g = 0.25, 7, 16, 415, and 885) (Fig. 3A). LEfSe anal-
ysis corroborated the MaAsLin2 findings in PD tissue, identifying ASVs 7, 16, 415, and
885 as differentialy abundant in PD tissue relative to H tissue (alpha = 0.05) (Fig. 3B).
ASVs 7 and 415 represented Streptococcus spp. which appeared to be uniquely
increased in PD tissue compared with the other three tissues (Fig. 3B). ASV 16 classified
to Corynebacterium 1 and 885 to Bradyrhizobium spp. Interestingly, AN and T tissues
followed similar trends of decreased abundance of these features relative to the H tis-
sue (nonsignificant from MaAsLin2, ASVs 9 and 16, Corynebacterium 1, and 885,
Bradyrhizobium spp., identified as more abundant in H tissue than AN and T via LEfSe,
alpha = 0.05) (Fig. 3A, C, and D). MaAsLin2 identified Staphylococcus spp. (ASVs 1 and
98) as differentially abundant in AN tissue (g = 0.25), with similar trends of decreased
abundance (not significant) in PD and T tissue relative to H tissue (Fig. 3A). LEfSe sup-
ported these findings by identifying an increase in Staphylococcus spp. in H tissue rela-
tive to AN (ASVs 1 and 98) and T (ASVs 3 and 98) tissues (Fig. 3C and D). Aside from
these similar trends, LEfSe analysis also revealed increased abundance of ASVs 191 and
155 (classified as Sphingomonas spp.) in PD tissue relative to H tissue (Fig. 3B). In addi-
tion, a number of ASVs classified as Pseudomonas spp. and Lodobacter spp. were
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FIG 3 Differentially abundant taxa in human mammary tissue subtypes. (A) MaAsLin2 analysis of differential ASV abundance in tissue subsets with H tissue
as reference. Counts were transformed to relative abundance prior to analysis. Taxa shown have a g value (Benjamini-Hochberg adjustment) cutoff of 0.25.
*, P = 0.05. Shapes correspond to tissue subsets (circle, PD; square, AN; triangle, T). (B to D) LEfSe analysis for H versus PD (B), AN (C), and T (D). One-
against-all analyses and default settings were applied using the LEfSe Galaxy platform. Taxa shown have a P value cutoff of 0.05.
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increased in H tissue relative to AN and T tissues (alpha = 0.05) (Fig. 3C and D).
Conversely, ASVs classified as Enterococcus spp. were increased in AN and T tissues rel-
ative to H tissue (alpha = 0.05) (Fig. 3C and D). Collectively, these variations in bacterial
abundance suggest the presence of a unique bacterial signature prior to tumor devel-
opment (PD tissue) and possibly persistence and enhancement of this signature follow-
ing tumor development (AN and T tissues). Further, both MaAsLin2 and LEfSe identi-
fied more ASVs decreased in abundance in PD, AN, and T tissue than H tissue (as
opposed to increased), suggesting response of the breast tissue microbiota to tumor
development (Fig. 3A to D).

Analysis of the functional bacteriome highlights decreased abundance of
metabolic pathways prior to and after breast cancer diagnosis. We used PICRUSt2
(14) and the KEGG database (12) to predict the bacterial functional metagenome from the
16S amplicon sequencing data. The analysis identified 7,170 KEGG orthologs (KO), other-
wise referred to as nodes or steps in KEGG pathway maps, correlated with our 16S ampli-
con sequencing data. We used MaAsLin2 and LEfSe to determine differentially abundant
microbial KOs in PD, AN, and T tissue relative to H tissue (Fig. 4). MaAsLin2 identified 574
KOs as significantly associated (g = 0.05; Table S1) with PD, AN, or T tissue. Of these KOs,
395 are less abundant in PD, AN, or T tissue relative to H tissue. Figure 4 shows the top 50
ranked KOs based on g value. This figure includes coefficients for PD, AN, and T tissue for
the top 50 KOs to emphasize the reduction in bacterial function trending among all tissues
from women who had cancer at donation (AN and T) or those who developed cancer after
donation (PD) (significant and non-significant; see Table S1 for associated g values per
group). LEfSe was used for a between-group analysis (PD-H, AN-H, and T-H) of KOs and
supported the MaAsLin2 findings (Fig. 5). Specifically, LEfSe identified three KOs in the PD-
H comparison, and all were increased in H tissue relative to PD tissue (Fig. 5). In addition,
19 KOs were increased in H relative to AN tissue (compared with 13 increased in AN tis-
sue), and 18 KOs were increased in H relative to T tissue (compared with nine increased in
T tissue) (Fig. 5). The majority of these pathways were linked to aspects of bacterial metab-
olism or nutrient transport, suggesting a decreased metabolic response on the microbiota
prior to (PD) and after development of (AN and T) breast tumors.

Associations between the host transcriptome and the breast microbiota are
altered in PD tissues relative to H tissues. To determine how the mammary micro-
biota and its compositional and functional changes in early cancer development
affected the local tissue, we conducted Spearman’s rank correlation analyses between
host transcriptome profiles, bacterial ASVs, and functional KOs for a subset of subjects
in the PD and H groups (total n =12, n, = 6, nyp, = 6) (Table S2). For the correlation
analysis between the host transcriptome and bacterial taxa, we identified no statisti-
cally significant correlations after P value adjustment in the H group and 2 correlations
(P adjusted = 0.05) in the PD group (Tables 2 and 3 and Fig. S5). Spearman’s rank cor-
relation analysis of bacterial KOs and the host transcriptome identified 41 statistically
significant (P adjusted = 0.05) associations between KOs and host genes in the H
group and 13 statistically significant (P adjusted = 0.05) associations between KOs and
host genes in the PD group. Of note, in the H group CYP24A1 (encoding the enzyme
24-hydroxylase) was inversely associated with a number of bacterial KOs within the nu-
trient transport and metabolic pathways. Interestingly, this same gene was positively
associated with the bacteriome in PD tissue (two KOs classified as microbial metabo-
lism in diverse environments and cell signaling). It is also interesting that the majority
of the KO-gene correlations in PD tissue were positive (12 out of 13), whereas the ma-
jority of KO-gene correlations in H tissue included inverse correlations (39 out of 41).
Although these findings are not indicative of a causal impact of the microbiota in
breast tumor development or a response of these bacteria to breast tumor develop-
ment, they support our taxonomic and functional assessments of the breast tissue
microbiota. The analysis also highlights possible differences in the interaction of the
breast tissue microbiota with the tissue microenvironment in healthy women and in
women at the preliminary stages of breast tumor development.
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FIG 4 Differential abundances of bacterial functional pathways in human mammary tissue subtypes. MaAsLin2 differential analysis of KEGG
ortholog abundance in tissue subsets with H tissue as reference. Counts were transformed to relative abundance prior to analysis. The top
50 most significant KEGG orthologs ranked by lowest g value are shown with all group MaAsLin2 coefficients included. All KEGGs shown have an
adjusted g value (Benjamini-Hochberg adjustment) cutoff of 0.01 for at least one tissue subset. Shapes correspond to tissue subsets (circle, PD;
square, AN; triangle, T), while colors correspond to higher-level KEGG pathway classifications (reverse alphabetical order).
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DISCUSSION

Current studies suggest that differences in bacterial composition in human mammary
tissue are associated with breast cancer (6). However, to our knowledge, no research has
addressed the role of the breast tissue microbiota in the earliest stages of breast tumor de-
velopment. We undertook this task by analyzing histologically normal breast tissues
donated prior to the clinical diagnosis of breast cancer (PD). Previous microbiota studies
have also compared breast tumor tissue to adjacent normal and/or breast tissue isolated
from breast augmentation surgery, both of which possess significant histological and
immunological abnormalities compared to tissue donated from healthy women (4, 10).
Further, few of the current compositional analyses of the human mammary microbiota
have been conducted in combination with a global functional assessment of the resident
bacteria. Our study addressed each of these gaps in the current literature. We determined
the bacterial composition of healthy (H) (n = 49), prediagnostic (PD) (n = 15), adjacent nor-
mal (AN) (n = 49), and tumor (T) (n = 46) breast tissues. Through this analysis, we identified
bacterial dysbiosis prior to the onset of breast cancer (PD tissue), which we found to be
enhanced following breast tumor development (AN and T tissues). We also predicted the
functional bacteriome from the 16S amplicon sequencing data and identified significant
metabolic dysregulation associated with this bacterial dysbiosis in PD, AN, and T tissues
relative to H breast tissue. Lastly, we analyzed correlations between the host transcrip-
tome, microbial taxa, and functional KOs and identified altered correlative patterns
between the microbiota and host transcriptome when comparing PD tissue to H tissue.

A truly healthy breast tissue microbiota has not yet been characterized. In our cohort,
the H breast tissue microbiota is represented by three major phyla, Proteobacteria,
Firmicutes, and Actinobacteria (Fig. 2D and Fig. S3A) (7, 15), yet there is clear interindivid-
ual variability even at the high phylum and family taxonomic ranks (Fig. S2A and S3A).
Consistent with most current studies of the human mammary microbiota, we report a
decrease in bacterial diversity (P = 0.05 based on the Shannon index, not significant
based on observed ASVs or Chaol) in T tissue relative to H and PD tissue (Fig. 2B) (6).
Relative abundance analysis and analysis of differentially abundant taxa using MaAsLin2
and LEfSe identified significant taxonomic variation in the bacterial microbiota between
the four tissue types (Fig. 2 and 3). Specifically, we identified an increased abundance of
Bacillaceae and Streptococcus spp. in tissues from women who developed cancer (PD,
AN, and T), which is also consistent with previous studies (9, 15).

Along with our novel characterization of the microbiota in H breast tissue, our study is
the first to characterize the breast microbiota in tissue prior to breast cancer diagnosis (PD
tissue). The PD tissue microbiota was most similar to the microbiota composition of H
breast tissue (Fig. 2 and 3 and Fig. S2B and S3B). However, the PD tissue microbiota
appeared as an intermediate compositional signature, indicative of the beginning of dys-
biosis in the breast prior to breast tumor development. Relative to the H tissue microbiota
composition, there were several bacterial taxa that followed trends in abundance similar
to those found in AN and T tissue (e.g., Bacillaceae, Burkholderiaceae, Corynebacteriaceae,
Enterobacteriaceae, Xanthobacteriaceae, Staphylococcaceae) (Fig. 2 and 3 and Fig. S2 and
S3). PD breast tissue displayed a phylum profile similar to that of microbiotas of patients at
high risk for breast cancer reported by Tzeng et al., although these profiles differed at
lower taxonomic ranks (16). We also identified taxa in PD tissue that were previously
reported as differentially abundant in cancerous tissues. Specifically, studies report a
higher abundance of Streptococcus and Corynebacterium 1 in cancerous tissue relative to
control tissue (9, 16). Urbaniak et al. report decreased abundance of Bacillus and
Staphylococcus in cancerous tissue relative to healthy controls (7). These findings are con-
sistent with our comparisons of PD, AN, and T tissue microbiotas to the H microbiota.
Thus, although the PD tissue microbiota is similar in composition to that of H tissue, there
are clear shifts in bacterial abundance that preclude breast tumor diagnosis, and these
shifts are also present in breast tissue associated with malignant tumors (AN and T tissues).

We used PICRUSt2 to predict the functional bacteriome based on our 16S amplicon
sequencing data. The majority of genes identified are related to the metabolic capacity of
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FIG 5 Differential abundance analysis of KEGG orthologs in human mammary tissue subtypes. (A to C) LEfSe for H versus PD (A), AN (B), and
T (C). One-against-all analyses and default settings were applied using the LEfSe Galaxy platform. Taxa shown have a P value cutoff of 0.05.
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TABLE 2 Correlations between genes and taxa

Adjusted
Classification ASV Ensembl gene ID Gene name or description R P value
Healthy No significant correlations
Prediagnostic ASV191, Sphingomonas ENSG00000212663 Novel transcript 1 0
ASV1580, Streptococcus ENSG00000267676 THATP 1 0

the microbiota (Fig. 4 and 5). Some of these metabolic pathways suggest decreased bacterial
function, which would otherwise be protective against breast cancer development. For
example, we identified a decreased abundance of bacterial genes associated with xenobiot-
ics degradation. Degradation of carcinogenic xenobiotics into nontoxic bioproducts is shown
to be protective against breast carcinogenesis (17). We also note an increased abundance of
KOs associated with bacterial pathogenesis and defense. Specifically, K13734 (fibronectin
binding-protein/bacterial invasion of epithelial cells) and K07464 (CRISPR-cas4) correspond
to bacterial pathogenic and defense functions. Although the differentially abundant ASVs
identified in the PD group are only classified down to the genus level, Streptococcus spp. are
common pathogens of the human breast (18). Presence of these bacteria prior to tumor de-
velopment might instigate an inflammatory response in breast tissue or a tumor-inducing
microenvironment. Beyond these specific functional anomalies, our analysis of microbiota
function in relation to breast cancer highlights significant metabolic reprogramming in the
resident microbiota. Notably, we observed the reduction of glutathione (GSH) metabolism
(K00383, K00432, and K00799) in AN and T tissue compared with H tissue (Table S1). GSH
metabolism plays a critical role in cancer initiation, as it mediates the removal and detoxifica-
tion of carcinogens (19). Alterations in this pathway can affect cell survival and promote tu-
mor progression. Metabolic reprogramming and alterations in cell activity are also emerging
hallmarks of a variety of cancers, including breast cancer (20). Marino et al. recently con-
ducted an analysis of the host-transcriptome among similar prediagnostic tissues collected
by the KTB. In this study, lipid metabolism genes were upregulated prior to breast tumor de-
velopment (4). Here, we show an underrepresentation of bacterial lipid metabolism genes in
PD and AN breast tissue (Fig. 4A and 5B and Table S1). Given these findings, it is possible
that the precancerous human cells are exhibiting Warburg metabolism, leading to their inev-
itable overproliferation and enhanced metabolic capacity (21). This may be negatively affect-
ing the resident microbiota of mammary tissue, resulting in decreased microbial metabolism
and enhanced metabolic dysregulation in response to uncontrollable growth and utilization
of metabolites by host-cancerous tissue.

To investigate the cross talk between the microbiota and the local microenvironment,
we conducted a Spearman’s rank correlation analysis between the host transcriptome and
microbial taxa and genes. We observed inverse host-microbial correlative patterns among
a subset of PD and H tissues (Tables 2 and 3). Specifically, the majority of correlations in
PD tissue between taxa and the host transcriptome and microbial KOs and the host tran-
scriptome were positive, while in H tissue, the majority of microbial KO-host transcriptome
correlations are negative, noting an inverse relationship between microbial function and
host gene expression. Of note, the CYP24A1 gene, which encodes the enzyme 24-hydroxy-
lase, was among the host genes inversely associated with microbial genes in H tissue and
positively associated with microbial genes in PD tissue. This enzyme is in the cytochrome
P450 family of enzymes, which are involved in steroid hormone and xenobiotics metabo-
lism (22). There is evidence of increased expression of cytochrome p40 genes in breast
cancer (22). It is possible we are seeing a correlated bacterial response in PD tissue to a
changing tissue microenvironment in the earliest stages of breast tumor development.
Aside from the correlations with CYP24A1, nucleoside diphosphate kinase 2, NVIE2, is a me-
tastasis suppressor in many types of cancer (23). Our data suggest that in PD tissue, as the
function of certain bacteria increases, expression of NEM2 diminishes, highlighting a poten-
tial mechanistic connection between the breast tissue microbiota (specifically taxa that are
increased in abundance in PD tissue) and the tumor microenvironment. The functional
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TABLE 3 Correlations between genes and KEGG orthologs

mSystems

Group and KOno. Pathway Ensembl gene ID Gene name or description R Adjusted P value
Healthy
K01150 Enzymes ENSG00000019186  CYP24A1 —1 0
K01545 Two-component system ENSG00000019186  CYP24A1 =1 0
K01795 Fructose and mannose metabolism ENSG00000019186  CYP24A1 -1 0
K03314 Transporters ENSG00000019186  CYP24AT1 =1 0
K03668 Genetic information processing ENSG00000019186  CYP24A1 -1 0
K04337 Secretion system ENSG00000019186  CYP24A1 =1 0
K04338 Secretion system ENSG00000019186  CYP24A1 -1 0
K06887 Function unknown ENSG00000019186  CYP24A1 =1 0
K07338 Function unknown ENSG00000019186  CYP24AT1 =1 0
K07351 Bacterial motility proteins ENSG00000019186  CYP24A1 =1 0
K09932 Function unknown ENSG00000019186  CYP24A1 =1 0
K10025 ABC transporters ENSG00000019186  CYP24A1 =1 0
K10844 Genetic information processing ENSG00000019186  CYP24A1 -1 0
K11016 Bacterial secretion system ENSG00000019186  CYP24A1 -1 0
K11017 Bacterial secretion system ENSG00000019186  CYP24AT1 =1 0
K11383 Two-component system ENSG00000019186  CYP24A1 =1 0
K11477 Poorly characterized ENSG00000019186  CYP24A1 =1 0
K11739 Poorly characterized ENSG00000019186  CYP24A1 -1 0
K12253 Amino acid metabolism ENSG00000019186  CYP24A1 -1 0
K12981 Lipopolysaccharide biosynthesis ENSG00000019186  CYP24A1 -1 0
K14744 Unclassified: metabolism ENSG00000019186  CYP24A1 -1 0
K15650 Polyketide biosynthesis proteins ENSG00000019186  CYP24A1 =1 0
K15737 Microbial metabolism in diverse environments ~ ENSG00000019186  CYP24A1 -1 0
K16517 Transporters ENSG00000019186  CYP24A1 =1 0
K18093 Two-component system ENSG00000019186  CYP24A1 =1 0
K18294 Genetic information processing ENSG00000019186  CYP24A1 -1 0
K18540 Unclassified: metabolism ENSG00000019186  CYP24A1 -1 0
K19155 Prokaryotic defense system ENSG00000019186  CYP24A1 -1 0
K19609 Two-component system ENSG00000019186  CYP24A1 -1 0
K19610 Two-component system ENSG00000019186  CYP24A1 =1 0
K12266 Genetic information processing ENSG00000130741 EIF2S3 =1 0
K12549 Signaling and cellular processes ENSG00000130741  EIF2S3 -1 0
K02673 Secretion system ENSG00000134245  WNT2B =1 0
K07215 Biosynthesis of secondary metabolites ENSG00000134245  WNT2B -1 0
K07481 Genetic information processing ENSG00000134245  WNT2B -1 0
K00032 Microbial metabolism in diverse environments ~ ENSG00000226747  FSIP2-AS2 -1 0
K11441 Microbial metabolism in diverse environments ~ ENSG00000226747  FSIP2-AS2 -1 0
K12256 Metabolic pathways ENSG00000226747  FSIP2-AS2 =1 0
K06214 Secretion system ENSG00000246334  PRR7-AS1 -1 0
K00467 Carbohydrate metabolism ENSG00000267676  THATP 1 0
K14470 Microbial metabolism in diverse environments ~ ENSG00000267676  THA1P 1 0
Prediagnostic
K02011 ABC transporters ENSG00000185551 NR2F2 1 0
K06970 Genetic information processing ENSG00000185551  NR2F2 1 0
K01027 Carbohydrate metabolism ENSG00000212663  Novel transcript 1 0
K01387 Peptidases and inhibitors ENSG00000212663  Novel transcript 1 0
K07647 Two-component system ENSG00000212663  Novel transcript 1 0
K10020 ABC transporters ENSG00000212663  Novel transcript 1 0
K06320 Signaling and cellular processes ENSG00000228782  MRPL45P2 1 0
K07215 Biosynthesis of secondary metabolites ENSG00000243678  NME2 -1 0
K06407 Signaling and cellular processes ENSG00000268460  LOC93429 1 2.17E—28
K00387 Microbial metabolism in diverse environments ~ ENSG00000019186  CYP24AT1 1 8.69E—28
K19336 Signaling and cellular processes ENSG00000019186  CYP24A1 1 8.69E—28
K00467 Carbohydrate metabolism ENSG00000211639  IGLV4-60 1 8.69E—28
K14470 Microbial metabolism in diverse environments ~ ENSG00000211639  IGLV4-60 1 8.69E—28
KOs associated with the host transcriptome include metabolic pathways, the secretion sys-
tem, and lipopolysaccharide biosynthesis, suggesting a diverse array of functional associa-
tions between the resident bacteriome and host transcriptome. Together with our compo-
sitional and functional data, these findings also highlight possible response pathways of
the resident mammary bacteria to breast cancer development.
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A significant strength of our study is our characterization of the human mammary
microbiota composition and functional potential prior to cancer development, which
has not been previously conducted. To conduct this analysis, we used a nested PCR to
enrich bacterial sequences in these low-biomass breast tissue samples. This nested
library preparation has been suggested to enhance the ability to interpret microbiota
variations in low-biomass samples (24). Additionally, the H and PD breast tissues used
in this study are precious and limited in availability. PICRUSt2’s metagenome predic-
tion is highly comparable to shotgun metagenomic analysis of the microbiota (14),
maximizing the utilization of these tissues for a variety of future genomic analyses.

Our study is not without limitations. The PD tissue subset is small (n = 15), which
limits our statistical power to identify variation in the PD microbiota. We are working
with the KTB to identify PD donors and increase the sample cohort. Moreover, our
identification of a PD microbial compositional and functional signature, though novel,
does not clarify whether the breast tissue-resident bacteria are causally implicated in
breast tumor development.

Although many questions related to causality remain, our work highlights yet
another role of the resident microbiota in human disease. Through this analysis of the
human mammary microbiota, we were able to identify, for the first time, a unique mi-
crobial compositional signature that precludes the development of breast tumors (PD
tissue). We identified significant metabolic dysregulation of the microbiota in tissues
from women who developed (PD tissue) or were currently diagnosed with breast can-
cer (AN and T). We also identified altered correlative patterns of the microbiota with
the host transcriptome in PD tissue compared to H tissue. An expansion on this analy-
sis of host-microbiota interactions in a larger sample size of PD tissues represents a
future step to further elucidate how these microbes promote breast cancer and how
they could be harnessed to potentially protect against this disease.

MATERIALS AND METHODS

Breast tissue sample procurement. A total of 165 fresh-frozen breast tissue samples were obtained
from the Indiana University Simon Comprehensive Cancer Center Tumor Bank (IUSCCC) and the Susan
G. Komen Tissue Bank at IUSCCC (KTB) for microbiota analysis under protocols approved by the Indiana
University Institutional Review Board (IRB; protocol number 1011003097 and protocol number 11438,
respectively). Samples from both banks are stored and managed by the Biospecimen Collection and
Banking Core. The samples were grouped into the following categories: prediagnostic (PD; n = 15),
healthy (H; n = 50), adjacent normal (AN; n = 51; postdiagnosis adjacent tissue, 5 cm, adjacent to breast
tumors), and tumor (T; n = 49) tissues. Tissue from healthy women was selected from the KTB, a unique
repository of voluntarily donated healthy breast tissue, available to researchers as control tissue in stud-
ies aimed at understanding the molecular and histological traits involved in breast cancer development
(11). In addition, among the women who donated healthy breast tissue to the KTB, we identified 15
women who donated healthy tissue but were later, unfortunately, diagnosed with breast cancer (PD).
AN and T tissues were obtained from the IUSCCC tumor bank. The following breast biopsy procedure
performed by the KTB is described on their website (https://komentissuebank.iu.edu/researchers/sop
.php). Briefly, donors complete informed consent paperwork, are measured for height and weight, and
fill out an online questionnaire, thereby self-reporting clinical data (age, menopausal status, etc.) during
sample procurement. The mammary skin is sterilized and numbed with 10 ml of 1% lidocaine. A nick
incision is made with a sterile scalpel, and up to six cores are taken from the upper outer quadrant of
the breast using the ATEC breast biopsy system (Hologic Inc., Bedford, MA). The tissue cores are then
transported to the tissue processing room and flash-frozen in liquid nitrogen within 10 min. Samples are
subsequently stored at —-195°C until being shipped to corresponding labs for study.

Subject selection. For the prediagnostic cohort (PD), tissue cores donated by 15 women were
selected for microbiota analysis based on sample availability. For the healthy subset (H), we requested
samples from women meeting the following criteria: healthy individuals with no prior breast surgery
within 3 months of donating, no lactation or pregnancy at the time of sample collection, no personal
history of cancer or benign breast disease, and no antibiotic use at the time of sample collection. For the
women with cancer, we selected adjacent normal (AN) and tumor (T) tissue from women meeting the
following criteria (prioritizing women who donated both tumor and adjacent normal tissue): no lactation
or pregnancy at the time of sample collection, no prior breast disease (where possible), and no antibiotic
use at the time of sample collection. Based on these criteria, our cohort consisted of 141 women: 76
women donated either T tissue (n = 25), AN tissue (n = 27), or both (n = 24), 50 women donated H tissue,
and 15 women donated PD tissue. In addition, subsequent to screening based upon respective health
histories, 6 samples containing fewer than 10,000 sequencing reads were removed from further study
(1 H sample, 2 AN samples, and 3 T samples) to avoid inclusion of samples with immoderately low bacte-
rial biomass. Following completion of microbiome sequence preprocessing and decontamination, our
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final cohort consisted of 137 women, 73 of whom donated either T tissue, AN tissue, or both, 49 women
who donated H tissue, and 15 women who donated PD tissue (Fig. 1). Collectively, these 137 women
donated 159 breast tissue samples (H = 49, PD = 15, AN = 49, and T = 46) to be analyzed for microbiota
composition and function.

DNA extraction. We extracted DNA from all 165 mammary tissue samples using the Qiagen AllPrep
PowerFecal DNA/RNA kit (Qiagen, Hilden, Germany) by following the manufacturer’s guidelines, with
the following modifications to the lysis procedure. In a sterilized tissue culture hood, samples were cut
into 50-mg pieces and placed into labeled bead tubes containing approximately 650 uL of lysis buffer,
50 ul of proteinase K, and 25 ul of dithiothreitol (DTT). The samples were then placed in an ~70°C
water bath for approximately 1 h with periodic vortexing until the entirety of the breast tissue was lysed.
Following tissue lysis, the samples were homogenized twice in 2-min intervals using a bead mill.
Following bead beating, DNA was isolated using the manufacturer’s instructions. DNA was stored at —
80°C until library preparation and sequencing.

In addition to the DNA isolation from the mammary tissues, we also isolated DNA from a positive
control (ZymoBIOMICS microbial community standard [catalog no. D6300]) and performed 9 extractions
from negative controls (see Fig. S6A to C in the supplemental material). Approximately two extraction
negative controls were isolated for each DNA extraction kit utilized in this study. The extraction negative
controls consisted solely of the reagents and buffers used for DNA isolation to account for any possible
reagent contamination. These negative controls were subjected to all steps of the sample preparation
process (extraction, library preparation, and sequencing). These negative extraction controls, along with
the positive-control microbial standard, represent published strategies to account for possible reagent
contamination in low-biomass samples (25, 26).

16S microbial community analysis. (i) Library preparation and sequencing. Extracted DNA from
165 tissue samples, 9 negative extraction controls, and 1 positive control was submitted to the
University of California Davis Host Microbe Systems Core Lab for library preparation and sequencing.
Samples were subjected to a nested library preparation procedure. First, primers spanning the full-
length 16S rRNA gene (27F/1492R) are applied to amplify and enrich for the full-length bacterial 16S
rRNA gene. Second, a traditional two-step PCR process is applied to these full-length 16S amplicons to
amplify the V3-V4 regions (primers 319F and 806R) of the 16S gene and add indices for sample identifi-
cation after sequencing is complete. Amplicons resulting from this nested library preparation were
quantified and subsequently pooled to equalize concentrations for lllumina MiSeq sequencing. In addi-
tion to the extraction negative controls, which were subjected to all sequencing preparation steps
(extraction, library preparation, and sequencing), PCR-specific no template controls were included in the
16S enrichment and index PCR steps. These PCR-specific no template controls yielded no amplification.
Following library preparation, samples were pooled and sequenced via lllumina MiSeq bidirectional
paired-end sequencing (2 x 300 bp; Illumina, San Diego, CA, USA).

(ii) Sequence preprocessing. Overlapping paired-end reads were processed into amplicon
sequence variants (ASVs) with DADA2 (27). Unique ASVs were aligned to the SILVA reference database
and assigned taxonomy using the assignTaxonomy function as outlined in the DADA?2 tutorial (27, 28).
The only modification to the default DADA2 pipeline was in the length of the forward and reverse read
trimming. Forward reads were trimmed to 260 bp, and reverse reads were trimmed to 190 bp prior to
merging reads into contigs.

RNA extraction and whole transcriptome profiling. Transcriptome profiles of 219 H and PD sub-
jects (ny = 204, n,, = 15) were analyzed for differential gene expression in two separate sequencing
batches (available from Gene Expression Omnibus under GSE164641 [batch I] and GSE166044 [batch I1]).
Total RNA was isolated from fresh-frozen breast tissue biopsy specimens (150 to 200 mg) using the AllPrep
DNA/RNA/miRNA kit (Qiagen). Tissues were homogenized by using 2-mL prefilled tubes containing 3-mm
zirconium beads (number D1032-30; Benchmark Scientific), 350 uL lysis buffer, 2-mercaptoethanol, and
BeadBug 6 homogenizer (Benchmark Scientific) in a cold room under the following conditions: 4,000 rpm
for 45 s repeated twice with 90-s rest time. The concentration and quality of total RNA samples was first
assessed using an Agilent 2100 Bioanalyzer. A RIN (RNA integrity number) of six or higher was required to
pass the quality control.

Samples were then submitted to the Center for Genomics and Bioinformatics at IU Bloomington,
where a cDNA library was prepared using the TruSeq stranded total RNA kit (lllumina) and
sequenced using lllumina HiSeq4000. Reads were adapter trimmed and quality filtered using
Trimmomatic ver. 0.38 (http://www.usadellab.org/cms/?page=trimmomatic), setting the cutoff
threshold for average base quality score at 20 over a window of 3 bases. Reads shorter than 20 bases
posttrimming were excluded. About 94% of the reads have both mates passing the quality filters.
Using STAR version STAR_2.5.2b, 99% of cleaned reads were aligned to the human genome refer-
ence sequence GRCh38.p12 with gencode v.28 annotation (29).

Statistical analysis. All R code can be found in File S1.

Metadata analysis. Associations between clinical variables and cancer status were analyzed via
logistic regression using the glm package in R (n cancer = 73, n healthy = 49, n prediagnostic = 15, n
total = 137) (Table 1) (30). The P value cutoff for significance was 0.05.

Microbial composition analysis. Raw ASVs and taxa used in the following analyses are available at
https://datadryad.org/stash/share/qq_3ZPf-f_QVPyhlEtbiy8AJm2_rYwHhyY9cno87YLY. Any contami-
nated sequences identified in the negative extraction controls (n = 9) were removed from all samples
using the decontam package (31). This removal was based on the prevalence of the ASV in the samples
relative to the prevalence of the ASV in negative controls. This process removed 775,278 reads from our
analysis. We also removed all nonbacterial reads (Fig. S6D to F). After decontamination, samples with
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fewer than 10,000 reads were removed from the data set, and the data were rarefied to the smallest
sample depth of 18,441 reads. After rarefaction, we constructed a phylogenetic tree using the APE pack-
age in R (32). Next, we used the Phyloseq and vegan packages (33, 34) in R to analyze alpha diversity
based on the Chaol and Shannon diversity indices and beta diversity based on the weighted and
unweighted UniFrac distances. After analysis of alpha and beta diversity, ASVs with fewer than 20 reads
were removed from this data set. In total, 8,225,367 reads passed decontamination and pruning
(Fig. S6G). ASVs were transformed to percent abundance per sample prior to construction of relative
abundance plots in Phyloseq and analysis with MaAsLin2 and LEfSe (35, 36). Phylum abundance plots
were constructed using all ASVs. We isolated the top 100 ASVs prior to constructing relative abundance
plots at the family level. For identification of differentially abundant taxa in PD, AN, and T tissue relative
to H tissue, we used a consensus-based approach, employing both MaAsLin2 and LEfSe (35, 36).
MaAsLin2 is a multivariate statistical model used to identify associations between microbial taxa or func-
tional features and clinical metadata (30). We used MaAsLin2 under default settings with a g value
threshold of 0.25 (Benjamini-Hochberg adjustment) for identification of differentially abundant ASVs.
LEfSe uses the nonparametric Kruskal-Wallis test to identify significantly differentially abundant taxa
between groups and then employs linear discriminant analysis (LDA) to estimate effect sizes of each
identified microbial feature (36). LEfSe analysis was conducted on the Galaxy server (https://
huttenhower.sph.harvard.edu/galaxy/) using the following settings: alpha = 0.05, 2 for LDA threshold,
and one-against-all strategy for multiclass analysis. The betadisper test in vegan was used to determine
relative heterogeneity of the H, PD, AN, and T microbiota (34). The betadisper function analyzes the var-
iance of each sample from the centroid and returns statistically significant findings (P = 0.05) when com-
paring dispersal between tissues. The Shapiro-Wilk test for normality was applied to Chao1, observed
ASV counts, and Shannon diversity indices, with a P value of =0.05 indicating that the samples are not
normally distributed. Based on this test for normality, repeated-measures analysis of variance (ANOVA)
and post hoc Tukey's tests were applied to determine statistical differences in Shannon diversity indices
between tissue types, and linear regression models were applied to analyze statistical differences in
Chao1 diversity indices and observed ASV counts. All plots were created using the ggplot2 package (37).

Microbial functional analysis. We used PICRUSt2 under default settings to infer a profile of putative
microbial functions (via metagenome prediction) from the 16S rRNA after decontamination and removal
of nonbacterial reads (14). Representative sequences were analyzed using PICRUSt2 and classified
against the Kyoto Encyclopedia of Genes and Genomes (KEGG) Database according to 97% similarity
(12, 13). This analysis provides insight into the molecular and metabolic function of microbiota in the
breast tissue. We identified 7,170 KEGG orthologies (KO), otherwise referred to as nodes or steps in
KEGG pathway maps, using this prediction software. Each was assigned a KO identifier indicating its sta-
tus as a functional ortholog, done by inserting our KO results into the KEGG orthology data-oriented
entry point of the KEGG orthology annotation ortholog table (OT). Within each KEGG database OT entry
for the KO numbers, both the predicted general metabolic function and specific metabolic activity were
assigned to the corresponding KOs. The same samples removed from the ASV table for microbiome
compositional analysis (samples with less than 10,000 reads) were also removed from the PICRUSt2 data
set before identification of differentially abundant microbial pathways. These data were relativized, and
we used MaAsLin2 (same settings as those described above) and LEfSe (same settings as those described
above) to identify KOs associated with the breast tissue type (PD, AN, and T) relative to H tissue (35, 36).

Correlation analyses between host genes and microbial taxa and genes. RNA from 219 H and PD
subjects (n,, = 204, ny, = 15) was analyzed for differential gene expression in two separate sequencing batches
(available from Gene Expression Omnibus GSE164641 [batch I] and GSE166044 [batch II]) using Deseg2. To con-
trol for batch effect, we included a categorical variable for batch when conducting the differential expression
analysis in Deseq2 (38). Only genes identified as differentially expressed (DE) when controlling for the batch
were included in our correlation analyses with the microbiome data. We identified 48 DE genes (alpha < 0.1)
between H and PD subjects. Next, we isolated ASVs identified via either MaAsLin2 (g = 0.25) or LEfSe
(P = 0.05) as differentially abundant in PD and H tissue from subjects for whom we also had microbiome data
from the decontaminated and pruned ASV table. Using the psych package in R, we conducted a Spearman’s
rank correlation analysis between DE host genes and these bacterial ASVs for the PD and H groups separately
(39). We then isolated the KOs identified as differentially abundant from the PICRUSt2 predicted functional
metagenome between the PD and H tissues via either MaAsLin2 (g = 0.25) or LEfSe (P = 0.05). Similar to the
gene-ASV analysis, we used the psych package in R to conduct a Spearman'’s rank correlation analysis between
DE host genes and bacterial KOs for the PD and H subjects (n,, = 6, npp = 6) from whom we also had micro-
biome data separately (39). All correlations reported are statistically significant at an adjusted P value cutoff of
0.05 (Holm’s method). Data used in these correlation analyses can be found in Table S2.

A STORMS checklist is available at https://datadryad.org/stash/share/qq_3ZPf-f_QVPyhlEtbiy8AJm2
_rYwHhyY9cno87YLY (40).

Ethics approval and consent to participate. Collection of breast tissue was performed by the KTB and
IUSCCC Tumor Bank under a protocol approved by the Indiana University Institutional Review Board (IRB pro-
tocol number 1011003097 and protocol number 11438, respectively). All analyses performed on these tissues
were approved by Pepperdine University’s Institutional Review Board (protocol number 18-07-837).

Data availability. All fastq files for 16S sequencing were deposited in the NCBI Sequence Read
Archive (SRA) (accession number PRINA723425). Transcriptome data were deposited in Gene Expression
Omnibus (GEO) under GEO numbers GSE164641 (batch I) and GSE166044 (batch II). All R code used to ana-
lyze these data sets can be found in File S1. Relevant data sets are available as additional files (MaAsLin2
findings and correlation data) or by accessing the following link: https://datadryad.org/stash/share/qq
_3ZPf-f_QVPyhIEtbiy8AJm2_rYwHhyY9cno87YLY (link to the Dryad repository, which includes metadata
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for Table 1, raw ASVs, and the raw PICRUSt2 data: https://doi.org/10.5061/dryad.9s4mw6mjd). We encour-
age requests of any other data sets or information that would be helpful to those aiming to validate these
findings.
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